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ABSTRACT

Visual grounding is a crucial task for connecting visual and language descriptions
by identifying target objects based on language entities. However, fully super-
vised methods require extensive annotations, which can be challenging and time-
consuming to obtain. Weakly supervised visual grounding, which only relies on
image-sentence association without object-level annotations, offers a promising
solution. Previous approaches have mainly focused on finding the relationship be-
tween detected candidates, without considering improving object localization. In
this work, we propose a novel method that leverages Grad-CAM to help the model
identify precise objects. Specifically, we introduce a CAM encoder that exploits
Grad-CAM information and a new loss function, attention mining loss, to guide
the Grad-CAM feature to focus on the entire object. We also use an architec-
ture which combines CNN and transformer, and a multi-modality fusion module
to aggregate visual features, language features and CAM features. Our proposed
approach achieves state-of-the-art results on several datasets, demonstrating its ef-
fectiveness in different scenes. Ablation studies further confirm the benefits of our
architecture.

1 INTRODUCTION

As computer vision and natural language processing continue to advance, cross-modality under-
standing has become increasingly important in deep learning and has attracted significant attention.
Many tasks aim to connect visual understanding and language description, including visual com-
monsense reasoning (Zellers et al.| (2019)), visual question answering (Peng et al.| (2019)), visual
captioning (Kuo & Kiral(2022))), and visual grounding (Liu et al. (2021)). Visual grounding is partic-
ularly crucial in these tasks because it involves identifying relevant visual regions based on language
entities. This requires the model to localize objects accurately and comprehend the semantic-level
information in the given language query. Thus, visual grounding can serve as a critical component
in other vision-language tasks.

Recent visual grounding methods can be classified into two categories: fully supervised visual
grounding and weakly supervised visual grounding. Although fully supervised visual grounding
achieves impressive performance, it relies on manual annotations, which can be time-consuming.
In contrast, weakly supervised visual grounding only requires corresponding images and language
descriptions without region-level annotations, making data collection easier. However, weakly su-
pervised visual grounding faces several challenges due to the lack of information from annotations,
such as localizing different objects in one image, understanding the relationship between different
entities, and comprehending the attributes of every entity.

Previous weakly supervised visual grounding methods mostly focus on detecting multiple entities
using a pre-trained object detector and finding relationships between them. In contrast, our approach
aims to enhance the performance of weakly supervised visual grounding by improving object local-
ization and enabling the model to better focus on the target objects. To achieve this, we propose a
method that combines Grad-CAM with weakly supervised visual grounding methods. Specifically,
we design a CAM encoder to extract information from the Grad-CAM and introduce an attention
mining loss to force the Grad-CAM features to focus on the whole object rather than just part of
it. The loss function generates interested and uninterested regions based on the Grad-CAM feature,
and the CNN backbone provides a confidence score for the uninterested regions. If the score is high,
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Figure 1: Grad-CAM is frequently utilized in weakly supervised training scenarios. Nevertheless,
no previous attempts have been made to integrate Grad-CAM with existing weakly supervised visual
grounding methods. With this in mind, we introduced a technique that utilizes Grad-CAM to boost
the performance of weakly supervised visual grounding. The results depicted in the figure show that
without the use of Grad-CAM, the predicted region for the discovered dog is not very accurate. In
contrast, the predictions are significantly more precise when Grad-CAM is integrated.

it indicates that parts of some objects are still in the uninterested regions, and we penalize it using a
loss. By using this loss function, our Grad-CAM can better focus on the target objects and improve
object localization.

Our proposed architecture includes the CAM encoder and another architecture that combines the
transformer and CNN in the visual encoder. The traditional transformer-based methods can be chal-
lenging to train due to their large scale, whereas our proposed architecture can make the training
process more efficient. Our visual encoder provides multi-layer features that offer both high-level
and low-level information about the original image. For the language encoder, we adopt an architec-
ture similar to TransVG (2021)), which follows the original BERT (Devlin et al| (2018)))
architecture. This enables our model to better understand the input language query by processing
the entire sentence, rather than just the word embeddings.

To combine the information from the visual features, language features, and CAM features, we
introduce a multi-modality fusion module that can aggregate the multi-modality information and
make use of the multi-level visual features. Then, we produce the final bounding box prediction
using the regression prediction head.

To evaluate our proposed methods, we performed extensive experiments on five different datasets
and compared them with the latest weakly supervised visual grounding methods as well as fully
supervised visual grounding methods. Fully supervised visual grounding methods represent the up-
per bound of the visual grounding tasks. Our experimental results demonstrate that our methods
achieve state-of-the-art results on different datasets. We also conducted numerous ablation studies
to demonstrate the effectiveness of our proposed CAM encoder and other module designs. Further-
more, we provided many visualization results to prove our architecture’s capability in dealing with
various scenes.

In summary, our contributions are as follows:

* We proposed the use of Grad-CAM to improve the localization of weakly supervised visual
grounding. Specifically, we designed a CAM encoder to extract information from the Grad-
CAM features and a loss function called attention mining loss that forces the Grad-CAM
features to focus on the whole object rather than just parts of it.

* We proposed a module that combines the CNN architecture and the transformer architecture
as the visual encoder. Additionally, we provided multi-layer features in our visual encoder
to provide low-level coarse information and high-level semantic representations. We made
use of multi-layer information in our multi-modality fusion module.

* We performed extensive experiments on five datasets and achieved state-of-the-art results
in four datasets. We also conducted many ablation studies to demonstrate the effective-
ness of our proposed modules and loss function and presented numerous visualizations to
demonstrate our model’s ability to deal with various scenes.
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2 RELATED WORKS

2.1 VISuAL GROUNDING

Visual grounding refers to the task of finding the most relevant region in an image that corresponds
to a given natural language query. Several datasets such as ReferltGame (Kazemzadeh et al.
(2014)), Flickr30k (Plummer et al.| (2015)), RefCOCO (Yu et al. (2016)), and Visual Genome
(Mao et al.| (2016)) have been used to evaluate various methods. Some methods calculate the
similarity between the candidate region and the language embedding (Plummer et al| (2018)).
In addition, some work such as TransVG (Deng et al.| (2021)) and ViLG (Du et al.| (2022)) have
explored the use of transformer-based architectures to solve visual grounding tasks. Others have
attempted to combine visual grounding with other tasks, such as image caption alignment (Datta
et al.| (2019)), and audio-grounding (Wang et al.|(2022)). Recent works have extended 2D image
visual grounding to 3D video visual grounding, such as in Multi-Stream VRG (Huang et al.|(2022))
and LanguageRefer (Roh et al.| (2022)). These fully supervised visual grounding methods have
achieved impressive results. However, collecting annotations for these datasets is a time-consuming
and expensive process. So, we try to propose a weakly supervised visual grounding method that
relies on easier collected data.

2.2 WEAKLY SUPERVISED VISUAL GROUNDING

While fully supervised visual grounding requires time-consuming and expensive annotations,
weakly supervised visual grounding only needs aligned sentences and images without region-
sentence correspondence. Weakly supervised training is commonly used in other areas (L1 et al.
(2021); Meng et al.| (2018))). There have been many efforts to improve the performance of weakly
supervised visual grounding, such as GVD-CVAE (Mavroudi & Vidal|(2022)), which uses a condi-
tional generative model to learn its approximate posterior distribution given the full sentence, RIF
(Liu et al.| (2021))) which learns the relationship between different detected candidates to improve
task performance, and Pseudo-Q (Jiang et al.| (2022))) which generates a pseudo phrase to provide
more information in the language embedding to improve performance. Some researchers have also
extended weakly supervised visual grounding from 2D image to 3D video (Yang et al.| (2020a)); |Shi
et al.| (2019)). Although many methods have been proposed to improve the performance of weakly
supervised visual grounding, none have made use of Grad-CAM, which is commonly used in weakly
supervised training. Therefore, in this paper, we propose a method to use Grad-CAM to improve the
performance of weakly supervised visual grounding.

2.3  VISION-LANGUAGE MODEL

The vision-language model has gained significant attention in recent years due to advancements in
computer vision and natural language processing. This model has various applications, including
VQA (Peng et al.| (2019)), image captioning (Kuo & Kiral (2022))), and commonsense reasoning
(Zellers et al.| (2019)). Most of the existing vision-language models rely on large pre-trained models.
However, recent efforts (Deng et al.|(2021)) have focused on using the vision-language transformer
to solve these problems, inspired by ViT (Dosovitskiy et al.|(2020)) and DETR (Carion et al.|(2020)).
Despite its potential, the vision-language transformer’s large scale makes it challenging to train.
To address this issue, we propose a method that combines the transformer architecture and CNN
architecture in the visual encoder, enabling us to speed up the training process.

3 METHODS

Architecture Our proposed CAM-based weakly supervised visual grounding architecture has four
important modules: visual encoder, language encoder, CAM encoder, and a multi-modality fusion
module. The whole architecture can be seen in Fi
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3.1 VISUAL ENCODER

The visual encoder is a crucial component of our model as it is responsible for providing an appro-
priate representation of the input image. To achieve this, we have designed an architecture for the
visual encoder, which can be seen in Figure[3] Our approach combines the transformer and CNN
architectures in the visual encoder to reduce computation costs and accelerate the training process.

To begin with, given an input image I € R*W>3 e first use a pre-trained detector that has been

trained on the Visual Genome dataset (Krishna et al.|(2017)) to detect candidate regions in the input
image. For each candidate and the original image, we then use a pre-trained CNN network (in our
case, the ResNet50 (He et al.[(2016))) to obtain the intermediate feature map of the input image. We
use the last three layers’ features F3 — Fj as our intermediate feature map.

Inspired by DETR (Carion et al.|(2020)), which provides a position embedding to the original feature
map, we also calculate the position embedding for the intermediate features and add it to the inter-

1)

mediate features. This results in three new features Fél) - F5( , which now incorporate positional

information.

Next, we use a self-attention module to capture the local information of the given features, which
we call F?EQ) — Fég). By using position encoding, the transformer architecture can better understand

the relationship between different tokens. We then add Fg(l) — F5(1) and Féz) - F5(2) and pass the
result to a CNN module to speed up the training process. The CNN module consists of a 3 x 3

Convolution layer, group normalization, and GELU activation. After the GELU activation, we add

another 3 x 3 convolution layer to obtain the final features F3(3) - Fé?’).

Finally, we input the result of the visual encoder into our multi-modality fusion module. Overall,
our visual encoder architecture effectively combines the strengths of both the transformer and CNN
models to provide a robust and efficient representation of the input image, which can significantly
enhance the performance of our weakly supervised visual grounding model.
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Figure 3: Architecture of our visual encoder. Our visual encoder is designed to obtain visual features
from input images. First, we use a pre-trained detector to identify several candidates within the input
image. Then, we extract features using a CNN backbone for each candidate and the original input
image. After obtaining the CNN backbone features, we add position embeddings and apply a self-
attention module to extract local information. Then, a CNN architecture is used to obtain the final
visual features.
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Figure 4: Left: Architecture of our language encoder. Our language encoder adopts a similar ar-
chitecture as TransVG. Given an input language query, we first obtain the word embedding for each
word in the sentence. Then, we add a [CLS] token at the beginning and an [SEP] token at the end
of the sentence. Subsequently, we employ a linguistic transformer to compute the final language
features, which capture semantic-level information instead of word-level information. Middle: Our
proposed CAM encoder is designed to extract features using Grad-CAM based on an input image
and a language query. To achieve this, we first identify the noun in the query and then use Grad-
CAM to extract its features. Next, we use several residual blocks on the CNN backbone feature
to obtain the final CAM features. Additionally, we introduce an attention-mining loss to enhance
the overall performance of our model. Right: Our proposed CAM encoder is designed to extract
features using Grad-CAM based on an input image and a language query. We first identify the noun
in the query and then use Grad-CAM to extract its features to achieve this. Next, we use several
residual blocks on the CNN backbone feature to obtain the final CAM features. Additionally, we
introduce an attention-mining loss to enhance the overall performance of our model.

3.2 LANGUAGE ENCODER

The language encoder serves the purpose of generating an embedding for the input sentence. In
Figd] we present the detailed architecture of our language encoder. To leverage the pre-trained
BERT (Devlin et al.| (2018))) model, we adopt a similar approach to TransVG (Deng et al.| (2021))
in designing the language encoder. We first convert each word into a one-hot vector for a given
input sentence and obtain its corresponding embedding by referring to the token table. We then
add a [CLS] token at the beginning and a [SEP] token at the end of the tokenized sentence. The
tokenized sentence is then passed through a linguistic transformer that has a structure similar to
the basic BERT model, comprising of 12 transformer encoder layers. This allows us to obtain a
language embedding that captures semantic-level information for the entire sentence rather than just
word-level information. We use the resulting language features F; € R >Nt where C; represents
the output dimension of the transformer encoder and [V; is the number of language tokens, as an
input to the multi-modality fusion module.

3.3 CAM ENCODER

The CAM encoder is an important component of our model, which is designed to utilize the results
of the Grad-CAM method (Selvaraju et al.|(2017)) and provide a module that can extract the relevant
information from the Grad-CAM attention map. The detailed architecture of the CAM encoder is
illustrated in Fig The primary objective of this module is to help the model obtain a better
predicted bounding box by obtaining the necessary information from the Grad-CAM attention map.

We first identify the nouns in the input language query to accomplish this task, as depicted in Fig
For instance, given an input language query “Dog on the left”, we will first identify ”dog” in
the sentence, which is then treated as the label, and the Grad-CAM is used to obtain the attention
map for the dog. If there are multiple nouns in the sentence, we will obtain the attention map for
each noun separately. However, the original Grad-CAM method can only identify the target object
and cannot cover all objects in the image. Therefore, we designed a module that can extract the
information from the Grad-CAM and identify the whole object.

After obtaining the Grad-CAM result, we use several residual blocks that follow the same structure
as the ResNet50 (He et al.| (2016))) to extract the information from the Grad-CAM feature. Subse-
quently, we obtain the final CAM features. Our goal is to force the final CAM features to focus
on the whole object, rather than just a part of it. To achieve this objective, we introduce a new
loss function, called attention mining loss, which is inspired by GAIN (Li et al.[(2018))). This loss
function can help the final Grad-CAM features to focus on the whole object. The formulation of the
attention mining loss is L., = S¢(I*), where S¢ is the prediction score for class ¢ for the CNN
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backbone, and I is the uninterested region of the final CAM features. Specifically, we set a thresh-
old for the final Grad-CAM feature and find the interested region I using the Grad-CAM features.
The remaining region is taken as the uninterested region. The objective of our attention mining loss
is to ensure that if the final CAM features do not focus on the whole object, the uninterested region
will contain a part of the object, and the CNN backbone will give a confidence score that is not zero
for that class. Then, our attention mining loss will force the module to contain the interested region
as much as possible. Using the designed attention mining loss, we force the CAM-feature focus on
the object and can provide the location for every object in the original image.

3.4 MULTI-MODALITY FUSION MODULE

In our approach, we leverage the benefits of multi-modal information by fusing visual, language,
and class activation map (CAM) embeddings together. However, in order to effectively utilize these
different modalities, we need a module that can aggregate the information of these embeddings.

To address this, we introduce our multi-modality fusion module. The detailed architecture can be
seen in Fig%} In this module, the input visual feature and CAM feature are not queries. Hence,
we first grid and flatten them. Notice that the input visual features contain multi-layer information
because we use multi-level features of the CNN backbone in the visual encoder. The advantage of
using multi-level features is that they can provide different information, whereas low-level features
can provide more coarse information like the shape and edge of the object, and high-level features
can provide more semantic information like the attribute and the class of the object. Here, we can
get three different visual queries that contain different information.

After flattening, the dimension of the visual tokens, CAM tokens, and linguistic tokens is different,
hence, we add two linear projection layers (one for each modality and one for the attention layer) to
project every token to the same dimension C),. This ensures that all tokens are in the same space.

In order to make use of the multi-level information, we use three different attention layers to ag-
gregate information. For these three attention layers, we will input all of the language tokens and
the CAM tokens. For the visual tokens, we will only input one layer of the query tokens to every
attention layer. This is because we want each attention layer to focus on different aspects of the
visual features. We can extract different levels of information by inputting a different visual query
to each attention layer. The input of every attention layer can be written as follows:

visual tokens pi, CAM tokens p.
—N— —_———
_ i1 iNy; 1 N, 1 N
xi*[Pva"'pv ) Py D y Des o De 7PT] (1)
—_——

linguistic tokens p;
Here, x; means the input for the 7,4, attention layer, pfj” means the n;y, visual tokens of the i, feature
layer, p;' means the nyj, linguistic tokens, and p; means the n;;, CAM tokens. IN,,; means the total
number of visual tokens of the ;;, features layers, N; means the total number of linguistic tokens,
and N, means the total number of the CAM tokens. Following TransVG (Deng et al.[ (2021))), we
pre-defined a learnable embedding [REG] token P, at the end of the input.

We hope every attention layer can extract semantic information through this design. After the at-
tention layer, we directly concatenate the output of the attention layers. Then, we use a regression
prediction head composed of three fully connected layers to calculate the final bounding box.

Overall, the multi-modality fusion module is designed to effectively aggregate information from dif-
ferent modalities and leverage the benefits of multi-level visual features to improve object detection.

3.5 LOSS FUNCTION

For the loss function, except for the attention mining loss L,,, we also use a self-taught regression
loss L;cq4 and a phrase reconstruction loss L. following RIF (Liu et al.| (2021)). Hence the final
formulation for the loss function can be written as

L = AT'egL’r‘eg + AT'CCL’I'ﬁC + All’l'ﬂ[/(l’ﬂl (2)

In our experiments, we set the A,.cq to 0.1, A,¢. and the Ag, to 1.
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4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

4.1.1 DATASET

We conducted experiments on five different datasets: RefCOCO (Yu et al| (2016)), RefCOCO+
(Yu et al.| (2016)), RefCOCOg (Mao et al. (2016))), ReferltGame (Kazemzadeh et al.| (2014)), and
Flickr30K Entities (Plummer et al.|(2015))). The train and test splits were consistent with the (Deng
et al.|(2021)) setting. The training set for these datasets contained a total of 16,994, 16,992, 24,698,
8,994, and 29,779 instances, respectively.

4.1.2 IMPLEMENT DETAILS

We used a pre-trained detector trained on the Visual Genome dataset (Krishna et al.| (2017)) con-
taining 1,600 objects. For word embedding, we utilized a pre-trained BERT (Devlin et al.| (2018)).
To obtain Grad-CAM features, we used a pre-trained ResNet (He et al,| (2016)) trained on Im-
ageNet (Russakovsky et al| (2015)). In the multi-modality fusion module, the dimensions for
Pl ¢ RE*Noi P e REO*Ni P, e RE%*Ne and the [REG] token P, € R *! were set to
256 in our experiments. The [REG] token was randomly initialized at the start of training and
optimized during the training process.

4.2 COMPARISON WITH THE STATE-OF-THE-ARTS

We present the quantitative results of our proposed methods compared to the latest approaches. To
provide a detailed comparison, we evaluate not only weakly supervised visual grounding but also
fully supervised methods. Our table reports the Top-1 accuracy results, where a predicted bounding
box is considered correct if its Jaccard overlap with the ground truth is greater than 0.5, otherwise,
it is treated as false.

RefCOCO/RefCOCO+/RefCOCOg: Tabld] shows the accuracy of our methods on RefCOCO,
RefCOCO+, and RefCOCOg datasets. Our model surpasses the current state-of-the-art in Ref-
COCO+ and RefCOCOg and achieves very close performance to the current state-of-the-art in
RefCOCO. It is worth noting that Pseudo-Q has a significant gap in the testA and testB split of
RefCOCO+, and its poor performance on testB split affects its final results in RefCOCO+. In con-
trast, our methods have tiny gaps between the testA and testB splits and outperform the current
state-of-the-art in all cases.

ReferItGame: Tabld?2] reports the accuracy of our methods. Our model achieves 45.27% top-1
accuracy, outperforming previous methods by 1.95%.

Table 1: Quantitative results of our proposed weakly Table 2: Quantitative results of our
supervised visual grounding model in RefCOCO, proposed weakly supervised visual
RefCOCO+, and RefCOCOg, the best results are grounding model in ReferltGame
. . . s
highlighted in bold and the second best results are Flicker30K+. the best results are
. . . . . >
highlighted in underlined. Sup. means the supervi- highlighted in bold and the sec-
sion level. Here we provide multiple latest weakly ond best results are highlighted in
supervised and fully supervised visual grounding re- underlined.
sults method | Sup. | ReferltGame | Flicker30K
[COCO fCOCO. fCOCOg . - 7
ethod S0 | v e s | vl et s | valg saba st KA Khen sl o) ne | e
VC {Zhang et al. J2018)) - 3329 30.13| - 3460 31583379 - - ARN {Liu et al JJUIDb]) 26.19 -
ARNT{Liu et al. J2019b}) 3426 3643 3307|3453 3601 3375|3375 - - CLWS (Guptactal R2UXO) |\ - 167
KPRN (Liuctal. (20106]) | . [3504 3474 3698|3596 3524 3696|3356 - - RIF jLiuctal 2U2D 37.68 59.27
DTWREG (Sun et al 12021])) | "°**|39.21 41.14 37.72 |39.18 40.10 38.08 |4324 - - CKD {Wang et al R2021)) 38.39 53.10
Pseudo-Qlliang et al. 2022 56.02 5825 54.13|38.88 45.06 32.13 |49.82 46.25 47.44 Pseudo-Qffiang et al. f2072] 4332 6041
Ours 5478 5571 5315|4225 4588 39.18 |50.48 48.54 51.25 oS 4521 61.78
MAtNet [Yu et al J2018a)) 7665 81.14 69.99|6533 7162 5602| - 6658 67.27 PircNet [Koveurl & Revatiago019p 39.13 o
NMTree (Liu et al. 12010al) 7641 8121 7000|6646 72.02 5752 |64.62 6587 66.44 ]:D#\[Z)":“Y‘f“l'f‘;;"“i:ﬁ‘;’) | 00 et
ren IS | v |1 s @\l 0 | 1% e
S ang et al. #2020b) K . .3 . .3 56. . .3 .2 iy iAva
Tr:ns\/((jll)ingel al 12021 8032 82.67 78.12|63.50 68.15 55.63|66.56 67.66 67.44 TransVG Peng et al 021D 0976 7847
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Table 3: Ablation for the CAM Encoder, the results show that our proposed CAM encoder and
attention mining loss can obviously improve the performance of the model.

RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val-g val-u test-u

3758  39.81 35.08 ‘ 4497  43.09  45.05 ‘ 37.98 ‘ 57.78

method ReferltGame Flicker30K

w/o CAM encoder, w/o AM loss
w/ CAM encoder,w/o AM loss
w/ CAM encoder, w/ AM loss

49.38  50.18  47.96
5247 5336 51.19
5478 55.71 53.15

41.02 4409 3891 | 47.68 4681  49.18 42.68 58.87
4225 4588  39.18 | 50.48 4854  51.25 45.27 61.78

Table 4: Ablation for the Multi-layer features, the results show that providing multi-layer features
can help the model capture high-level and low-level information which can obviously improve the
performance of the model

RefCOCO RefCOCO+ RefCOCOg

features val testA testB val testA testB val-g val-u test-u ReferltGame | Flicker30K
F3 49.81 5139 4827 | 38.01 4197 3513 | 46.19 4484  47.77 42.17 57.38
Fy 4995 51.36 4793 | 3798 4033  34.86 | 45.51 44.67  47.16 40.07 56.75
Fs 50.18  51.17 4896 | 3795 40.19 3491 | 4591 4469  46.89 40.58 57.19
F3.Fy 5235 5429  50.31 39.65 4239 3799 | 47.18 46.87 4892 42.95 57.92
F3, F5 5338 5516 51.53 | 4192 4336 3875 | 49.68 4736  51.09 44.81 59.91
Fy, Fs 5385 55.05 5249 | 4194 4548 3839 | 4946 4791 51.13 44.62 59.71
F3,Fy, Fs 5478  55.71 53.15 | 4225 4588  39.18 | 5048 4854 5125 45.27 61.78

Flickr30K: Table2|shows the accuracy of our methods. Our model achieves 67.78% top-1 accuracy,
outperforming previous methods by 1.37%.

4.3 ABLATION STUDIES

4.3.1 EFFECTIVENESS OF THE CAM ENCODER

In this section, we conduct an ablation study to demonstrate the effectiveness of our proposed CAM
encoder and attention-mining loss. Tabld3]shows the results for different settings, where “w/” and
”w/0” indicate whether the CAM encoder and attention mining loss are included in our architecture
during training. We observe that the proposed CAM encoder contributes to a 5% increase in top-
1 accuracy compared to the baseline model. Furthermore, the attention mining loss improves the
accuracy by 2%. These results demonstrate the effectiveness of our proposed CAM encoder.

4.3.2 EFFECTIVENESS OF MULTI-LAYER FEATURES

In this section, we provide an ablation study to demonstrate the effectiveness of multi-layer features
in the visual encoder. Tabled]shows the quantitative results for five datasets using one layer feature
and two different layer features. We observe that using only one layer feature leads to a drop in per-
formance of about 4%, and even using two different layer features still leads to a drop of about 2%.
This ablation study highlights the effectiveness of using multi-layer features in the visual encoder.

4.3.3 EFFECTIVENESS OF THE MULTI-MODALITY FUSION MODULE

In this section, we conduct an ablation study to evaluate the effectiveness of our multi-modality
fusion module. Tabld5| shows the results for three different settings. The “one attention layer”
setting uses a single attention layer to process all visual, language, and CAM features, followed by
the prediction head. The "three attention layers, 1 x 1 conv” setting uses three different attention
layers but aggregates the output of the attention layers using a 1 X 1 convolution layer. We observe
that both settings slightly decrease the performance of our model. Therefore, our main paper uses
three different attention layers and concatenates their output to predict the final bounding box.
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Table 5: Ablation for the multi-modality fusion module, the results show that multi-level features
that contain coarse information and semantic information are helpful for the weakly supervised
visual grounding. Also, concatenate operations are better than 1 x 1 convolution in our model.

RefCOCO RefCOCO+ RefCOCOg .
method val testA testB ‘ val testA testB ‘ val-g val-u test-u ‘ ReferltGame | Flicker30K
one attention layer 5297 5432 5077 | 41.10 44.13 3879 | 4777 4623  49.13 43.53 59.02
three attention layer, 1 X 1conv | 53.15 5435 5193 | 42.11 4533 39.07 | 4991 4897 51.03 44.97 61.57
three attention layer, concatenate 54.78 55.71 53.15 42.25 45.88 39.18 50.48 48.54 51.25 45.27 61.78

Blurry plate in the Airplane bottom
background left corner

Small device in left Sheep farthest Second from left Teddy bear left
hand from the screen elephant

Figure 5: The visualization demonstrates the effectiveness of our proposed architecture. For every
language query, we use the red color to highlight the nouns. From the visualization, we can see
that our model can have impressive performance even when the target object is blurred or there are
multiple similar objects

4.4 VISUALIZATIONS

This section provides visualizations of the proposed model to demonstrate its effectiveness. As
shown in Figure [6] the proposed model performs well in various scenes. It can identify the target
object even when it is not very clear, as in the case of the plate, and distinguish it from similar
objects, such as the sheep and the elephant. This indicates that the model can comprehend the spatial
information in the given language query and align it with the image candidate. Moreover, the model
can understand the meaning of color, as demonstrated in the example of the bike, where the model
identifies the bike with the correct color. Even when the input language query includes multiple
nouns, the model can still accurately identify the target object. These visualizations demonstrate the
model’s ability to handle different scenes comprehend the semantic-level information in the input
language query and align it with the different candidates in the given image.

5 CONCLUSION

In conclusion, we propose a novel weakly supervised visual grounding architecture that combines
the transformer and CNN architectures. Observing that Grad-CAM is useful in weakly supervised
training, we design a CAM encoder that utilizes the Grad-CAM to provide better object localization
when predicting the final bounding box. However, the original Grad-CAM can only identify the
target object and may not focus on the whole object. Therefore, we introduce a new attention-mining
loss that forces the Grad-CAM to focus on the whole object instead of only a part of it. Besides the
CAM encoder, our proposed visual encoder also utilizes the transformer and CNN architectures
to extract the visual and language features. Extensive experiments demonstrate the effectiveness
of our proposed architecture, which achieves state-of-the-art performance on several datasets. Our
proposed architecture can be transferred to tasks such as visual question answering.



Under review as a conference paper at ICLR 2025

REFERENCES

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In Computer Vision—-ECCV
2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part I 16, pp.
213-229. Springer, 2020.

Kan Chen, Jiyang Gao, and Ram Nevatia. Knowledge aided consistency for weakly supervised
phrase grounding. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4042-4050, 2018.

Samyak Datta, Karan Sikka, Anirban Roy, Karuna Ahuja, Devi Parikh, and Ajay Divakaran.
Align2ground: Weakly supervised phrase grounding guided by image-caption alignment. In Pro-
ceedings of the IEEE/CVF international conference on computer vision, pp. 2601-2610, 2019.

Jiajun Deng, Zhengyuan Yang, Tianlang Chen, Wengang Zhou, and Houqgiang Li. Transvg: End-to-
end visual grounding with transformers. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 1769-1779, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Ye Du, Zehua Fu, Qingjie Liu, and Yunhong Wang. Visual grounding with transformers. In 2022
IEEE International Conference on Multimedia and Expo (ICME), pp. 1-6. IEEE, 2022.

Tanmay Gupta, Arash Vahdat, Gal Chechik, Xiaodong Yang, Jan Kautz, and Derek Hoiem. Con-
trastive learning for weakly supervised phrase grounding. In Computer Vision—-ECCV 2020: 16th
European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part IlI, pp. 752-768.
Springer, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770778, 2016.

Shijia Huang, Yilun Chen, Jiaya Jia, and Liwei Wang. Multi-view transformer for 3d visual ground-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 15524-15533, 2022.

Haojun Jiang, Yuanze Lin, Dongchen Han, Shiji Song, and Gao Huang. Pseudo-q: Generating
pseudo language queries for visual grounding. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 15513-15523, 2022.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. Referitgame: Referring to
objects in photographs of natural scenes. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pp. 787-798, 2014.

Rama Kovvuri and Ram Nevatia. Pirc net: Using proposal indexing, relationships and context
for phrase grounding. In Computer Vision-ACCV 2018: 14th Asian Conference on Computer
Vision, Perth, Australia, December 2—6, 2018, Revised Selected Papers, Part IV 14, pp. 451-467.
Springer, 2019.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting lan-
guage and vision using crowdsourced dense image annotations. International journal of computer
vision, 123:32-73, 2017.

Chia-Wen Kuo and Zsolt Kira. Beyond a pre-trained object detector: Cross-modal textual and visual
context for image captioning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 17969-17979, 2022.

10



Under review as a conference paper at ICLR 2025

Kunpeng Li, Ziyan Wu, Kuan-Chuan Peng, Jan Ernst, and Yun Fu. Tell me where to look: Guided
attention inference network. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 9215-9223, 2018.

Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, and Wayne Zhang. Pseudo-mask matters in
weakly-supervised semantic segmentation. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pp. 6964-6973, 2021.

Dagqing Liu, Hanwang Zhang, Feng Wu, and Zheng-Jun Zha. Learning to assemble neural module
tree networks for visual grounding. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 4673—4682, 2019a.

Xuejing Liu, Liang Li, Shuhui Wang, Zheng-Jun Zha, Dechao Meng, and Qingming Huang. Adap-
tive reconstruction network for weakly supervised referring expression grounding. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019b.

Xuejing Liu, Liang Li, Shuhui Wang, Zheng-Jun Zha, Li Su, and Qingming Huang. Knowledge-
guided pairwise reconstruction network for weakly supervised referring expression grounding. In
Proceedings of the 27th ACM International Conference on Multimedia, pp. 539-547, 2019c.

Yongfei Liu, Bo Wan, Lin Ma, and Xuming He. Relation-aware instance refinement for weakly
supervised visual grounding. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 5612-5621, 2021.

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L Yuille, and Kevin Murphy.
Generation and comprehension of unambiguous object descriptions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 11-20, 2016.

Effrosyni Mavroudi and René Vidal. Weakly-supervised generation and grounding of visual de-
scriptions with conditional generative models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 15544—15554, 2022.

Yu Meng, Jiaming Shen, Chao Zhang, and Jiawei Han. Weakly-supervised neural text classifica-
tion. In proceedings of the 27th ACM International Conference on information and knowledge
management, pp. 983-992, 2018.

Liang Peng, Yang Yang, Zheng Wang, Xiao Wu, and Zi Huang. Cra-net: Composed relation at-
tention network for visual question answering. In Proceedings of the 27th ACM international
conference on multimedia, pp. 12021210, 2019.

Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hockenmaier, and Svet-
lana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer image-
to-sentence models. In Proceedings of the IEEE international conference on computer vision, pp.

2641-2649, 2015.

Bryan A Plummer, Paige Kordas, M Hadi Kiapour, Shuai Zheng, Robinson Piramuthu, and Svet-
lana Lazebnik. Conditional image-text embedding networks. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 249-264, 2018.

Junha Roh, Karthik Desingh, Ali Farhadi, and Dieter Fox. Languagerefer: Spatial-language model
for 3d visual grounding. In Conference on Robot Learning, pp. 1046-1056. PMLR, 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211-252, 2015.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618-626,
2017.

Jing Shi, Jia Xu, Boqing Gong, and Chenliang Xu. Not all frames are equal: Weakly-supervised
video grounding with contextual similarity and visual clustering losses. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10444-10452, 2019.

11



Under review as a conference paper at ICLR 2025

Mingjie Sun, Jimin Xiao, Eng Gee Lim, Si Liu, and John Y Goulermas. Discriminative triad match-
ing and reconstruction for weakly referring expression grounding. IEEE transactions on pattern
analysis and machine intelligence, 43(11):4189—4195, 2021.

Liwei Wang, Jing Huang, Yin Li, Kun Xu, Zhengyuan Yang, and Dong Yu. Improving weakly su-
pervised visual grounding by contrastive knowledge distillation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 14090-14100, 2021.

Yefei Wang, Kaili Wang, Yi Wang, Di Guo, Huaping Liu, and Fuchun Sun. Audio-visual grounding
referring expression for robotic manipulation. In 2022 International Conference on Robotics and
Automation (ICRA), pp. 9258-9264. IEEE, 2022.

Xun Yang, Xueliang Liu, Meng Jian, Xinjian Gao, and Meng Wang. Weakly-supervised video object
grounding by exploring spatio-temporal contexts. In Proceedings of the 28th ACM international
conference on multimedia, pp. 1939-1947, 2020a.

Zhengyuan Yang, Boqing Gong, Liwei Wang, Wenbing Huang, Dong Yu, and Jiebo Luo. A fast and
accurate one-stage approach to visual grounding. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 4683-4693, 2019.

Zhengyuan Yang, Tianlang Chen, Liwei Wang, and Jiebo Luo. Improving one-stage visual ground-
ing by recursive sub-query construction. In Computer Vision—-ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XIV 16, pp. 387-404. Springer,
2020b.

Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. Modeling context
in referring expressions. In Computer Vision—-ECCV 2016: 14th European Conference, Amster-
dam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14, pp. 69-85. Springer, 2016.

Licheng Yu, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin Lu, Mohit Bansal, and Tamara L Berg. Mat-
tnet: Modular attention network for referring expression comprehension. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 1307-1315, 2018a.

Zhou Yu, Jun Yu, Chenchao Xiang, Zhou Zhao, Qi Tian, and Dacheng Tao. Rethinking diversified
and discriminative proposal generation for visual grounding. arXiv preprint arXiv:1805.03508,
2018b.

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. From recognition to cognition: Visual
commonsense reasoning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 6720-6731, 2019.

Hanwang Zhang, Yulei Niu, and Shih-Fu Chang. Grounding referring expressions in images by
variational context. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4158-4166, 2018.

Fang Zhao, Jianshu Li, Jian Zhao, and Jiashi Feng. Weakly supervised phrase localization with
multi-scale anchored transformer network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5696-5705, 2018.

6 APPENDIX

7 MORE DETAILS ABOUT THE L0OSS FUNCTION

In this section, we will introduce more details about the self-taught regression loss and phrase re-
construction loss which following the RIF (Liu et al.| (2021)))
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7.1 SELF-TAUGHT REGRESSION LOSS

The purpose of the self-taught regression loss is that the location for each phrase is not annotated,
we need a loss function to help the model to find a location for each phrase. Here, we will use
confident proposals from partially-trained models to supervise the location refinement. Specifically,
given phrase ¢;, we denote §°* = {7, m“*} where {7, m“*} is the offset between proposal oy,
and the most confident proposal if their overlaps are larger than a threshold, otherwise we called is
{84, m®}. Then the loss function is

N

Lreg = Y _(Lam ({01, m**}, {5i,m}) 3)

i=1

where L, is the smooth-L1 loss.

7.2 PHRASE RECONSTRUCTION LOSS

Given a noun phrase, we use a phrase reconstruction loss to provide model supervision. To use
phrase reconstruction loss, we will first calculate a visual representation z{ for each phrase g¢;, then
we can calculate a sequence of word distribution 5 as below

yf = LSTMdec([Zfa qz]) (4)

Then we use a standard sequence log loss L;,4 to calculate the final loss function which can be

written as
N

L'r‘ec = Z(Llog (yfa QZ)) (5)

i=1
8 MORE ABLATION STUDIES

8.1 INFLUENCE OF THE NUMBER OF TRANSFORMER ENCODER LAYERS

In this section, we conduct an ablation study to evaluate the influence of the number of transformer
encoder layers in our visual and language encoders. Table[6]shows the results for different numbers
of encoder layers. We observe that if the number of encoder layers is too small, it is insufficient
to extract all of the information in the given image and language query. Once the number of layers
is sufficient to extract the information, further increasing the number of encoder layers does not
improve performance.

9 MORE DETAILS ABOUT THE ARCHITECTURE

In this section, we provide more details about our architecture

9.1 RESOLUTION ABOUT MULTI-LAYER FEATURES

We provide multi-layer features to our visual encoder, here, we provide the resolution for different
layers’ features

Table 6: Ablation for the number of encoder layers in the visual and language encoder. The results
show that increasing the encoder layer when the layer is not deep can improve the performance, and
if we continue to increase the number of the encoder layers, the performance is not further improved;
the best results are highlighted in bold

. RefCOCO RefCOCO+ RefCOCOg .
visual encoder | language encoder val (estA testB val testA testB val-g val-u & testou ‘ ReferltGame | Flicker30K
3 3 50.13 51.11 48.68 38.16 41.34 36.90 45.94 43.30 47.65 39.71 56.34
3 6 5268 5391 5135 | 4095 4278 3847 | 47.06 4518  49.76 4229 59.82
6 6 53.86 55.07 52.67 41.29 44.88 38.23 49.18 47.33 51.11 44.39 60.37
6 12 54.78 55.71 53.15 42.25 45.88 39.18 50.48 48.54 51.25 45.27 61.78
12 12 54.73 55.82 53.01 41.28 44.79 38.11 49.58 48.55 50.19 45.39 61.25
12 24 5327 5449 51.13 | 4246 4698 3877 | 50.19 4830  50.79 44.95 60.98
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Table 7: Input and output shape of different layers’ features

Layer | Input Shape

Layers AW
Layery Ll fﬁw
Layers Hxw

10 TRAINING DETAILS

In our experiments, we utilized two NVIDIA Tesla V100-sxm2 GPUs, each with 32GB of memory,
for a total of 64GB of memory. All of the modules are end-to-end trained. We used the AdamW op-
timizer to optimize our architecture with an initial learning rate of le-5 and a weight decay of le-5.
We used a batch size of 64 for all experiments. We applied the cosine learning rate schedule for all
datasets. For data augmentation, we followed the same procedure as TransVG (2021)),
which included RandomBrightness, RandomContrast, RandomSaturation, ColorJitter, RandomRe-
sizeCrop, and RandomHorizonFlip. We trained our model for a total of 10 epochs for RefCOCO,
RefCOCO+, and RefCOCOg datasets, and for 20 epochs for the ReferltGame and Flickr30K En-
tities datasets. These training parameters were chosen through experimentation to ensure that our
model was optimized for performance on each dataset.

11 MORE VISUALIZATIONS

Here, we provide more visualizations of our model in Fig. |§|

Front chocolate Main book Right cell Elephant on left
donut

Figure 6: More visualizations of our model
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