
Published as a conference paper at ICLR 2022

PROVABLE LEARNING-BASED ALGORITHM
FOR SPARSE RECOVERY

Xinshi Chen & Haoran Sun
School of Mathematics
Georgia Institute of Technology
Atlanta, USA
{xinshi.chen,haoransun}@gatech.edu

Le Song
Machine Learning Department
MBZUAI & BioMap
UAE & China
songle@biomap.com

ABSTRACT

Recovering sparse parameters from observational data is a fundamental problem
in machine learning with wide applications. Many classic algorithms can solve
this problem with theoretical guarantees, but their performances rely on choosing
the correct hyperparameters. Besides, hand-designed algorithms do not fully ex-
ploit the particular problem distribution of interest. In this work, we propose a
deep learning method for algorithm learning called PLISA (Provable Learning-
based Iterative Sparse recovery Algorithm). PLISA is designed by unrolling a
classic path-following algorithm for sparse recovery, with some components be-
ing more flexible and learnable. We theoretically show the improved recovery ac-
curacy achievable by PLISA. Furthermore, we analyze the empirical Rademacher
complexity of PLISA to characterize its generalization ability to solve new prob-
lems outside the training set. This paper contains novel theoretical contributions to
the area of learning-based algorithms in the sense that (i) PLISA is generically ap-
plicable to a broad class of sparse estimation problems, (ii) generalization analysis
has received less attention so far, and (iii) our analysis makes novel connections
between the generalization ability and algorithmic properties such as stability and
convergence of the unrolled algorithm, which leads to a tighter bound that can
explain the empirical observations. The techniques could potentially be applied to
analyze other learning-based algorithms in the literature.

1 INTRODUCTION
observations 𝒁𝟏:𝒏

gene expression data gene regulatory network

true parameter 𝜷∗

MRI image clean image

Figure 1: Sparse recovery problems.

The problem of recovering a sparse vector β∗ from finite ob-
servations Z1:n ∼ (Pβ∗)n is fundamental in machine learning,
covering a broad family of problems including compressed
sensing, sparse regression analysis, graphical model estima-
tion, etc. It has also found applications in various domains.
For example, in magnetic resonance imaging, sparse signals
need to be reconstructed from measurements taken by a scan-
ner. In computational biology, estimating a sparse graph struc-
ture from gene expression data is important for understanding
gene regulatory networks.

Various classic algorithms are available for solving sparse recovery problems. Many of them come
with theoretical guarantees for the recovery accuracy. However, the theoretical performance often
relies on choosing the correct hyperparameters, such as regularization parameters and the learning
rate, which may depend on unknown constants. Furthermore, in practice, similar problems may
need to be solved repeatedly, but it is hard for classic algorithms to fully utilize this information.

To alleviate these limitations, we consider the approach of learning-to-learn and propose a neural
algorithm, called PLISA (Provable Learning-based Iterative Sparse recovery Algorithm). PLISA
is a deep learning model that takes the observations Z1:n as the input and outputs an estimation for
β∗. To make use of classic techniques developed by domain experts, we design the architecture
of PLISA by unrolling and modifying a classic path-following algorithm proposed by Wang et al.

1

Published as a conference paper at ICLR 2022

(2014). To benefit from learning, some components in this classic algorithm are made more flexible
with careful design and treated as learnable parameters in PLISA. These parameters can be learned
by optimizing the performances on a set of training problems. The learned PLISA can then be used
for solving other problems in the target distribution.

With the algorithm design problem converted to a deep learning problem, we ask the two fundamen-
tal questions in learning theory:

1. Capacity: What’s the recovery accuracy achievable by PLISA? Can the flexible components in
PLISA lead to an algorithm which effectively improves the recovery performance?

2. Generalization: How well can the learned PLISA solve new problems outside the training set?
Is the generalization behavior related to the algorithmic properties of PLISA?

Aiming at supplying rigorous answers to these questions, we conduct theoretical analysis for PLISA
to provide guarantees for its representation and generalization ability. The results and the techniques
in our analysis can distinguish our work from existing studies on algorithm learning. We summarize
our novel contributions into the following three aspects.

1. Theoretical understanding. In contrast to the plethora of empirical studies on algorithm learn-
ing, there have been relatively few studies devoted to the theoretical understanding. Existing the-
oretical efforts primarily focus on analyzing the convergence rate achievable by the neural algo-
rithm (Chen et al., 2018; Liu et al., 2019a; Zhang & Ghanem, 2018; Wu et al., 2020), but the
generalization error bound has received less attention so far. A substantial body of works only argue
intuitively that algorithm unrolling architectures can generalize well because they contain a small
number of parameters. In comparison, we provide theoretical guarantees for both the capacity and
the generalization ability of PLISA, which are more solid arguments.

2. General setting. The problem setting in this paper is new and more challenging. Existing
works mainly focus on a specific problem. For example, the compressed sensing problem with a
fixed design matrix is the mostly investigated one. PLISA, however, is generic and is applicable to
various sparse recovery problems as long as they satisfy certain conditions in Assumption C.1.

3. Novel connection. The algorithmic structure in PLISA can make it behaves differently from
conventional neural networks. Therefore, we largely utilize the analysis techniques in classic algo-
rithms to derive its generalization bound. By combining the analysis tools of deep learning theory
and optimization algorithms, our result reveals a novel connection between the generalization ability
of PLISA and the algorithmic properties including the convergence rate and stability of the unrolled
algorithm. Benefit from this connection, our generalization bound is tight in the sense that it matches
the interesting behavior of PLISA observed in experiments - the generalization gap could decrease
in the number of layers, which is rarely observed in conventional neural networks.

2 PLISA: LEARNING TO SOLVE SPARSE ESTIMATION PROBLEMS

A sparse estimation problem is to recover β∗ from finite observations Z1:n sampled from Pβ∗ .
As a concrete example, in a sparse linear regression problem, n observations {Zi = (xi, yi)}ni=1

are sampled from a linear model y = x>β∗ + ε, and an algorithm needs to estimate β∗ from n
observations. Classic algorithms recover β∗ by minimizing a regularized empirical loss:

β̂λ ∈ arg minLn(Z1:n,β) + P (λ,β), (1)
where Ln is an empirical loss that measures the “fit” between the parameter β and observations
Z1:n, and P (λ,β) is a sparsity regularization with coefficient λ. When Ln is the least square loss
and P (λ,β) is λ‖β‖1, the optimization is known as LASSO and can be solved by the well-known
algorithm ISTA (Daubechies et al., 2004). Based on the idea of algorithm unrolling, Gregor &
LeCun (2010) proposed LISTA, a neural algorithm that interprets ISTA as layers of neural networks.
It has been demonstrated that LISTA outperforms ISTA thanks to its learnable components. Since
then, designing neural algorithms by unrolling ISTA has become an active research topic. However,
existing works mostly focus on the compressed sensing problem with a fixed design matrix only.

To enable for more general applicability, we design the architecture of PLISA by unrolling a clas-
sic path-following algorithm called APF (Wang et al., 2014) instead of ISTA. APF is applicable
to nonconvex losses and nonconvex penalty functions, covering a considerably larger range of ob-
jectives than LASSO. Designing the architecture based on APF allows PLISA to be applicable to

2

Published as a conference paper at ICLR 2022

a broader class of problems such as nonlinear sparse regression, graphical model estimation, etc.
Furthermore, employing nonconvexity can potentially lead to better statistical properties (Fan & Li,
2001; Fan et al., 2009; Loh & Wainwright, 2015), for which we will explain more in Section 3.

In the following, we will introduce APF and the architecture of our proposed PLISA. After that, we
will describe how to optimize the parameters in PLISA under the learning-to-learn setting.

2.1 A BRIEF INTRODUCTION TO APF

We briefly introduce the classic algorithm APF (Wang et al., 2014), and its details are presented in
Algorithm 3 in Appendix I. The key idea of path-following algorithms is creating a sequence of T
many sub-objectives to gradually approach the target objective that is supposed to be more difficult
to solve. More specifically, APF approximates the local minimizers of a sequence of sub-objectives:

βt ≈ β̂λt ∈ arg min
β

Ln(Z1:n,β) + P (λt,β), for t = 1, · · · , T, (2)

where λ1 > λ2 > · · · > λT is a decreasing sequence of regularization parameters. The last
parameter λT is the target regularization parameter. As a result, APF contains T blocks, and each
block contains an iterative algorithm that minimizes one sub-objective in Eq. 2. The output of the
(t − 1)-th block, denoted by βt−1, is used as the initialization of the t-th block, i.e., β̃0

t = βt−1.
Then the t-th block minimizes the t-th sub-objective by the modified proximal gradient algorithm:

for k = 1, · · · ,K, β̃kt ← Tα·λt
(
β̃k−1
t − α

(
∇βLn(Z1:n, β̃

k−1
t) +∇βQ(λt, β̃

k−1
t)

))
. (3)

output of t-th block: βt = β̃Kt . (4)

The notation Tδ(β) := sign(β) max {|β| − δ, 0} is the soft-thresholding function, and the function
Q is the concave component of P defined as Q(λ,β) := P (λ,β)−λ‖β‖1. The number of steps K
in each block is determined by certain stopping criteria. It can be seem that the update steps in each
block is similar to the ISTA algorithm, but it is modified in order to incorporate nonconvexity.

2.2 ARCHITECTURE OF PLISA

𝜷! = 𝟎

𝑍!:#
input

𝝀$∇𝐿!(𝑍":!, 𝟎)

𝝀!

𝜷"

𝝀,

𝜷# 𝜼, 𝝀∗

… …

𝜷$%"

𝝀-

𝜷$

cell𝒘,𝜶0

algorithm steps

cell𝒘,𝜶0
algorithm steps

cell𝒘,𝜶0
algorithm steps

𝜼, 𝝀∗

𝜼, 𝝀∗

Figure 2: Architecture.

The architecture of PLISA is designed by unrolling the APF algo-
rithm, and augmenting some learnable parameters θ. Therefore, the
architecture of PLISAθ contains T blocks and each block containsK
layers defined by the K-step algorithm in Eq. 3 (See Figure 2). Note
that in PLISAθ, both K and T are pre-defined. The architecture of
PLISAθ is different from APF as summarized below:

1. Element-wise and learnable regularization parameters. Most
classic algorithms including APF employ a uniform regulariza-
tion parameter λt across all entries of β, but PLISAθ uses a d-
dimensional vector λt = [λt,1, · · · , λt,d]> to enforce different
levels of sparsity to different entries in β. Furthermore, the reg-
ularization parameters in PLISAθ are learnable, which will be op-
timized during the training.

2. Learnable penalty function: Classic algorithms use a pre-defined
sparse penalty function P , but PLISAθ parameterizes it as a com-
bination of q different penalty functions and learns the weights of each penalty. In other words,
PLISAθ can learn to select a specific combination of the penalty functions from training data.

3. Learnable step size: The step sizes in APF are selected by line-search but they are learnable in
PLISAθ. Experimentally, we find the learned step sizes lead to a much faster algorithm.

In later sections of this paper, we will show how such differences can make PLISAθ perform better
than APF both empirically and theoretically.

Algorithm 1 and 2 present the mathematical details of the architecture, follow which we explain
some notations and definitions. Red-colored symbols indicate learnable parameters in PLISAθ.

3

Published as a conference paper at ICLR 2022

Algorithm 1: PLISAθ architecture

1

#blocks: T , #layers per block: K
Parameters: θ = {η,λ∗,w, α}
Input: samples Z1:n

β0 ← 0, λ0 ← ∇βLn(Z1:n,0)
For t = 1, . . . , T do

λt ← max {σ(η) ◦ λt−1,λ
∗}

βt ← BlockKw,α(Z1:n,βt−1,λt)

return βT

Algorithm 2: Layers in each block BlockKw,α

1

Input: Z1:n,βt−1,λt

β̃0
t ← βt−1

For k = 1, . . . ,K do
gkt ← ∇βLn(Z1:n, β̃

k−1
t) +∇βQw(λt, β̃

k−1
t)

β̃kt ← Tα·λt
(
β̃k−1
t − α · gkt

)
return βt = β̃Kt

Regularzation parameters. In PLISAθ, the element-wise regularization parameters are initialized
by a vector λ0 := ∇βLn(Z1:n,0), and then updated sequentially by

λt ← max {σ(η) ◦ λt−1,λ
∗} , (5)

where σ(·), ◦, and max{·, ·} are element-wise sigmoid function, multiplication, and maximization.
{η,λ∗} are both d-dimensional learnable parameters. Eq. 5 creates a sequence λ1, · · · ,λT through
the decrease ratio σ(η), until they reach the target regularization parameters λ∗.

Penalty function. PLISAθ parameterizes the penalty function as follows,

Pw(λ,β) =
∑q
i=1 w̃i · P (i)(λ,β), where w̃i = exp(wi)∑q

i′=1
exp(wi′)

. (6)

In other words, Pw is a learnable convex combination of q penalty functions (P (1), · · · , P (q)). The
weights of these functions are determined by learnable parametersw = [w1, · · · , wq]. In this paper,
we focus on learning the combination of three well-known penalty functions:

P (1)(λ,β) = ‖λ ◦ β‖1, P (2)(λ,β) =
∑d
j=1 MCP(λj , βj), P

(3)(λ,β) =
∑d
j=1 SCAD(λj , βj),

where P (1) is convex, and MCP (Zhang, 2010a) and SCAD (Fan & Li, 2001) are nonconvex penal-
ties whose analytical forms are given in Appendix B. One can include any other penalty functions as
long as they satisfy a set of conditions specified in Appendix B. Qw(λ,β) := Pw(λ,β)−‖λ◦β‖1
represents the concave component of Pw. The analytical form of∇βQw(λt,β) are in Appendix B.

2.3 LEARNING-TO-LEARN SETTING

Now we describe how to train the parameters θ in PLISAθ under the learning-to-learn setting.

Training set. Similar to other works in this domain, we assume the access to m problems from the
target problem-space P , and use them as the training set:

Dm = {(Z(1)
1:n1

,β∗(1)), · · · , (Z(m)
1:nm

,β∗(m))} with (Z
(i)
1:ni

,β∗(i)) ∈ P.
Here each estimation problem is represented by a pair of observations and the corresponding true
parameter to be recovered. A different problem i can contain a different number ni of observations.

Training loss. Since the intermediate outputs βt(Z1:n; θ) of PLISAθ are also estimates of β∗, a
common design of the training loss is the weighted sum of the intermediate estimation errors (Chen
et al., 2021). More specifically, we employ the following training loss:

Lγtrain(Dm; θ) :=
1

m

m∑
i=1

T∑
t=1

γT−t
∥∥∥βt(Z(i)

1:ni
; θ)− β∗(i)

∥∥∥2

2
, (7)

where γ < 1 is a discounting factor If γ = 0 then the loss is only estimated at the last layer.

Generalization error. The ultimate goal of algorithm learning is to minimize the estimation error
on expectation over all problems in the target problem distribution:

Lgen(P(P); θ) := E(Z1:n,β∗)∼P(P) ‖βT (Z1:n; θ)− β∗‖22 , (8)

where P(P) is a distribution in the target problem-space P . Let θ∗ ∈ arg minLγ=0
train(Dm; θ) be a

minimizer of the training loss. It is well-known that the generalization error can be bounded by:

Lgen(P(P); θ∗) ≤ Lgen(P(P); θ∗)− Lγ=0
train(Dm; θ∗)︸ ︷︷ ︸

generalization gap: Theorem 4.1

+ Lγ=0
train(Dm; θ∗)︸ ︷︷ ︸

training error: Theorem 3.1

. (9)

We will theoretically characterize these two terms in Theorem 3.1 and Theorem 4.1.

4

Published as a conference paper at ICLR 2022

3 CAPACITY OF PLISA

Can PLISAθ achieve a small training error without using too many layers? How can designs of
element-wise regularization and learnable penalty functions help PLISAθ to achieve a smaller train-
ing error compared to classic algorithms? We answer this question theorectically in this section.

3.1 FIRST MAIN RESULT: CAPACITY

Let βt(Z1:n; θ) be the output of the t-th block in PLISAθ. Let x ∨ a denote entry-wise maximal
value max{x, a}. Let (x)S denote the sub-vector of x with entries indexed by the set S.
Theorem 3.1 (Capacity). Assume the problem space P satisfies Assumption C.1 and Dm ⊆ P . Let
T be the number of blocks in PLISAθ and let K be the number of layers in each block. For any
ε > 0, there exists a set of parameters θ = {η,λ∗,w, α} such that the estimation error of every
problem (Z1:n,β

∗) ∈ Dm is bounded as follows, ∀T > t0,

‖βT (Z1:n; θ)− β∗‖2 ≤ ε−1cθs
∗ exp(−CθK(T − t0)) optimization error (10)

+ c′θκm‖ (∇βLn(Z1:n,β
∗) ∨ ε)S∗ ‖2, statistical error (11)

where S∗ := supp(β∗) is the support indices of β∗, cθ, c′θ, and Cθ are some positive values de-
pending on the chosen θ, and κm is a condition number which reveals the similarity of the problems
in Dm. Note that K and t0 are required to be larger than certain values, but we will elaborate in
Appendix E that the required lower bounds are small. See Appendix E for the proof of this theorem.

This estimation error can be interpreted as a combination of the optimization error (in Eq. 10) and the
statistical error (in Eq. 11). The optimization error decreases linearly in bothK and T . The statistical
erroroccurs because of the randomness in Z1:n. The gradient at the true parameter∇βLn(Z1:n,β

∗)
characterizes how well the finite samples Z1:n can represent the distribution Pβ∗ .

A direct consequence of Theorem 3.1 is that the training error can be small without using too many
layers and blocks in PLISAθ. We will also elaborate on how the entry-wise regularization and
learnable penalty function can effectively reduce the training error in the following.

(i) Impact of entry-wise regularization. Restricting the regularization to be uniform across entries
will lead to an error bound that replaces the statistical error ‖ (∇βLn(Z1:n,β

∗) ∨ ε)S∗ ‖2 in Eq. 11
by
√
s∗ (‖∇βLn(Z1:n,β

∗)‖∞ ∨ ε). To understand how the former has improved the latter, we
can consider the sparse linear regression problem. If the design matrix is normalized such that
max1≤j≤d ‖([x1]j , · · · , [xn]j)‖2 ≤

√
n, then ‖ (∇βLn(Z1:n,β

∗) ∨ ε)S∗ ‖2 ≤ C
√
s∗/n with high

probability. In comparison,
√
s∗‖∇βLn(Z1:n,β

∗)‖∞ ≤ C
√
s∗ log d/n with high probability is a

slower statistical rate due to the term log d.

(ii) Impact of learnable penalty function. To explain the the benefit of using learnable penalty
function, we give a more refined bound for the statistical error in Eq. 11 in the following lemma.
Lemma 3.1 (Refined bound). Assume the same conditions and parameters θ in Theorem 3.1. As-
sume T →∞ so that the optimization error can be ignored. For simplicity, assume w̃3 = 0 and only
consider the weights w̃1 and w̃2 for `1 penalty and MCP. Then for every problem (Z1:n,β

∗) ∈ Dm:

‖β∞(Z1:n; θ)− β∗‖2 ≤ 1+8(1+w̃2)κm
ρ−−w̃2/b

‖(∇βLn(Z1:n,β
∗) ∨ ε)S∗1 ‖2

(
S∗1 : Small

∣∣β∗j ∣∣’s) (12)

+ 1+8(1−w̃2)κm
ρ−−w̃2/b

‖(∇βLn(Z1:n,β
∗) ∨ ε)S∗2 ‖2

(
S∗2 : Large

∣∣β∗j ∣∣’s) , (13)

where b > 1 is a hyperparameter in MCP, and the index sets S∗1 and S∗2 are defined as S∗1 := {j ∈
S∗ :

∣∣β∗j ∣∣ ≤ bλ∗j} and S∗2 := {j ∈ S∗ :
∣∣β∗j ∣∣ > bλ∗j}. See Appendix E for the proof.

This refined bound reveals the benefit of learning the penalty function because:

1. According to Lemma 3.1, the optimal penalty function is problem-dependent. For example, if
(8(bρ− + 1)κm + 1)‖(∇βLn(Z1:n,β

∗) ∨ ε)S∗1 ‖2 > (8(bρ− − 1)κm − 1)‖(∇βLn(Z1:n,β
∗) ∨

ε)S∗2 ‖2, choosing w̃2 = 0 can induce a smaller error bound. Otherwise, w̃2 = 1 is better.
Therefore, learning is a more suitable way of choosing the penalty function.

2. The convergence speed Cθ in Eq. 10 is also affected by the weights, monotonely decreasing
in w̃2. Through gradient-based training, we can automatically find the optimal combination of
penalty functions to strike a nice balance between the statistical error and convergence speed.

5

Published as a conference paper at ICLR 2022

4 GENERALIZATION ANALYSIS

How well can the learned PLISAθ solve new problems outside the training set? In this section, we
conduct the generalization analysis in a novel way to focus on answering the questions:

How is the generalization bound of PLISAθ related to its algorithmic properties?
And how is it different from conventional neural networks?

4.1 SECOND MAIN RESULT: GENERALIZATION BOUND

To analyze the generalization properties of neural networks, many works have adopted the analysis
framework of Bartlett & Mendelson (2002) to bound the Rademacher complexity via Dudley’s in-
tegral (Bartlett et al., 2017; Chen et al., 2019; Garg et al., 2020; Joukovsky et al., 2021). A key step
in this analysis framework is deriving the robustness of the training loss to the small perturbation in
model parameters θ. Since we can view PLISAθ as an iterative algorithm, we borrow the analysis
tools of classic optimization algorithms to derive its robustness in θ. The following lemma states this
key intermediate result, which connects the Lipschitz constant to algorithmic properties of PLISAθ.

Lemma 4.1 (Robustness to θ). Assume P satisfies Assumption C.1 and Dm ∼ P(P)m. Assume
PLISAθ contains T > t0 blocks and K layers. Consider a parameter space Θ in which the param-
eters satisfy (i) α ∈ [αmin,

1
ρ+

], (ii) ηj ∈ [σ−1(0.9), ηmax], (iii) w̃2
1
b + w̃3

1
a−1 ≤ ξmax < ρ−, and

(iv) λ∗j ∈ [8 sup(Z1:n,β∗)∈Dm |[∇βLn(Z1:n,β
∗)]j | ∨ ε, λmax] with some positive constants αmin,

ηmax, ξmax, and λmax. Then for any θ = {η,λ∗,w, α} and θ′ = {η′,λ∗′,w′, α′} in Θ, and for
any recovery problem (Z1:n,β

∗) ∈ Dm, the following inequality holds,

‖βT (Z1:n; θ)− βT (Z1:n; θ′)‖2 ≤ c1K(T − t0)
√
s∗ |α− α′| exp(−CΘK(T − t0))︸ ︷︷ ︸

convergence rate

(14)

+
(
c2‖η − η′‖2 + c3‖λ∗ − λ∗′‖2 + c4

√
d‖w −w′‖2

)
(1− exp(−CΘKT))︸ ︷︷ ︸

stability rate

, (15)

where c1, c2, c3, c4 and CΘ are some positive constants. Note that similar to Theorem 3.1, K and t0
are required to be larger than certain small values. See Appendix F.1 for the proof.

Convergence rate & step size perturbation. In Eq. 14, the Lipschitz constant in the step size α
scales at the same rate as the convergence rate of PLISAθ, decreasing exponentially in T and K
(See Fig. 3 for a visualization). To understand this, consider when both step sizes α and α′ are within
the convergence region (i.e., (0, ρ−1

+]). After infinitely many steps, their induced outputs will both
converge to the same optimal point. This intuitively explains why the output perturbation caused by
α-perturbation has the same decrease rate as the optimization error.

KT

Convergence Rate

KT

Stability

KT

Generalization Bound

KT

Convergence Rate

KT

Stability

KT

Generalization Bound

Figure 3: Visualization of convergence, stability,
and generalization bound in Theorem 4.1. The two
sets of visualizations are obtained by choosing differ-
ent speeds CΘ in the convergence rate and stability.

Stability rate & regularization perturbation.
In the literature of optimization, stability of an
algorithm expresses its robustness to small per-
turbation in the optimization objective. This
is clearly related to the robustness of PLISAθ
to the perturbation in η,λ∗,w, because these
parameters jointly determine the regularization
Pw(λt,β), which is a part of the optimiza-
tion objective. Therefore, we exploit the analy-
sis techniques for algorithmic stability to derive
the robustness in (η,λ∗,w)-perturbation and ob-
tain the Lipschitz constant in Eq. 15, which is
bounded but increasing in T and K (See Fig. 3
for a visualization).

Based on the key result in Lemma 4.1, we can apply Dudley’s integral to measure the empirical
Rademachar complexity which immediately yields the following generalization bound.

6

Published as a conference paper at ICLR 2022

Theorem 4.1 (Generalization gap). Assume the assumptions in Lemma 4.1. For any ε > 0, with
probability at least 1− ε, the generalization gap is bounded by

Lgen(P(P); θ)− Lγ=0
train(Dm; θ) ≤ c1

√
m−1 log(4ε−1) + (16)√

c2m−1 log
(√
mKT exp(−CΘK(T − t0))︸ ︷︷ ︸

convergence rate

∨ 1
)

+ c3dm−1 log
(√
m(1− exp(−CΘKT))︸ ︷︷ ︸

stability

)
,

where c1, c2, c3, CΘ are constants independent of d,m,K and T . See Appendix F for the proof.

Fig. 3 visualizes how the generalization bound in Theorem 4.1 grows when KT increases. The two
sets of plots look slightly different by picking different constants CΘ. We have also tried varying
the values of c2, c3, d,m in Theorem 4.1. Overall, they lead to the two types of behaviors in Fig. 3.

An important observation in Theorem 4.1 and Figure 3 is that the generalization gap could decrease
in the number of layers, and we will see in Section 7 that this matches the empirical observations.
It also distinguishes algorithm-unrolling based architectures from conventional neural networks,
whose generalization gaps rarely decrease in the number of layers.

Remark. The above generalization results are conducted on a constrained parameter space (as de-
scribed in Lemma 4.1) so that we can utilize the algorithmic properties of PLISAθ. We focus on
this space because the analysis contains more interesting and new ingredients. For parameters out-
side this space, the analysis procedure is similar to other conventional recurrent networks. Since the
bound in Theorem 4.1 has matched the empirical observations, it is reasonable to believe that after
training, the learned parameters are likely to be in this ‘nice’ constrained space.

5 EXTENSION TO UNSUPERVISED LEARNING-TO-LEARN SETTING

Real-world datasets may not contain the ground-truth parameters β∗, but only contain the samples
from each task, DUm = {Z(1)

1:n, · · · , Z
(m)
1:n }. In this setting, we can construct an unsupervised training

loss to minimize the empirical loss function Ln (e.g., the likelihood function) on the samples.

Unsupervised training loss: LUtrain(DUm; θ) :=
1

m

m∑
i=1

Ln2

(
Z

(i)
1:n2

,βT (Z
(i)
1:n1

; θ)
)

(17)

In this loss, both Z(i)
1:n1

and Z(i)
1:n2

are subsets of Z(i)
1:n. The samples Z(i)

1:n1
are used as the input to

PLISAθ and the samples Z(i)
1:n2

are used for evaluating the output βT from PLISAθ.

Let θ∗U ∈ arg minLUtrain(DUm; θ) be a minimizer to this unsupervised loss. Theoretically, to bound
the generalization error of θ∗U , we can show that

Lgen(P(P);θ∗U) ≤ C
m

∑m
i=1

(
Ln2

(
Z

(i)
1:n2

,βT (Z
(i)
1:n1

; θ∗U)
)
− Ln2

(
Z

(i)
1:n2

,β∗(i)
))

︸ ︷︷ ︸
unsupervised training error

(18)

+ Lgen(P(P); θ∗U)− Lγ=0
train(Dm; θ∗U)︸ ︷︷ ︸

generalization gap: Theorem 4.1

+ C
m

∑m
i=1‖∇βLn2

(Z
(i)
1:n2

,β∗(i))‖22︸ ︷︷ ︸
statistical error

. (19)

Compared to Eq. 9, this upper bound contains an additional statistical error, which appears because
of the gap between the unsupervised loss and the true error that we aim to optimize. Clearly, in this
upper bound, the generalization gap can be bounded by Theorem 4.1. Furthermore, the unsupervised
training error in Eq. 18 can be bounded by combining Theorem 3.1 with the following in equality.

Ln2 (Z1:n2 ,βT (Z1:n1 ; θ∗U))− Ln2 (Z1:n2 ,β
∗) (20)

≤ Ln2
(Z1:n2

,βT (Z1:n1
; θ∗))− Ln2

(Z1:n2
,β∗)

≤ ‖∇βLn2
(Z1:n2

,β∗)‖2 ‖βT (Z1:n1
; θ∗)− β∗‖2︸ ︷︷ ︸

bounded by Theorem 3.1

+ρ+

2 ‖βT (Z1:n1 ; θ∗)− β∗‖22︸ ︷︷ ︸
bounded by Theorem 3.1

. (21)

More details of the extension to unsupervised setting can be found in Appendix H.

7

Published as a conference paper at ICLR 2022

6 RELATED WORK

Learning-to-learn has become an active research direction in recent years (Bora et al., 2017;
Franceschi et al., 2017; Niculae et al., 2018; Denevi et al., 2018; Pogančić et al., 2019; Liu et al.,
2019b; Berthet et al., 2020). Many works share the idea of unrolling or differentiating through al-
gorithms to design the architecture (Yang et al., 2017; Borgerding et al., 2017; Corbineau et al.,
2019; Xie et al., 2019; Shrivastava et al., 2020; Chen et al., 2020a; Wei et al., 2020; Indyk et al.,
2019; Grover et al., 2019; Wu et al., 2019). A well-known example of learning-based algorithm is
LISTA (Gregor & LeCun, 2010) which interprets ISTA (Daubechies et al., 2004) as layers of neu-
ral networks and has been an active research topic (Zhang & Ghanem, 2018; Kamilov & Mansour,
2016; Chen et al., 2018; Liu et al., 2019a; Wu et al., 2020; Kim & Park, 2020).

However, the generalization of algorithm learning has received less attention. The only exceptions
are several works. However, Chen et al. (2020b) and Wang et al. (2021) only consider learning
to optimize quadratic losses. Behboodi et al. (2020); Joukovsky et al. (2021) do not connect the
generalization analysis with algorithmic properties to provide tighter bounds as in our work. Unlike
our work that analyzes the Lipschitz continuity (Lemma 4.1), the work of Gupta & Roughgarden
(2017); Balcan et al. (2021) studied the generalization of learning-based algorithms with a focus
on scenarios when the Lipschitz continuity is unavailable. We will refer the audience to Shlezinger
et al. (2020); Chen et al. (2021) for a more comprehensive summary of related works.

7 EXPERIMENTS

7.1 SYNTHETIC EXPERIMENTS

In synthetic datasets, we consider sparse linear regression problems and sparse precision matrix
estimation problems for Gaussian graphical models. Specifically, we recover target vectors β∗ ∈
Rd, where d = {256, 1024} in SLR, and estimate precision matrices Θ∗ ∈ Rd×d, where d =
{50, 100} in SPE. See Appendix I.2 for descriptions of the dataset and data preparation.

7.1.1 SPARSE LINEAR REGRESSION (SLR)

0.0 0.1 0.2 0.3 0.4 0.5
wall-clock time (sec)

0

5

10

15

20

25

30

l2
-e

rro
r

dim=256

apf
plisa
alista
rnn
rnn_l1

0.0 0.2 0.4 0.6
wall-clock time (sec)

0

10

20

30

40

dim=1024

Figure 4: Convergence of recovery error. Since
APF takes a long time to converge, its curve are
outside the range of these plots. We use a dash-
line to represent the final `2 error it achieves.

In this experiment, we compare PLISA with several
baselines and also verify the theorems.

Performance comparison. We consider baselines
including APF (Wang et al., 2014), ALISTA (Liu
et al., 2019a), RNN (Andrychowicz et al., 2016), and
RNN-`1. APF is the path-following algorithm that
is used as the basis of our architecture. ALISTA is
a representative of algorithm unrolling based archi-
tectures, which is an advanced variant of LISTA. We
have tried the vanilla LISTA, but it performs worse
than ALISTA on our tasks so it is not reported. RNN
refers to the LSTM-based model in Andrychowicz et al. (2016). Besides, we add a soft-thresholding
operator to this model to enforce sparsity, and include this variant as a baseline, called RNN-`1.
Except for APF, all methods are trained on the same set of training problems and selected by the
validation problems. For APF, we perform grid-search to choose its hyperparameters, which is also
selected by the validation set. The detailed specification of each model can be found in Appendix I.3.

0 50 100 150 200 250 300
KT

0.05

0.10

0.15

0.20

Ge
ne

ra
liz

at
io

n
Ga

p

0 50 100 150 200 250 300
KT

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

Figure 5: Generalization gap of PLISA with varying
KT , for two different experimental settings.

Fig. 4 shows the convergence of ‖βt−β∗‖2 for
problems in the test set. The x-axis indicates
the wall-clock time. In terms of the final re-
covery accuracy, PLISA outperforms all base-
line methods. In the more difficult setting (i.e,
d = 1024), its advantage is obvious. Although
PLISA is slightly slower than other deep learn-
ing based models due to the computations of
MCP and SCAD, PLISA achieves a better accuracy and it has been converging much faster than the
classic algorithm APF. APF is very slow mainly due to the use of line-search for selecting step sizes.

8

Published as a conference paper at ICLR 2022

Generalization gap. We are interested in the generalization behavior of PLISA. As this experiment
is conducted for theoretical interest, we do not use the validation set to select the model. We vary
the number of layers (K) and blocks (T) in PLISA to create a set of models with different depths.
For each depth, we train the model with 2000 training problems, and then test it on a separate set of
100 problems to approximate the generalization gap. In Fig. 5, we observe the interesting behavior
of the generalization gap, where the left one increases in KT at the beginning and then decrease to
a constant, and the right one increases fast and then decrease very slowly. This surprisingly matches
the two different visualizations in Fig. 3 of the predicted generalization gap given by Theorem 4.1.

7.1.2 SPARSE PRECISION MATRIX ESTIMATION (SPE)

We compare PLISA with APF, GLASSO (Friedman et al., 2008), GISTA (Guillot et al., 2012), and
GGM (Belilovsky et al., 2017) on sparse precision estimation tasks in Gaussian graphical models.
GLASSO estimates the precision matrix by block-coordinate decent methods. GISTA is a proximal
gradient method for precision matrix estimation. GGM utilizes convolutional neural network to
estimate the precision matrix. Details of each model and the training can be found in Appendix I.4.

Table 1: Recovery error in SPE. The reported time is the av-
erage wall-clock time for solving each instance in seconds.

Sizes p = 50 p = 100

Methods ‖Θ−Θ∗‖2F Time ‖Θ−Θ∗‖2F Time

PLISA 119.47± 12.23 0.117 142.70± 13.38 0.132
GLASSO 169.63± 17.99 1.66 237.95± 27.49 3.12

GISTA 186.96± 25.48 53.47 373.66± 41.72 36.02
APF 269.51± 32.28 46.02 485.94± 60.33 86.82
GGM 194.26± 10.73 0.007 445.00± 58.89 0.008

Table 1 reports the Frobenius error ‖Θ−
Θ∗‖2F between the estimation Θ and the
true precision matrix Θ∗, averaged over
100 test problems. PLISA achieves con-
sistent improvements. Classic algorithm
are slower because they perform line-
search. GLASSO is faster than other clas-
sic algorithm because we use the sklearn
package (Pedregosa et al., 2011) in which
the implementations are optimized.

7.1.3 DISCUSSION ON TRAINING-TESTING TIME

Test time. Fig. 4 and Table 1 shows the wall-clock time for solving test problems. Overall, classic
algorithms are slower because they need to perform line-search. It is noteworthy that learning-based
methods can solve a batch of problems parallelly but most classic algorithms cannot. To allow more
advantages for classic algorithms, the test problems are solved without batching in all methods.

Train time. As metioned earlier, we perform grid-search to select the hyperparameters in classic
algorithms using validation sets. The training time comparison is summarized in Table 3 and Table 4
in Appendix I.4. We can see that training time is not a bottleneck of this problem. Moreover, In
SPE, classic algorithms even require a longer training time than learning-based methods.

7.2 UNSUPERVISED LEARNING ON REAL-WORLD DATASETS

We conduct experiments of unsupervised algorithm learning on 3 datasets: Gene expression
dataset (Kouno et al., 2013), Parkinsons patient dataset (Tsanas et al., 2009), and School exam
score dataset (Zhou et al., 2011). See Appendix I.6 for details of datasets and the configuration.

Table 2: Recovery accuracy on real-world datasets.

PLISA APF RNN RNN-`1 ALISTA

Gene 1.177 1.289 1.639 1.349 1.289
Parkinsons 11.63 11.86 11.91 13.05 34.843

School 296.6 367.9 561.5 310.3 884.2

The goal of the algorithm is to estima-
tion the sparse linear regression parame-
ters β∗ for each problem. Recovery ac-
curacy is estimated by the least-square er-
ror on a set of held-out samples for each
problem. Table 2 shows the effectiveness
of PLISA. Note that these real-world datasets may not satisfy the assumptions in this paper. This
set of experiments are conducted only to demonstrate the robustness of the proposed method.

8 DISCUSSION

We proposed PLISA for learning to solve sparse parameter recovery problems. We analyze its
capacity and generalization ability. The techniques could be used to derive guarantees for other
algorithm-unrolling based architectures. The model PLISA can be improved by using a more flexi-
ble penalty function (e.g., a conventional neural network) as long as it satisfies Assumption B.1.

9

Published as a conference paper at ICLR 2022

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. In Advances in Neural Information Processing Systems, pp. 3981–3989, 2016.

Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and Ellen
Vitercik. How much data is sufficient to learn high-performing algorithms? generalization guar-
antees for data-driven algorithm design. In Proceedings of the 53rd Annual ACM SIGACT Sym-
posium on Theory of Computing, pp. 919–932, 2021.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. In Advances in Neural Information Processing Systems, pp. 6240–6249, 2017.

Arash Behboodi, Holger Rauhut, and Ekkehard Schnoor. Compressive sensing and neural networks
from a statistical learning perspective. arXiv preprint arXiv:2010.15658, 2020.

Eugene Belilovsky, Kyle Kastner, Gaël Varoquaux, and Matthew B Blaschko. Learning to discover
sparse graphical models. In International Conference on Machine Learning, pp. 440–448. PMLR,
2017.

Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and Francis
Bach. Learning with differentiable perturbed optimizers. arXiv preprint arXiv:2002.08676, 2020.

Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis. Compressed sensing using genera-
tive models. In International Conference on Machine Learning, pp. 537–546. PMLR, 2017.

Mark Borgerding, Philip Schniter, and Sundeep Rangan. Amp-inspired deep networks for sparse
linear inverse problems. IEEE Transactions on Signal Processing, 65(16):4293–4308, 2017.

Sébastien Bubeck. Convex optimization: Algorithms and complexity. arXiv preprint
arXiv:1405.4980, 2014.

Emmanuel J Candes and Terence Tao. Decoding by linear programming. IEEE transactions on
information theory, 51(12):4203–4215, 2005.

Minshuo Chen, Xingguo Li, and Tuo Zhao. On generalization bounds of a family of recurrent neural
networks. arXiv preprint arXiv:1910.12947, 2019.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and
Wotao Yin. Learning to optimize: A primer and a benchmark. arXiv preprint arXiv:2103.12828,
2021.

Xiaohan Chen, Jialin Liu, Zhangyang Wang, and Wotao Yin. Theoretical linear convergence of un-
folded ista and its practical weights and thresholds. In Advances in Neural Information Processing
Systems, pp. 9061–9071, 2018.

Xinshi Chen, Yu Li, Ramzan Umarov, Xin Gao, and Le Song. Rna secondary structure prediction
by learning unrolled algorithms. arXiv preprint arXiv:2002.05810, 2020a.

Xinshi Chen, Yufei Zhang, Christoph Reisinger, and Le Song. Understanding deep architecture with
reasoning layer. Advances in Neural Information Processing Systems, 33, 2020b.

M-C Corbineau, Carla Bertocchi, Emilie Chouzenoux, Marco Prato, and J-C Pesquet. Learned
image deblurring by unfolding a proximal interior point algorithm. In 2019 IEEE International
Conference on Image Processing (ICIP), pp. 4664–4668. IEEE, 2019.

Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint. Communications on Pure and Applied
Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 57(11):1413–
1457, 2004.

10

Published as a conference paper at ICLR 2022

Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, and Massimiliano Pontil. Learning to learn around
a common mean. Advances in Neural Information Processing Systems, 31:10169–10179, 2018.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American statistical Association, 96(456):1348–1360, 2001.

Jianqing Fan, Yang Feng, and Yichao Wu. Network exploration via the adaptive lasso and scad
penalties. The annals of applied statistics, 3(2):521, 2009.

Luca Franceschi, Paolo Frasconi, Michele Donini, and Massimiliano Pontil. A bridge between
hyperparameter optimization and larning-to-learn. stat, 1050:18, 2017.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with
the graphical lasso. Biostatistics, 9(3):432–441, 2008.

Vikas K Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of
graph neural networks. arXiv preprint arXiv:2002.06157, 2020.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings of the
27th International Conference on International Conference on Machine Learning, pp. 399–406.
Omnipress, 2010.

Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. Stochastic optimization of sorting
networks via continuous relaxations. arXiv preprint arXiv:1903.08850, 2019.

Dominique Guillot, Bala Rajaratnam, Benjamin T Rolfs, Arian Maleki, and Ian Wong. Iterative
thresholding algorithm for sparse inverse covariance estimation. arXiv preprint arXiv:1211.2532,
2012.

Rishi Gupta and Tim Roughgarden. A pac approach to application-specific algorithm selection.
SIAM Journal on Computing, 46(3):992–1017, 2017.

Piotr Indyk, Ali Vakilian, and Yang Yuan. Learning-based low-rank approximations. arXiv preprint
arXiv:1910.13984, 2019.

Boris Joseph Joukovsky, Tanmoy Mukherjee, Nikos Deligiannis, et al. Generalization error bounds
for deep unfolding rnns. In Proceedings of Machine Learning Research. Journal of Machine
Learning Research, 2021.

Ulugbek S Kamilov and Hassan Mansour. Learning optimal nonlinearities for iterative thresholding
algorithms. IEEE Signal Processing Letters, 23(5):747–751, 2016.

Dohyun Kim and Daeyoung Park. Element-wise adaptive thresholds for learned iterative shrinkage
thresholding algorithms. IEEE Access, 8:45874–45886, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Tsukasa Kouno, Michiel de Hoon, Jessica C Mar, Yasuhiro Tomaru, Mitsuoki Kawano, Piero Carn-
inci, Harukazu Suzuki, Yoshihide Hayashizaki, and Jay W Shin. Temporal dynamics and tran-
scriptional control using single-cell gene expression analysis. Genome biology, 14(10):1–12,
2013.

Jialin Liu, Xiaohan Chen, Zhangyang Wang, and Wotao Yin. ALISTA: Analytic weights are as good
as learned weights in LISTA. In International Conference on Learning Representations, 2019a.
URL https://openreview.net/forum?id=B1lnzn0ctQ.

Risheng Liu, Shichao Cheng, Yi He, Xin Fan, Zhouchen Lin, and Zhongxuan Luo. On the conver-
gence of learning-based iterative methods for nonconvex inverse problems. IEEE transactions on
pattern analysis and machine intelligence, 42(12):3027–3039, 2019b.

Po-Ling Loh and Martin J Wainwright. Regularized m-estimators with nonconvexity: Statistical and
algorithmic theory for local optima. The Journal of Machine Learning Research, 16(1):559–616,
2015.

11

https://openreview.net/forum?id=B1lnzn0ctQ

Published as a conference paper at ICLR 2022

Vlad Niculae, Andre Martins, Mathieu Blondel, and Claire Cardie. Sparsemap: Differentiable sparse
structured inference. In International Conference on Machine Learning, pp. 3799–3808, 2018.

Edouard Ollier and Vivian Viallon. Regression modelling on stratified data with the lasso.
Biometrika, 104(1):83–96, 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differ-
entiation of blackbox combinatorial solvers. In International Conference on Learning Represen-
tations, 2019.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge university press, 2014.

Nir Shlezinger, Jay Whang, Yonina C Eldar, and Alexandros G Dimakis. Model-based deep learn-
ing. arXiv preprint arXiv:2012.08405, 2020.

Harsh Shrivastava, Xinshi Chen, Binghong Chen, Guanghui Lan, Srinivas Aluru, Han Liu, and
Le Song. GLAD: Learning sparse graph recovery. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=BkxpMTEtPB.

Athanasios Tsanas, Max Little, Patrick McSharry, and Lorraine Ramig. Accurate telemonitoring of
parkinson’s disease progression by non-invasive speech tests. Nature Precedings, pp. 1–1, 2009.

Xiang Wang, Shuai Yuan, Chenwei Wu, and Rong Ge. Guarantees for tuning the step size using a
learning-to-learn approach. In International Conference on Machine Learning, pp. 10981–10990.
PMLR, 2021.

Zhaoran Wang, Han Liu, and Tong Zhang. Optimal computational and statistical rates of conver-
gence for sparse nonconvex learning problems. Annals of statistics, 42(6):2164, 2014.

Kaixuan Wei, Angelica Aviles-Rivero, Jingwei Liang, Ying Fu, Carola-Bibiane Schönlieb, and Hua
Huang. Tuning-free plug-and-play proximal algorithm for inverse imaging problems. In Interna-
tional Conference on Machine Learning, pp. 10158–10169. PMLR, 2020.

Kailun Wu, Yiwen Guo, Ziang Li, and Changshui Zhang. Sparse coding with gated learned ista. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=BygPO2VKPH.

Shanshan Wu, Alex Dimakis, Sujay Sanghavi, Felix Yu, Daniel Holtmann-Rice, Dmitry Storcheus,
Afshin Rostamizadeh, and Sanjiv Kumar. Learning a compressed sensing measurement matrix
via gradient unrolling. In International Conference on Machine Learning, pp. 6828–6839. PMLR,
2019.

Xingyu Xie, Jianlong Wu, Guangcan Liu, Zhisheng Zhong, and Zhouchen Lin. Differentiable lin-
earized admm. In International Conference on Machine Learning, pp. 6902–6911. PMLR, 2019.

Y Yang, J Sun, H Li, and Z Xu. Admm-net: A deep learning approach for compressive sensing mri.
corr. arXiv preprint arXiv:1705.06869, 2017.

Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty. The Annals of
statistics, 38(2):894–942, 2010a.

Jian Zhang and Bernard Ghanem. Ista-net: Interpretable optimization-inspired deep network for
image compressive sensing. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1828–1837, 2018.

Tong Zhang. Analysis of multi-stage convex relaxation for sparse regularization. Journal of Machine
Learning Research, 11(3), 2010b.

Jiayu Zhou, Jianhui Chen, and Jieping Ye. Malsar: Multi-task learning via structural regularization.
Arizona State University, 21, 2011.

12

https://openreview.net/forum?id=BkxpMTEtPB
https://openreview.net/forum?id=BygPO2VKPH
https://openreview.net/forum?id=BygPO2VKPH

Published as a conference paper at ICLR 2022

A LIST OF DEFINITIONS AND NOTATIONS

For the convenience of the reader, we summarize a list of notations blow.

1. ‖β‖λ,1 :=
∑d
j=1 λj |βj | denotes element-wise `1 norm.

2. (x)S is the sub-vector of x with entries in the index set S.

3. x ∨ ε = max{x, ε} = [max{x1, ε}, · · · ,max{xd, ε}]>.

4. Element-wise soft-threshold:

Tsλ(β) = (|β| − sλ)+ ◦ sign(β) (22)

=

 (|β1| − sλ1)+ sign(β1)
...

(|βd| − sλd)+ sign(βd)

 (23)

5. Denote a single iteration of the modified proximal gradient step as

βk = MPG(βk−1;λ,w, α)

:= Tα·λ
(
βk−1 − α

(
∇Lλ,w(βk−1)

))
B PENALTY FUNCTIONS

We provide detailed descriptions of the penalty functions used in PLISA. We focus on learning the
combination of three well-known penalty functions:

P (1)(λ,β) = ‖λ ◦ β‖1, P (2)(λ,β) =
∑p
j=1 MCP(λj , βj), P

(3)(λ,β) =
∑p
j=1 SCAD(λj , βj),

where MCP (Zhang, 2010a) and SCAD (Fan & Li, 2001) are nonconvex penalties whose analytical
forms are given below.

B.1 ANALYTICAL FORMS

The MCP penalty can be written as

MCP(λ, β) =

(
λ |β| − β2

2b

)
· 1 (|β| ≤ bλ) +

bλ2

2
· 1 (|β| > bλ) ,

where b > 0 is some hyperparameter.

The SCAD penalty can be written as

SCAD(λ, β) = λ |β| · 1 (|β| ≤ λ)− β2 − 2aλ |β|+ λ2

2(a− 1)
· 1 (λ < |β| ≤ aλ)

+
(a+ 1)λ2

2
· 1 (|β| > aλ) ,

where a > 2 is some hyperparameter.

PLISA uses the concave components of these penalty functions. Their analytical forms are as
follows.

q(2)(λ,β) = MCP(λ, β)− λ |β| = −β
2

2b
· 1 (|β| ≤ bλ) +

(
bλ2

2
− λ |β|

)
· 1 (|β| > bλ)

q(3)(λ,β) = SCAD(λ, β)− λ |β| = 2λ |β| − β2 − λ2

2(a− 1)
· 1 (λ < |β| ≤ aλ)

+
(a+ 1)λ2 − 2λ |β|

2
· 1 (|β| > aλ)

13

Published as a conference paper at ICLR 2022

B.2 IMPLICATIONS

Based on the definitions of these penalty functions, it is easy to check that their convex combination
satisfies a set of conditions as stated in the following Assumption B.1.
Assumption B.1 (Regularization). Let P (λ,β) = Q(λ,β) +‖β‖λ,1 where Q is concave in β, and
that Q(λ,β) =

∑d
j=1 q(λj , βj). Denote the partial gradient of q as q′λ(β) := ∂q(λ,β)

∂β . Assume the
following regularization conditions.

(a) There exists constants ξ ≥ 0 such that for any β′ > β,

−ξ ≤ q′λ(β′)− q′λ(β)

β′ − β
≤ 0.

(b) q(λ,−β) = q(λ, β).

(c) q′λ(0) = q(λ, 0) = 0.

(d) |q′λ(β)| ≤ λ.

(e) |q′λ1
(β)− q′λ2

(β)| ≤ |λ1 − λ2|.

Note that the penalty function Pw(λ,β) in PLISAθ satisfies all these conditions, with the constant
ξ in condition (a) being

ξw = w̃2
1

b
+ w̃3

1

a− 1
,

where a and b are the hyperparameters in SCAD and MCP.

Next, we present an important lemma which states the restricted strongly convexity and smoothness
of the modified loss

Lλ,w(β) := Ln(Z1:n,β) +Qw(λ,β).

Lemma B.1 (Restricted Strongly Convex and Restricted Strongly Smooth). Assume P satisfies
Assumption C.1 and (Zn,β

∗) ∈ P . If Q(λ,β) satisfies the regularization conditions in Assump-
tion B.1 with a constant ξ < ρ−. Then

Lλ(β) := Ln(Z1:n,β) +Q(λ,β)

is strongly convex and smooth in the subspace {‖β′ − β‖0 ≤ s∗ + 2s̃}. That is, for any β,β′ such
that ‖β′ − β‖0 ≤ s∗ + 2s̃, the following inequalities hold

Lλ(β′) ≥ Lλ(β) +∇Lλ(β)>(β′ − β) +
ρ− − ξ

2
‖β′ − β‖22 (24)

Lλ(β′) ≤ Lλ(β) +∇Lλ(β)>(β′ − β) +
ρ+

2
‖β′ − β‖22 (25)

Proof. The proof is straightforward by using the condition (a) in Assumption B.1 and the sparse-
eigenvalue condition in Assumption C.1.

14

Published as a conference paper at ICLR 2022

C PROBLEM SPACE ASSUMPTIONS

We follow the notations in Wang et al. (2014); Loh & Wainwright (2015) to describe some classic
assumptions on the estimation problems.
Assumption C.1 (Problem Space). Let s∗, s̃ be positive integers and ρ−, ρ+ be positive constants
such that s̃ > (121(ρ+/ρ−) + 144(ρ+/ρ−)2)s∗. Assume for every estimation problem (Z1:n,β

∗)
in the space P , the following conditions are satisfied.

(a) ‖β∗‖0 ≤ s∗ and ‖β∗‖∞ ≤ B1;

(b) For any nonzero v ∈ Rd with sparsity ‖v‖0 ≤ s∗ + 2s̃, it holds
v>∇2

βLn(Z1:n,β)v

‖v‖22
∈ [ρ−, ρ+];

(c) 8 |[∇βLn(Z1:n,β
∗)]j | ≤ |[∇βLn(Z1:n,0)]j | ≤ B2, ∀j = 1, · · · , d.

Condition (a) assumes β∗ is s∗-sparse and B1-bounded. Condition (b) is commonly referred to as
‘sparse eigenvalue condition’ (Zhang, 2010b; Wang et al., 2014), which is weaker than the well-
known restricted isometry property (RIP) in compressed sensing (Candes & Tao, 2005). Note that
the class of functions satisfying conditions of this type is much larger than the class of convex losses.
In the special case when Ln(Z1:n,β) is strongly convex in β, condition (b) holds with s̃→∞. The
last condition bounds the gradient of the empirical loss Ln at the true parameter β∗ and 0.

15

Published as a conference paper at ICLR 2022

D RECOVERY GUARANTEE FOR PARAMETERS IN CONSTRAINED SPACE

Our generalization analysis is conducted on a constrained parameter space. In this section, we
provide theoretical guarantees for the estimation error of PLISAθ when θ is in the constrained
space. We first formally define the parameter space as follows.
Definition D.1 (Constrained parameter space). Assume P satisfies Assumption C.1 and Dm ⊆ P .
Given some positive values αmin, ηmax, ξmax, and λmax. We definite the constrained parameter
space Θ(Dm) as Θ(Dm) := {θ = {η,λ∗,w, α} : conditions (i) (ii) (iii) (iv) are satisfied}, where
the conditions are:

(i) α ∈ [αmin,
1
ρ+

].

(ii) ηj ∈ [ηmin := σ−1(0.9), ηmax], for all j = 1, · · · , d.

(iii) w̃2
1
b + w̃3

1
a−1 ≤ ξmax < ρ−, where b is the hyperparameter in MCP and a is the hyperparam-

eter in SCAD.

(iv) λ∗j ∈ [8 sup(Z1:n,β∗)∈Dm |[∇βLn(Z1:n,β
∗)]j | ∨ ε, λmax], for all j = 1, · · · , d.

For parameters in this constrained space, we can show the performance guarantee for the outputs of
PLISAθ, as stated in the following Theorem D.1.
Theorem D.1 (Recovery guarantee). Assume P satisfies Assumption C.1 andDm ⊆ P . Let Θ(Dm)
be the constrained parameter space defined in Definition D.1 and assume θ = {η,λ∗,w, α} ∈
Θ(Dm). Assume

K ≥ log

(
4

√
29ρ+

ρ− − ξmax
(1 +

1

αminρ+
)
‖(B2 ∨ λ∗)S∗‖2

ε

)
/ log

(
δ−1/2

)
+ 1,

where δ := 1 − αmin(ρ− − ξmax). Then for any problem (Z1:n,β
∗) in the training set Dm, all

intermediate outputs of PLISAθ have the following error bounds for all t = 1, · · · , T .

‖β̃kt (Z1:n; θ)− β∗‖2 ≤
15/2

ρ− − ξmax
‖(λt(Z1:n; θ))S∗‖2, ∀k = 1, · · · ,K,

‖βt(Z1:n; θ)− β∗‖2 ≤
19/8

ρ− − ξmax
‖(λt(Z1:n; θ))S∗‖2.

Proof. The proof of this theorem is based on a series of key lemmas for the properties of the modified
proximal gradient steps in each cell of PLISA. We state these key lemmas and their proofs in
Section G. With these lemmas, the proof of this theorem is straightforward, and we state the proof
below.

Given a fixed problem (Z1:n,β
∗) ∈ Dm and a fixed set of parameters θ = {η,λ∗,w, α} ∈ Θ(Dm),

we simplify some notations in this proof by removing the dependency on Z1:n and θ. For example,
we denote βt = βt(Z1:n; θ), β̃kt = β̃kt (Z1:n; θ), λt = λt(Z1:n; θ), etc.

Notations. Furthermore, we will use the following simplified notations and definitions.

empirical loss Ln(β) := Ln(Z1:n,β)

modified loss Lλ(β) := Ln(Z1:n,β) +Qw(λ,β)

regularized loss φλ(β) := Ln(Z1:n,β) + Pw(λ,β) = Lλ(β) + ‖β‖λ,1
local optimal β̂λ ∈ arg min

β∈Rd:‖β
S∗‖0≤s̃

φλ(β)

sub-optimality ωλ(β) := min
ξ′∈∂‖β‖1

max
β′

{
(β − β′)>

‖β − β′‖λ,1
(∇Lλ(β) + λ ◦ ξ′)

}
.

Now we are ready to state the proof. We first show the following statement holds true for all t ≤ T
by mathematical induction.

Statement(t): ωλt(β̃
0
t) ≤ 1

2
, and ‖(β̃kt)S∗‖0 ≤ s̃, ∀k = 1, · · · ,K.

16

Published as a conference paper at ICLR 2022

Statement(1). First we verify that Statement(1) holds true. Recall that λ0 = |∇Ln(0)|. In the
following, we prove that β̃0

1 is a local solution of φλ0(β) := Lλ0(β) + ‖β‖λ0,1.

∇Lλ0(β̃0
1) + λ0 ◦ ∂‖β̃0

1‖1
= ∇Ln(0) +∇βQw(λ0,0) + λ0 ◦ ∂‖0‖1
= sign(∇Ln(0)) ◦ |∇Ln(0)|+ 0 + λ0 ◦ ∂‖0‖1
= sign(∇Ln(0)) ◦ λ0 + λ0 ◦ ∂‖0‖1.

Since − sign(∇Ln(0)) ∈ ∂‖0‖1, then we have 0 ∈ ∇Lλ0
(β̃0

1) + λ0 ◦ ∂‖β̃0
1‖1. Therefore,

ωλ0
(β̃0

1) = 0. Since λ1 = λ0 ◦ η1, by Lemma G.6, we have

ωλ1
(β̃0

1) ≤ ωλ0
(β̃0

1) + 0.2

0.9
=

2

9
≤ 1/2.

By Lemma G.5, we have φλ1
(β̃0

1) − φλ1
(β∗) ≤ 21/2‖(λ1)S∗‖22

ρ−−ξmax
, which implies that the conditions

in Lemma G.4 are satisfied. Therefore, we have proved that
‖(βk1)S∗‖0 ≤ s̃ ∀k = 1, . . . ,K.

This finishes the proof of Statement(1).

Statement(t). Now we assume Statement(t−1) is true and prove Statement(t). First, we prove that
ωλt−1

(β̃Kt−1) ≤ 1/4. By Lemma G.2 and Lemma G.5,

ωλt−1
(β̃Kt−1) ≤

√
2(1 + 1

αminρ+
)
√
ρ+

min(λt−1)

√
(1− αmin(ρ− − ξmax))

K−1 29/2‖(λt−1)S∗‖22
ρ− − ξmax

≤

√
29ρ+

ρ− − ξmax
(1 +

1

αminρ+
)
‖(λ0 ∨ λ∗)S∗‖2

ε

√
(1− αmin(ρ− − ξmax))

K−1
.

Assume K ≥ log
(

4
√

29ρ+

ρ−−ξmax
(1 + 1

αminρ+
)‖(λ0∨λ∗)S∗‖2

ε

)
/ log

(
δ−1/2

)
+ 1, where

δ := 1− αmin(ρ− − ξmax).

Then we have
ωλt−1

(β̃Kt−1) ≤ 1/4. (26)

Since β̃0
t = β̃Kt−1, Lemma G.6 implies that

ωλt(β̃
0
t) ≤ 1/2.

Furthermore, by Lemma G.5, ωλt(β̃
0
t) ≤ 1/2 implies

φλt(β̃
0
t)− φλt(β∗) ≤

21/2‖(λt)S∗‖22
ρ− − ξmax

, (27)

which in turns implies that the conditions in Lemma G.4 are satisfied. Therefore, we have

‖(β̃kt)S∗‖0 ≤ s̃ ∀k = 1, . . . ,K,

which completes the proof of Statement(t).

Now we derive the error bounds. Similar to how we derive Eq. 26 and Eq. 27, it is easy to show that

ωλt(β̃
K
t) ≤ 1/4, ∀t = 1, · · · , T,

and φλt(β̃
0
t)− φλt(β∗) ≤

21/2‖(λt)S∗‖22
ρ− − ξmax

∀t = 1, · · · , T.

Combining φλt(β̃
0
t)− φλt(β∗) ≤

21/2‖(λt)S∗‖22
ρ−−ξmax

with Lemma G.3, we have

‖β̃kt − β∗‖2 ≤
15/2‖(λt)S∗‖22
ρ− − ξmax

, ∀k = 1, · · · ,K. (28)

Combining ωλt(β̃
K
t) ≤ 1/4 with Lemma G.5, we have

‖β̃Kt − β∗‖2 ≤
(

1

4
+

17

8

)
‖(λt)S∗‖22
ρ− − ξmax

=
19/8‖(λt)S∗‖22
ρ− − ξmax

.

17

Published as a conference paper at ICLR 2022

E CAPACITY ANALYSIS: PROOF OF THEOREM 3.1

Proof. This theorem is a direct result of Theorem D.1, by taking a suitable set of parameters θ.
Similar to the proof of Theorem D.1, some notations are simplified. Please refer to the proof of
Theorem D.1 for detailed illustrations.

Denote the union support set of the true parameters β∗ by S∗m := {j : j ∈ supp(β∗), (Z1:n,β
∗) ∈

Dm}. Then we specify a set of parameters θ = {η,λ∗,w, α} for PLISAθ as follows.

• α = 1
ρ+

.
• w: The weightsw can take any values as long as they satisfy w̃2

1
b + w̃3

1
a−1 < ρ−. Since w̃2 and

w̃3 and be arbitrary close to 0, there must exists a set of weights w that satisfy this constraint. In
particular, we denote this value by ξw := w̃2

1
b + w̃3

1
a−1 .

• λ∗: For each j ∈ S∗m, we take λ∗j := 8 max(Zn,β∗)∈Dm |∇Ln(Zn,β
∗)j | ∨ ε as the target

regularization parameter. For each j /∈ S∗m, we take λ∗j = B2, which is the upper bound of
‖∇βLn(Z1:n,0)‖∞ by Assumption C.1.

• η: For all j, take ηj = log 9 so that the decrease ratio is σ(ηj) = 0.9.

Clearly, this set of parameters satisfy the conditions in Theorem D.1, so we can apply its result in
this proof.

In the following, we will show that, with this specification of the parameters, PLISAθ can achieve
the recovery accuracy stated in Theorem 3.1.

Let t0 = min {t : t ≥ 0,λ∗ = max{0.9t |∇βLn(Z1:n,0)| ,λ∗} , Z1:n ∈ Dm,λ∗ ∈ θ ∈ Θ(DM)}
be the number of blocks after which λt(Z1:n; θ) = λ∗. We know t0 is a small number because
the decrease rate is linear. To be more clear, it is easy to show that t0 ≤ log

(
B2

ε

)
/ log(10/9).

Therefore, after t0 cells, the regularization parameters do not change anymore. That is,
λt(Z1:n; θ) = λ∗, ∀t ≥ t0.

Since the specified parameters satisfy the conditions in Theorem D.1, we can follow the same way
as how we derive Eq. 26 to obtain that

ωλt−1(βt−1) ≤ 1/4, ∀t = 1, · · · , T.
Since we have λt = λ∗ for t ≥ t0. The last (T − t0) cells can be viewed as a single cell with
K(T − t0) many steps. Therefore, we can apply Lemma G.2 and Lemma G.5 to obtain

ωλt(β̃
K
t) ≤ 2

√
2ρ+

ε

√
(1− α(ρ− − ξw))

K(t−t0)−1 29/2‖(λt−1)S∗‖22
ρ− − ξw

≤

√
29ρ+

ρ− − ξw
(1 +

1

αρ+
)
‖(λ0 ∨ λ∗)S∗‖2

ε

√
(1− α(ρ− − ξw))

K(t−t0)−1

≤

√
29ρ+

ρ− − ξw
(1 +

1

αρ+
)

√
s∗B2

ε

√
(1− α(ρ− − ξw))

K(t−t0)−1

= cθ
√
s∗ε−1 exp(−CθK(t− t0)),

where Cθ = − 1
2 log (1− α(ρ− − ξw)), cθ =

√
29ρ+

ρ−−ξw (1 + 1
αρ+

) B2

1−α(ρ−−ξw) . By Lemma G.5,

‖βt − β∗‖2 ≤

(
ωλt(β̃

K
t) + 17

8

)
‖λ∗S∗‖2

ρ− − ξw

≤ ‖λ
∗
S∗‖2

ρ− − ξw
cθε
−1
√
s∗ exp(−CθK(t− t0)) +

17
8 ‖λ

∗
S∗‖2

ρ− − ξw
≤ c̃θε−1s∗ exp(−CθK(t− t0)) + c′θ‖λ∗S∗‖2 (29)

where c̃θ =
√
s∗B2

ρ−−ξw cθ and c′θ = 17
8(ρ−−ξw) . What remains is bounding ‖λ∗S∗‖2. First, we define a

condition number as

κm = max
j∈S∗m

{
8 max(Zn,β∗)∈Dm |∇βLn(Zn,β

∗)j |
8 min(Zn,β∗)∈Dm |∇βLn(Zn,β∗)j | ∨ ε

}
.

18

Published as a conference paper at ICLR 2022

In fact, κm ≤ B2

ε . Then recall the specification of λ∗ at the beginning of this proof. We have

‖λ∗S∗‖2 ≤
∑
j∈S∗

8κm |∇βLn(Zn,β
∗)j | ∨ ε

≤ 8κm‖(∇βLn(Zn,β
∗) ∨ ε)S∗‖2.

Plugging this back to Eq. 29, we have

‖βt − β∗‖2 ≤ c̃θε−1s∗ exp(−CθK(t− t0)) + c′θ8κm‖(∇βLn(Zn,β
∗) ∨ ε)S∗‖2.

This is equivalent to the statement to be proved.

19

Published as a conference paper at ICLR 2022

F GENERALIZATION ANALYSIS: PROOF OF THEOREM 4.1

We first state a well-known inequality that bounds the generalization gap by empirical Rademacher
complexity.

Theorem F.1 (Adapted from Theorem 26.5 (Shalev-Shwartz & Ben-David, 2014)). Assume that for
all (Z1:n,β

∗) ∈ P and all θ ∈ Θ we have that `(βT (Z1:n; θ),β∗) ≤ c. Then with probability at
least 1− ε, for all θ ∈ Θ,

Lgen(P(P); θ)− Lγ=0
train(Dm; θ) ≤ 2Rm(`Θ) + 4c

√
2 log(4ε−1)

m
,

where `Θ := {(Z1:n,β
∗) 7→ ‖βT (Z1:n; θ) − β∗‖22 : θ ∈ Θ} is the space of loss functions of our

model PLISAθ, and Rm(`Θ) is its empirical Rademacher complexity. It is defined as

Rm(`Θ) := Eσ supθ∈Θ
1
m

∑m
i=1 σi

∥∥∥βT (Z
(i)
1:ni

; θ)− β∗(i)
∥∥∥2

2
,

where {σi}mi=1 are m independent Rademacher random variables.

Therefore, it resorts to bound the empirical Rademacher complexity, which can be bounded via
Dudley’s integral. The following theorem states the bound for the empirical Rademacher complexity
and its proof follows.

Theorem F.2 (Empirical Rademacher complexity bound). Assume the assumptions in Theorem 4.1.
Let Θ = Θ(Dm) be the constrained space defined in Definition D.1. Let `Θ := {(Z1:n,β

∗) 7→
‖βT (Z1:n; θ) − β∗‖22 : θ ∈ Θ} be the space of loss functions of our model PLISAθ. Then the
empirical Rademacher complexity is bounded by Rm`Θ ≤
c1√
m

√
log
(
c2
√
mK(T − t0) exp(−CΘK(T − t0)) ∨ 1

)
+ c3d log

(
c4
√
m (1− exp(−CΘKT))

)
where c1, c2, c3, c4 are some constants independent of d,m,K and T .

Proof. The classical Dudley’s entropy integral bound gives us an upper bound for the empirical
Rademacher complexity in terms of the covering number.

Rm`Θ ≤ inf
α>0

(
4α+

12√
m

∫ ‖`Θ‖Pm,∞
α

√
logN (ε, `Θ, L2(Pm)) dε

)

≤ 4√
m

+
12√
m

∫ ‖`Θ‖Pm,∞
1√
m

√
logN (ε, `Θ, L2(Pm)) dε

≤ 4√
m

+
12‖`Θ‖Pm,∞√

m

√
logN

(
1√
m
, `Θ, L2(Pm)

)
.

The notation Pm means the empirical measure defined based on the samples in Dm, and

‖`Θ‖Pm,∞ := sup
θ∈Θ

Pm(`θ)

= sup
θ∈Θ

1

m

∑
(Z1:n,β∗)∈Dm

‖βT (Z1:n; θ)− β∗‖22

by Theorem D.1 ≤ sup
θ∈Θ

1

m

∑
(Z1:n,β∗)∈Dm

19/8

ρ− − ξmax
‖(λt(Z1:n; θ))S∗‖2

≤ sup
θ∈Θ

1

m

∑
(Z1:n,β∗)∈Dm

19/8

ρ− − ξmax

√
s∗max{B2, λmax} ≤ C.

Here we use a constant C as the upper bound because we only care about the scales in d,m,K and
T . Next, we bound the covering numberN

(
1√
m
, `Θ, L2(Pm)

)
. By the key result in Lemma 4.1, it

20

Published as a conference paper at ICLR 2022

is easy to derive that

‖`θ − `θ′‖L2(Pm) ≤ 2C
(
c1K(T − t0)

√
s∗ |α− α′| exp(−CΘK(T − t0))

+
(
c2‖η − η′‖2 + c3‖λ∗ − λ∗′‖2 + c4

√
d‖w −w′‖2

)
(1− exp(−CΘKT))

)
≤ cK(T − t0) |α− α′| exp(−CΘK(T − t0))

+ c
(
‖η − η′‖2 + ‖λ∗ − λ∗′‖2 +

√
d‖w −w′‖2

)
(1− exp(−CΘKT)) /

From now on, we abuse the symbol c to generally represent some constant that does not depend on
d,m,K, T .

N (ε, `Θ, L2(Pm)) ≤ N
(

ε

cK(T − t0) exp(−CΘK(T − t0))
,

[
αmin,

1

ρ+

]
, |·|
)

×N
(

ε

c (1− exp(−CΘKT))
, [ηmin, ηmax]d, `2

)

×N

 ε

c (1− exp(−CΘKT))
,

d∏
j=1

×[λj,min, λj,max], `2


×N

(
ε

c
√
d (1− exp(−CΘKT))

, [wmin, wmax]3, `2

)
.

For the covering number of a d-dimensional compact vector space T ⊆ Rd, we can bound it by
the ε-packing number. That is, N (T, ε, `2) ≤M(T, ε, `2) ≤ c

∏d
j=1

(
Tj,max−Tj,min

ε + 1
)

for some
constant c. Applying this fact, we have

N (ε, `Θ, L2(Pm)) ≤
(
cK(T − t0) exp(−CΘK(T − t0))

ε
∨ 1

)
×

d∏
j=1

(
c (1− exp(−CΘKT))

ε
+ 1

)

×
d∏
j=1

(
c (1− exp(−CΘKT))

ε
+ 1

)

×

(
3c
√
d (1− exp(−CΘKT))

ε

)3

which implies

logN
(

1√
m
, `Θ, L2(Pm)

)
≤ log

(
c
√
mK(T − t0) exp(−CΘK(T − t0)) ∨ 1

)
+ (2d) log

(
c
√
m (1− exp(−CΘKT)) + 1

)
+ 3 log

(
c
√
dm (1− exp(−CΘKT))

)
≤ log

(
c
√
mK(T − t0) exp(−CΘK(T − t0)) ∨ 1

)
+ cd log

(
c
√
m (1− exp(−CΘKT)) + 1

)
.

Therefore, Rm`Θ ≤
c√
m

√
log
(
c
√
mK(T − t0) exp(−CΘK(T − t0)) ∨ 1

)
+ cd log

(
c
√
m (1− exp(−CΘKT))

)
.

21

Published as a conference paper at ICLR 2022

F.1 ROBUSTNESS TO PARAMETER PERTURBATION: PROOF OF LEMMA 4.1

We split the parameters θ = {λ∗,w,η, α} into two sets θ = θ1 ∪ θ2, where θ1 = {α} and
θ2 = {λ∗,w,η}. Clearly, the robustness can be bounded by

‖βT (Z1:n; θ1 ∪ θ2)− βT (Z1:n; θ′1 ∪ θ2)‖2 + ‖βT (Z1:n; θ′1 ∪ θ2)− βT (Z1:n; θ′1 ∪ θ′2)‖2.

We derive the upper bounds of these two terms in Lemma F.1 and Lemma F.2, which imply

‖βT (Z1:n; θ)− βT (Z1:n; θ′)‖2 ≤ C
√
s∗K (T − t0) δK(T−t0) |α− α′|

+
(
C1‖η − η′‖2 + C2‖λ∗ − λ∗′‖2 + C4

√
d‖w −w′‖2

) 1− δKT

1− δ
,

where δ :=
√

1− αmin(ρ− − ξmax) < 1. Lemma 4.1 is equivalent to this inequality by taking
CΘ = − log(δ) > 0. Therefore, the key derivation steps are in the proof of Lemma F.1 and
Lemma F.2, as stated below.

Lemma F.1. Assume the assumptions in Lemma 4.1 are satisfied. Let

θ = {λ∗,w,η, α} and θ′ = {λ∗,w,η, α′}

be parameters in the constrained space Θ. Let {βt}Tt=1 = PLISAθ(Z1:n) and {βt′}Tt=1 =
PLISAθ′(Z1:n) be the intermediate outputs of PLISA with different parameters θ and θ′. Assume

K ≥ log

(
4

√
29ρ+

ρ− − ξmax
(1 +

1

αminρ+
)

√
s∗(B2 + λmax)

ε

)
/ log

(
δ−1
)

+ 1,

where δ :=
√

1− αmin(ρ− − ξmax) < 1. Then

‖βT − βT ′‖2 ≤ C
√
s∗K (T − t0) δK(T−t0) |α− α′| .

Proof. By triangular inequality,∥∥∥β̃kt − β̃kt ′∥∥∥
2

=
∥∥∥MPG(β̃k−1

t ;λt,w, α)− MPG(β̃k−1
t
′;λt,w, α

′)
∥∥∥

2

≤
∥∥∥MPG(β̃k−1

t ;λt,w, α)− MPG(β̃k−1
t ;λt,w, α

′)
∥∥∥

2

+
∥∥∥MPG(β̃k−1

t ;λt,w, α
′)− MPG(β̃k−1

t
′;λt,w, α

′)
∥∥∥

2

WLOG, assume α > α′. Applying Lemma F.3 and Lemma F.4 to the above two terms on the right
hand side, we obtain

∥∥∥β̃kt − β̃kt ′∥∥∥
2
≤ δ‖β̃k−1

t − β̃k−1
t
′‖2 +

√
|α− α′|
α+ α′

∥∥∥β̃kt − β̃k−1
t

∥∥∥
2

≤ δ‖β̃k−1
t − β̃k−1

t
′‖2 + c |α− α′|

∥∥∥β̃kt − β̃k−1
t

∥∥∥
2

(30)

where c is the Lipschtiz constant. c is a finite number because α is bounded and positive. Applying
it recursively, we have

∥∥∥β̃Kt − β̃Kt ′∥∥∥
2
≤ δK‖β̃0

t − β̃0
t
′‖2 + c |α− α′|

K∑
k=1

δK−k
∥∥∥β̃kt − β̃k−1

t

∥∥∥
2
. (31)

22

Published as a conference paper at ICLR 2022

Now we bound the term
∥∥∥β̃kt − β̃k−1

t

∥∥∥
2
. By Lemma G.1 and Lemma G.2,

∥∥∥β̃kt − β̃k−1
t

∥∥∥
2
≤

√
2αmin

2− αminρ+

(
φλt,w(β̃k−1

t)− φλt,w(β̂λt)
)

≤

√
2

ρ+

(
φλt,w(β̃0

t)− φλt,w(β̂λt)
)
δk−1

(By Lemma G.6) ≤

√
2

ρ+

√
10

ρ− − ξmax
‖(λt)S∗‖2δk−1

≤

√
2

ρ+

√
10

ρ− − ξmax
B2

√
s∗δk−1

= c′
√
s∗δk,

where c′ :=
√

2
ρ+

√
10

ρ−−ξmax
B2δ

−1. However, we can have a tighter bound for this term if t is

larger than a certain integer. More precisely, recall the definition that λt = max {λ0 ◦ σ(η)t,λ∗}.
Since σ(ηmax) < 1, the entries of λ0 ◦σ(η)t will decrease exponentially to reach the entry values of
λ∗. Let t0 = min {t : t ≥ 0,λ∗ = max{λ0 ◦ σ(ηmax)t,λ∗} ,∀λ∗ ∈ θ ∈ Θ(DM)} be the number
of blocks after which λt = λ∗. We know t0 is a small number because the decrease rate is linear.

Now, the regularization parameters satisfy λt = λ∗, ∀t ≥ t0. Therefore, we can apply Lemma G.1
and Lemma G.2 again to obtain the following bound for all t ≥ t0:∥∥∥β̃kt − β̃k−1

t

∥∥∥
2
≤

√
2αmin

2− αminρ+

(
φλ∗,w(β̃k−1

t)− φλ∗,w(β̂λ∗)
)

≤

√
2

ρ+

(
φλ∗,w(β̃k−1

t0)− φλ∗,w(β̂λ∗)
)
δK(t−t0)+k−1

(By Lemma G.6) ≤

√
2

ρ+

√
10

ρ− − ξmax
‖(λ∗)S∗‖2δK(t−t0)+k−1

= c′
√
s∗δK(t−t0)+k.

Combining the two different bounds for
∥∥∥β̃kt − β̃k−1

t

∥∥∥
2

with Eq. 31, we have

‖βt − β′t‖2 ≤ δ
K‖βt−1 − β′t−1‖2 +

{
C |α− α′|

√
s∗
∑K
k=1 δ

K−kδk if t < t0
C |α− α′|

√
s∗
∑K
k=1 δ

K−kδK(t−t0)+k if t ≥ t0

= δK‖βt−1 − β′t−1‖2 +

{
C |α− α′|

√
s∗KδK if t < t0

C |α− α′|
√
s∗KδK(t−t0+1) if t ≥ t0

where C = cc′. We apply the above inequality recursively and obtain that

‖βT − βT ′‖2 ≤ C
√
s∗KδK

(
t0−1∑
t=1

δK(T−t) |α− α′|+
T∑
t=t0

δK(T−t)δK(t−t0) |α− α′|

)

= C
√
s∗KδK

(
δK(T−t0+1) 1− δK(t0−1)

1− δK
+ (T − t0)δK(T−t0)

)
|α− α′|

= C
√
s∗KδK

((
δK(1− δK(t0−1))

1− δK
+ (T − t0)

)
δK(T−t0)

)
|α− α′|

≤ C
√
s∗K (T − t0 + 1) δK(T−t0+1) |α− α′|

≤ C
√
s∗K (T − t0) δK(T−t0) |α− α′|

23

Published as a conference paper at ICLR 2022

Lemma F.2. Assume the assumptions in Lemma 4.1 are satisfied. Let

θ = {λ∗,w,η, α} and θ′ = {λ∗′,w′,η′, α}

be parameters in the constrained space Θ. Let {βt}Tt=1 = PLISAθ(Z1:n) and {βt′}Tt=1 =
PLISAθ′(Z1:n) be the intermediate outputs of PLISA with different parameters θ and θ′. Then
‖βT (Z1:n; θ)− βT (Z1:n, θ

′)‖2 ≤(
C1‖η − η′‖2 + C2‖λ∗ − λ∗′‖2 + C4

√
d‖w −w′‖2

) 1− δKT

1− δ
,

where δ :=
√

1− αmin(ρ− − ξmax) < 1 and C1,2,4 are some constants.

Proof. Let {βt}Tt=1 ∪ {β̃kt }Tt=1
K
k=1 and {βt′}Tt=1 ∪ {β̃kt ′}Tt=1

K
k=1 be the intermediate outputs of

PLISAθ(Z1:n) and PLISAθ′(Z1:n) respectively. By triangle inequality,∥∥∥β̃kt − β̃kt ′∥∥∥
2

=
∥∥∥MPG(β̃k−1

t ;λt,w, α)− MPG(β̃k−1
t
′;λt

′,w′, α′)
∥∥∥

2

≤
∥∥∥MPG(β̃k−1

t ;λt,w, α)− MPG(β̃k−1
t
′;λt,w, α)

∥∥∥
2

+
∥∥∥MPG(β̃k−1

t
′;λt,w, α)− MPG(β̃k−1

t
′;λt

′,w, α)
∥∥∥

2

+
∥∥∥MPG(β̃k−1

t
′;λt

′,w, α)− MPG(β̃k−1
t
′;λt

′,w′, α)
∥∥∥

2
.

Applying Lemma F.3, Lemma F.5, and Lemma F.6 to the above 3 terms on the right hand side, we
obtain ∥∥∥β̃kt − β̃kt ′∥∥∥

2
≤ δ‖β̃k−1

t − β̃k−1
t
′‖2 +

2

ρ+
‖λt − λ′t‖2︸ ︷︷ ︸

(i)

+C‖w −w′‖2‖λt‖2︸ ︷︷ ︸
(ii)

, (32)

where C is some absolute constant.

Term (i). By definition and triangular inequality,

‖λt − λt′‖2 ≤ ‖max
{
λ0 ◦ σ(η)t,λ∗

}
−max

{
λ0 ◦ σ(η′)t,λ∗

}
‖2

+ ‖max
{
λ0 ◦ σ(η′)t,λ∗

}
−max

{
λ0 ◦ σ(η′)t,λ∗′

}
‖2

≤ ‖λ0‖∞tσ(ηmax)t−1t‖σ(η)− σ(η′)‖2 + ‖λ∗ − λ∗′‖2

≤ B2

4
σ(ηmax)tt‖η − η′‖2 + ‖λ∗ − λ∗′‖2

The last inequality holds by Assumption C.1 and the bounded first derivative of σ(·). Therefore, for
some constants C2 = 2

ρ+
and C̃1 = C2

B2

4 ,

(i) =
2

ρ+
‖λt − λ′t‖2 ≤ C̃1σ(ηmax)tt‖η − η′‖2 + C2‖λ∗ − λ∗′‖2

≤ C1‖η − η′‖2 + C2‖λ∗ − λ∗′‖2.

The last inequality holds because the value σ(ηmax)tt is bounded by some constant.

Term (ii). Since ‖λt‖2 ≤ ‖max {σ(ηmax)tλ0,λ
∗′} ‖2 ≤ ‖max {σ(ηmax)tλ0,λ0} ‖2 = ‖λ0‖2 ≤

B
√
d,

(ii) = C‖w −w′‖2‖λt‖2 ≤ C4

√
d‖w −w′‖2.

Plugging the bounds for (i)-(iii) into Eq. 32, we have∥∥∥β̃kt − β̃kt ′∥∥∥
2
≤ δ‖β̃k−1

t − β̃k−1
t
′‖2 + C1‖η − η′‖2 + C2‖λ∗ − λ∗′‖2 + C4

√
d‖w −w′‖2.

24

Published as a conference paper at ICLR 2022

By direct computation,∥∥∥β̃Kt − β̃Kt ′∥∥∥
2

≤ δK
∥∥∥β̃0

t − β̃0
t
′
∥∥∥

2
+
(
C1‖η − η′‖2 + C2‖λ∗ − λ∗′‖2 + C4

√
d‖w −w′‖2

)K−1∑
k=0

δk

= δK
∥∥∥β̃0

t − β̃0
t
′
∥∥∥

2
+
(
C1‖η − η′‖2 + C2‖λ∗ − λ∗′‖2 + C4

√
d‖w −w′‖2

) 1− δK

1− δ
.

Recall that β̃Kt = βt and β̃0
t = βt−1. We can apply the above inequality recursively and obtain that

‖βT − βT ′‖2

≤ δK ‖βT−1 − βT−1
′‖2 +

(
C1‖η − η′‖2 + C2‖λ∗ − λ∗′‖2 + C4

√
d‖w −w′‖2

) 1− δK

1− δ

≤
(
C1‖η − η′‖2 + C2‖λ∗ − λ∗′‖2 + C4

√
d‖w −w′‖2

) 1− δK

1− δ

T−1∑
t=0

(δK)t

=
(
C1‖η − η′‖2 + C2‖λ∗ − λ∗′‖2 + C4

√
d‖w −w′‖2

) 1− δKT

1− δ
.

Lemma F.3 (Robustness to β). Assume (Z1:n,β
∗) ∈ P and P satisfies Assumption C.1. Assume

β,β′ satisfy ‖β − β′‖0 ≤ s = s∗ + 2s̃ and α ≤ 1
ρ+

. Then

‖MPG(β;λ,w, α)− MPG(β′;λ,w, α)‖2 ≤

√
1− 2α

(ρ− − ξw)ρ+

ρ− − ξw + ρ+
‖β − β′‖2 (33)

≤
√

1− α (ρ− − ξw) ‖β − β′‖2 (34)

Proof.
‖MPG(β;λ,w, α)− MPG(β′;λ,w, α)‖22
= ‖Tα·λ (β − α (∇Lλ,w(β)))− Tα·λ (β′ − α (∇Lλ,w(β′)))‖22
≤ ‖β − α (∇Lλ,w(β))− β′ + α (∇Lλ,w(β′))‖22
= ‖β − β′‖22 + α2 ‖∇Lλ,w(β)−∇Lλ,w(β′)‖22 − 2α〈β − β′,∇Lλ,w(β)−∇Lλ,w(β′)〉.

(35)
Since on the restricted subspace {β : ‖β−β∗‖0 ≤ s∗+ 2s̃}, Lλ is (ρ−− ξw)-strongly convex and
ρ+-smooth, by Lemma G.7,

〈β − β′,∇Lλ,w(β)−∇Lλ,w(β′)〉

≥ (ρ− − ξw)ρ+

ρ− − ξw + ρ+
‖β − β′‖22 +

‖∇Lλ,w(β)−∇Lλ,w(β′)‖22
ρ− − ξw + ρ+

.

Combining this inequality with Eq. 35, we have
‖MPG(β;λ,w, α)− MPG(β′;λ,w, α)‖22

≤
(

1− 2α
(ρ− − ξw)ρ+

ρ− − ξw + ρ+

)
‖β − β′‖22

+ α

(
α− 2

ρ− − ξw + ρ+

)
‖∇Lλ,w(β)−∇Lλ,w(β′)‖22

By the assumption that α ≤ 1
ρ+

, the second term in the above inequality is non-positive. Further-

more, this assumption also implies that 1− 2α (ρ−−ξw)ρ+

ρ−−ξw+ρ+
≥ 0. Therefore,

‖MPG(β;λ,w, α)− MPG(β′;λ,w, α)‖2 ≤

√
1− 2α

(ρ− − ξw)ρ+

ρ− − ξw + ρ+
‖β − β′‖2

25

Published as a conference paper at ICLR 2022

Lemma F.4 (Robustness to α). With out loss of generalization, assume α ≥ α′. Denote

β+ := MPG(β;λ,w, α) and β+′ := MPG(β;λ,w, α′).

Then

‖β+′ − β+‖2 ≤
√
α− α′
α+ α′

∥∥β+ − β
∥∥

2

Proof. Define the quadratic approximation function as

ψα,λ,w(z,β) := Lλ,w(β) + 〈∇Lλ,w(β), z − β〉+
1

2α
‖z − β‖22 + ‖z‖λ,1 . (36)

Clearly,

MPG(β;λ,w, α) = arg min
z

ψα,λ,w(z,β).

Since ψα,λ,w(z,β) is 1
α -strongly convex in z, and that β+ := MPG(β;λ,w, α) is its optimal point,

ψα,λ,w(z,β) ≥ ψα,λ,w(β+,β) +
1

2α

∥∥z − β+
∥∥2

2
∀z. (37)

Similarly,

ψα′,λ,w(z,β) ≥ ψα′,λ,w(β+′,β) +
1

2α′
∥∥z − β+′∥∥2

2
∀z. (38)

Taking z = β+′ in Eq. 37 and z = β+ in Eq. 38 yields

1

2α

∥∥β+ − β+′∥∥2

2
≤ ψα,λ,w(β+′,β)− ψα,λ,w(β+,β),

1

2α′
∥∥β+ − β+′∥∥2

2
≤ ψα′,λ,w(β+,β)− ψα′,λ,w(β+′,β).

Summing the above two inequalities, we have

1

2

(
1

α
+

1

α′

)∥∥β+ − β+′∥∥2

2
≤
(
ψα,λ,w(β+′,β)− ψα′,λ,w(β+′,β)

)
+
(
ψα′,λ,w(β+,β)− ψα,λ,w(β+,β)

)
(by α ≥ α′) ≤ ψα′,λ,w(β+,β)− ψα,λ,w(β+,β)

=
1

2

(
1

α′
− 1

α

)∥∥β+ − β
∥∥2

2
.

Lemma F.5 (Robustness to λ). Let β+ = MPG(β;λ,w, α) and β+′ = MPG(β;λ′,w, α). Then

‖β+ − β+′‖2 ≤ 2α‖(λ− λ′)S‖2, (39)

where S := supp(β+) ∪ supp(β+′).

Proof. Recall the quadratic approximation in Eq. 51 and the definition that MPG(β;λ,w, α) =
arg minz ψα,λ,w(z,β). By the 1

α -strongly convexity of ψα,λ,w in z, it holds true for all z that

1

2α

∥∥z − β+
∥∥2

2
≤ ψα,λ,w(z,β)− ψα,λ,w(β+,β)

= 〈∇Lλ,w(β), z − β+〉+
1

2α

(
‖z − β‖22 −

∥∥β+ − β
∥∥2

2

)
+ (‖z‖λ,1 −

∥∥β+
∥∥
λ,1

) (40)

Similarly,

1

2α

∥∥z − β+′∥∥2

2
(41)

≤ 〈∇Lλ′,w(β), z − β+′〉+
1

2α

(
‖z − β‖22 −

∥∥β+′ − β
∥∥2

2

)
+ (‖z‖λ′,1 −

∥∥β+′∥∥
λ′,1

). (42)

26

Published as a conference paper at ICLR 2022

Taking z = β+′ in Eq. 40, taking z = β+ in Eq. 42, and summing up the two inequalities, we have

1

α

∥∥β+ − β+′∥∥2

2
≤ 〈∇Lλ,w(β)−∇Lλ′,w(β),β+′ − β+〉

+ ‖β+ ◦ (λ′ − λ) ‖1 − ‖β+′ ◦ (λ′ − λ) ‖1
= 〈∇Qλ,w(β)−∇Qλ′,w(β),β+′ − β+〉+ ‖β+ − β+′‖|λ−λ′|,1

≤
d∑
j=1

|q′w(λj , βj)− q′w(λ′j , βj)||β+
j
′ − β+

j |+ ‖β
+ − β+′‖|λ−λ′|,1

(by Assumption B.1) ≤
d∑
j=1

|λj − λ′j ||β+
j
′ − β+

j |+ ‖β
+ − β+′‖|λ−λ′|,1

= 2‖β+ − β+′‖|λ−λ′|,1
≤ 2‖(λ− λ′)S‖2

∥∥β+′ − β+
∥∥

2

where S := supp(β+)∪supp(β+′). Dividing both side by ‖β+′ − β+‖2 draws the conclusion.

Lemma F.6 (Robustness to w). Let β+ = MPG(β;λ,w, α) and β+′ = MPG(β;λ,w′, α). Then

‖β+ − β+′‖2 ≤ C‖w −w′‖2‖(λ)S‖2, (43)

where S := supp(β+) ∪ supp(β+′) and C is some absolute constant.

Proof. Recall the quadratic approximation in Eq. 51 and the definition that MPG(β;λ,w, α) =
arg minz ψα,λ,w(z,β). By the 1

α -strongly convexity of ψα,λ,w in β, it holds true for all z in the
restricted subspace that

1

2α

∥∥z − β+
∥∥2

2
≤ ψα,λ,w(z,β)− ψα,λ,w(β+,β)

= 〈∇Lλ,w(β), z − β+〉+
1

2α

(
‖z − β‖22 −

∥∥β+ − β
∥∥2

2

)
+ (‖z‖λ,1 −

∥∥β+
∥∥
λ,1

) (44)

Similarly,

1

2α

∥∥z − β+′∥∥2

2

≤ 〈∇Lλ,w′(β), z − β+′〉+
1

2α

(
‖z − β‖22 −

∥∥β+′ − β
∥∥2

2

)
+ (‖z‖λ,1 −

∥∥β+′∥∥
λ,1

). (45)

Taking z = β+′ in Eq. 44, taking z = β+ in Eq. 45, and summing up the two inequalities, we have

1

α

∥∥β+ − β+′∥∥2

2
≤ 〈∇Lλ,w(β)−∇Lλ,w′(β),β+′ − β+〉

= 〈∇Qλ,w(β)−∇Qλ,w′(β),β+′ − β+〉

≤
d∑
j=1

|q′w(λj , βj)− q′w′(λj , βj)||β+
j
′ − β+

j |.

Note that q′w(λj , βj) =
∑3
i=1

exp(wi)
Z(w) q

(i)′(λj ,βj) where Z(w) =
∑3
i=1 exp(wi). Then

|q′w(λj , βj)− q′w′(λj , βj)| ≤
3∑
i=1

∣∣∣∣exp(wi)

Z(w)
− exp(w′i)

Z(w′)

∣∣∣∣ ∣∣∣q(i)′(λj ,βj)
∣∣∣

(by Assumption B.1) ≤
3∑
i=1

∣∣∣∣exp(wi)

Z(w)
− exp(w′i)

Z(w′)

∣∣∣∣λj .
27

Published as a conference paper at ICLR 2022

Therefore,

1

α

∥∥β+ − β+′∥∥2

2
≤

3∑
i=1

∣∣∣∣exp(wi)

Z(w)
− exp(w′i)

Z(w′)

∣∣∣∣ d∑
j=1

λj |β+
j
′ − β+

j |

≤
3∑
i=1

∣∣∣∣exp(wi)

Z(w)
− exp(w′i)

Z(w′)

∣∣∣∣ ‖(λ)S‖2
∥∥β+′ − β+

∥∥
2

(By Lipschitz continuity) ≤ C‖w −w′‖2‖(λ)S‖2
∥∥β+′ − β+

∥∥
2
,

for some constant C.

28

Published as a conference paper at ICLR 2022

G KEY LEMMAS

This section supplies some fundamental results for the modified proximal gradient algorithm. All
the results in this section are based on the following assumption and notations.
Assumption G.1. Assume P satisfies Assumption C.1 and consider a problem (Zn,β

∗) ∈ P . As-
sume we have a penalty function P (λ,β) whose concave componentQ(λ,β) = P (λ,β)−‖λ◦β‖1
satisfies the regularization conditions in Assumption B.1 with a Lipschitz constant ξ for the condition
(a). We adopt the following notations for the statements in this sections.

empirical loss Ln(β) := Ln(Z1:n,β)

modified loss Lλ(β) := Ln(Z1:n,β) +Q(λ,β)

regularized loss φλ(β) := Ln(Z1:n,β) + P (λ,β) = Lλ(β) + ‖β‖λ,1
local optimal β̂λ ∈ arg min

β∈Rd:‖β
S∗‖0≤s̃

φλ(β)

quadratic approximation ψα,λ(z,β) := Lλ(β) + 〈∇Lλ(β), z − β〉+
1

2α
‖z − β‖22 + ‖z‖λ,1

sub-optimality ωλ(β) := min
ξ′∈∂‖β‖1

max
β′

{
(β − β′)>

‖β − β′‖λ,1
(∇Lλ(β) + λ ◦ ξ′)

}
.

Lemma G.1 (Contraction of MPG). Assume Assumption G.1. Let β0, · · · ,βk be a sequence of
vectors obtained by the modified proximal gradient updates:

βk = MPG(βk−1;λ,w, α)

:= Tα·λ
(
βk−1 − α

(
∇Ln(βk−1) +∇βQ(λ,βk−1)

))
.

Assume ‖(βk)S∗‖0 ≤ s̃. Then(
1

α
− ρ+

2

)∥∥βk − βk−1
∥∥2

2
≤ φλ(βk−1)− φλ(βk). (46)

Proof. Note that

βk = βk−1 − αδα(βk−1), where δα(β) := α−1 (β − Tαλ (β − α∇Lλ(β))) .

It is easy to observe that δα(β) ∈ ∇Lλ(β) + λ ◦ ∂ ‖β − αδα(β)‖1. By RSS in Lemma B.1, it
holds that

Lλ
(
βk
)
≤ Lλ(βk−1)− α∇Lλ(βk−1)>δα(βk−1) +

ρ+

2
α2
∥∥δα(βk−1)

∥∥2

2
.

Furthermore, by RSC in Lemma B.1, for any z in the space {
∥∥z − βk−1

∥∥
0
≤ s∗ + 2s̃},

Lλ
(
βk
)
≤ Lλ(z) +∇Lλ(βk−1)>(β − z)− α∇Lλ(βk−1)>δα(βk−1) (47)

+
ρ+

2
α2
∥∥δα(βk−1)

∥∥2

2
− ρ− − ξ

2

∥∥βk−1 − z
∥∥2

2
. (48)

Denote v = δα(βk−1) − ∇Lλ(βk−1). We have v ∈ λ ◦ ∂
∥∥βk−1 − αδα(βk−1)

∥∥
1

since
δα(βk−1) ∈ ∇Lλ(βk−1) + λ ◦ ∂

∥∥βk−1 − αδα(βk−1)
∥∥

1
. By the convexity of ‖·‖λ,1,∥∥βk−1 − αδα(βk−1)

∥∥
λ,1
≤ ‖z‖λ,1 + v>

(
βk−1 − αδα(βk−1)− z

)
.

Combining this inequality with Eq. 48, we have

Lλ(βk) + ‖βk‖λ,1 ≤ Lλ(z) + λ ‖z‖λ,1 + δα(βk−1)>(βk−1 − z) (49)

− α
(

1− α(ρ+)

2

)∥∥δα(βk−1)
∥∥2

2
− ρ− − ξ

2

∥∥βk−1 − z
∥∥2

2
. (50)

Taking z = βk−1 in Eq. 50 implies that

Lλ(βk) + ‖βk‖λ,1 ≤ Lλ(βk−1) +
∥∥βk−1

∥∥
λ,1
− 1

α

(
1− α(ρ+)

2

)∥∥βk − βk−1
∥∥2

2
.

29

Published as a conference paper at ICLR 2022

Therefore, (
1

α
− ρ+

2

)∥∥βk − βk−1
∥∥2

2
≤ φλ(βk−1)− φλ(βk).

Lemma G.2 (Convergence of modified proximal gradient). Assume Assumption G.1. Let
β0, · · · ,βk be a sequence of vectors obtained by the modified proximal gradient updates:

βk = MPG(βk−1;λ,w, α)

:= Tα·λ
(
βk−1 − α

(
∇Ln(βk−1) +∇βQ(λ,βk−1)

))
with a step size α in (0, 1

ρ+
]. Assume ‖(βk)S∗‖0 ≤ s̃. Then

φλ(βk)− φλ(β̂λ) ≤ (1− α(ρ− − ξw))
k
(
φλ(β0)− φλ(β̂λ)

)
,

‖βk − β̂λ‖22 ≤ (1− α(ρ− − ξw))
k ‖β0 − β̂λ‖22,

ωλ(βk) ≤

√
2(1 + 1

αρ+
)
√
ρ+

min(λ)

√
(1− α(ρ− − ξw))

k−1
(
φλ(β0)− φλ(β̂λ)

)
.

Proof. Consider the quadratic approximation function

ψα,λ(z,β) := Lλ(β) + 〈∇Lλ(β), z − β〉+
1

2α
‖z − β‖22 + ‖z‖λ,1 . (51)

By definition,

MPG(βk−1;λ,w, α) = arg min
z

ψα,λ(z,βk−1).

Since ψα,λ(z,βk−1) is 1
α -strongly convex with respect to z, and that βk is its optimal point, we

can obtain

ψα,λ(z,βk−1) ≥ ψα,λ(βk,βk−1) +
1

2α

∥∥z − βk∥∥2

2
, ∀z. (52)

Note that by Lemma B.1,

ψα,λ(βk,βk−1) = Lλ(βk−1) +∇Lλ(βk−1)>
(
βk − βk−1

)
+

1

2α
‖βk − βk−1‖22

+ ‖βk‖λ,1

≥ Lλ(βk) +
1
α − ρ+

2
‖βk − βk−1‖22 + ‖βk‖λ,1

= φλ(βk) +
1
α − ρ+

2
‖βk − βk−1‖22.

Similarly, by Lemma B.1,

ψα,λ(z,βk−1) = Lλ(βk−1) +∇Lλ(βk−1)>
(
z − βk−1

)
+

1

2α
‖z − βk−1‖22

+ ‖z‖λ,1

≤ φλ(z) +
1
α − (ρ− − ξ)

2
‖z − βk−1‖22.

Combining the above two results with Eq. 52, we have

φλ(βk) ≤ φλ(z) +
1
α − (ρ− − ξ)

2
‖z − βk−1‖22 −

1
α − ρ+

2
‖βk − βk−1‖22

− 1

2α

∥∥z − βk∥∥2

2
(53)

≤ φλ(z) +
1
α − (ρ− − ξ)

2
‖z − βk−1‖22 −

1
α − ρ+

2
‖βk − βk−1‖22.

30

Published as a conference paper at ICLR 2022

Taking z = cβ̂λ + (1− c)βk−1 for some c ∈ [0, 1], then

φλ(βk)

≤ cφλ(β̂λ) + (1− c)φλ(βk−1) +

(
1
α − (ρ− − ξ)

)
c2

2
‖βk−1 − β̂λ‖22 −

1
α − ρ+

2
‖βk − βk−1‖22

≤ cφλ(β̂λ) + (1− c)φλ(βk−1) +
c
(
c 1
α − (ρ− − ξ)

)
2

‖βk−1 − β̂λ‖22 −
1
α − ρ+

2
‖βk − βk−1‖22

Taking c = α (ρ− − ξ), it implies

φλ(βk)− φλ(β̂λ) ≤ (1− α (ρ− − ξ))
(
φλ(βk−1)− φλ(β̂λ)

)
−

1
α − ρ+

2
‖βk − βk−1‖22.

Assume α ≤ 1
ρ+

. Then

φλ(βk)− φλ(β̂λ) ≤ (1− α (ρ− − ξ))
(
φλ(βk−1)− φλ(β̂λ)

)
.

Taking z = β̂λ in Eq. 53 implies

φλ(βk) ≤ φλ(β̂λ) +
1
α − (ρ− − ξ)

2
‖β̂λ − βk−1‖22 −

1

2α
‖β̂λ − βk‖22.

By the optimality of β̂λ, we have

1
α − (ρ− − ξ)

2
‖β̂λ − βk−1‖22 −

1

2α
‖β̂λ − βk‖22 ≥ 0,

which implies

‖β̂λ − βk‖22 ≤ (1− α (ρ− − ξ)) ‖β̂λ − βk−1‖22.

Finally, we derive the upper bound for ωλ(βk). Since βk = arg minz ψα,λ(z,βk−1), by the
optimality condition, for each j = 1, · · · , d, there exists a subgradient ξj ∈ ∂

∣∣βkj ∣∣ such that

∇Lλ(βk−1) +
1

α
(βk − βk−1) + λ ◦ ξ = 0.

By the definition of ωλ and combining it with the above equality,

ωλ(βk) = min
ξ′∈∂‖βk‖1

max
β′∈Ω

{
(βk − β′)>

‖βk − β′‖λ,1
(∇Lλ(βk) + λ ◦ ξ′)

}
≤ max
β′∈Ω

{
(βk − β′)>

‖βk − β′‖λ,1
(∇Lλ(βk) + λ ◦ ξ)

}
= max
β′∈Ω

{
(βk − β′)>

‖βk − β′‖λ,1

(
∇Lλ(βk)−∇Lλ(βk−1) +

1

α
(βk−1 − βk)

)}

= max
β′∈Ω


d∑
j=1

(βkj − β′j)λj
‖βk − β′‖λ,1

(
∇Lλ(βk)−∇Lλ(βk−1) + 1

α (βk−1 − βk)
)
j

λj


≤ 1

min(λ)
‖∇Lλ(βk)−∇Lλ(βk−1) +

1

α
(βk−1 − βk)‖∞

≤ 1

min(λ)
‖∇Lλ(βk)−∇Lλ(βk−1) +

1

α
(βk−1 − βk)‖2

≤ 1

min(λ)
‖∇Lλ(βk)−∇Lλ(βk−1)‖2 +

1

α
‖(βk−1 − βk)‖2

(by RSS) ≤ 1

min(λ)
(ρ+ +

1

α
)‖(βk−1 − βk)‖2.

31

Published as a conference paper at ICLR 2022

By Lemma G.1, ‖(βk−1 − βk)‖2 ≤
√

2
2 1
α−(ρ+)

(φλ(βk−1)− φλ(βk)). Therefore,

ωλ(βk) ≤ 1

min(λ)
(ρ+ +

1

α
)

√
2

2 1
α − (ρ+)

(φλ(βk−1)− φλ(βk))

≤ 1

min(λ)
(ρ+ +

1

α
)

√
2

ρ+
(φλ(βk−1)− φλ(βk))

≤ 1

min(λ)
(ρ+ +

1

α
)

√
2

ρ+

(
φλ(βk−1)− φλ(β̂λ)

)
≤ 1

min(λ)
(ρ+ +

1

α
)

√
2

ρ+
(1− α (ρ− − ξ))k−1

(
φλ(β0)− φλ(β̂λ)

)
.

Lemma G.3 (Statistical `2 error). Assume Assumption G.1. If the following conditions are satisfied

‖β − β∗‖0 ≤ s∗ + 2s̃, (54)

φλ(β)− φλ(β∗) ≤ 21/2

ρ− − ξ
‖λS∗‖22, (55)

λj ≥ 8
∣∣∣[∇Ln(β∗)]j

∣∣∣ , (56)

then ‖β − β∗‖2 ≤ mina≥0 max
{√

21 + 17
4 a,

21
a + 17

4

}
‖λS∗‖2
ρ−−ξ ≤

15/2‖λS∗‖2
ρ−−ξ .

Proof. By the restricted strong convexity of Lλ in Lemma B.1,

ρ− − ξ
2
‖β − β∗‖22

≤ Lλ(β)− Lλ(β∗)−∇Lλ(β∗)>(β − β∗)
= φλ(β)− φλ(β∗) + (‖β∗‖λ,1 − ‖β‖λ,1)−∇Lλ(β∗)>(β − β∗)

≤ 21/2

ρ− − ξ
‖λS∗‖22 + (‖β∗‖λ,1 − ‖β‖λ,1)︸ ︷︷ ︸

(i)

−∇Lλ(β∗)>(β − β∗)︸ ︷︷ ︸
(ii)

. (57)

For the term (i),

‖β∗‖λ,1 − ‖β‖λ,1 = ‖β∗S∗‖λS∗ ,1 − ‖βS∗‖λS∗ ,1 + (‖β∗
S∗
‖λ

S∗ ,1
− ‖βS∗‖λS∗ ,1)

= ‖β∗S∗‖λS∗ ,1 − ‖βS∗‖λS∗ ,1 − ‖βS∗‖λS∗ ,1
≤ ‖(β − β∗)S∗‖λS∗ ,1 − ‖βS∗‖λS∗ ,1
= ‖(β − β∗)S∗‖λS∗ ,1 − ‖(β − β

∗)S∗‖λS∗ ,1.

For the term (ii),

−∇Lλ(β∗)>(β − β∗) = −∇Ln(β∗)>(β − β∗)−∇Qλ(β∗)>(β − β∗)

(By Eq. 56) ≤ 1

8
‖β − β∗‖λ,1 −∇Qλ(β∗)>(β − β∗)

(since q′λj (0) = 0) =
1

8
‖β − β∗‖λ,1 −∇Qλ(β∗S∗)

>(β − β∗)S∗

(since
∣∣∣q′λj (β)

∣∣∣ ≤ λj) ≤ 1

8
‖β − β∗‖λ,1 + ‖(β − β∗)S∗‖λS∗ ,1

=
9

8
‖(β − β∗)S∗‖λS∗ ,1 +

1

8
‖(β − β∗)S∗‖λS∗ ,1.

32

Published as a conference paper at ICLR 2022

Combining the upper bounds of term (i) and term (ii) with Eq. 57, we have

‖β − β∗‖22

≤ 21

(ρ− − ξ)2
‖λS∗‖22 +

17

4(ρ− − ξ)
‖(β − β∗)S∗‖λS∗ ,1 −

7

4(ρ− − ξ)
‖(β − β∗)S∗‖λS∗ ,1, (58)

≤ 1

ρ− − ξ

(
21

ρ− − ξ
‖λS∗‖22 +

17

4
‖(β − β∗)S∗‖λS∗ ,1

)
.

Let a ≥ 0 be a constant. If ‖(β − β∗)S∗‖λS∗ ,1 ≤ a
ρ−−ξ‖λS∗‖

2
2, then

‖β − β∗‖2 ≤
√

21 +
17

4
a
‖λS∗‖2
ρ− − ξ

.

If ‖(β − β∗)S∗‖λS∗ ,1 > a
ρ−−ξ‖λS∗‖

2
2, then

‖β − β∗‖22 ≤
1

ρ− − ξ

(
21

a
+

17

4

)
‖(β − β∗)S∗‖λS∗ ,1 ≤

(
21

a
+

17

4

)
‖λS∗‖2
ρ− − ξ

‖(β − β∗)‖2,

which implies ‖β − β∗‖2 ≤
(

21
a + 17

4

) ‖λS∗‖2
ρ−−ξ . Combining the two cases, we know that

‖β − β∗‖2 ≤ min
a≥0

max

{√
21 +

17

4
a,

21

a
+

17

4

}
‖λS∗‖2
ρ− − ξ

.

Taking a = 7 it is easy to derive that

‖β − β∗‖2 ≤
15/2‖λS∗‖2
ρ− − ξ

.

Lemma G.4 (Retain in the restricted space). Assume Assumption G.1. Let β0, · · · ,βk be a se-
quence of vectors obtained by the following update:

βk = MPG(βk−1;λ,w, α)

with a step sizes α in [αmin,
1
ρ+

]. Assume the following conditions:

‖(β0)S∗‖0 ≤ s̃,

φλ(β0)− φλ(β∗) ≤ 21/2

ρ− − ξ
‖λS∗‖22,

λj ≥ 8
∣∣∣[∇Ln(β∗)]j

∣∣∣ ,(
121

αmin(ρ− − ξ)
+ 144

(
ρ+

ρ− − ξ

)2
)(

‖λS∗‖2
min(λS∗)

)2

≤ s̃,

where κ := ρ+

ρ−−ξ . Then for all k = 1, · · · ,K,

‖(βk)S∗‖0 ≤ s̃,

and

φλ(βk)− φλ(β∗) ≤ 21/2

ρ− − ξ
‖λS∗‖22.

Proof. Recall that βk = Tαλ
(
β̄k
)

where

β̄k = βk−1 − α∇Lλ(βk−1)

= βk−1 − α∇Lλ(β∗) + α
(
∇Lλ(β∗)−∇Lλ(βk−1)

)
.

33

Published as a conference paper at ICLR 2022

To show
∥∥(βk)S∗

∥∥
0
≤ s̃, we need to prove that, for j ∈ S∗, the number of j’s such that |β̄kj | > αλj

is no more than s̃. Note that

|β̄kj | ≤ |βk−1
j |+ α

∣∣∣(∇Lλ(β∗)−∇Lλ(βk−1)
)
j

∣∣∣+ α
∣∣∣[∇Ln(β∗)]j

∣∣∣
≤ |βk−1

j |+ α
∣∣∣(∇Lλ(β∗)−∇Lλ(βk−1)

)
j

∣∣∣+
1

8
· αλj .

Therefore, ∀c ∈ [0, 1],∥∥(βk)S∗
∥∥

0
≤ Card

(
{j ∈ S∗ : |βk−1

j | > c
7

8
αλj}

)
(59)

+ Card

(
{j ∈ S∗ :

∣∣∣(∇Lλ(β∗)−∇Lλ(βk−1)
)
j

∣∣∣ > (1− c) · 7

8
λj}
)
, (60)

where Card () represents the size of the set. For the term in Eq. 59,

Card

(
{j ∈ S∗ : |βk−1

j | > c
7

8
αλj}

)
≤
∑
j∈S∗

|βk−1
j |

c 7
8αλj

=
8

c · 7α
∑
j∈S∗

|βk−1
j |
λj

≤ 8

c · 7αmin(λS∗)
2
‖(βk−1)S∗‖λS∗ ,1

=
8

c · 7αmin(λS∗)
2
‖(βk−1 − β∗)S∗‖λS∗ ,1

Bounding ‖(βk−1 − β∗)S∗‖1. Following the derivation of Eq. 58, we can obtain

(ρ− − ξ)‖βk−1 − β∗‖22

≤ 21

(ρ− − ξ)
‖λS∗‖22 +

17

4
‖(βk−1 − β∗)S∗‖λS∗ ,1 −

7

4
‖(βk−1 − β∗)S∗‖λS∗ ,1,

which implies

‖(βk−1 − β∗)S∗‖λS∗ ,1 ≤
12

ρ− − ξ
‖λS∗‖22 +

17

7
‖(βk−1 − β∗)S∗‖λS∗ ,1.

Let a ≥ 0 be a constant. If ‖(βk−1 − β∗)S∗‖λS∗ ,1 ≤ a
ρ−−ξ‖λS∗‖

2
2, then

‖(βk−1 − β∗)S∗‖λS∗ ,1 ≤
(

12 +
17a

7

)
‖λS∗‖22
ρ− − ξ

.

If ‖(βk−1 − β∗)S∗‖λS∗ ,1 > a
ρ−−ξ‖λS∗‖

2
2, then

‖(βk−1 − β∗)S∗‖λS∗ ,1 ≤
(

12

a
+

17

7

)
‖(βk−1 − β∗)S∗‖λS∗ ,1

≤
(

12

a
+

17

7

)
‖λS∗‖2‖(βk−1 − β∗)‖2

(Lemma G.3) ≤ 15

2

(
12

a
+

17

7

)
‖λS∗‖22
ρ− − ξ

.

Combining the above two cases yields

‖(βk−1 − β∗)S∗‖λS∗ ,1 ≤ min
a≥0

max

{
12 +

17a

7
,

15

2

(
12

a
+

17

7

)}
‖λS∗‖22
ρ− − ξ

≤
(

423

14

)
‖λS∗‖22
ρ− − ξ

,

34

Published as a conference paper at ICLR 2022

where the last inequality is obtained by taking a = 255
34 . Therefore, the term in Eq. 59 can be

bounded by

Card

(
{j ∈ S∗ : |βk−1

j | > c
7

8
αλj}

)
≤

8‖(βk−1 − β∗)S∗‖λS∗ ,1
c · 7αmin(λS∗)

2

≤
(

1692

49cαmin(λS∗)
2

)
‖λS∗‖22
ρ− − ξ

≤ 1692

49cα(ρ− − ξ)

(
‖λS∗‖2)

min(λS∗)

)2

.

Now we bound the term in Eq. 60 as follows. Denote the set as S′ := {j ∈ S∗ :∣∣∣(∇Lλ(β∗)−∇Lλ(βk−1)
)
j

∣∣∣ > (1− c) · 7
8λj} and its size as s′ := |S′|. Then

s′ = Card

({
j ∈ S∗ :

∣∣∣(∇Lλ(β∗)−∇Lλ(βk−1)
)
j

∣∣∣ > (1− c) · 7

8
λj

})

≤ 1

(1− c) · 7
8

∑
j∈S′

∣∣∣(∇Lλ(β∗)−∇Lλ(βk−1)
)
j

∣∣∣
λj

≤ 1

(1− c) · 7
8

∑
j∈S′

∣∣∣(∇Lλ(β∗)−∇Lλ(βk−1)
)
j

∣∣∣
min(λS∗)

≤ 1

(1− c) · 7
8

√
s′

min(λS∗)

∥∥∇Lλ(β∗)−∇Lλ(βk−1)
∥∥

2

≤ 1

(1− c) · 7
8

√
s′

min(λS∗)
(ρ+)‖β∗ − βk−1‖2.

The last inequality holds because Lλ is (ρ+)-smooth in the restricted subspace by Lemma B.1.
Applying Lemma G.3, we have

s′ ≤ 64(ρ+)2

49(1− c)2 min(λS∗)
2
‖β∗ − βk−1‖22

≤ 64(ρ+)2

49(1− c)2 min(λS∗)
2

(
15/2‖λS∗‖2
ρ− − ξ

)2

≤ 3600

49(1− c)2

(
ρ+

ρ− − ξ

)2(‖λS∗‖2
min(λS∗)

)2

.

Combining the above bounds for the terms in Eq. 59 and Eq. 60, we have∥∥(βk)S∗
∥∥

0
≤ min
c∈(0,1)

((
1692

49cα

)
1

ρ− − ξ
+

3600

49(1− c)2

(
ρ+

ρ− − ξ

)2
)(

‖λS∗‖2
min(λS∗)

)2

≤

(
121

αmin(ρ− − ξ)
+ 144

(
ρ+

ρ− − ξ

)2
)(

‖λS∗‖2
min(λS∗)

)2

≤ s̃
The second last inequality is obtained by taking c = 5

7 .

Finally, if we can show φλ(βk) − φλ(β∗) ≤ 21/2
ρ−−ξ‖λS∗‖

2
2, then we can show by math induction

that
∥∥(βk)S∗

∥∥
0
≤ s̃ for all k.

Taking z = βk−1 in Eq. 53, we have

φλ(βk) ≤ φλ(βk−1)−
2 1
s − ρ+

2

∥∥βk − βk−1
∥∥2

2
≤ φλ(βk−1).

Therefore,

φλ(βk)− φλ(β∗) ≤ φλ(βk−1)− φλ(β∗) ≤ 21/2

ρ− − ξ
‖λS∗‖22.

35

Published as a conference paper at ICLR 2022

Lemma G.5 (Statistical error). Assume Assumption G.1. If

ωλ(β) ≤ ε, with ε ≤ 1/2,

‖β − β∗‖0 ≤ s∗ + 2s̃,

λj ≥ 8 |[Ln(β∗)]j | ,
then the following relations hold true.

‖β − β∗‖2 ≤
(
ε+ 17

8

)
‖λS∗‖2

ρ− − ξ
≤ 21/8

ρ− − ξ
‖λS∗‖2,

φλ(β)− φλ(β∗) ≤ 3ε(ε+ 17/8)

7/8− ε
‖λS∗‖22
ρ− − ξ

≤ 21/2

ρ− − ξ
‖λS∗‖22.

φλ(β)− φλ(β̂λ) ≤ ε
(

3 (ε+ 17/8)

7/8− ε
+ 51/7

)
‖λS∗‖22
ρ− − ξ

≤ 29/2

ρ− − ξ
‖λS∗‖22.

Proof. Since ‖β − β∗‖0 ≤ s∗ + 2s̃, then by the RSC and RSS in Lemma B.1,

(ρ− − ξ)‖β∗ − β‖22 ≤ (β − β∗)>∇Lλ(β)− (β − β∗)>∇Lλ(β∗). (61)

Let ξ ∈ ∂‖β‖1 be the subgradient that attains the minimum in ωλ(β). Adding and subtracting
(β − β∗)>(λ ◦ ξ) to the right-hand side of Eq. 61 yields

(ρ− − ξ)‖β∗ − β‖22 ≤ (β − β∗)>(∇Lλ(β) + λ ◦ ξ)︸ ︷︷ ︸
(i)

− (β − β∗)>∇Lλ(β∗)︸ ︷︷ ︸
(ii)

− (β − β∗)>(λ ◦ ξ)︸ ︷︷ ︸
(iii)

.

Now we bound the terms (i)-(iii).

Bound (i) using ωλ(β). Since ξ attains the minimum in ωλ(β), by definition,

ωλ(β) = max
β′∈Ω

{
(β − β′)>

‖β − β′‖λ,1
(∇Lλ(β) + λξ)

}
.

Therefore,

(i) = (β − β∗)>(∇Lλ(β) + λξ) ≤ ωλ(β)‖β − β∗‖λ,1 ≤ ε‖β − β∗‖λ,1.

Bound (ii). Note that Lλ = Ln +Qλ. Thus,

|(ii)| =
∣∣(β − β∗)>∇Ln(β∗) + (β − β∗)>∇Qλ(β∗)

∣∣
≤
∣∣(β − β∗)>∇Ln(β∗)

∣∣+
∣∣(β − β∗)>∇Qλ(β∗)

∣∣
Since λj ≥ 8 |[Ln(β∗)]j |, we have

|(β − β∗)>∇Ln(β∗)| ≤ 1

8
‖β − β∗‖λ,1.

Since q′λj (0) = 0 and q′λj (β) ≤ λj (Assumption B.1), it holds true that

|(β − β∗)>∇Qλ(β∗)| = |(β − β∗)>S∗(∇Qλ(β∗))S∗ |
≤ ‖(β − β∗)S∗‖λS∗ ,1.

Therefore,

|(ii)| ≤ 1

8
‖β − β∗‖λ,1 + ‖(β − β∗)S∗‖λS∗ ,1.

Bound (iii) by the definition of subgradient.

(iii) = (β − β∗)>(λ ◦ ξ)

= 〈λS∗ ◦ (β − β∗)S∗ , ξS∗〉+ 〈λS∗ ◦ (β − β∗)S∗ , ξS∗〉.

36

Published as a conference paper at ICLR 2022

By Holder’s inequality and the fact ‖ξ‖∞ ≤ 1,

〈λS∗ ◦ (β − β∗)S∗ , ξS∗〉 ≥ −‖(β − β∗)S∗‖λS∗ ,1.
Since ξ ∈ ∂‖β‖1 and that β∗

S∗
= 0,

〈λS∗ ◦ (β − β∗)S∗ , ξS∗〉 = 〈λS∗ ◦ βS∗ , ξS∗〉 = ‖βS∗‖λS∗ ,1 = ‖(β − β∗)S∗‖λS∗ ,1. (62)

Combining the above three equations, it holds true that

(iii) ≥ −‖(β − β∗)S∗‖λS∗ ,1 + ‖(β − β∗)S∗‖λS∗ ,1.

Combine (i)-(iii). Combining the bounds for (i)-(iii), it holds true that

(ρ− − ξ)‖β∗ − β‖22

≤
(
ε+

1

8
+ 1 + 1

)
‖(β − β∗)S∗‖λS∗ ,1 −

(
1− ε− 1

8

)
‖(β − β∗)S∗‖λS∗ ,1

=

(
ε+

17

8

)
‖(β − β∗)S∗‖λS∗ ,1 −

(
7

8
− ε
)

︸ ︷︷ ︸
≥0

‖(β − β∗)S∗‖λS∗ ,1 (63)

≤
(
ε+

17

8

)
‖(β − β∗)S∗‖λS∗ ,1.

Using the fact that ‖(β − β∗)S∗‖λS∗ ,1 ≤ ‖λS∗‖2‖(β − β∗)S∗‖2, it implies the first conclusion:

‖β∗ − β‖2 ≤
(
ε+ 17

8

)
‖λS∗‖2

ρ− − ξ
. (64)

Now we prove the objective value. Since Lλ is convex on β,β∗ and ‖·‖1 is convex,

φλ(β∗) ≥ φλ(β) + (β∗ − β)>(∇Lλ(β) + λ ◦ ξ),

which implies

φλ(β)− φλ(β∗) ≤ (β − β∗)>(∇Lλ(β) + λ ◦ ξ)

≤ ‖β − β∗‖λ,1ωλ(β) ≤ ε‖β − β∗‖λ,1 (65)

Now we bound the norm ‖β − β∗‖λ,1 as follows. By triangle inequality,

‖β − β∗‖λ,1 ≤ ‖(β − β∗)S∗‖λS∗ ,1 + ‖(β − β∗)S∗‖λS∗ ,1. (66)

To bound ‖(β − β∗)S∗‖λS∗ ,1, moving the term ‖(β − β∗)S∗‖λS∗ ,1 in Eq. 63 to the left hand side
yields

(7/8− ε)‖(β − β∗)S∗‖λS∗ ,1 ≤ (ε+ 17/8)‖(β − β∗)S∗‖λS∗ ,1,
which implies

‖(β − β∗)S∗‖λS∗ ,1 ≤
ε+ 17/8

7/8− ε
‖(β − β∗)S∗‖λS∗ ,1. (67)

Plugging it into Eq. 66, we have

‖β − β∗‖λ,1 ≤
(

1 +
ε+ 17/8

7/8− ε

)
‖(β − β∗)S∗‖λS∗ ,1 ≤

(
3

7/8− ε

)
‖λS∗‖2‖β − β∗‖2

(by Eq. 64) ≤
(

3

7/8− ε

)
‖λS∗‖2

(
ε+ 17

8

)
‖λS∗‖2

ρ− − ξ

=
3(ε+ 17/8)

7/8− ε
‖λS∗‖22
ρ− − ξ

. (68)

Combining it with Eq. 65, we have

φλ(β)− φλ(β∗) ≤ 3ε(ε+ 17/8)

7/8− ε
‖λS∗‖22
ρ− − ξ

.

37

Published as a conference paper at ICLR 2022

Finally, we derive the bound for the term φλ(β)− φλ(β̂λ). Since ‖β − β̂λ‖0 ≤ s∗ + 2s̃ and φλ is
convex on the restricted space, then

φλ(β)− φλ(β̂λ) ≤ (∇Lλ(β) + λ ◦ ξ)>(β − β̂λ)

≤ ωλ(β)‖β − β̂λ‖λ,1

≤ ε
(
‖β − β∗‖λ,1 + ‖β∗ − β̂λ‖λ,1

)
(by Eq. 68) ≤ ε

(
3(ε+ 17/8)

7/8− ε
‖λS∗‖22
ρ− − ξ

+ ‖β∗ − β̂λ‖λ,1
)
. (69)

Now we only need to bound the term ‖β∗ − β̂λ‖λ,1. We can derive its bound following the same
steps as we derive Eq. 68 and using the fact that ωλ(β̂λ) = 0, which will imply that

‖β̂λ − β∗‖1 ≤
3 (0 + 17/8)

7/8− 0

‖λS∗‖22
ρ− − ξ

=
51/7‖λS∗‖22
ρ− − ξ

.

Plugging it into Eq. 69, we have

φλ(β)− φλ(β̂λ)

≤ ε
(

3 (ε+ 17/8)

7/8− ε
+ 51/7

)
‖λS∗‖22
ρ− − ξ

.

Assuming ε ≤ 1/2, then

φλ(β)− φλ(β̂λ) ≤ 29/2‖λS∗‖22
ρ− − ξ

.

Lemma G.6 (Optimality when λ decreases). Assume Assumption G.1. If

ωλt−1(β) ≤ εt−1, (70)
λt = η ◦ λt−1 with ηj ∈ [0.9, 1], (71)
‖β‖0 ≤ s̃, (72)

then

ωλt(β) ≤ εt−1 + 0.2

0.9

φλt(β)− φλt(β̂λt) ≤
(

3 (εt−1 + 17/8)

0.9(7/8− εt−1)
+ 51/7

)
εt−1 + 0.2

0.9

‖(λt)S∗‖22
ρ− − ξ

.

If εt−1 ≤ 1/4, then

ωλt(β) ≤ 1

2

φλt(β)− φλt(β̂λt) ≤
10‖(λt)S∗‖22
ρ− − ξ

.

Proof. Recall the definition of ωλt−1
(β).

ωλt−1(β) = min
ξ′∈∂‖β‖1

max
β′∈Ω

{
(β − β′)>

‖β − β′‖λt−1,1
(∇Lλt−1(β) + λt−1ξ

′)

}
Let ξ ∈ ∂‖β‖1 be the subgradient that attains the minimum in ωλt−1(β). Then

ωλt−1
(β) = max

β′∈Ω

{
(β − β′)>

‖β − β′‖λt−1,1
(∇Lλt−1

(β) + λt−1ξ)

}
.

38

Published as a conference paper at ICLR 2022

Now we consider λt = η ◦ λt−1. By definition,

ωλt(β) = min
ξ′∈∂‖β‖1

max
β′∈Ω

{
(β − β′)>

‖β − β′‖λt,1
(∇Lλt(β) + λtξ

′)

}
≤ max
β′∈Ω

{
(β − β′)>

‖β − β′‖λt,1
(∇Lλt(β) + λtξ)

}
.

Note that

∇Lλt(β) + λtξ =
(
∇Lλt−1

(β) + λt−1ξ
)

+ (λt − λt−1) ◦ ξ
+
(
∇Qλt(β)−∇Qλt−1

(β)
)
,

which implies

ωλt(β) ≤ max
β′∈Ω

{
(β − β′)>

‖β − β′‖λt,1
(
∇Lλt−1(β) + λt−1ξ

)}
︸ ︷︷ ︸

(i)

+ max
β′∈Ω

{
(β − β′)>

‖β − β′‖λt,1
(λt − λt−1) ◦ ξ

}
︸ ︷︷ ︸

(ii)

+ max
β′∈Ω

{
(β − β′)>

‖β − β′‖λt,1
(
∇Qλt(β)−∇Qλt−1

(β)
)}

︸ ︷︷ ︸
(iii)

.

Using the fact that ‖β − β′‖λt,1 ≥ 0.9‖β − β′‖λt−1,1, term (i) can be bounded as follows.

(i) ≤ 1

0.9

(β − β′)>

‖β − β′‖λt−1,1

(
∇Lλt−1(β) + λt−1ξ

)
≤ 1

0.9
ωλt−1(β) ≤ εt−1

0.9
.

Using the fact |ξj | ≤ 1 and the fact that [λt−1−λt]j =
(

1
ηj
− 1
)

[λt]j ≤
(

1
0.9 − 1

)
[λt]j , term (ii)

can be bounded as follows.

(ii) ≤
d∑
j=1

∣∣βj − β′j∣∣
‖β − β′‖λt,1

(
1

0.9
− 1

)
[λt]j =

‖β − β′‖λt,1
‖β − β′‖λt,1

(
1

0.9
− 1

)
=

1

0.9
− 1.

Term (iii) is bounded similarly as term (ii). Since
∣∣∣qλj (β)− qλ′j (β)

∣∣∣ ≤ ∣∣λj − λ′j∣∣, we have

(iii) ≤
d∑
j=1

∣∣βj − β′j∣∣
‖β − β′‖λt,1

[λt−1 − λt]j ≤
d∑
j=1

∣∣βj − β′j∣∣
‖β − β′‖λt,1

(
1

0.9
− 1

)
[λt]j =

1

0.9
− 1.

Combining the bounds for (i)-(iii), we have

ωλt(β) ≤ εt−1 + 2

0.9
− 2 =

εt−1 + 0.2

0.9

The first part of the proof is finished. Now we bound the term φλt(β) − φλt(β̂λt). Since ‖β −
β̂λ‖0 ≤ s∗ + 2s̃ and φλ is convex on the restricted space, then

φλt(β)− φλt(β̂λt)

≤ (∇Lλt(β) + λt ◦ ξ)>(β − β̂λt)

≤ ωλt(β)‖β − β̂λt‖λt,1

≤ εt−1 + 0.2

0.9

(
‖β − β∗‖λt,1 + ‖β∗ − β̂λt‖λt,1

)
(73)

39

Published as a conference paper at ICLR 2022

Following the same way we derive Eq. 67, we can obtain that

‖(β − β∗)S∗‖(λt)S∗ ,1 ≤
εt−1 + 17/8

7/8− εt−1
‖(β − β∗)S∗‖(λt)S∗ ,1.

Therefore,

‖β − β∗‖λt,1 = ‖(β − β∗)S∗‖(λt)S∗ ,1 + ‖(β − β∗)S∗‖(λt)S∗ ,1 (74)

≤ 3

7/8− εt−1
‖(β − β∗)S∗‖(λt)S∗ ,1

≤ 3‖(λt)S∗‖2
7/8− εt−1

‖β − β∗‖2

(By Lemma G.5) ≤ 3‖(λt)S∗‖2
7/8− εt−1

(
εt−1 + 17

8

)
‖(λt−1)S∗‖2

ρ− − ξ

=
3 (εt−1 + 17/8)

0.9(7/8− εt−1)

‖(λt)S∗‖22
ρ− − ξ

. (75)

Using the same arguments for the term ‖β∗ − β̂λt‖λt,1 and using the fact that ωλt(β̂λt) ≤ 0 · λt,
we obtain that

‖β̂λt − β∗‖1 ≤
3 (0 + 17/8)

7/8− 0

‖(λt)S∗‖22
ρ− − ξ

=
51/7‖(λt)S∗‖22

ρ− − ξ
.

Combining this inequality with Eq. 73 and Eq. 75, we have

φλt(β)− φλt(β̂λt)

≤
(

3 (εt−1 + 17/8)

0.9(7/8− εt−1)
+ 51/7

)
εt−1 + 0.2

0.9

‖(λt)S∗‖22
ρ− − ξ

.

Assuming εt−1 ≤ 1/4, then

φλt(β)− φλt(β̂λt) ≤
10‖(λt)S∗‖22
ρ− − ξ

.

Lemma G.7 (Coercivity of the gradient). [Lemma 3.11 in Bubeck (2014)] Let f be a-strongly convex
b-smooth and on B ⊆ Rd. Then for all β,β′ ∈ B , one has

〈∇f(β)−∇f(β′),β − β〉 ≥ ab

a+ b
‖β − β′‖22 +

1

a+ b
‖∇f(β)−∇f(β′)‖22 .

40

Published as a conference paper at ICLR 2022

H DETAILS OF SECTION 5: EXTENSION TO UNSUPERVISED
LEARNING-TO-LEARN SETTING

In addition to the assumptions in the supervised setting, in this unsupervised setting, we assume
for each estimation problem, both Ln1(Z1:n1) and Ln2(Z1:n2) satisfy condition (b) and (c) in As-
sumption C.1. Similar to the supervised setting, the generalization error of the optimizer θ∗U can be
bounded by

Lgen(P(P); θ∗U) ≤ E(Z1:n,β∗)∼P(P) ‖βT (Z1:n1
; θ∗U)− β∗‖22 −

1

m

m∑
i=1

∥∥∥βT (Z
(i)
1:n1

; θ∗U)− β∗(i)
∥∥∥2

2︸ ︷︷ ︸
generalization gap: Theorem 4.1

(76)

+
1

m

m∑
i=1

∥∥∥βT (Z
(i)
1:n1

; θ∗U)− β∗(i)
∥∥∥2

2︸ ︷︷ ︸
supervised training error

. (77)

However, in the unsupervised setting, the minimizer θ∗U only guarantees that unsupervised training

loss function 1
m

∑m
i=1 Ln2

(
Z

(i)
1:n2

,βT (Z
(i)
1:n1

; θ∗U)
)

is small. It requires further derivations to show
that the corresponding supervised training loss in Eq. 77 is small, too.

Therefore, in the following, we bridge the gap between the supervised training loss and the unsuper-
vised training loss. Based on the proof of Theorem D.1, we know that ‖βT (Z

(i)
1:n1

; θ∗U)|S∗‖0 ≤ s̃.
Therefore, we can apply the restricted strong convexity of Ln2

to obtain the following inequality for
βT = βT (Z

(i)
1:n1

; θ∗U), β∗ = β∗(i), and Z = Z
(i)
1:n2

for each i = 1, · · · ,m.

‖βT − β∗‖22 ≤
2

ρ−

(
Ln2

(Z,βT)− Ln2
(Z,β∗) +∇Ln2

(Z,β∗)
>

(β∗ − βT)
)

≤ 2

ρ−
(Ln2 (Z,βT)− Ln2 (Z,β∗) + ‖∇Ln2 (Z,β∗) ‖2‖ (β∗ − βT) ‖2)

⇒ ‖βT − β∗‖22 ≤
4

ρ−
(Ln2

(Z,βT)− Ln2
(Z,β∗)) +

16

ρ2
−
‖∇Ln2 (Z,β∗) ‖22

Aggregating this inequality for i = 1, · · · ,m, we can obtain the following inequality that bounds
the supervised training loss using the unsupervised loss.

1

m

m∑
i=1

∥∥∥βT (Z
(i)
1:n1

; θ∗U)− β∗(i)
∥∥∥2

2
≤ 16

ρ2
−m

m∑
i=1

‖∇Ln2(Z
(i)
1:n2

,β∗(i))‖22︸ ︷︷ ︸
statistical error

+
4

ρ−m

m∑
i=1

(
Ln2

(Z
(i)
1:n2

,βT (Z
(i)
1:n1

; θ∗U))− Ln2
(Z

(i)
1:n2

,β∗(i))
)

︸ ︷︷ ︸
unsupervised training error

.

The right-hand-side of this inequality consists of a statistical error and the unsupervised training
error. Finally, to characterize how small the unsupervised training error can be, we can combine the
following inequality (by restricted strongly smooth) with the result of Theorem 3.1.

Ln2 (Z1:n2 ,βT (Z1:n1 ; θ∗U))− Ln2 (Z1:n2 ,β
∗)

≤ Ln2
(Z1:n2

,βT (Z1:n1
; θ∗))− Ln2

(Z1:n2
,β∗)

≤ ‖∇βLn2
(Z1:n2

,β∗)‖2 ‖βT (Z1:n1
; θ∗)− β∗‖2︸ ︷︷ ︸

bounded by Theorem 3.1

+ρ+

2 ‖βT (Z1:n1 ; θ∗)− β∗‖22︸ ︷︷ ︸
bounded by Theorem 3.1

. (78)

41

Published as a conference paper at ICLR 2022

Overall, the generalization error can be bounded by

Lgen(P(P); θ∗U)

≤ E(Z1:n,β∗)∼P(P) ‖βT (Z1:n1
; θ∗U)− β∗‖22 −

1

m

m∑
i=1

∥∥∥βT (Z
(i)
1:n1

; θ∗U)− β∗(i)
∥∥∥2

2︸ ︷︷ ︸
generalization gap: Theorem 4.1

∗

+
4

ρ−m

m∑
i=1

‖∇βLn2(Z
(i)
1:n2

,β∗(i))‖2︸ ︷︷ ︸
statistical error

‖βT (Z
(i)
1:n1

; θ∗)− β∗(i)‖2︸ ︷︷ ︸
bounded by Theorem 3.1

+ρ+

2 ‖βT (Z
(i)
1:n1

; θ∗)− β∗(i)‖22︸ ︷︷ ︸
bounded by Theorem 3.1


+

16

ρ2
−m

m∑
i=1

‖∇Ln2
(Z

(i)
1:n2

,β∗(i))‖22︸ ︷︷ ︸
statistical error

.

42

Published as a conference paper at ICLR 2022

I DETAILS OF SYNTHETIC EXPERIMENTS

I.1 A GENTLE REVIEW OF LINEAR REGRESSION AND PRECISION ESTIMATION

I.1.1 SPARSE LINEAR REGRESSION

A sparse linear regression model reads

y = x>β∗ + ε

where β∗ is a sparse vector and ε is Gaussian noise. Given n observations Z1:n :=
{(x1, y1), · · · , (xn, yn)}, the goal is to estimate the vector β∗.

In our method, we use the the least-square error to define the empirical loss function.

Ln(Z1:n,β) =
1

2n

n∑
j=1

∣∣x>j β − yj∣∣2
I.1.2 SPARSE PRECISION ESTIMATION

The sparse precision matrix estimation problem in Gaussian graphical models assumes the observa-
tion of n samples from a distribution N (0,Σ). Given the n samples, X1:n := {x1, · · · ,xn} from
N (0,Σ), the goal is to estimate the precision matrix Θ∗ := Σ−1 which is the inverse covariance
matrix. This precision matrix represents the conditional independency among random variables.

A commonly used objective for estimating the precision matrix is the `1-penalized log determinant
divergence:

− log det(Θ) + 〈Θ, Σ̂n〉+ λ‖Θ‖1

where Σ̂n is the sample covariance matrix. In our method, we use the likelihood term as the empiri-
cal loss.

Ln(X1:n,Θ) = − log det(Θ) + 〈Θ, Σ̂n〉

I.2 DATA PREPARATION

For the sparse linear recovery problem, we follow the setting in Wang et al. (2014). We create the
synthetic data by sampling a set of estimation problems {((X(i), Y (i)),β∗(i))}. In each problem,
the design matrix X(i) ∈ Rn×d contains n = 64 independent realizations of a random vector
x ∈ Rp with p = 256, 1024 in easy or difficult setting, respectively. x follows a zero mean Gaussian
distribution with covariance matrix (Σ)i,j = 0.9 · 1{i 6=j} + 1 · 1{i=j}. The true parameter vector
β∗(i) has a sparsity s∗ = ‖β∗(i)‖0 = 16 and its nonzero entries take values uniformly sampled
from (−2,− 1

2) ∪ (1
2 , 2). The support set of each β∗(i) is independently sampled from a union

support set S, with |S| = 128 to allow some similarity among the problems. The observation Y (i) is
sampled such that Y (i)−X(i)β∗(i) is a n-dimensional Gaussian random vector with zero mean and
covariance matrix In. In all the experiments, 2000 such problems are used for training, 200 such
problems are used for validation, and 100 such problems are used for test.

In sparse precision matrix estimation problem, we follow the setting in Guillot et al. (2012). We
create the synthetic data by sampling a set of estimation problems {(Σ̂(i)

n ,Θ(i))}. In each problem,
the ground truth precision matrix is generated in the following ways: the lower diagonal part (lower
triangular parting, exluding diagonal) of true precision matrix Θ has a sparsity s∗, that are uniformly
selected from a union support with size S. After selecting the nonzero entries, we assign them values
uniformly from (−2,− 1

2) ∪ (1
2 , 2) and let the upper diagonal part has the same value as lower di-

agonal part. Finally, a multiple of the identity was added to the resulting matrix so that the smallest
eigenvalue was equal to 1. In this way, Θ was insured to be sparse, positive definite, and well-
conditioned. After the precision matrix is generated, we generate the observational samples for each
precision matrix, by generating n independent samples of the random vector x ∼ N (0, (Θ(i))−1).
The samples are denoted by X(i) ∈ Rn×d. Using the samples, we can compute the sample covari-
ance matrix Σ̂

(i)
n = 1

n

∑n
i=1(X(i))TX(i).

43

Published as a conference paper at ICLR 2022

In all the experiments, 2000 such problems are used for training, 200 such problems are used for val-
idation, and 100 such problems are used for test. We use (n, S, s∗) = (100, 375, 75), (200, 600, 150)
for d = 50, 200, respectively.

I.3 BASELINE IMPLEMENTATION

ALISTA: We follow the implementation in Liu et al. (2019a).

RNN: The RNN is designed following Andrychowicz et al. (2016). Initialize the β0 as 0. At every
step, we compute the gradient ∇βL(βt) w.r.t. to objective as the input to a LSTM with hidden
dimension equals to 128. Then we use the output of the LSTM as the increment:

βt+1 = βt + LSTM(∇βL(βt)) (79)

We repeat this iteration 20 steps and use β20 as our final output.

RNN-`1: RNN-`1 use the same architecture as RNN. The only difference is we add an extra learn-
able parameter λt for soft thresholding at each step:

βt+1 = βt + LSTM(∇βL(βt)) (80)
βt+1 = ηλt(βt+1) (81)

where the softthresholding ηλ is an elementwise operator maps ηλ(x) = 0 is |x| < λ and ηλ(x) =
sign(x)(|x| − λ).

GLASSO: we use the implementation in the sklearn package.

GGM: We follow the implementation in Belilovsky et al. (2017).

APF: We follow the implementation in Wang et al. (2014). The specific algorithm steps are sum-
marized in Algorithm 3.

Algorithm 3: The Approximate Path Following Method
Input: λtgt > 0, εopt > 0 (Here we assume εopt � λtgt/4), η ∈ [0.9, 1)

1 Initialize β̃0 ← 0, L0 ← Lmin, λ0 = ‖∇L(0)‖∞, N ← (λ0/λtgt)/ log(η−1).
2 for t = 1, ..., N − 1 do
3 λt ← ηtλ0

4 εt ← λt/4

5 {β̃t, Lt} ← Proximal-Gradient(λt, εt, β̃t−1, Lt−1, R) as in Algorithm 4.
6 end
7 λN ← λtgt
8 εN ← εopt

9 {β̃N , LN} ← Proximal-Gradient(λN , εN , β̃N−1, LN−1, R).
10 return {β̃t}Nt=1.

Algorithm 4: The Proximal Gradient Method
Input: λt > 0, εt > 0, β0

t ∈ Rp, L0
t > 0

1 Initialize k ← 0.
2 repeat
3 k ← k + 1

4 Linit ← max{Lmin, L
k−1
t /2}

5 βkt , L
k
t ← Line-Search(λt, β

k−1
t , Linit) as in Algorithm 5.

6 until ωλt(βkt) ≤ εt as defined in Equation 82;
7 β̃t ← βkt
8 Lt ← Lkt
9 return {β̃t, Lt}.

44

https://scikit-learn.org/stable/auto_examples/covariance/plot_sparse_cov.html#sphx-glr-auto-examples-covariance-plot-sparse-cov-py

Published as a conference paper at ICLR 2022

Algorithm 5: The Line Search Method

Input: λt > 0,βk−1
t ∈ Rd, Linit > 0, R > 0

1 repeat
2 βkt ← TLk,λt

(
βk−1
t

)
as defined in Equation 83

3 if φλt
(
βkt
)
> ψLkt ,λt

(
βkt ;βk−1

t

)
then

4 Lkt ← Lkt .
5 end
6 until φλt(βkt) ≤ ψLkt ,λt(β

k
t , β

k−1
t) as defined in Equations 84 and 85;

7 β̃t ← βkt
8 Lt ← Lkt
9 return {β̃t, Lt}.

ωλ(β) = min
ξ′∈∂‖β‖1

max
β′∈Ω

{
(β − β′)T

‖β − β′‖1

(
∇L̃λ(β) + λξ′

)}
(82)

(
TLkt ,λt

(
βk−1
t

))
j

=

{
0 if

∣∣β̄j∣∣ ≤ λt/Lkt
sign

(
β̄j
) (∣∣β̄j∣∣− λt/Lkt) if

∣∣β̄j∣∣ > λt/L
k
t

(83)

φλ(β) = L̃λ(β) + λ‖β‖1 (84)

ψLkt ,λt
(
β;βk−1

t

)
= L

(
βk−1
t

)
+∇L

(
βk−1
t

)T (
β − βk−1

t

)
+
Lkt
2

∥∥β − βk−1
t

∥∥2

2
+ Pλt(β) (85)

I.4 TRAINING AND EVALUATION

We trained the learning-based methods to minimize the weighted loss. That’s to say, for each sparse
linear recovery problem, given the sequence of outputs (β1, ...,βT), the loss is computed as:

L =

T∑
i=1

γT−i‖βi − β∗‖22 (86)

where γ decreasing from 0.9 to 0.1 during the training process. The procedure is similar in the
sparse precision matrix estimation problem. We use optimizer Adam (Kingma & Ba, 2014). For
sparse linear recovery problem, we use batch size 10, we train 500 epochs with learning rate 1e-
4 and select the model based on the l2 loss on valid data. For sparse precision matrix estimation
problem, we use batch size 40, we train 200 epochs with learning rate 1e-3 and select the model
based on Frobenius loss on valid data.

For classical algorithms, we select their parameters, λ for APF and ρ for GISTA, based on their
performance on the validation set. Specifically, we evaluate APF or GISTA with ρ or λ from
{0.01, 0.025, 0.05, 0.1, 0.2} and use one with the best recovery error in test.

Table 3: Training time for SLR (minutes)

Sizes d = 256 d = 1024

PLISA 393 462
ALISTA 176 271

RNN 96 99
RNN`1 101 106

APF 214 426

Table 4: Training time for SPE (minutes)

Sizes d = 50 d = 100

PLISA 35 39
GGM 14 43

GISTA 176 116
APF 316 331

GLASSO 42 57

We report the total training time for learning based methods as well as the parameter tuning time for
classical algorithms. From Table 3 and Table 4, we can see that training a learning-based method is

45

Published as a conference paper at ICLR 2022

cheap in our experiments, as 1) A single forward for PLISA or GGM is very fast as stated in Table 1.
2) We can easily parallel the computations to handle a batch of problems during the training time,
as the learning-based methods do not require line-search.

The evaluation is performed on a server with CPU: Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz,
GPU: Nvidia GTX 2080TI, Memory 264G, in single thread.

I.5 ABLATION STUDY

Table 5: Ablation study of PLISA (p = 1024). TPR
is the true positive rate of recovering the nonzero en-
tries of β∗. FPS is the cardinality of false positive
entries. Note that the true sparsity level is s∗ =
16. Standard deviations over 100 test problems are
present in the parantheses.

PLISA PLISA-single PLISA-`1
`2 error 1.34 (2.28) 18.25 (6.06) 2.20 (2.76)

TPR 0.99 (0.01) 0.62 (0.19) 0.99 (0.02)
FPS 16.65 (13.60) 51.07 (6.67) 25.11 (13.30)

iterations

0

5

10

15

20

25

30

l2
-e

rro
r

dim=256

plisa
plisa_l1
plisa_single

iterations

0

5

10

15

20

25

30

dim=1024

Figure 6: Ablation study.

We consider two variants of PLISA to perform the ablation study. One is PLISA-single which
employs a single regularization parameter across different entries, i.e., η1 = · · · = ηd and λ∗1 =
· · · = λ∗d. The other is PLISA-`1 which does not learn the penalty function but uses the `1 norm,
i.e., Pw(λ,β) = ‖λ ◦ β‖1. Fig. 6 and Table 5 show the vanilla PLISA performs better than
alternatives. Especially, it has a much better accuracy than PLISA-single. Therefore, this ablation
study has validated the effectiveness of using entry-wise regularization parameters and learning the
penalty function.

I.6 REAL-WORLD EXPERIMENTS

We use the following 3 real-world datasets.

(1) Gene - a single-cell gene expression dataset that contains expression levels of 45 transcription
factors measured at different time-points. We follow Ollier & Viallon (2017) to pick the transcription
factor, EGR2, as the response variable and the other 44 factors as the covariates. In this dataset, each
time-point is considered as an estimation problem. In each estimation problem, the goal is learning
the regression weights β∗ on the 44 factors to predict the expression level of the target transcription
factor, EGR2. Therefore, in this problem, p = 44. This dataset contains the gene expression data for
120 single cells at 8 different time points. For each time point, we randomly split the 120 samples
into 6 sets, so that each set contains 20 samples. By doing this, we construct 48 estimation problems
each of which contains 20 samples. 10 samples are used for recovering the parameters β∗ and the
other 10 samples are used for evaluate it by computing the least-square error. We use 36 problems
for training, 6 problems for validation, and 6 problems for testing.

(2) Parkinsons - a disease dataset that contains symptom scores of Parkinson for different patients.
Each patient is considered as an estimation problem. In each estimation problem, the goal is learning
the regression weights β∗ on 19 bio-medical features to predict the symptom score. This dataset
contains 42 patients, so there are 42 estimation problems in total. Each patient is examined at
different time-point and each time a sample is generated. For each patient we randomly select 100
samples, so that eventually our dataset contains 42 estimation problems each of which contains 100
samples. 50 are used for recovering the parameter β∗ and 50 are used for evaluation. We use 28
problems for training, 7 problems for validation, and 7 problems for testing.

(3) School - an examination score dataset of students from 139 secondary schools in London. Each
school is considered as an estimation problem. In each estimation problem, the goal is learning the
regression weights β∗ on 28-dimensional school and student features to present the exam scores
for all students. We use the dataset from Malsar package (Zhou et al., 2011). For each school, we
randomly select 40 students as the samples. Since some schools contain less than 40 students, we
finally obtain 125 estimation problems (schools) each of wich contains 40 samples. 20 are used for

46

Published as a conference paper at ICLR 2022

recovering the parameter β∗ and 20 are used for evaluation. We use 100 problems for training, 10
problems for validation, and 15 problems for testing.

On each dataset, we train each learning-based algorithm for 200 epochs using Adam with learning
rata 1e-3. The batch size is set to be 6.

47

	Introduction
	PLISA: Learning To Solve Sparse Estimation Problems
	A Brief Introduction to APF
	Architecture of PLISA
	Learning-to-learn Setting

	Capacity of PLISA
	First Main Result: Capacity

	Generalization Analysis
	Second Main Result: Generalization Bound

	Extension To Unsupervised Learning-to-learn Setting
	Related Work
	Experiments
	Synthetic Experiments
	Sparse Linear Regression (SLR)
	Sparse Precision Matrix Estimation (SPE)
	Discussion on Training-Testing Time

	Unsupervised Learning on Real-world Datasets

	Discussion
	List of definitions and notations
	Penalty Functions
	Analytical forms
	Implications

	Problem Space Assumptions
	Recovery Guarantee For Parameters In Constrained Space
	Capacity Analysis: Proof of Theorem 3.1
	Generalization Analysis: Proof of Theorem 4.1
	Robustness to Parameter Perturbation: Proof of Lemma 4.1

	Key Lemmas
	Details of Section 5: Extension To Unsupervised Learning-to-learn Setting
	Details of Synthetic Experiments
	A Gentle Review of Linear Regression and Precision Estimation
	Sparse Linear Regression
	Sparse Precision Estimation

	Data Preparation
	Baseline Implementation
	Training and Evaluation
	Ablation Study
	Real-world Experiments

