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ABSTRACT

Building models robust to transformations such as rotation, scale, and translation
is a challenge in machine learning and computer vision. Existing approaches
often provide only partial and discrete equivariance (group equivariance) or rely
on supervision or very abundant data to learn equivariant representations. To
achieve fine-grained equivariance from low data, we combine and improve over
both approaches. We propose a novel, learnable, Riesz-transform-based architec-
ture that achieves built-in group equivariance for translation, rotation, and scale.
We combine it with a Spatial Transform Network (STN) tailored for the sequential
estimation of composite transformations, reducing the combinatorial data require-
ments for learning fine-grained equivariance. Improved generalization guarantees
and extensive experiments demonstrate that our approach brings improvements
over state-of-the-art methods in unsupervised representation learning and object
discovery, even more so in low-data regimes.

1 INTRODUCTION

Humans excel at recognizing objects from very limited examples, demonstrating robust generalization
across arbitrary positions, orientations, and scales. Achieving similar robustness in machine learning
models remains a significant challenge, motivating the development of approaches and architectures
that inherently respect geometric symmetries, starting with convolutional neural networks (CNNs,
e.g. O’shea & Nash (2015)). Handling symmetries may require either invariance and equivariance.
An image classification task typically requires invariance: if an image is rotated, its label (e.g.
"cat") remains the same. In contrast, tasks like object detection and semantic segmentation require
equivariance: if an image is rotated, the predicted bounding boxes or masks should rotate accordingly.
Typically, a CNN has translation equivariance by design, and when combined with pooling, it yields
translation invariance.

Equivariance is often necessary for tasks requiring precise spatial understanding, such as object
detection and segmentation, or latent representation learning. Rotation and translation equivariant
architectures have been developed to address these needs (Cohen & Welling, 2016; Zitnick et al.,
2022), but rarely address scale and are often limited to discrete groups. For rotation equivariance, this
may mean handling only (multiple of) 90-degree rotations. For translation, it may mean equivariance
only to shifts by multiples of the stride (or pooling size), in a deep CNN.

An alternative solution to build equivariant models is to learn to be equivariant (or invariant) using
data, which occurs when the model is exposed to a diverse set of transformations during training.
This is typically done using approaches like Spatial Transformer Networks (STN, Jaderberg et al.
(2015)) that learn to estimate a transformation that brings the input into a canonical form. These
work well when they can leverage a supervision signal and use data augmentation. However, this
approach is limited by the range of transformations seen during training and may not generalize well
to unseen transformations. Also, in some cases, supervision might be unavailable and adequate data
augmentation may not be possible. This is the often the case in unsupervised learning and especially
in unsupervised object discovery. This task involves identifying objects (or recurring patterns, as no
supervision is available) in an image collection, where each image may contain multiple objects, each
subject to its own transformation.
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In this work, we focus on reducing the data requirements for learning equivariant models, especially
targeting the case of unsupervised object discovery. Starting from the realization that achieving fine-
grained equivariance requires, in fine, both architectural choices (for built-in discrete equivariance)
and learning from data (for refining the equivariance), we propose improvements in both aspects,
jointly. Our main contributions are as follows:

• Leveraging the fact that learning/tuning is necessary, we propose an equivariant architecture
that embeds a part of learning. Named Learnable Riesz-transform Network (LeaRN), it
provides equivariance to scale in addition to rotation.

• Realizing that the transformations estimated by STNs are composite in nature (e.g., transla-
tion followed by scaling and rotation), we propose a sequential estimation of these transfor-
mations thus reducing the combinatorial need for training examples.

In addition, we (i) provide theoretical guarantees on the generalization capabilities of our architecture
through a tighter PAC-Bayesian bound. (ii) We demonstrate the interest of our approach through
extensive experiments and ablation studies on autoencoding and unsupervised object discovery,
showing significant improvements over state-of-the-art methods, especially in low-data regimes. (iii)
We further introduce a metric to quantitatively assess the consistency and accuracy of rotational angle
predictions in unsupervised settings (where there is no ground truth angle).

2 RELATED WORK

CNNs introduced translation equivariance through weight sharing, significantly reducing parameters
compared to fully connected architectures (LeCun et al., 1998). This principle of encoding induc-
tive biases aligned with data symmetries has become foundational to equivariant learning. Spatial
Transformer Networks extended this by learning spatial transformations directly from data (Jaderberg
et al., 2015), though they face limitations in unsupervised scenarios. Cohen and Welling (Cohen &
Welling, 2016) generalized CNNs to arbitrary groups through G-CNNs, achieving discrete rotation
equivariance via lifting convolutions. This approach has proven effective in fluid dynamics simulation
and biological applications (Bekkers et al., 2018; Andrearczyk et al., 2019)). Lafarge et al. (2021)
refined G-CNNs by preserving directional information across layers for hierarchical structure detec-
tion. Steerable CNNs further extended these ideas to continuous groups using symmetry-constrained
kernels on feature vector fields (Weiler et al., 2018; Weiler & Cesa, 2019; Cesa et al., 2022)). Al-
ternative approaches include spherical networks that leverage sparse Clebsch-Gordan matrices for
computational efficiency (Zitnick et al., 2022; Passaro & Zitnick, 2023).

In unsupervised settings, several approaches have emerged to learn equivariant representations without
labels. TARGET-VAE explicitly encodes pose and orientation through equivariant architectures
(Nasiri & Bepler, 2022) but encounters difficulties with discrete rotations requiring interpolation.
IRL-INR addresses rotation equivariance via specialized latent modules with contrastive losses (Kwon
et al., 2023), though generalization to unseen rotations remains limited due to data dependency. Kaba
et al. (2023) propose two complementary frameworks: an "equivariant-by-design" approach that
generalizes TARGET-VAE to unsupervised translation and rotation tasks, and an "optimization-based"
method formulating equivariance as contrastive moment alignment. However, the latter primarily
succeeds in supervised downstream applications. CODAE extends optimization-based equivariance
by enforcing structured latent representations through group moment matching (Cha et al., 2025),
though early-stage initialization with random noise samples poses significant challenges. Roto-Scale
Equivariance. Despite its practical importance, joint rotation and scale equivariance has received
limited attention. Among the notable work

Recent unsupervised equivariant learning has focused primarily on architectural innovations, yet
classical image processing offers underexplored complementary insights. The Riesz transform
demonstrates natural equivariant properties and effectively captures edge structures (Joyseeree et al.,
2019; Depeursinge et al., 2011), with steerable Riesz wavelets enabling rotation-sensitive feature
extraction (Depeursinge et al., 2013). However, these methods have been applied mainly to supervised
downstream tasks (Barisin et al., 2024b;a), leaving their potential for upstream representation learning
untapped. We leverage the Riesz transform’s inherent equivariant properties for unsupervised
representation learning. One of the key contributions of our paper is to extend the idea of unsupervised
equivariant feature representation to object discovery and STNs has been a key component for
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benchmark object discovery models like SPACE (Lin et al., 2020), SPAIR (Crawford & Pineau,
2019), GNM (Jiang & Ahn, 2020), and GMAIR (Zhu et al., 2022), which motivates us to build an
"equivariant by design" network that can be integrated to such STN based models.

α

Image

(t,s)

Grid Sampler

Reconstructed
Image Reverse Sampler

Grid Sampler

encoder
decoder

group
pooling

RST-Equiv.
features

STEq. RInv.
features

Figure 1: Proposed LeaRN-EqSTN architecture for unsupervised representation learning. Efficient
end-to-end learning (learned blocks in dotted, blue) is achieved by leveraging Riesz-enhanced rotation-
equivariant features and by disentangling pose estimation via a two-step estimation. This reduces the
combinatorial need for training example to produce finely aligned crops for appearance learning.

3 BACKGROUND

The main components of the proposed equivariant architecture illustrated in Fig. 1 are hereafter
described. Detailed explanations of their roles are provided in the Appendix B. Let us remind here
that a function f is said equivariant to a transformation group G, if f(g · x) = ρ(g) · f(x) for all
g ∈ G and input x, where ρ(g) is a corresponding transformation in the output space.

3.1 SPATIAL TRANSFORMER NETWORKS

Spatial Transformer Networks (STNs) are designed to enhance neural networks by introducing
learnable spatial transformations that improve robustness to geometric variations in input data, such
as rotations, translations, scaling, and shearing, thereby enabling better generalization in tasks like
image classification and object detection. They apply a parameterized transformation Tθ ∈ R2×3,
typically an affine matrix, mapping input coordinates (hs, ws) to output coordinates (ht, wt). Input
feature maps U ∈ RH×W×C are transformed into output feature maps V ∈ RH′×W ′×C using
bilinear interpolation. A localization network predicts θ via backpropagation, optimizing the task-
specific loss Ltask(V, y), enabling dynamic feature alignment and better generalization.

STN Limitations: STNs struggle to generalize beyond the training distribution (Oliver et al., 2018).
Unlike architectures with built-in equivariance, they must explicitly learn each transformation from
data. This becomes problematic in complex scenarios involving multiple objects or composite
transformations, where the exponential growth of transformation space makes comprehensive training
impractical, highlighting their dependence on diverse training data.

3.2 GROUP CONVOLUTIONS AND EQUIVARIANT FEATURE LEARNING

Whereas standard convolutions handle by design shifts well but struggle with rotations and scales,
group convolutional layers address these issues by embedding symmetry directly into the network
architecture. More specifically, they use the symmetry group Pr, which combines translations in Z2

with r discrete rotations by αk = k · 2π
r , k ∈ {0, 1, . . . , r − 1}. Unlike STNs, group convolutions

achieve rotation equivariance for an input I through the operation (I⋆ψ)(g) =
∑
x∈Z2 I(x)ψ(g−1x),

where g ∈ Pr. This applies kernel ψ at r discrete orientations, producing r feature maps that
transform predictably under input rotations. Steerable CNNs extend this to continuous rotations under
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SO(2), using steerable filters Ψ(x) =
∑M
m=1 cmψm(x), where χm are basis functions (e.g., circular

harmonics). These filters adapt to any rotation α via ψ′(x) = ψ(ρ−1
α x), efficiently representing

rotations without discretizing angles. This makes steerable CNNs more flexible and computationally
efficient than group CNNs for continuous symmetries, ideal for tasks where orientation is arbitrary.
For feature learning we work with a rotation equivariant variant of ResNet (ReResNet, Han et al.
(2021)), here group convolutions operate on a cyclic groupGN , representingN -fold discrete rotations
(e.g., {0◦, 360

◦

N , . . . , 360
◦(N−1)
N }). These convolutions produce feature maps with orientation channels

for each group element g ∈ GN , satisfying rotation equivariance: A(g, x) = fReResNet(Iaug(x), g),
where rotating the input by g′ ∈ GN yields A(g, x) = A(g′g, x). To achieve rotation-invariant
features, group-invariant global pooling is applied: Ainvariant(x) = 1

|GN |
∑
g∈GN A(g, x). This

aggregates features across all rotations, ensuring consistent representations regardless of orientation.

3.3 RIESZ TRANSFORM

Given a real-valued input image I ∈ L2(R2), the first-order Riesz transform is defined via Fourier
transform F as RjI(x) = F−1

[
−i ξj|ξ| · FI

]
, j ∈ {1, 2}, where ξ = (ξ1, ξ2) ∈ R2 are frequency

coordinates and |ξ| =
√
ξ21 + ξ22 . The transform produces a vector field RI = (R1I,R2I), whose

components correspond to frequency-normalized directional derivatives. It is rotation-equivariant
(R[I(ραx)] = ραRI(x), scale-equivariant (R[I(sx)](x) = RI(sx), s > 0), and translation-
equivariant (R[I(x − t)](x) = RI(x − t), t ∈ R2), for all ρα ∈ SO(2), where Rα denotes
a 2D rotation matrix of angle α. This makes it a natural primitive for constructing equivariant
representations. For any α ∈ [0, 2π), the Riesz transform admits steerable synthesis: RαI(x) :=
u⊤
αRI(x), with uα = (cosα, sinα)⊤. To capture second-order geometric structures such as

curvature, we further define frequency-domain operators: RxxI(x) = F−1
[
− ξ21

|ξ|2 Î(ξ)
]
, RyyI(x) =

F−1
[
− ξ22

|ξ|2 Î(ξ)
]
, RxyI(x) = F−1

[
− ξ1ξ2

|ξ|2 Î(ξ)
]

where Î is the Fourier transform of image I . These
can be interpreted as anisotropic second-order filters aligned to principal directions of local image
structure. Together, the first and second-order Riesz components form a rotation-equivariant feature
algebra under the natural group action. The Riesz transform is also an isometry in L2(R2), meaning
it preserves the L2-norm of the input image, ∥RjI∥L2 = ∥I∥L2 , j = 1, 2. This property ensures
that the transform does not amplify or diminish the energy of the image, making it stable for feature
extraction in neural networks. In the Fourier domain, the Riesz transform corresponds to a projection
onto the m = ±1 modes of the SO(2) Fourier (see Appendix B for details).

3.4 ALIASING IN CONVOLUTIONAL ARCHITECTURES

In CNNs, downsampling such as by a factor of 2 via stride-2 convolutions, reduces an M ×M feature
map to M/2×M/2, causing aliasing as frequencies beyond the new Nyquist bound (M/4) fold into
lower frequenciesGruver et al. (2022); Edixhoven et al. (2023).The discrete Fourier transform of the
downsampled image introduces distortions disrupting translation equivariance, as translations yield
incorrect phase shifts. In group-equivariant architectures like ReResNet, which ensure rotational
equivariance for the cyclic group GN , feature maps A(g, x) = fReResNet(I(x), g) should satisfy
A(g, x) = A(g′g, x) under rotation by g′ ∈ GN . Aliasing distorts these maps, as high-frequency
terms introduce inconsistent transformations, breaking rotational equivariance. Non-linearities like
ReLU exacerbate this by generating higher harmonics (see Appendix C).

4 CONTRIBUTIONS

We start by introducing our learnable Riesz-transform Network, that provides a broad built-in group
equivariance, together with its theoretical properties. We then describe how a cascade of STNs can
reduce the combinatorial data requirements for learning fine-grained equivariance. Finally, we present
our full LeaRN-EqSTN architecture, combining these components for unsupervised representation
learning and object discovery.
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4.1 LEARNABLE STEERABLE RIESZ AND GENERALIZATION

To construct a feature extraction mechanism that is equivariant to scale and rotations, we im-
prove the Riesz with a Learnable steerable Riesz transform Netwotk (LeaRN) that combines
the input image, first-order, and second-order Riesz transforms, modulated by learnable spectral
scaling factors in the frequency domain. Specifically, let sℓ : R2 → R+, for ℓ = 0, 1, . . . , L,
be radially symmetric functions (i.e., sℓ(ξ) = sℓ(|ξ|)) expanded using a Laplacian basis to
efficiently capture peaked frequency responses thanks to heavy-tailed Laplacian distributions:
sℓ(|ξ|) =

∑M
m=1 wℓm exp (−bm|ξ − ξm|) where wℓm ∈ R+ are learnable weights, bm > 0 are

fixed scale parameters, and ξm ∈ R+ are fixed frequency centers, ensuring radial symmetry since
the basis depends only on |ξ|. We introduce here a feature transform, denoted as T : L2(R2) →
L2(R2), where features A are transformed into features T [A] in the Fourier domain as follows:
T [A] =

[
s0(|ξ|)F(A),

{
sk(|ξ|)F(R1(RαkA))

}
k
,
{
sj(|ξ|)F(R2(RαjA))

}
j
,
{
sjk(|ξ|)F(RjkA)

}
j,k

]
,

where, Rj , j = 1, 2, are first-order Riesz transforms with , Rjkf = Rj(Rkf), j, k ∈ {x, y}, are
second-order Riesz transforms, Rαk ,Rαj denote rotations by angles αk, αj ∈ [0, 2π), with N,M
the number of discretized angles, sℓ(|ξ|), ℓ = 0, 1, . . . , N +M + 3, are radially symmetric scaling
functions. To promote sparsity in the weights and peaked frequency responses that emphasize specific
frequency bands, we introduce an L1 regularization term over the weights: R1(Θ) =

∑
ℓ,m |wℓm|.

To ensure smoothness, we add an L2 regularization term on the gradient of sℓ: R2(Θ) =
∑
ℓ ∥∇sℓ∥22.

Aliasing: The steerable Riesz transform, prevents aliasing from geometric transformations by
computing equivariant features in the frequency domain at full resolution before any downsampling.
Since it corresponds to structured, continuous operations in the Fourier domain, they do not introduce
artificial discontinuities or high-frequency spikes before downsampling that would otherwise cause
aliasing (see Appendix C.2 for proof).

Generalizability: Given an equivariant network incorporating steerable group convolutions, we
propose augmenting the network with a learnable steerable Riesz transform upstream to the initial
group convolution layers in the aim to build a more generalizable architecture able to well approximate
equivariant feature maps ϕ (see definition 1). Theorem 2 about Riesz Equivariant feature bounds
confirms generalizability on the basis of homogeneous bounds for equivariant networks:
Theorem 1. [Homogeneous Bounds for Equivariant Networks Behboodi et al. (2022)] For any
equivariant network f , with high probability we have:

L(fW) ≤ L̂γ(fW) + Õ

(√√√√(∏l ∥Wl∥22
γ2mη

)( L∑
l=1

√
M(l, η)

)2 ∑
l

∑
ψ,i,j ∥Ŵl(ψ, i, j)∥2F /dimψ

∥Wl∥22

)

where L(fW ) represents the true expected loss and L̂γ(fW ) is the empirical margin loss. γ denotes the
classification margin parameter, while η ∈ (0, 1) is a perturbation probability parameter. L is the num-
ber of network layers, with Wl representing the weight matrices at layer l. B = max (1,

∏
l ∥Wl∥2)

bounds the network output, and β =
∏
l ∥Wl∥2 is the product of spectral norms. Ŵl(ψ, i, j) are

the kernel parameters in the Fourier domain for irreducible representation ψ, with dimψ being the

dimension of that representation and M(l, η) := log

(∑L
l=1

∑
ψml,ψ

1−η

)
maxψ (5ml−1,ψml,ψcψ).

Definition 1. An ideal equivariant feature map ϕ : L2(R2,Rcin) → L2(SO(2),Rcout) satisfies the
following property: for any x ∈ L2(R2,Rcin) and h ∈ SO(2), with the action xh(y) = x(h−1y) for
y ∈ R2, the feature map is equivariant under SO(2), i.e.,

ϕ(xh)(g) = ϕ(x)(hg)

for all g ∈ SO(2).

Theorem 2. [Riesz Equivariant feature bounds] For a learnable steerable Riesz Transform,
Rnet(x) ∈ L2(R2)2, and ϕ(x) as defined above satisfying the assumption that the Fourier co-
efficients of ϕ(x), are significant only for |m| ≤ 1, when lifted to the L2(SO(2)) space as x̃, R̃net(x),
the following inequality

∥∥∥R̃net(x)− ϕ(x)
∥∥∥
2
< ∥x̃− ϕ(x)∥2 holds.

Through our proof (D) we argue that if the Riesz representation tightens the homogeneous bound it
would in turn improve the model’s generalization.
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4.2 LEARNING COMPOSITE TRANSFORMATIONS

Geometric transformations have an impact on training data efficiency. We focus here on rigid
transformations. As illustrated in Figure 2, we consider three approaches to handling transformations:

Built-in equivariance: Implementing the downstream task F with inherent equivariance (F (ραx) =
ρ′αF (x)) enables generalization from minimal examples. However, practical implementations often
use discrete rotation groups (e.g., P4), requiring exposure to samples covering the quotient space
(α ∈ [0, π2 ]). This is illustrated in Fig. 2(a-b), where ConvNets and ReResNets provide only discrete
equivariance, necessitating training across variations within each equivalence class.

Learning equivariance: When F lacks equivariance, we can learn a transformer function:
G(x) := F (ρf(x)x), where f predicts the transformation parameter. For rotated inputs, G(ραx) =
F (ρf(ραx)ραx). An optimal f would predict −α+K, yielding G(ραx) = F (ρKx), requiring only
one canonical rotation to learn F . This corresponds to Fig. 2(c-d), where Canonicalization and STN
approaches capture appearance but require extensive training data for transformation estimation.

Decomposing composite transformations: For compositions like Ttρα, our two-step approach
maximizes data efficiency: H(x) := F (ρfρ(y)y) where y(x) = TfT (x)x. With optimal transfor-
mation predictors, H(Ttραx) removes all variation factors. Making fT translation-equivariant and
rotation-invariant, while making fρ rotation-equivariant (Fig. 2(e-f)), allows independent learning
of fine translations and continuous rotations, breaking the combinatorial requirement for training
variations.

4.3 LEARNABLE STEERABLE RIESZ-ENHANCED EQUIVARIANT STN BASED NETWORK: FROM
VARIATIONAL AUTOENCODING TO OBJECT DISCOVERY

In this section we introduce the hybrid rotation, scale and translation equivariant architecture as
illustrated in Figure 1. It combines our learnable steerable Riesz transform with STNs and ReResNet
to learn object representations in an unsupervised way while maintaining perfect equivariance.

Given an input image x ∈ RH×W×C , the goal is to produce a reconstructed image x̂ while learn-
ing features that are equivariant to transformations g ∈ G, where G represents the group of 2D
translations, scales and rotations. First, input image x goes through the encoder which has the
LeaRN upstream the ReResNet followed by the STN. It extracts the features, followed by the
group convolutions to extract Roto-Scale-Translation Equivariant features (RST-Equiv. features).
Group invariant pooling then aggregates it to produce rotation-invariant features Ainv ∈ RH′×W ′×K :
Ainv(t, s) = maxrARST(t, s, r). These rotation-invariant features are then processed by an STN to es-
timate the translation and scale parameters (t, s). The STN outputs a translation matrix T (t) ∈ R2×3,
which is applied to the input feature map to align it spatially. The scaled and translated features Atrans
are obtained by applying T (t) to ARST via a grid sampler, which according to the transformation
produces a glimpse of the object. Next, the scaled and translated glimpse Atrans ∈ RH′×W ′×K×R

is used to estimate the rotation parameter α probabilistically. The glimpse is passed with α back
to the STN, producing aligned glimpse Aaligned, which is rotation, scale and translation-equivariant.
This network that sequentially estimates the transformation parameters is what we call EqSTN. The
aligned features from the network are passed through a glimpse network to reconstruct glimpse,
which when passed through a reverse sampler reconstructs the full image x̂ with the correct position,
scale and orientation of the object. This two-step disentanglement of translation, scale and rotation
together with the Riesz network (LeaRN-EqSTN) reduces the combinatorial complexity of learning
SE(2)-equivariant features, as explained before. We implement our architecture in VAE (Kingma
et al.) and glimpse-based object discovery (Karazija et al., 2021) settings.

VAE: We use a gaussian mixture VAE (Dilokthanakul et al., 2016; Yang et al., 2019) for autoencoding
settings. This setting is not arbitrary, it has been chosen specifically to help build the object detection
setting, which is a glimpse-based architecture with VAE at its core. But, our approach, since it
inherently provides an inductive bias to the feature learning, can essentially be also included in, for
instance for UNet-based image generative models like Diffusion or Conditional Flow Matching. We
structure latent space with: zpres (object presence), zwhat (object appearance), zcls (class probabilities),
and zα (rotation angle), while the scale and translation are predicted deterministically as described in
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Figure 2: Illustration of the variations necessary in the training set to learn the transformation
estimator (if present) and the downstream "appearance" model.

the above section. The rotation latent is modeled using a circular normal i.e. a Von Mises distribution
(Davidson et al., 2018): p(zα) = VM(µα, κ).

Object Discovery: Our object discovery model is in the likes of SPAIR (Crawford & Pineau, 2019),
GMAIR (Zhu et al., 2022), and SPACE (Lin et al., 2020). Our encoding model follows the same
variational settings as above. The input is divided into H ×W grid. For each cell (i, j), it learns:
zijwhat ∈ RA, zijdepth ∈ R, zijpres ∈ [0, 1], zijwhere ∈ R5, zijcls ∈ [0, 1]C , and zijα ∈ [−π, π]. Rotation-
invariant variables (zpres, zwhere, zdepth, zcls) enable stable object discovery, while rotation-equivariant
zα captures angular information. We have a version with and without a background model, the
former being inspired from SPACE together with an additional latent category variable modeled after
Gaussian mixtures as in GMAIR (see Appendix E). We call this model SPAGMACE. We introduce a
fake bounding-box loss Lfakebbox =

∑
i

∑
j(1− γij)2 · zijpres to discourage transparent detections

with non-zero presence probability.

5 EXPERIMENTAL EVALUATION

Model Accuracy (%)

GroupConv
(GCNN)

82.76

Standard CNN 70.41
Riesz + CNN 89.78
Riesz + GCNN 93.45
Steerable Riesz +
GCNN

95.76

LeaRN + GCNN 98.44
Standard DFT +
CNN

73.47

Standard DFT +
GCNN

83.58

Table 1: Classification accura-
cies of different models.

Our primary task of focus is the one of object discovery synthe-
sized in Tab.2. To compare our model in a simpler setting and
isolate the effect of different components, we also compare it in a
more traditional autoencoding setting (images with a single object)
in Tab.3, and on classification in Tab.5.

5.1 DATASETS

In our experimental framework, we employ a variety of datasets
tailored to unsupervised representation learning. For the VAE
studies, we use the rotated MNIST (Rotated-MNIST) dataset to
create a roto-scale MNIST. Each variant incorporates images ro-
tated randomly according to U(0, 2π) and random scaling sampled
from U(0.5, 2.5). Additionally, our work includes three real-world
datasets. Firstly, the Tomotwin-100 Cryo-EM benchmark dataset
(Jeon et al., 2024) is used. We extract 10 classes out of the avail-
able 100, focusing on non-rotation symmetric objects, and select
the SNR 0.01 version to highlight the noise-filtering capability of
our learnable Riesz. We also engage with the WHOI-Plankton
dataset (Orenstein et al., 2015). Given its noticeable class imbal-
ance, we reweigh it into 10 equally balanced classes featuring 1000 training and 200 test images,
apply a circular crop, and resize them to 32 × 32 pixels following the procedure established by the
state-of-the-art model IRL-INR. Lastly, among the MVTEC dataset (Bergmann et al., 2019), we
leverage three classes with specific orientations: screw, hazelnut, and cable.

For object discovery, a synthetic dataset Multi-TranslationRotationScaling-MNIST (MTRS-MNIST)
is crafted to evaluate equivariance regarding scale, rotation, and translation. More precisely, we
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Low Data More Data
AP↗ mAP↗ RoE↘ AP↗ mAP↗ RoE↘

MTRS-MNIST
SPAIR 75.4 × × 81.43 × ×
GMAIR 75.48 51.23 × 82.04 57.13 ×
GNM 79.14 × × 85.97 × ×
LeaRN-EqSTN+GMAIR 94.32 70.44 0.35 95.77 72.11 0.39
(ablations)
EqSTN+GMAIR 82.59 61.87 0.55 85.14 65.3 0.49
ReResNet+GMAIR 78.26 58.75 × 80.34 61.86 ×
GMAIR+Lfakebbox 78.74 58.34 × 80.79 60.97 ×

MVTec D2S
SPACE 75.34 × × 82.9 × ×
SPAGMACE 74.15 42.24 × 84.09 43.8 ×
GNM 81.48 × × 87.37 × ×
LeaRN-EqSTN+SPAGMACE 84.34 61.70 0.61 85.97 67.25 0.56
LeaRN-EqSTN+SPACE 84.19 × 0.62 85.83 × 0.56

MVTec Screws
SPACE 67.55 × × 72.17 × ×
SPAGMACE 71.43 59.76 0.47 74.54 59.97 0.47
GNM 71.85 × × 71.91 × ×
LeaRN-EqSTN+SPAGMACE 77.42 62.12 0.44 78.49 61.78 0.45
LeaRN-EqSTN+SPACE 79.42 × × 79.92 × ×

MQRT-MNIST
LeaRN-EqSTN+GMAIR 94.8 67.33 0.69 96.0 70.58 0.61

Table 2: Object discovery models comparison on
detection and orientation metrics across datasets.

More Data Low Data
NMI ARI SSIM NMI ARI SSIM

SR-MNIST
EqSTN+GMVAE 0.81 0.70 0.92 0.68 0.59 0.81
TARGET VAE 0.78 0.65 0.86 0.63 0.51 0.77
IRL-INR 0.83 0.78 0.94 0.65 0.51 0.69
LeaRN-EqSTN+GMVAE 0.88 0.80 0.95 0.78 0.62 0.83
LeaRN+TARGET VAE 0.82 0.72 0.93 0.69 0.60 0.82

Tomtwin
EqSTN+GMVAE 0.62 0.55 0.72 0.55 0.46 0.63
TARGET VAE 0.60 0.51 0.67 0.50 0.40 0.60
IRL-INR — — — — —
LeaRN-EqSTN+GMVAE 0.72 0.62 0.74 0.67 0.48 0.65
LeaRN+TARGET VAE 0.64 0.56 0.72 0.58 0.47 0.64

Plankton
EqSTN+GMVAE 0.64 0.57 0.75 0.57 0.48 0.66
TARGET VAE 0.61 0.53 0.70 0.50 0.41 0.62
IRL-INR 0.65 0.63 0.76 0.51 0.41 0.56
LeaRN-EqSTN+GMVAE 0.75 0.65 0.77 0.69 0.50 0.67
LeaRN+TARGET VAE 0.65 0.58 0.75 0.56 0.49 0.66

MVTec
EqSTN+GMVAE 0.97 0.95 0.88 0.94 0.91 0.75
TARGET VAE 0.98 0.94 0.82 0.9 0.87 0.67
IRL-INR 0.92 0.88 0.75 0.84 0.78 0.61
LeaRN-EqSTN+GMVAE 0.98 0.96 0.89 0.95 0.92 0.76
LeaRN+TARGET VAE 0.97 0.95 0.88 0.94 0.91 0.75

Table 3: VAE clustering and reconstruc-
tion metrics across datasets.

generate composite images by randomly choosing 1-4 digits and subjecting them to random rota-
tions from U(0, 2π) and scales from U(0.5, 2.5), positioning them arbitrarily on a 128x128 pixel
black background, thus creating diverse configurations to test the model’s adaptability to various
orientations, scales, and placements. Additional datasets include MVTec D2S (Follmann et al., 2018)
and MVTec Screws (MVTec., 2022). To evaluate model performance under varying data settings,
we construct two versions of each dataset one with the whole dataset that we call More Data (MD)
and one with 25% of the whole data, that we refer as Low Data (LD). Moreover, a specialized
MQTR-MNIST variant focuses on classes 3 and 4, where the training set images are confined to
rotations within [0, π4 ], while the test set spans rotations beyond π

4 .

5.2 EXPERIMENTS AND RESULTS

We compare our proposed model LeaRN-EqSTN+GMVAE to benchmark unsupervised equivariant
models for representation learning IRL-INR (Kwon et al., 2023), TARGET-VAE (Nasiri & Bepler,
2022) and EqSTN+GMVAE, unlike (Kaba et al., 2023). Quantitative results of (Cha et al., 2025),
are poor hence we show them in Appendix F.1. In addition, we evaluate the performance of our
Learnable Riesz transform when plugged to TARGET-VAE. Evaluation focuses on reconstruction
fidelity (SSIM, Wang et al. (2004)) and clustering effectiveness (NMI, Strehl & Ghosh (2002), ARI
(Rand, 1971)), with latent space clustering using k-means. All models use a fixed latent dimension of
32; our model uses N = 8 discrete rotations, same as TARGET-VAE P8, a detailed ablation study is
provided in Appendix F.1.

We evaluate the object discovery models on their accuracy in predicting bounding boxes, rota-
tion equivariance, and data efficiency for recognizing objects across rotations, scales, and trans-
lations without extensive data augmentation. We compare our model LeaRN-EqSTN+GMAIR
GNM, GMAIR and SPAIR on MTRS-MNIST, and SPACE, GNM, LeaRN-EqSTN+SPACE, LeaRN-
EqSTN+SPAGMACE on the other two datasets with background clutter (since they can handle
backgrounds). Object discovery performance is measured using Average Precision (AP) and
class-specific mean Average Precision (mAP) (Buckland & Gey, 1994; Ruppert, 2004). Sec-
ondly, to demonstrate rotation-equivariance, we design a custom metric that assesses the con-
sistency of the predicted angles, focusing on relative consistency rather than absolute accuracy,
as there is no predefined reference angle for the predictions. The normalized entropy of the an-
gle difference between predicted and actual angles modulo 2π, is here used as a metric. For
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this purpose, interval [0, 2π] is divided into n regular bins, the corresponding discrete probabil-
ity density function pi=1,..,n is estimated from statistical frequencies, and its Shannon entropy
H(p) = −

∑n
i=1 pi log2 pi is assessed. The metric named Rotation-offset Entropy (RoE) is formed

by normalizing entropy: RoE = H/log2(n). RoE ranges from 0 to 1, indicating the level of un-
certainty in angle difference, where 1 represents high disorder and 0 represents low disorder.
Finally, we evaluate the model’s generalization capabilities by training and testing on quarterly
rotated MNIST (MQRT MNIST), and testing its predictions on out of distribution orientations.

Table 4: Equivariance Error Compari-
son(↓)

Model LEE

TARGET-VAE 0.184
LeaRN+TARGET-VAE 0.162
EqSTN+GMVAE 0.159
LeaRN-EqSTN+GMVAE 0.097

Results: In VAE experiments, LeaRN-EqSTN+GMVAE
achieves better performance against all models in terms of
NMI, ARI, and SSIM metrics, with notably superior perfor-
mance in low-data regimes. In object discovery experiments,
LeaRN-EqSTN+GMAIR and LeaRN-EqSTN+SPAGMACE
have the highest AP scores across all the evaluated datasets,
with the highest classification mAP scores, improved perfor-
mance scaling with increased data availability, and consistent
angle predictions with low Rotation-offset Entropy scores. Our
architecture exhibits robust generalization capabilities, main-
taining the best performance even with limited training data.
We also report on average of all datasets, the lowest Lie derivative equivariance error (LEE) (Table: 4
for learned equivariance as introduced in Gruver et al. (2022). Further, our ablation studies confirm
the effectiveness of our integrated approach, with the complete model consistently outperforming
partial variants across all metrics, validating our architectural design choices.

6 CONCLUSION

In this work, we introduce a learnable steerable Riesz transform integrated with Spatial Transformer
Networks (STNs) and equivariant architectures to effectively model composite transformations in
an unsupervised learning framework. By incorporating sequential transformation estimation, our
approach improves model generalization with limited data and reduces data complexity. Experiments
on VAEs and object discovery tasks demonstrate enhanced data efficiency, faster training, and
improved transformation awareness compared to traditional methods. Our findings highlight the
potential of combining learned and enforced equivariance, paving the way for more robust and data
efficient unsupervised learning models. Future work could focus on leveraging the Riesz transform’s
SO(3) representation for seamless integration with SO(3)-equivariant CNNs.
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A APPENDIX

In this document, we present the materials that were summarized due to space limitation in the main
text. It is organized as follows:

• Appendix A contains some details to help for the introduction of the LeaRN-EqSTN model,
details about spatial transformers, group convolutional layers, steerable CNNs and Riesz
transform.

• Appendix B reports on the aliasing phenomenon in CNNs and the Riesz transform approach
to solving it.

• Appendix C includes a proof of Theorem 2 highlighting the impact of the Riesz transform
in aligning representations with equivariant features, and details the integration of the Riesz
transform within a group-equivariant CNN.

• Appendix D focuses on unsupervised detection in presence of multiple objects, showing the
potential of transformation invariance and equivariance in terms of training data-efficiency,
together with additional training time measurements.

• Appendix E provides the empirical and qualitative results, with ablation studies to demon-
strate the effectiveness of each component in our model.

B BACKGROUND WITH SOME DETAILS

Related details about the concepts on which our architecture (illustrated in Fig. 1 of the main paper)
is based on, are given in this section.

B.1 SPATIAL TRANSFORMER NETWORKS

An STN transforms an input feature map U ∈ RH×W×C (e.g., an image with height H , width W ,
and channels C) into an output feature map V ∈ RH′×W ′×C . It consists of three components: a
localization network, a grid generator, and a sampler.Jaderberg et al. (2015)

• The localization Network, floc : RH×W×C → Rk predicts the parameters of spa-
tial transformation. For a 2D affine transformation (k = 6): the parameters are
θ = {a11, a12, a21, a22, tx, ty} and the transformation matrix is:

Tθ =

[
a11 a12 tx
a21 a22 ty
0 0 1

]
This matrix operates in homogeneous coordinates to map input coordinates (xs, ys) to
output coordinates (xt, yt).

• The Grid Generator computes a sampling grid by applying the inverse transformation T−1
θ

to output coordinates (xt, yt): [
xs
ys
1

]
= T−1

θ

[
xt
yt
1

]
For an affine transformation:[

xs
ys

]
=

[
a11 a12
a21 a22

]−1 ([
xt
yt

]
−
[
tx
ty

])
Coordinates are typically normalized to [−1, 1] for consistency across image sizes.

• The Sampler uses bilinear interpolation to compute image V (xt, yt) from image U at
source coordinates (xs, ys):

V (xt, yt) =

H∑
n=1

W∑
m=1

U(m,n) ·max(0, 1− |xs −m|) ·max(0, 1− |ys − n|)

The interpolation kernel max(0, 1−|xs−m|) ·max(0, 1−|ys−n|) ensures differentiability,
enabling gradient flow. This is applied independently to each channel.
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TRAINING

The STN is trained end-to-end by minimizing a task-specific loss whose gradients with respect to
parameters θ are backpropagated through the sampler and grid generator to the localization network,
enabling the STN to learn a geometric transformation optimizing the current task. For example, the
localization network is intended to deliver the following matrix:

Tθ =

[
cosα − sinα 0
sinα cosα 0
0 0 1

]
when a rotation by angle α is applied, transforming target points with coordinates (xt, yt)

T into
source coordinates (xs, ys)T . The sampler interpolates from source image U to warp it into image V .

LIMITATIONS

STNs face several challenges:

1. Lack of Equivariance: Unlike convolutional neural networks (CNNs) with translational
equivariance, STNs must learn transformations explicitly, requiring diverse training data to
cover the transformation space (e.g., the 6D affine group).

2. Exponential Complexity: In scenarios with multiple objects, the transformation space grows
as |Aff(2)|N , where N is the number of objects, making comprehensive training infeasible.

3. Data Dependence: Generalization depends on training data diversity. Without examples of
certain transformations (e.g., large rotations), STNs may fail on out-of-distribution data.

4. Stability: The matrix
[
a11 a12
a21 a22

]
must be non-singular for T−1

θ to exist. Unstable θ

predictions can cause numerical issues.

COMPARISON TO EQUIVARIANT ARCHITECTURES

Equivariant networks encode symmetries (e.g., translation or rotation) directly, reducing data re-
quirements. For example, a CNN satisfies f(U(· − t)) = f(U)(· − t) for translations t = (tx, ty)

T .
STNs approximate this by learning tx, ty , which is less robust without sufficient data. STNs provide
a flexible, differentiable framework for learning spatial transformations, integrating localization,
grid generation, and sampling. However, their reliance on data-driven learning limits generalization
in complex or under-sampled transformation spaces. Hybrid approaches combining STNs with
equivariant architectures may address these challenges.

B.2 GROUP CONVOLUTIONS

Standard convolutional neural networks (CNNs) are effective for handling translations due to their
translational equivariance but struggle with rotations, as they do not inherently recognize that a rotated
object is equivalent to its unrotated counterpart. Group convolutional layers Cohen & Welling (2016)
and steerable CNNs address this limitation by embedding rotational symmetries into the network
architecture, reducing the need for extensive data augmentation. This section provides a mathematical
overview of these methods, focusing on their mechanisms and advantages.

GROUP CONVOLUTIONAL LAYERS

Group convolutional layers leverage the symmetry group Pr, which combines translations in Z2 with
r discrete rotations by angles θk = k · 2π

r , where k ∈ {0, 1, . . . , r − 1}. The group Pr represents
transformations that include both a translation by vector x ∈ Z2 and a rotation by angle α.

GROUP CONVOLUTION

For an input feature map f : Z2 → R and a kernel ψ : Z2 → R, the group convolution over Pr is
defined as:

(f ⋆ ψ)(g) =
∑
x∈Z2

f(x)ψ(g−1x),

14
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where g ∈ Pr is a group element combining a translation and a rotation. The inverse g−1 applies
the reverse transformation (e.g., rotating by −θk and translating backward by x). For each g, the
kernel is transformed (e.g., rotated by θk), and the convolution produces a feature map indexed by
both translation and rotation.

EQUIVARIANCE

The group convolution ensures equivariance to Pr-transformations. If the input f is transformed by
h ∈ Pr, i.e., f ′(x) = f(h−1x), the output feature map transforms predictably:

(f ′ ⋆ ψ)(g) = (f ⋆ ψ)(h−1g).

For example, with r = 4 (rotations by 0◦, 90◦, 180◦, 270◦), kernel ψ is applied at each rotation,
producing r feature maps. If the input rotates by 90◦, the feature maps shift cyclically, preserving the
rotational structure.

B.3 STEERABLE CNNS

Steerable CNNs extend rotational equivariance to the continuous rotation group SO(2), handling
arbitrary angles efficiently using steerable filters.

STEERABLE FILTERS

A steerable filter Ψ : R2 → R is expressed as a linear combination of basis functions:

Ψ(x) =

M∑
m=1

cmψm(x),

where ψm : R2 → R are basis functions (e.g., circular harmonics) and cm are learnable coefficients.
When rotated by α ∈ SO(2), the filter transforms as:

Ψ′(x) = Ψ(ρ−1
α x),

where ρα is the 2D rotation matrix:

ρα =

[
cosα − sinα
sinα cosα

]
.

The basis functions ψm are chosen such that Ψ′(x) can be expressed as a linear combination of the
same ψm, with transformed coefficients c′m.

CONVOLUTION WITH STEERABLE FILTERS

The convolution with a steerable filter Weiler & Cesa (2019); Weiler et al. (2018); Andrearczyk
et al. (2019); Cesa et al. (2022) produces a feature map indexed by both spatial position x ∈ R2 and
rotation angle α:

(f ⋆Ψ)(x, α) =

∫
R2

f(y)Ψ(ρ−1
α (x− y)) dy.

This feature map is equivariant to rotations: if the input is rotated by β, the output shifts in the
α-dimension:

(f(ρ−1
β ·) ⋆ ψ)(x, α) = (f ⋆ ψ)(ρ−1

β x, α+ β).

COMPARISON TO STANDARD CNNS

Standard CNNs are translation-equivariant but not rotation-equivariant. A rotated input produces a
different feature map, requiring data augmentation to learn rotational invariance. Group and steerable
CNNs address rotational equivariance directly to ensure that a rotated input produces a predictably
transformed output, enhancing robustness with less training data.
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B.4 RIESZ TRANSFORM AND PROPERTIES

The Riesz transform is a multidimensional generalization of the Hilbert transformHoffman (1997);
Gilbarg et al. (1977), operating on functions defined over Rd. For a function f : R2 → R (e.g., an
image channel), the 2D Riesz transform is defined as a vector-valued operator R = (R1,R2) where
each component Rj (j = 1, 2) is given by:

Rjf(x) = lim
ϵ→0

1

π

∫
|y|>ϵ

yj
|y|3

f(x− y) dy, j = 1, 2,

where x = (x1, x2), y = (y1, y2), and |y| =
√
y21 + y22 . This integral is understood in the principal

value sense to handle the singularity at y = 0.

In the frequency domain, the Riesz transform is more conveniently expressed. Let F(ξ) denote the
Fourier transform of f , defined as:

F(ξ) =

∫
R2

f(x)e−iξ·x dx, ξ = (ξ1, ξ2) ∈ R2.

The Riesz transform Rjf in the frequency domain is:

R̂jf(ξ) = i
ξj
|ξ|

F(ξ), |ξ| =
√
ξ21 + ξ22 , j = 1, 2.

The factor i ξj|ξ| acts as a directional derivative in the frequency domain, emphasizing the j-th direction
while normalizing by the frequency magnitude. In practice, a small ϵ (e.g., 10−8) is added to |ξ| to
avoid division by zero, as implemented in the Higher-order Riesz transforms can also be defined. For
example, second-order terms such as Rxx, Ryy, and Rxy are computed as:

R̂xxf(ξ) = − ξ21
|ξ|2

F(ξ), R̂yyf(ξ) = − ξ22
|ξ|2

F(ξ), R̂xyf(ξ) = −ξ1ξ2
|ξ|2

F(ξ).

These terms capture second-order directional information, analogous to second derivatives, and are
used in our model to enrich the feature set.

The Riesz transform possesses several properties that make it particularly suitable for rotation-
equivariant feature extractionUnser & Van De Ville (2010):

Isometry: The Riesz transform is an isometry in L2(R2), meaning it preserves the L2-norm of the
input signal:

∥Rjf∥L2 = ∥f∥L2 , j = 1, 2.

This property ensures that the transform does not amplify or diminish the energy of the signal, making
it stable for feature extraction in neural networks.

Rotation Equivariance: The Riesz transform is equivariant under the action of the rotation group
SO(2). For a rotation g ∈ SO(2), represented by a 2D rotation matrix, and a rotated function
fg(x) = f(g−1x), the Riesz transform satisfies:

Rj(fg) = ρ(g)(Rjf),

where ρ(g) is the representation of g that rotates the vector field (R1f,R2f). Specifically, if g rotates
by angle α, then:

(R1(fg),R2R(fg)) =

(
cosα − sinα
sinα cosα

)
(R1f,R2f).

This equivariance ensures that the Riesz transform’s output transforms predictably under rotations, a
critical property for building rotation-invariant models.
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Steerability: The Riesz transform components R1f and R2f form a steerable basis, meaning that
directional derivatives at any angle α can be obtained as a linear combination:

steeredα = (cosα)R1f + (sinα)R2f.

This steerable property allows the model to compute responses at arbitrary orientations without
needing to discretely rotate filters, reducing computational overhead. In our implementation, the
computes both fixed orientations (αk = kπ

8 , k = 0, . . . , 7) and learnable orientations, enhancing
flexibility while maintaining equivariance. Harmonic Analysis Connection: In the Fourier domain,
the Riesz transform corresponds to a projection onto the m = ±1 modes of the SO(2) Fourier
expansion. For a frequency ξ and angular mode m, the Riesz transform acts as:

R̂1f(ξ,m) ∝ f̂(ξ,m− 1) + f̂(ξ,m+ 1),

emphasizing directional gradients that are inherently rotation-equivariant. This connection to har-
monic analysis underpins its utility in group-equivariant neural networks.

C ALIASING IN STANDARD CNNS AND THE RIESZ TRANSFORM TO SOLVING
IT

Aliasing occurs when a signal is sampled at a rate insufficient to capture its highest frequency
components, causing high frequencies to be misrepresented as lower frequenciesRafael (2002). In
CNNs, aliasing arises during downsampling operations (e.g., max-pooling or strided convolutions),
which reduce the spatial resolution of feature maps. This violates the Nyquist-Shannon sampling
theorem, which states that a signal must be sampled at least twice its highest frequency to be
reconstructed accurately. CNNs rely on translation equivariance, meaning that if an input image
is shifted (translated), the output feature maps shift accordingly without changing their structure.
Aliasing disrupts this property by introducing distortions, particularly incorrect phase shifts in the
frequency domain, leading to inconsistent feature representations. This affects the network’s ability to
generalize across translated inputs, critical for tasks like image recognition.Zou et al. (2023); Gruver
et al. (2022); Zhang (2019)

In practice, digital processing is applied on images discretized on a grid, here assumed to be M ×M ,
and the Discrete Fourier Transform (DFT) is defined in the discretized frequency domain as

F [k, l] =

M−1∑
m,n=0

f [m,n]e−2πi(mk+nl)/M , k, l ∈ {0, . . . ,M − 1}.

to compute the frequency components of digital image f [m,n] = f
(
m
M , nM

)
, m, n ∈ {0, . . . ,M−

1}.). Each index pair (k, l) corresponds to a frequency ξ = (k/M, l/M). The discretization of the
frequency domain involves a periodization of the image in the spatial domain, and the highest
frequency that can be represented is fs =M/2 (half the Nyquist Frequency): any frequency beyond
this limit is aliased in [−M/2,M/2]2.

C.1 ALIASING DUE TO DOWNSAMPLING

Downsampling by a factor of 2 reduces the grid from M × M to M/2 × M/2 by assuming
here that M is an even integer. That typically occurs in CNNs in stride-2 convolution or pooling,
effectively halving the spatial resolution. This is equivalent to reducing the sampling rate, which
lowers the Nyquist frequency to f ′NS = M/2. The DFT of downsampled image fdown[m,n] =
f [2m, 2n], m, n ∈ {0, . . . , (M/2)− 1}, is:

Fdown[k, l] =

M/2−1∑
m,n=0

f [2m, 2n]e−2πi(mk+nl)/(M/2), k, l ∈ {0, . . . , (M/2)− 1}.

To understand aliasing, we need to relate Fdown to the original DFT F . The DFT sums over the
reduced grid m,n ∈ {0, . . . , (M/2)− 1}. The downsampled DFT can be rewritten using the original
image’s DFT. The well-known standard aliasing formula gives:

Fdown[k, l] =
1

4
(F [k, l] + F [k +M/2, l] + F [k, l +M/2] + F [k +M/2, l +M/2]) .
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The factor 1/4 arises because the DFT of a downsampled signal averages contributions from frequency
components that are shifted by multiples of the new sampling frequency. The terms F [k +M/2, l],
F [k, l+M/2], and F [k+M/2, l+M/2] represent high-frequency components (beyond M/4) that
“fold” into the lower frequency range k, l ∈ {0, . . . ,M/2− 1}.

The high-frequency components (e.g., F [k +M/2, l]) are outside the limit M/4. These components
alias into the lower frequency range, causing distortions because they are indistinguishable from
lower frequencies in the downsampled signal.

TRANSLATION AND PHASE ERRORS

Now, consider a translated image f [m− b0, n− b1]. In the frequency domain, such a translation intro-
duces a phase shift: component F [k, l] is modulated as follows: F [k, l]e−2πi(b0k+b1l)/M , and the DFT
after downsampling becomes 1

4

∑
p,q∈{0,M/2} F [k + p, l + q]e−2πi(b0k+b1l)/Me−2πi(b0p+b1q)/M ..

For aliased terms (e.g., p = M/2), the modulation term expresses as e−2πib0(k+M/2)/M =
e−2πib0k/Me−πib0 . where e−πib0 is an additional factor due to alisasing, causing a phase error
which disrupts translation equivariance. The downsampled image’s frequency components are mod-
ulated incorrectly, meaning the network’s response to a translated input is not a simple shift of
the original response. Non-linearities (e.g., ReLU) worsen this by generating higher harmonics,
increasing the impact of aliased frequencies.

C.2 THE RIESZ TRANSFORM SOLUTION

The Riesz transform provides a steerable, multi-directional representation. This allows for selective
filtering of high-frequency components in specific directions, which can help design anti-aliasing
filters that preserve important features while suppressing aliasing artifacts Lee (2004); Bjelopera et al.
(2016). Our scale adaptive transform enables adaptive sampling or filtering techniques that prioritize
critical signal components, reducing the risk of aliasing in areas with rapid changes.

̂Rj(f(· − b))(ξ) = i
ξj
|ξ|
f̂(ξ)e−2πiξ·b.

Since:
R̂jf(ξ) = i

ξj
|ξ|
f̂(ξ),

we have:
̂Rj(f(· − b))(ξ) = e−2πiξ·bR̂jf(ξ).

In the discrete setting:

Gj [k, l] = i
k√

k2 + l2
F [k, l]e−2πi(b0k+b1l)/M (j = 1).

The Riesz transform preserves the phase shift exactly, as ξj
|ξ| is independent of translation. In the

spatial domain, this corresponds to:

(Rjf)[m− b0, n− b1].

This means the Riesz-transformed feature map shifts with the input, satisfying translation equivariance
at full resolution.

Downsample the Riesz-transformed signal gj [m,n] = (Rjf)[m,n]:

gj,down[m,n] = gj [2m, 2n], m, n ∈ {0, . . . ,M/2− 1}.
The DFT is:

Gj,down[k, l] =

M/2−1∑
m,n=0

gj [2m, 2n]e
−2πi(mk+nl)/(M/2).

Using the aliasing formula:

Gj,down[k, l] =
1

4

∑
p,q∈{0,M/2}

Gj [k + p, l + q].
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Translated Signal For the translated signal:

Gj [k + p, l + q] = i
k + p√

(k + p)2 + (l + q)2
F [k + p, l + q]e−2πi(b0(k+p)+b1(l+q))/M (j = 1).

The phase term is:

e−2πi(b0(k+p)+b1(l+q))/M = e−2πi(b0k+b1l)/Me−2πi(b0p+b1q)/M .

Substitute into the downsampled DFT:

Gj,down[k, l] =
1

4

∑
p,q∈{0,M/2}

[
i

k + p√
(k + p)2 + (l + q)2

F [k + p, l + q]e−2πi(b0(k+p)+b1(l+q))/M

]
.

Factor out the phase:

Gj,down[k, l] =
1

4
e−2πi(b0k+b1l)/M

∑
p,q∈{0,M/2}

[
i

k + p√
(k + p)2 + (l + q)2

F [k + p, l + q]e−2πi(b0p+b1q)/M

]
.

The downsampled DFT is:

Gj,down[k, l] =
1

4
e−2πi(b0k+b1l)/M

∑
p,q∈{0,M/2}

[
i

k + p√
(k + p)2 + (l + q)2

F [k + p, l + q]e−2πi(b0p+b1q)/M

]
.

The term e−2πi(b0k+b1l)/M is the correct phase shift for translation, factored out of the sum. The
aliased terms (where p =M/2 or q =M/2) contribute additional phases, e.g.:

e−2πib0(M/2)/M = e−πib0 .

The additional phase e−πib0 modulates the amplitude of the aliased frequency components (e.g.,
F [k +M/2, l]). This phase does not affect the primary phase shift e−2πi(b0k+b1l)/M . Instead, it
scales the contribution of high-frequency components in the sum.

The Riesz transform’s directional filter k+p√
(k+p)2+(l+q)2

encodes the signal’s structure at full resolution.

- The phase shift is applied before downsampling, so aliasing only affects the combination of frequency
components, not the translation equivariance.

In the spatial domain, the downsampled feature map is:

gj,down[m,n] = gj [2m, 2n] = (Rjf)[2m, 2n].

For the translated signal:

gj,down[m,n] = (Rjf)[2m− b0, 2n− b1].

The downsampled feature map of the translated signal is a shifted version of the original downsampled
feature map, preserving the translation structure. The aliased terms in the frequency domain affect the
magnitude of the features (due to e−πib0 ) but do not disrupt the phase shift, ensuring equivariance.

The Riesz transform’s output Gj represents directional features that are inherently equivariant
to translation. Downsampling introduces aliasing, but because the phase shift is encoded at full
resolution, the aliased terms only contribute to the feature map’s amplitude, not its phase structure.
The directional filter ensures that the features transform predictably, even after aliasing.

The Riesz transform is computed at full resolution (M ×M ), capturing all frequencies up to M/2.
This prevents information loss before downsampling, unlike standard CNNs, where downsampling
occurs directly on the signal or convolved features.

D RIESZ ENHANCED EQUIVARIANT NETWORKS GENERALISE BETTER

The section is devoted to the proof of Theorem 2 indicating that given an equivariant network
incorporating steerable group convolutions, augmenting the network with a learnable steerable Riesz
transform upstream to the initial group convolution layers leads to a more generalizable architecture
able to well approximate equivariant feature maps ϕ (see definition 1).
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Figure 6: The figure illustrates the core difference between STN and EqSTN

Figure 7: Spectral heat map representation of the frequency domain, with and without scaling of
steerable Riesz

Assumption 1 (Spectral Property of ϕ). Fourier modes ϕ̂(ξ,m)i are significant only for |m| ≤ 1 i.e.
ϕ̂(ξ,m)i ≈ 0 for |m| > 1, i = 1, . . . , cout.

The equivariance constraint, defined as ϕ(xh)(g) = ϕ(x)(hg) for xh(y) = x(h−1y), where h ∈
SO(2), restricts ϕ(x) to transform predictably under rotations. For features such as gradients, this
transformation manifests as a phase shift (e.g., a rotation of direction), which corresponds to Fourier
modes m = ±1. Higher |m| modes are associated with more intricate transformations, such as those
of higher-order tensors, which are less prevalent in typical image features due to their increased
rotational complexity.Hoffman (1997)

Group convolutional neural networks are specifically designed to exploit group symmetries, in this
case, SO(2). The feature map ϕ(x) is often conceptualized as an idealized output of a GCN layer,
which applies filters that are equivariant under SO(2). These filters typically generate low-m features,
as higher-m modes necessitate more complex kernels, which are less common in the early layers of
such networks. Consequently, Assumption 1 is naturally satisfied when ϕ(x) represents the output of
such layers, capturing simple rotational patterns like edges or oriented textures.

In the context of natural images, such as photographs, the presence of edges and textures supports the
validity of Assumption 1. For instance, the outline of a tree or a building rotates as a vector field,
aligning with m = ±1 in the SO(2)-Fourier domain. These low-m modes effectively approximate
the dominant features in such images, reinforcing the assumption that ϕ̂ is concentrated at |m| ≤
1.Van der Schaaf & van Hateren (1996)
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However, Assumption 1 may not hold if ϕ(x) captures high-order symmetries, such as textures with
rapid rotational variation. For example, starfish-like patterns exhibit complex rotational patterns that
require |m| > 1. In such cases, the Riesz transform’s concentration at m = ±1 may result in a larger
distance ∥R(x) − ϕ(x)∥2, potentially violating the inequality. This highlights the importance of
aligning the feature map’s spectral properties with the task and data at hand.

In summary, Assumption 1 generally holds when ϕ(x) is designed to capture low-order, rotation-
equivariant features, such as gradients or edges, which are prevalent in natural images and early
GCN layers. Its validity is less certain for intricate, high-frequency patterns, necessitating careful
consideration of the feature map’s design in applications where the inequality is applied.

We now analyze the theoretical advantage of incorporating the Riesz transform as a pre-processing
step for equivariant networks. Consider two classifier architectures:

Standard: f1(x) = V (W1 ∗ x) (1)
Riesz-augmented: f2(x) = V (W2 ∗R(x)) (2)

where W1,W2 are convolutional filters, R(·) is the Riesz transform, and V is a shared linear classifier
that maps features to class logits.

For both architectures to perform equivalently, the convolutional layers must approximate the ideal
feature map such that W1 ∗ x ≈ ϕ(x) and W2 ∗ R(x) ≈ ϕ(x). Our key insight is that the Riesz
transform aligns the input representation with the symmetry structure of ϕ(x), reducing the complexity
required in the subsequent convolutional layer.

Formally, we analyze the minimal-norm solutions,

W ∗
1 = argminW∈W∥W∥F , W ∗

2 = argminW∈W∥W∥F

If R(x) reduces the “distance” to ϕ(x), W2 requires less magnitude what directly translates to tighter

PAC-Bayesian generalization bounds, as evidenced by the coefficient
∑
l

∑
ψ,i,j

∥Ŵl(ψ,i,j)∥2
F

dimψ ∥Wl∥22.
This distance is effectively reduced, as shown by theorem 2 formulated and proved below:

For x ∈ L2(R2), R(x) ∈ L2(R2)2, and ϕ(x) ∈ L2(SO(2),Rcout) satisfying Assumption 1, we have:

∥R(x)− ϕ(x)∥2 < ∥x− ϕ(x)∥2,

where the norm is computed in L2(SO(2),Rcout) using lifted functions x̃ and R̃(x).

The derivation assumes that ϕ(x) satisfies an equivariance condition and a spectral assumption
(Assumption 1), which we will specify.

Now, let x ∈ L2(R2) be a square-integrable, scalar-valued function over the plane, representing an
input signal (e.g., an image). The L2 norm is:

∥x∥2L2(R2) =

∫
R2

|x(y)|2dy <∞.

The feature map ϕ(x) ∈ L2(SO(2),Rcout) is a vector-valued function over the rotation group SO(2),
with cout channels, representing a feature map (e.g., output of a neural network layer). The space
L2(SO(2),Rcout) consists of functions f : SO(2) → Rcout with the norm:

∥f∥22 =

cout∑
i=1

∫
SO(2)

|fi(g)|2dg,

where dg is the Haar measure on SO(2). Parametrizing g ∈ SO(2) as rotations by α ∈ [0, 2π), and
normalizing the measure so

∫
SO(2)

dg = 2π, we have:

∥f∥22 =

cout∑
i=1

∫ 2π

0

|fi(α)|2dα.
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Based on Assumption 1, Fourier components of ϕ(x) on SO(2) are concentrated in low-frequency
modes, i.e., ϕ̂(m)i ≈ 0 for |m| > 1, where:

f̂(m)i =
1

2π

∫ 2π

0

fi(α)e
−imαdα, m ∈ Z.

By Parseval’s identityParseval (1806):

∥f∥22 = 2π

cout∑
i=1

∑
m∈Z

|f̂(m)i|2.

Since x and R(x) are defined on R2, while ϕ(x) is on SO(2), we must lift x and R(x) to
L2(SO(2),Rcout) as x̃ and R̃(x), respectively, to compute the norms consistently.

To lift x : R2 → R to x̃ : SO(2) → Rcout , we use a bank of steerable filters {ψiα}
cout
i=1, where

ψiα(y) = ψi(h−1
α y), and hα is the rotation by α. Define:

x̃i(α) =

∫
R2

x(y)ψiα(y)dy.

Here, ψi is a base filter (e.g., a Gaussian or Gabor function), and ψiα is its rotation by α. This lifting
captures how x responds to rotated versions of ψi, producing a function on SO(2) per channel.

Since R(x) = (R1(x),R2(x)) is a vector field, its lifting should reflect its directional nature. We
can now define:

R̃(x)i(α) =

∫
R2

[R1(x)(y) cosα+R2(x)(y) sinα]ψ
i(y)dy,

where ψi is a scalar-valued filter. This projects R(x) onto the direction (cosα, sinα), aligning with
the rotational structure of SO(2). The choice of ψi (e.g., isotropic like a Gaussian) ensures the
integral is well-defined in L2.

Both x̃ and R̃(x) are now in L2(SO(2),Rcout), compatible with ϕ(x).

Since SO(2) ≈ S1, functions in L2(SO(2),Rcout) have a Fourier series. For f(α), the coefficients
are:

f̂(m)i =
1

2π

∫ 2π

0

fi(α)e
−imαdα,

and the norm is:

∥f∥22 = 2π

cout∑
i=1

∑
m∈Z

|f̂(m)i|2.

Assumption 1 implies ϕ(x)’s energy is in m = −1, 0, 1, which corresponds to isotropic (m = 0) and
gradient-like (|m| = 1) features under rotation.

Fourier Coefficients of x̃: for x̃i(α) =
∫
x(y)ψi(h−1

α y)dy, the coefficients depend on ψi. If ψi is
isotropic (e.g., ψi(y) = e−|y|2), x̃i(α) is nearly constant, with energy at m = 0. If ψi is directional
(e.g., a Gabor filter), x̃i(α) varies with α, spreading energy across multiple m, depending on x’s
content.

Fourier Coefficients of R̃(x):

R̃(x)i(α) =

∫
R2

[R1(x)(y) cosα+R2(x)(y) sinα]ψ
i(y)dy,

is rewritten using cosα = eiα+e−iα

2 , sinα = eiα−e−iα
2i :

R̃(x)i(α) = aie
iα + bie

−iα,

where:

ai =
1

2

∫
(R1(x)(y)− iR2(x)(y))ψ

i(y)dy, bi =
1

2

∫
(R1(x)(y) + iR2(x)(y))ψ

i(y)dy.
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Thus:
ˆ̃R(x)(m)i = aiδm,1 + biδm,−1,

concentrating energy at |m| = 1, reflecting the Riesz transform’s gradient-like nature.

We need to show:
∥R̃(x)− ϕ(x)∥22 < ∥x̃− ϕ(x)∥22.

Using Parseval’s identity:

∥R̃(x)− ϕ(x)∥22 = 2π

cout∑
i=1

∑
m∈Z

| ˆ̃R(x)(m)i − ϕ̂(x)(m)i|2,

∥x̃− ϕ(x)∥22 = 2π

cout∑
i=1

∑
m∈Z

|ˆ̃x(m)i − ϕ̂(x)(m)i|2.

By Assumption 1, for |m| > 1, ϕ̂(x)(m)i ≈ 0, so:

| ˆ̃R(x)(m)i − ϕ̂(x)(m)i|2 ≈ | ˆ̃R(x)(m)i|2, |ˆ̃x(m)i − ϕ̂(x)(m)i|2 ≈ |ˆ̃x(m)i|2.

Since ˆ̃R(x)(m)i ≈ 0 for |m| > 1, but ˆ̃x(m)i may be non-zero (e.g., for complex x), the contribution
for |m| > 1 is smaller for R̃(x).

For |m| ≤ 1, R̃(x) aligns with ϕ(x) at |m| = 1, while x̃ may have energy misaligned with ϕ(x) (e.g.,

at m = 0). Thus, | ˆ̃R(x)(m)i − ϕ̂(x)(m)i|2 is typically smaller than |ˆ̃x(m)i − ϕ̂(x)(m)i|2.

Since R̃(x)’s spectral content matches ϕ(x)’s (concentrated at |m| = 1), while x̃ has additional
energy at other m, the total squared difference is smaller for R̃(x), proving:

∥R̃(x)− ϕ(x)∥2 < ∥x̃− ϕ(x)∥2.

This highlights the Riesz transform’s role in aligning representations with equivariant features,
enhancing network performance. The scaled features, as demonstrated in the heatmaps in Figure. 7,
play a critical role in this process by accentuating the Riesz Transform outputs, ensuring that subtle
frequency variations are amplified and made comparable across different components like R1, R2,
Rxx, Ryy , and Rxy . This scaling allows for better visualization and analysis of fine-grained details,
which is essential for capturing object features where objects are defined by strong edges. Moreover,
scaled features improve numerical stability when these representations are used in downstream
algorithms, such as neural networks, by preventing large magnitude differences from skewing results.
Ultimately, scaling enhances the network’s ability to leverage equivariant features, leading to more
robust and effective performance in frequency-domain tasks.

Here, we have finally established that enhancing the convolution layers, with our learnable steerable
Riesz network has significant advantages: (a) It prevents aliasing (b) It encapsulates object features
better (c) It makes existing equivariant networks generalze better.

D.1 GROUP-EQUIVARIANT CONVNET WITH STANDARD RIESZ TRANSFORM FOR SCALE
EQUIVARIANT NETWORKS

Table 5: Model classification perfor-
mance

Model Acc.%
Group CNN 82.76%
StandardCNN 70.41%
Riesz+CNN 89.78%
Riesz+GCNN 93.45%

The baseline model integrates a standard Riesz trans-
form within a group-equivariant CNN (G-CNN) to cap-
ture rotation-invariant features. The Riesz transform, a
multi-dimensional generalization of the Hilbert transform,
operates in the frequency domain to extract directional
derivatives, enhancing the model’s ability to detect ori-
ented structures.

The spatial-domain outputs are obtained via the inverse
Fourier transform:

R1 = F−1(F(x) · R1), R2 = F−1(F(x) · R2),

Rxx = F−1(F(x) · Rxx), Ryy = F−1(F(x) · Ryy), Rxy = F−1(F(x) · Rxy).
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Figure 8: *
(a) Conv2 feature maps after Riesz

Figure 9: *
(b) Conv2 feature maps without Riesz

Figure 10: Feature maps of digit 9 with and without Riesz.

The output tensor concatenates the original input with these components:
[x,R1,R2,Rxx,Ryy,Rxy], increasing the channel dimension to 6C.

This is integrated into a G-CNN, where group convolutions operate over a rotation group G = SO(2)
discretized into R orientations. For an input x ∈ RB×C×R×H×W , the group convolution applies a
kernel ψ ∈ RCout×Cin×Rin×K×K , transformed across rotations:

ψg = Tgψ, g ∈ G,

where Tg is the rotation operator. The output is:

(ψ ⋆ x)(g, h, w) =
∑
g′∈G

∫
x(g′, h′, w′)ψg(g

′−1g, h− h′, w − w′) dh′ dw′.

The Riesz transform enhances the input representation, followed by group convolutions, max-pooling
over the rotation dimension, and fully connected layers.

This baseline achieves robustness to rotations by combining the Riesz transform’s directional sen-
sitivity with group-equivariant convolutions. However, the fixed Riesz operators may not adapt to
varying frequency content across images, potentially limiting performance on datasets with diverse
scales and orientations.

We demonstrate in Table 5 that having a standard Riesz transform upstream to a standard convolutional
neural network significantly improves scale equivariance significantly. We test on multi scaled MNIST,
where we sample scale from a uniform distribution between (0.5,2.5).

Figure. 10 show the feature maps after the second group convolution layer. The Riesz transform as
explained above is applied upstream to the first group convolution layer. We can clearly observe that
the Riesz-enhanced convolution layers have better feature gradients and edge representation.

E FROM VARIATIONAL AUTOENCODING TO UNSUPERVISED OBJECT
DISCOVERY

We use a Gaussian Mixture VAE (GMVAE) Kingma et al.; Dilokthanakul et al. (2016); Yang
et al. (2019) as the base model for our VAE, which learns object representations and preserves
class-conditioned glimpses. We structure the latent space with three components: zwhat for object
appearance, zcls for class probabilities, and zα for the rotation angle.

The joint distribution is factorized as:

p(zwhat, zcls, zα) = p(zwhat|zcls, zα)p(zcls)p(zα) (3)
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Appearance and Class Features: Appearance is modeled with a Gaussian Mixture Model, condi-
tioned on class:

p(zwhat|zcls = k) = N (µk,Σk) (4)

Rotational Features: Rotations are modeled using a Von Mises distribution as in Hyper-Spherical
VAE Davidson et al. (2018), but here we assume a standard Normal prior:

p(zα) = VM(µα, κ) (5)

The rotation angle α is computed from zα using:

α = tanh(zα)π (6)

This angle is passed through a rotation-equivariant Spatial Transformer Network (STN).

Variational Inference: The variational posterior is factorized as:

qϕ(zwhat, zcls, zα|x) = qϕ(zwhat|x)qϕ(zcls|x)qϕ(zα|x) (7)

First there is a feature extraction layer followed by a class encoder predicts zcls, invariant to rotation,
and zα is predicted through an equivariant head, and then zwhatdecoded using zcls and zα with a
glimpse decoder.

Handling objects at varying angles and scales pose a significant challenge for conventional models
in unsupervised object discovery. While methods like data augmentation and rotational pooling
address this to some extent, they fall short. Data augmentation adds computational overhead and lacks
generalization to unseen rotations, while rotational pooling often sacrifices fine-grained orientation
details.

Our EqSTN architecture, combined with a glimpse-based approach, resolves these issues. By focusing
only on regions of interest identified by localization parameters, the model eliminates the need to
process entire images or rely on extensive datasets with diverse object orientations.

The latent space in our model is disentangled to separate equivariant features, ensuring smooth
handling of transformations while preserving critical object properties. A custom loss function
enhances detection accuracy by enforcing structural priors, reducing false positives, and improving
spatial consistency.

By embedding roto-scale equivariance at its core, our model surpasses traditional approaches, achiev-
ing efficient and reliable object detection regardless of orientation.

Object-like Latent Representation We implement an encoding model inspired by SPAIR Crawford
& Pineau (2019), GMAIR Zhu et al. (2022), and SPACE Lin et al. (2020). The input image is divided
into an H ×W grid. For each grid cell (i, j), the encoder learns six latent variables: zijwhat ∈ RA,
zijdepth ∈ R, zijpres ∈ [0, 1], zijwhere ∈ R4, zijcls ∈ [0, 1]C , and zijα ∈ [−π, π].

Here, zwhat, zcls, and zα follow the VAE framework. zdepth encodes depth, zpres represents object
presence, and zwhere captures spatial coordinates. The zpres, zwhere, zdepth and zcls are rotation-invariant
variables that allow stable object discovery, while zα is rotation-equivariant, capturing angular
information.

All encoder heads for predicting the latents are convolutional variational encoders, predicting µ and
σ, with latent variables sampled from a normal distribution, as in VAE.

Inference and Generation Model The model processes input data x through a feature extractor of
size H ×W ×D, from which it infers latent variables: zpres, zwhere, zdepth, and zα. The input image
is segmented into H ×W grids, each processed in parallel to predict localization zwhere, via zpres.
The model then computes α by localizing on the extracted glimpse. Further, it infers zcls to class
condition the object appearance encoding zwhat, improving semantic representation learning through
Gaussian mixture priors. Objects are decoded from zwhat via a glimpse decoder and composited as in
Crawford & Pineau (2019).
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Background Model The background model in our model SPAGMACE is implemented as a distinct
module that processes the input image to generate a set of background components, denoted as zbg =
(zbg

1:K), where each component zbg
k = (zm

k , zc
k) consists of a mask latent zm

k and a content latent zc
k.

Following GENESIS-V2Engelcke et al. (2021), the model uses a variational autoencoder (VAE)-like
structure with the following steps:

An input image x is processed by a convolutional background image encoder to produce a feature map.
This map is fed into an LSTM-based module to model sequential dependencies among background
components, capturing the autoregressive relationships inspired by GENESIS-V2’s stick-breaking
process (SBP) for mask generation.

For each component k, the mask latent zm
k is sampled from a Gaussian distribution N (µm

k , σ
m,2
k ),

decoded into a pixel-wise mask π̂k using a mask decoder with sub-pixel convolution layers. The
masks are normalized via the SBP to produce mixing probabilities πk, ensuring

∑
k πk = 1.

The content latent zc
k is sampled from N (µc

k, σ
c,2
k ) and decoded into an RGB appearance µbg

k using
a spatial broadcast decoder. The background is reconstructed as a weighted sum of components,
combined with the foreground via a pixel-wise mixture model: p(x | zfg, zbg) = αp(x | zfg) + (1−
α)

∑
k = 1Kπkp(x | zbg

k ), where α is the foreground mixing weight.

Loss Functions The loss function consists of two main components: the reconstruction loss and the
KL divergence. The reconstruction loss is computed as the average binary cross-entropy across all
pixels and channels. For the KL divergence, we sum the divergences of all latent variables, following
a similar approach to models like SPAIR and GMAIR. However, for zα, which is sampled from a von
Mises distribution, the KL divergence is computed as described in the previously mentioned VAE
framework, ensuring proper handling of this angular latent variable.

Fake bounding-box loss In glimpse-based models, we observed a tendency to predict spurious
fully-transparent bounding boxes, particularly in regions without objects. While this has no impact
on reconstruction as the boxes are transparent, it is detrimental to interpretability and to evaluation
measures that take into account detection accuracy. To address this issue, we introduce a penalty term
Lfake−bbox that, for each cell ij, discourages predictions with both low total opacity (i.e., aij ≈ 0)
and non-zero object probability (zijpres > 0):

Lfakebbox =
∑
i

∑
j

(1− γij)2 · zijpres (8)

that is added to the GMAIR loss.

As described above we compare against other glimpse-based models that have an STN-based encoding
architecture, as in Figure. 6(a), and in order to create variants of our model, we replace this encoding
with our LeaRN-EqSTN, as in Figure. 6(b). Our architecture given sequentially predicting the
transformations is very robust, and generalizes much better to unseen transformations.

E.1 LEARNING COMPOSITE TRANSFORMATIONS

We aim at providing an accessible presentation of the impact of transformation invariance and
equivariance on (training) data-efficiency. As such, we illustrate the elementary concepts with
rotations (e.g. ρα for a rotation of angle α) but the concepts apply to other symmetry groups. To
extend toward our case of interest, composite transformations, we further consider translations (e.g.,
Tt for a translation by a vector t) and their composition with rotations.

Setting: We consider an arbitrary transformable input x, typically an image or feature maps. A
downstream task is a function F learned from data that takes x as input. Such tasks are often complex
and can benefit from equivariance or invariance properties with respect to x. While we discuss a fixed
x, the learned model must capture canonical variations of x, encompassing variations not covered by
equivariance or invariance.
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Orig ( =57.1°, s=0.68) Orig ( =245.2°, s=0.92) Orig ( =128.3°, s=1.98) Orig ( =243.0°, s=1.85) Orig ( =179.3°, s=0.62) Orig ( =254.3°, s=1.42)

Recon Recon Recon Recon Recon Recon

Canon( =32.9°, s=1.23) Canon( =32.6°, s=1.19) Canon( =33.6°, s=1.12) Canon( =34.4°, s=1.11) Canon( =32.6°, s=1.15) Canon( =33.8°, s=1.10)

Figure 11: The canonicalisation of the digit 4. The first row is the original rotated and scaled digit,
the second row is the reconstructed image, and the final row is the reconstruction canonicalised.

Input

Reconstruction

Input

Reconstruction

Input

Reconstruction

Input

Reconstruction

Input

Reconstruction

Figure 12: Qualitative visualisation of the WHO-Plankton dataset. The first row are the original
samples, and the second row corresponds to the reconstructions by our LeaRN-EqSTN+GMVAE

Figure 13:
*
Original

Figure 14:
*

(a)

Figure 15:
*

(b)

Figure 16:
*

(c)

Figure 17: The reconstruction results from the benchmark models on Tomotwin Cryo-EM dataset-
(a)IRL-INR (b) TARGET-VAE (c) LeaRN-EqSTN GMVAE
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A function Φ is rotation-invariant, if for all x and α, Φ(ραx) = Φ(x). It is rotation-equivariant, if
for all x and α, Φ(ραx) = ρ′αΦ(x). The transformation R′

α is not necessarily a rotation; for instance,
if Φ(x) estimates an angle, then we can have ρ′αΦ(x) = α+Φ(x).

Built-in equivariance: An ideal approach to learning a downstream task F is to make it equivariant,
ensuring F (ραx) = ρ′αF (x) for all α. This enables generalization from a single instance of x.
However, achieving full rotation equivariance is computationally costly and practically challenging.
Most models rely on discrete rotation groups (e.g., P4, corresponding to four discrete rotations),
limiting equivariance to a finite set of transformations. To learn F , the model must be exposed to
rotations covering the quotient set ρ/P4, meaning it should observe rotations

Learning equivariance: An alternative approach is to learn equivariance rather than enforcing it
explicitly. Here, the downstream task solver F lacks built-in equivariance, but a learned transformer
corrects its input. Formally, this is expressed asG(x)F (ρf(x)x), where both F and the transformation
predictor f are learned jointly. This approach is beneficial when the gains from correcting x outweigh
the difficulty of learning f , assuming the optimization process finds an optimal f that aligns inputs
correctly.

For any x and α ∈ [0, 2π], the transformed output follows G(ραx) = F (ρf(Rαx)

Decomposing composite transformations: We now focus on the case of compositions of a transla-
tion with a rotation, i.e. TtRα. We consider a two-step prediction and correction of the transformation.
More precisely, the full process computes H(x)F (ρfρ(y)y) with y(x) = TfT (x)x, where fρ, fT and
F are to be learned.

We rewrite, for any x, any translation t and rotation α ∈ [0, 2π] the output of H when applied to the
transformed version of x, Ttραx. We have y(Ttραx) = TfT (Ttραx)Ttραx. In case of an optimal fT ,
the translation component gets removed, i.e. y(Ttραx) = ραx The treatment of fR in H(Ttραx)
then boils down to the previous case of G, concluding on the fact that all factors of variations have
been removed for F .

We can achieve maximal data efficiency by leveraging this decomposition. By using a fT that is
translation equivariant we get TfT (Ttραx) = T−t+fT (ραx). By using a fT that is further rotation
invariant we get T−t+fT (ραx) = T−t+fT (x). Finally, using a rotation equivariant fR for the second
level of transformation. The only remaining variations necessary to learn are the fine translation for
fT and the continuous rotations for fρ, independently.

Figure 18: Scatter plots demonstrating the correlation between predicted and actual angles of
orientation for different MNIST digit classes.
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Figure 19: Histograms demonstrating the absolute angle difference modulo 2π between predicted and
actual angles of orientation for different MNIST digit classes with the corresponding Rotation-offset
Entropy(RoE)

F QUALITATIVE AND QUANTITATIVE RESULTS

In this section we provide qualitative and quantitative results from our experiments. Figure 17
compares the reconstructions of all the models on Tomotwin Cryo-EM benchmark dataset on low
data, as described in our main paper. We demonstrate our results on the WHO-Plankton dataset in
Figure 12.

To finely quantify the quality of angle/scale capture, we demonstrate, in Figure 11, the effectiveness of
how our model effectively learns scale and rotation, and successfully learns a canonical representation
of the object, here we demonstrate it for the digit 4. We provide more angle-recovery results in
Figures 18 and 19.

Figure 20: *
(a)

Figure 21: *
(b)

Figure 22: *
(c)

Figure 23: Qualitative visualizations of the object discovery (i.e., no boxes or labels provided)
task on Low Data setting for MVTec Screws dataset-(a) Original Images (b) GNM (c) LeaRN-
EqSTN+SPAGMACE
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For our object discovery task we show the qualitative visualization of our model LeaRN-EqSTN-
SPGAMCE and GNM model for the MVTec Screw dataset in Figure 23.

We also provide further ablation studies for our variational autoencoding setting in Table. 6, to
demonstrate the effectiveness of each of our component. We provide training time comparison in
Table 8. Finally, we give an empirical analysis of the computation complexity of all the models, in
Table 7. We use the python package calflops to get the FLOPs analysis.

More Data Low Data
NMI ARI SSIM NMI ARI SSIM

SR-MNIST
STN-VAE 0.65 0.57 0.78 0.59 0.51 0.75
STN-GMVAE 0.69 0.61 0.79 0.6 0.52 0.75
EqSTN+GMVAE 0.81 0.70 0.92 0.68 0.59 0.81
TARGET-VAE P8 0.78 0.65 0.86 0.63 0.51 0.77
TARGET-VAE P16 0.78 0.67 0.88 0.65 0.52 0.8
CODAE 0.76 0.66 0.83 0.62 0.52 0.76
IRL-INR 0.83 0.78 0.94 0.65 0.51 0.69
LeaRN-EqSTN+GMVAE 0.88 0.80 0.95 0.78 0.62 0.83
LeaRN+TARGET-VAE P16 0.82 0.72 0.93 0.69 0.60 0.82

Table 6: Ablation Study on clustering and reconstruction metrics across SR-MNIST.

Computational Time: All the experiments were conducted on a system equipped with 48GB of
RAM and an NVIDIA RTX A5000 GPU. The runtime for our model LeREqSTN+SPAGMACE and
for GNM are as follows

F.1 RESULTS ANALYSIS

From all the empirical evaluation, we observe that our LeaRN-EqSTN enhanced architectures
outperform every SOTA model in both the unsupervised tasks. We also demonstrate through our
ablation studies how each component effectively improves the models. The complexity analysis in
Table. 7 also shows that our model is light in terms of parameter count and very efficient in terms of
computation time.

The Rotation-offset entropy metric in Figure. 19 shows how well it encapsulates the rotation offsets
for every MNIST class. It is interesting to also observe the peaks in the histogram which correspond
to the number of lines of rotation symmetry the object has, which is also mirrored in the Figure. 18
scatter plot.

Finally, we observe that digit classes with similar orientations are clustered together, demonstrating
that the latent space effectively captures equivariant features. This clustering is significant, as it
highlights the latent space’s ability to encode orientation-based similarities in an unsupervised manner,
without impacting task performance.

Model Parameters FLOPs
LeaRN-EqSTN+GMVAE 1.1M 16 GFLOPs

TARGET-VAE P8 0.9M 25 GFLOPs
TARGET-VAE P16 1.4M 29 GFLOPs

IRL-INR 80M 37 GFLOPs

Table 7: Complexity Analysis

Model MTR-MNIST MVTec Screws MVTec D2S
LeaRN-EqSTN+GMAIR 512 mins 794 mins 1257 mins

GNM 715 mins 886mins 1648 mins

Table 8: Training time (in minutes) across different datasets
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