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Abstract

While synthetic data generated through diffusion models has been shown to im-
prove task performance, current approaches face two key challenges: the high
cost of fine-tuning diffusion models for specific datasets and the domain gap be-
tween real and synthetic data, which limits utility in fine-grained classification.
To address these issues, we propose CDaug, a novel compositional approach to
data augmentation using controlled diffusion. Instead of generating entirely new
images, CDaug conditions generated images on existing data in a self-supervised
manner, akin to how humans use imagination to compose new scenarios from
existing concepts, leveraging the compositionality of learned representations to
infuse meaningful variations. Our pipeline utilizes ControlNet, conditioned on
original data and captions generated by the multi-modal LLM LLaVA2, to guide
the generative process. By recombining the underlying structure and semantic
priors of the data, CDaug achieves high-quality augmentations without fine-tuning.
Using open-source models, our modular approach demonstrates improved perfor-
mance across seven fine-grained datasets in both few-shot and full dataset settings,
showing promise for compositional generalization in fine-grained environments.

1 Introduction

In recent years, the capabilities of Generative AI have surged across multiple domains. While the
technology is undoubtedly here to stay, an essential question lingers: to what extent can AI-generated
content be used to refine and further develop AI itself [30]? For AI-generated data to be truly
impactful, it must overcome a significant challenge: the sim-to-real gap. We propose a shift in
perspective: instead of viewing generative AI as merely a tool for creating data from scratch, we
see it as akin to the human mind’s process of "dreaming of reality," where the brain reimagines the
world to reinforce knowledge and memory. Like a Platonic chair, where we can envision chairs of
infinite forms, sizes, and colors, AI can generate synthetic data conditioned on real-world information,
capturing the essence of underlying structures and semantic priors. Through conditional augmentation,
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Figure 1: Example image augmentations using our pipeline on six datasets.

AI recombines known elements—like humans internalizing reality to create mental representations
with their imagination—infusing novel yet meaningful variations that remain tethered to the original
data distribution. This compositional approach mirrors the human cognitive process of understanding
complex concepts through the recombination of learned components, and by imagining potential
variations. By conditioning generative models on existing data, we ensure that the newly generated
content maintains the integrity of its foundational components while exploring new possibilities.
Motivated by this vision, we designed a novel pipeline that utilizes fully open-source models to take
an input image, generate a caption, extract the necessary features from the original image, and create
an augmentation that retains the semantic and underlying structure of the original image. Because we
use open-source models, our pipeline is fully modular, allowing the models to be swapped out per the
user’s needs. Our focus in this work is to tackle the problem as it relates to image classification, but
we believe that the general hypothesis may prove useful across a wide range of domains.

2 Related Works

Data augmentation aims to reduce model overfitting by applying random image transformations that
preserve the semantics of the original, while being different enough to provide the model with more
of a challenge. Recently, generative diffusion models [29], especially text-to-image models, have
made massive progress in generating photo realistic images [16, 19, 21]. Trained on internet-scale
data [23], they have been used as an effective augmentation method [1, 22, 8, 24, 20], often using
only simple class-agnostic prompts to guide generation for each class or even just the class names.
However, synthetic data still falls short of their real counterpart across the board, which suggests
that there is still a domain gap between real and synthetic data [28]. We are the first to provide an
in-depth study on how to apply these models as a general augmentation operator and to incorporate
both recent advances in image-to-image conditioning and multimodal LLMs, using both the image
and caption of the image, to condition the generation process. The strength of CDaug over prior
work is that it minimizes the domain gap between real and synthetic images, can generate synthetic
variations of concepts unknown to it without any fine-tuning, and is suitable for fine-grained datasets,
where minor semantic details are very important and diffusion models may not be able to generate to
the required level of nuance.

3 Methods

We use canny edge detector for the prepocessor, LLaVA2 for the captioning model, and ControlNet
canny for our pipeline. We chose these models as they are the state of the art at the time of writing,
but the pipeline was designed with modularity in mind and each of these blocks can be replaced per
the user’s needs. CDaug The CDaug pipeline with an example image is demonstrated in Figure 2.
We pre-process each image with the canny edge detector [3] as it provides an effective augmentation
without incurring a large processing cost. In parallel to the conditioning image, we utilized an
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Figure 2: Our complete pipeline with ControlNet Canny, LLaVA2, and Canny edge detector.

additional form of conditioning in the form of detailed image captions. To automate the captioning
of the images, we utilize LLaVA2, a multimodal language model based on Llama2 that given an
input image and a prompt will generate an answer using the image [13]. Through qualitative testing,
we found that the LLaVA2 performs similarly to other multi-modal LLMs such as Bert and BLIP-2.
To create unique variations while retaining the key features from the original image, we utilize
ControlNet from [31]. This allows for rapid customization of the diffusion model, without losing
information stored in the pre-trained weights. Once we have the conditioning image and the caption,
we input the caption and the conditioning image into ControlNet Canny to create as many variations
as is required. These inputs allow our method to create unique images ensuring that the new variations
have realistic structure and features. ControlNet Canny takes the two inputs described above: the
edge map and detailed caption. With these inputs, we capture the underlying structure of the original
image, while infusing meaningful and novel variations in the data from the description generated by
the LLM.

Augmenting Datasets To create a full augmented dataset, we generated two distinct augmentations
for each image, thereby diversifying the dataset without an excessive increase in computational
demand. For our fewshot dataset experiments, we created 15 variations per image. We specified both
a positive (a_prompt) and negative (n_prompt) text prompt The a_prompt parameter was assigned
the output of the LLM, as described above. Conversely, the n_prompt was "multiple, mushed,
low quality, cropped, worst quality" as its value. A square image resolution of 512x512
pixels was chosen, and the DDIM (Denoising Diffusion Implicit Models) process was configured to
perform 20 iterations, ensuring that the augmentations would possess sufficient quality, while still
being computationally cheap to generate. On a single 24GB NVIDIA 3090 GPU, we could generate
about 15 augmentations per second.

4 Experiments

To test the strength of our approach, we chose to focus on fine-grained settings, including both
few-shot and full dataset settings. We augmented seven datasets: Caltech256 [6], Sun397 [27],
Oxford IIT-Pets[18], FGVC Aircraft[15], Stanford Cars[12], Stanford Dogs[11], and Food101[2].
Examples can be seen in Figure 1. For the few-shot experiments, we used a pretrained Resnet50,
training using SGD, using cosine annealing with a learning rate ranging from 1e-2 to 1e-7. The
augmented dataset has 15 augmentations per image, and thus is 16 times larger than the baseline
dataset. To compensate for this, all baseline methods were trained for 16 times more epochs than the
augmented version, to ensure a fair comparison. All experiments were run for at least 3 seeds, with
the mean and standard deviation reported. To ensure a strong baseline, we applied state-of-the-art
augmentation techniques to the baseline, including rotation, random-crop, mirroring, color-jitter, and
auto-augment [5]. We present the results for 5 way classification in Table 1, and 10 way in Table 2.

4.1 Full Dataset Results

For the full dataset experiments, we present results on a variety of architectures, including Resnets[7],
VGG [25], EfficientNet[26], Visformer[4], Swin Transformer[14], MobileNet[9], and DenseNet[10],
to demonstrate the versatility and robustness of our method. All models were trained from scratch
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Table 1: 5-Way Few-Shot Classification Results

Shots 1 2 5 10

Caltech Baseline 57.57 ± 1.56 65.57 ± 0.39 79.07 ± 1.03 84.02 ± 1.4
CDaug 62.53 ± 1.4 71.9 ± 2.02 82.06 ± 1.06 83.19 ± 1.04

Cars Baseline 42.78 ± 2.26 52.4 ± 2.7 75.95 ± 1.54 86.07 ± 0.0
CDaug 47.41 ± 1.32 60.03 ± 0.62 76.45 ± 1.24 89.88 ± 0.24

Aircraft Baseline 30.93 ± 1.02 29.92 ± 1.73 35.54 ± 1.47 43.77 ± 1.5
CDaug 36.95 ± 1.58 39.16 ± 0.49 40.36 ± 1.3 51.34 ± 0.96

Pets Baseline 28.25 ± 0.66 34.94 ± 0.59 44.71 ± 0.25 52.54 ± 0.68
CDaug 31.59 ± 0.41 42.04 ± 0.74 55.96 ± 0.5 67.2 ± 0.57

Dogs Baseline 26.15 ± 0.68 28.57 ± 0.91 54.07 ± 0.63 75.87 ± 1.09
CDaug 31.23 ± 1.43 40.4 ± 0.95 56.82 ± 1.26 76.35 ± 0.23

Food Baseline 33.39 ± 0.14 46.27 ± 0.39 63.71 ± 0.23 71.39 ± 0.42
CDaug 42.35 ± 0.91 54.75 ± 0.76 69.36 ± 0.74 76.29 ± 0.2

Sun Baseline 33.5 ± 3.29 48.07 ± 1.55 51.93 ± 0.24 60.8 ± 0.41
CDaug 35.68 ± 3.69 45.06 ± 0.24 52.6 ± 1.32 61.3 ± 1.08

Table 2: 10-Way Few-Shot Classification Results

Shots 1 2 5 10

Caltech Baseline 45.73 ± 0.97 57.58 ± 0.39 77.82 ± 0.78 79.89 ± 0.85
CDaug 52.62 ± 1.36 71.07 ± 1.47 78.65 ± 0.71 85.18 ± 1.52

Cars Baseline 29.47 ± 0.31 35.97 ± 0.42 57.86 ± 0.96 74.4 ± 0.84
CDaug 32.1 ± 0.81 40.25 ± 3.15 65.76 ± 0.62 79.01 ± 0.35

Aircraft Baseline 18.22 ± 0.51 22.22 ± 1.12 25.02 ± 1.16 33.13 ± 0.62
CDaug 20.22 ± 0.93 25.23 ± 0.25 28.53 ± 0.49 35.43 ± 1.92

Pets Baseline 31.34 ± 0.91 42.84 ± 0.62 53.27 ± 0.77 62.2 ± 0.43
CDaug 32.49 ± 0.72 45.11 ± 0.49 60.54 ± 1.18 68.12 ± 0.17

Dogs Baseline 18.26 ± 0.5 28.14 ± 1.26 45.23 ± 1.45 65.37 ± 0.99
CDaug 22.33 ± 0.17 33.15 ± 0.11 48.19 ± 0.29 67.16 ± 0.93

Food Baseline 23.71 ± 0.42 37.63 ± 0.66 55.99 ± 0.42 69.51 ± 0.25
CDaug 31.81 ± 0.17 46.79 ± 0.17 63.36 ± 0.37 71.95 ± 0.35

Sun Baseline 19.46 ± 1.59 27.92 ± 1.05 44.26 ± 0.13 59.18 ± 0.21
CDaug 20.98 ± 0.82 30.01 ± 0.35 49.29 ± 0.13 61.01 ± 0.44

using SGD, using cosine annealing with a learning rate ranging from 1e-2 to 1e-4. The augmented
dataset has 2 augmentations per image, and thus is 3 times larger than the baseline dataset. To
compensate for this, all baseline methods were trained for 3 times more epochs than the augmented
version, to ensure a fair comparison. The baselines were trained for 900 epochs, and the augmented
version for 300 epochs. In all cases, the highest validation accuracy over any epoch is reported.
To ensure a strong baseline, we applied state-of-the-art augmentation techniques to the baseline,
including rotation, random-crop, mirroring, color-jitter, and auto-augment [5]. We present the results
in Table 3. Our method rarely does much worse than the baseline, and in most cases gives a modest
to significant improvement. We also note that of the 8 comparisons in which our method did slightly
worse, in 7 of them we still beat the baseline in top 5 accuracy.

5 Conclusion

We present a novel self-supervised image augmentation method, building and improving upon earlier
work, that leverages both edge maps and LLM generated image captions, to create nuanced variations.
Our method has robust results on few-shot learning, and is even beneficial when used in settings
where data is not sparse, something previous work has struggled with. The strong conditioning allows
us to bridge the domain gap, while at the same time not requiring expensive fine tuning, nor assuming
that the diffusion model has any knowledge whatsoever of the image category in question, and is still
successful in very fine-grained settings.
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Table 3: Full Dataset Results

Model Resnet50 Resnet101 Vgg19 Eff. Net Visformer Swin MobileNet DenseNet

Caltech Baseline 72.37 73.62 67.4 71.79 68.83 63.95 66.48 75.74
CDaug 76.49 77.64 70.82 73.85 73.15 69.55 68.33 78.1

Cars Baseline 86.78 88.16 87.22 86.75 83.37 75.43 80.8 91.08
CDaug 91.02 90.95 89.61 88.56 87.4 82.32 82.7 92.2

Aircraft Baseline 75.23 75.91 88.8 81.25 72.61 60.88 70.24 80.53
CDaug 82.33 81.1 88.2 81.76 74.67 71.74 74.17 83.29

Dogs Baseline 66.49 70.148 68.63 64.17 64.65 52.1 58.6 70.44
CDaug 68.74 70.4 66.05 62.45 64.36 56.5 58.3 70.21

Pets Baseline 69.22 70.72 83.17 73.59 73.02 58.54 67.35 80.16
CDaug 71.07 74.03 81.28 74.41 76.24 61.0 68.46 79.34
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A Additional Results

We also include results on all-way classification (few shot learning where all classes are included).

Table 4: All-Way Few-Shot Classification Results
Shots 1 2 5 10

Caltech Baseline 19.4 ± 0.58 28.49 ± 0.33 42.77 ± 0.14 50.4 ± 0.45
CDaug 24.43 ± 0.25 35.27 ± 1.01 48.49 ± 0.27 55.58 ± 0.43

Cars Baseline 5.51 ± 0.06 9.95 ± 0.09 28.41 ± 0.01 55.82 ± 0.12
CDaug 6.31 ± 0.03 12.92 ± 0.1 37.1 ± 0.05 62.76 ± 0.03

Aircraft Baseline 8.22 ± 0.27 12.81 ± 0.09 23.38 ± 0.01 39.9 ± 0.12
CDaug 7.17 ± 0.06 14.02 ± 0.22 27.8 ± 0.1 44.57 ± 0.07

Pets Baseline 14.45 ± 0.05 22.57 ± 0.19 38.17 ± 0.1 50.11 ± 0.37
CDaug 16.37 ± 0.23 26.32 ± 0.67 41.32 ± 1.04 54.0 ± 0.32

Dogs Baseline 4.94 ± 0.07 9.17 ± 0.17 18.88 ± 0.05 30.91 ± 0.07
CDaug 5.92 ± 0.07 10.34 ± 0.18 18.75 ± 0.46 29.71 ± 0.29

Food Baseline 12.4 ± 0.11 20.96 ± 0.07 36.58 ± 0.16 48.39 ± 0.02
CDaug 14.54 ± 0.05 23.32 ± 0.05 37.82 ± 0.03 48.0 ± 0.08

B Further Limitations

Our work has several limitations. On some datasets, such as the Pets dataset, our results seem
more modest, and further exploration is needed to understand when and where this method is best
applicable.

Further, if the diffusion model has been trained on the dataset already, it will outperform our
augmentation model. To show this, we performed controlled and uncontrolled augmentation on the
Stanford Cars dataset and Aircraft Dataset. The results in Table 5.

Table 5: All-Way Controlled vs Uncontrolled Augmentation Comparison
Shots 1 2 5 10

Cars
Baseline 5.51 ± 0.06 9.95 ± 0.09 28.41 ± 0.01 55.82 ± 0.12

CDaug Control 6.31 ± 0.03 12.92 ± 0.1 37.1 ± 0.05 62.76 ± 0.03
CDaug No Control 9.6 ± 0.14 18.58 ± 0.04 39.52 ± 0.15 57.2 ± 0.2

Shots 1 2 5 10

Aircraft
Baseline 8.22 ± 0.27 12.81 ± 0.09 23.34 ± 0.06 39.9 ± 0.12

DiffAug Control 7.17 ± 0.06 14.02 ± 0.22 27.8 ± 0.1 44.79 ± 0.15
DiffAug No Control 5.82 ± 0.1 9.02 ± 0.04 15.74 ± 0.1 23.07 ± 0.15

What is noteworthy is the massive difference in performance between these two datasets. The
diffusion model seems very familiar with the nuances of car makes and models, and thus, when
provided with the name of the car model, as well as a description of the scene provided by the LLM,
it is able to generate correct renderings of the car in completely different angles and orientations. In
this case, providing the edge map as additional conditioning seems like a limiting factor. However,
the diffusion model is much less familiar with detailed knowledge of aircraft varieties, and when it is
not provided with an edge map, the aircraft generated are incorrect and do not resemble the original
as shown in Figure 3.

We conclude that, while in some domains where the diffusion model is well trained, removing the
image conditioning can lead to better performance, but this involves a large risk, and is especially
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Figure 3: Comparison of controlled and uncontrolled augmentation for planes and cars.

unsuitable in many real world applications where the few-shot images are unlikely to be as well
sampled as the makes and models of cars. Our method, while somewhat more limited, has stronger
performance guarantees: it seems to improve over the baseline in almost all examples, and even when
it falls short, it does so only minorly.

Another important limitation is that our pipeline does not take color into account, which, for many
fine grained datasets, such as Flowers [17] is of the utmost importance. This can lead to low quality
augmentations in these cases.

C Ablation Study

We ran an ablation where we removed all existing augmentation techniques from the baseline (rotation,
cropping, etc), to show how our method builds on top of existing augmentation. We present the
results in Table 6.
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Table 6: Full Dataset: SOTA Augmmentation vs No Augmentation Ablation
Shots No Aug. SOTA Aug.

Caltech Baseline 34.0 ± 0.0 72.37 ± 0.09
CDaug 45.2 ± 0.0 76.49 ± 0.36

Cars Baseline 7.84 ± 0.11 86.78 ± 0.26
CDaug 13.45 ± 0.28 91.02 ± 0.31

Aircraft Baseline 22.21 ± 0.07 69.23 ± 0.85
CDaug 27.69 ± 0.6 71.07 ± 0.71

Pets Baseline 17.4 ± 0.36 66.49 ± 0.14
CDaug 22.99 ± 0.75 68.74 ± 0.32

Clearly, our approach does not replace these basic techniques, although it certainly does help even
more in their absence.
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