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Abstract

Graph classification models are becoming increasingly popular, while explainability methods
face challenges due to the discrete nature of graphs and other factors. However, investigating
model decision-making, such as through decision-boundary regions, helps prevent misclas-
sification and improve model robustness. This study aims to reproduce the findings of
GNNBoundary: Towards Explaining Graph Neural Networks Through the Lens of Decision
Boundaries (Wang & Shen, 2024). Their work supports 3 main claims: (1) their proposed
algorithm can identify adjacent class pairs reliably, (2) their GNNBoundary can effectively
and consistently generate near-boundary graphs outperforming the cross entropy baseline
and (3) the generated near-boundary graphs can be used to accurately assess key properties
of the decision boundary; margin, thickness, and complexity. We reproduce the experiments
on the same datasets and extended them to two additional real-world datasets. Beyond that,
we test different boundary probability ranges and their effect on decision boundary metrics,
develop an additional baseline, and conduct hyperparameter tuning. We confirm the first
claim regarding the adjacency discovery as well as the second claim that GNNBoundary
outperforms the cross-entropy baseline under the limitation that it requires intensive hy-
perparameter tuning for convergence. The third claim is partially accepted as we observe a
high variance between reported and obtained results, disproving the reliability and precision
of the boundary statistics.

1 Introduction

Reproducibility is the backbone of scientific progress, ensuring that findings are robust, reliable, and gen-
eralizable. In that, model explainability methods are often used by researchers to assess and improve the
robustness of a model. This study focuses on GNNBoundary by Wang & Shen, a framework designed to
analyze decision boundaries in graph neural networks (GNNs) (Scarselli et al., 2009), more specifically in
GNN-based classifiers. Understanding decision boundaries is crucial for evaluating model robustness, as well
as identifying and understaning modes of failure. This is especially important for real-world applications in
domains such as social networks, biology, and recommender systems (Fan et al., 2023).

GNNs have shown remarkable performance in tasks involving graph data, such as node classification, link
prediction, and graph classification (Errica et al., 2019). Despite their widespread utilization, the complexity
of these models often leads to challenges in understanding their decision-making. GNNBoundary, as a post-
hoc method, attempts to open this black-box by investigating decision boundaries with quantitative metrics
and visualizing near-boundary graphs for adjacent class pairs. By doing so, the method offers insights into
how GNNs distinguish between classes and the robustness of the classification.

The aim of this reproducibility study is to verify the results and claims made in the original GNNBoundary
paper by Wang & Shen (2024). Specifically, this study attempts to determine whether the GNNBoundary
framework can be used to consistently and reliably generate near-boundary graphs and collect boundary
metrics for the discovered adjacent class pairs. This entails reproducing the authors’ experiments, verifying
the correctness of the implementation, and evaluating the robustness of the findings across four datasets:
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Motif (Wang & Shen (2022)), Collab (Yanardag & Vishwanathan (2015)), Enzymes (Schomburg et al.
(2004)), and IMDB (Yanardag & Vishwanathan (2015)).

Beyond reproducing the results from Wang & Shen (2024) using their instructions, we aim to enhance the
applicability of GNNBoundary for practitioners and researchers by giving additional guidance. Moreover,
we provide insights on the generalizability and robustness of the method through additional experiments and
analyses.

2 Reproducibility Considerations

To guide our efforts, the claims and contributions defined in this section will carry through the following
sections. The main claims made by the authors are as follows:

Main Claims:

1. Their proposed algorithm for identifying adjacent class pairs can reliably identify the degree of
adjacency of a class pair.

2. GNNBoundary can effectively and consistently generate near-boundary graphs with faster conver-
gence and a higher success rate than the cross-entropy baseline.

3. The generated near-boundary graphs can be used to accurately assess key properties of the decision
boundary: margin, thickness, and complexity.

Our main contributions beyond the reproduction of the results from Wang & Shen (2024) are:

Contributions:

1. Performing hyperparameter optimization to systematically analyze the impact of different configu-
rations on convergence behavior, leading to faster and more stable model training.

2. Developing an additional baseline by using over 500 GNNInterpreter graphs (Wang & Shen, 2022)
per class in each dataset and connecting them via randomly assigned edges.

3. Extending experiments with two real-world datasets: posts from the forum site Reddit and a rela-
tional graph dataset IMDB, with actors and actresses connected by co-appearances in movies.

4. Investigating the trade-off between boundary metric approximation quality and target class proba-
bility ranges (e.g., [0.49, 0.51], [0.45, 0.55]), offering practical insights into the training requirements
for near-boundary graph sampling.

3 Background

3.1 Graph Neural networks

An increasing amount of graph structured data creates a need for a graph structure learning systems.
Graph Neural Networks (GNNs) emerge from its predecessors in deep learning as models to operate on
graph structures. Graphs have unique characteristics that differentiate them from other data types, such
as a variable number of nodes and edges across graphs. This variability complicates the application of
convolutions. Moreover, unlike images or text, where individual data instances are typically independent,
graphs exhibit inherent dependencies, as nodes can be interconnected and therefore influence each other (Wu
et al., 2020). GNNs are networks that aim to create a representation vector of a node or a whole graph given
the features of the node and the graph structure (Xu et al., 2018). The higher need for graph analysis and
the emergence of various GNNs such as Graph Convolutional Networks (Kipf & Welling, 2016) and Graph
Attention Networks (Veličković et al., 2017), create the need for explainability and interpretability in the
GNN domain.
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3.2 Explainability of GNNs

In a review of explainability approaches to GNNs by Kakkad et al. the explanation is described to come
from either self-interpretability or from post-hoc explainability methods. The former enables the model to
justify its predictions during training and influence it, while the latter considers the training as a black-
box process that is to be explained post-training. GNNBoundary is a post-hoc explainability method. It
examines the decision boundaries of a trained GNN by learning to generate graphs near the boundary. The
final distinction in the review is to instance-level and model-level explainability. Instance-level explainability
aims to explain predictions of a certain instance, while the model-level method aims to justify the high-
level decision-making process of the whole model. GNNBoundary is considered a model-level method as
the generation of near-boundary graphs aims to explain global patterns in the decision process of a GNN
classifier. In literature previous to GNNBoundary, generation-based methods do not yet explore the decision
boundaries. However some methods explore the model-level behavior by generating graphs representative of
a class, such as GNNInterpreter (Wang & Shen, 2022) and XGNN (Yuan et al., 2020).

3.3 Decision region and boundary

A classifier f partitions the d-dimensional space Rd into C decision regions R1, R2, . . . , RC , such that for
any G ∈ Rc, the predicted class is c = argmaxkfk(G) where k ∈ [1, C] (Karimi et al., 2019). The decision
boundary between class c1 and class c2 is defined as Bc1∥c2 = {G : fc1(G) = fc2(G) > fc′(G), ∀c′ ̸= c1, c2},
representing the set of graphs G where the classifier assigns equal probability to classes c1 and c2, while
ranking them higher than all other classes. For the embedding space, Wang & Shen (GNNBoundary) define

B(l)
c1∥c2

= {H(l) : σ(ηl(H(l)))c1 = σ(ηl(H(l)))c2 > σ(ηl(H(l)))c′ , ∀c′ ̸= c1, c2} (1)

where σ is the Softmax activation function and ηl are the last L − l layers of the discriminator f that output
the logits for graph embedding H(l) after layer l. In other words, the decision boundary represents the points
in Rd where the classifier is "uncertain" about assigning a label between classes c1 and c2.

4 GNNBoundary

Wang & Shen (2024) propose an adjacency finding algorithm, an objective function to generate near-
boundary graphs for adjacent class pairs and a dynamic regularization scheduler to avoid local minima.

Notation. A graph, represented by G = (V, E), with V = {v1, v2, . . . , vN } and E ⊆ V × V being the
set of nodes and edges respectively. The total number of edges is denoted by M and total number of
nodes is denoted by N . The adjacency relationships between nodes are captured by the adjacency matrix
A ∈ {0, 1}N×N , where an entry aij = 1 indicates an edge between node vi and node vj , and aij = 0
otherwise. Node features are stored in the feature matrix Z ∈ RN×d where zi ∈ Rd corresponds to the
feature vector of node vi.

4.1 Adjacency Discovery

Running the boundary analysis for all class pairs would be computationally prohibitive. Hence, Wang &
Shen propose an adjacency discovery method that calculates adjacency rates based on the dataset and all but
the last layer of discriminator model f denoted as embedding function ηL−1. This comes with the advantage
that the embedding space after the last hidden layer has linear decision boundaries. The algorithm samples
graphs Gc1 ∈ Rc1 and Gc2 ∈ Rc2 , embeds them using ηL−1 obtaining H(L−1)

c1 and H(L−1)
c2 respectively. They

then interpolate between H(L−1)
c1 and H(L−1)

c2 in the embedding space and use the remaining layer of the
discriminator f to determine if the interpolated embedding is part of any intermediate decision region other
than Rc1 or Rc2 . The final adjacency score is the share of the K sampled graph pairs that do not cross any
decision region other than Rc1 or Rc2 .
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4.2 Graph Generation

GNNBoundary Sampling. As discrete structures, graphs are not inherently differentiable. However,
Wang & Shen propose a relaxation approach to mitigate this issue. The discrete graph structure is relaxed
into a differentiable form allowing gradient-based optimization, using the reparameterization trick inspired
by Jang et al. (2016), Wang & Shen (2022) and Luo et al. (2020). The boundary graphs are modeled as
Gilbert random graphs (Gilbert, 1959), where the probability distribution of the graph P (G) is formulated
as the product of node feature probabilities P (zi) and edge probabilities P (aij). Edges are sampled from a
Bernoulli distribution, while node features follow a Categorical distribution. To enable gradient-based learn-
ing, the categorical variables are relaxed using the Concrete distribution (Maddison et al., 2016), leading to
a differentiable approximation. The concrete distribution is a continuous version of the Categorical distri-
bution with closed-form density, z̃i ∼ Concrete(ζi, τz) for the node features ãij ∼ BinaryConcrete(ωij , τa)
for edges, where τz and τa are hyperparameters to control the approximation of Categorical distribution,
ωij ∈ Ω and ζi ∈ Z. For sampling, the authors of GNNBoundary (Wang & Shen, 2024) utilize the Gumbel-
Softmax trick (Jang et al., 2016), which ensures that both the edge variables and node feature variables
remain differentiable. This is achieved by computing edge variables ãij and node feature variables z̃i using
the transformations ãij = Sigmoid ((ωij + log ϵ − log(1 − ϵ))/τa) and z̃i = Softmax((ζi − log(− log ϵ))/τz).
Furthermore, the graph distribution is learned by minimizing the expected loss function through Monte
Carlo sampling and gradient descent, making the boundary graph generation process efficient for discrete
graph structures, and follows:

min
A,Z

L(G) = min
Θ,P

EG∼P (G) [L(A, Z)] ≈ min
Ω,Z

Eϵ∼U(0,1)
[
L(Ã, Z̃)

]
≈ min

Ω,Z

1
K

K∑
k=1

L(Ã, Z̃). (2)

where A and Z denote the adjacency matrix and node feature matrix of the graph. We point out that this
sampling framework builds on a strong independence assumption. Specifically, the probability distributions
for the edges, nodes and node features are all independent of each other in this framework. While this
assumption is needed to make the sampling computationally tractable, it yields a potentially inaccurate
model of the graph sampling space. Future research could work on ways to mitigate this issue.

Boundary Criterion. To generate boundary graphs, the probability of a boundary graph belonging to
both classes should be equal, i.e. Gc1∥c2 ∈ Bc1∥c2 with σ(f(G))c1 = σ(f(G))c2 = 0.5. As this is usually
unattainable in practice, the authors propose a relaxed class probability range that the boundary graphs are
permitted to belong to. Thus, the stopping criterion for the optimization that determines whether a graph
G is close enough to the boundary Bc1∥c2 is defined as:

Ψ(G) = Ip(c1),p(c2)∈[pmin,pmax](G). (3)

The authors suggest using pmin = 0.45 and pmax = 0.55. Due to this relaxation, the term "near-boundary
graph" is more accurate than "boundary graph" and will be used in the following sections.

Optimization. To generate near-boundary graphs, the optimization objective must be designed to balance
the trade-off between boundary classes while ensuring efficiency. A key limitation of using the cross-entropy
loss as an objective function is its inability to fully satisfy the required constraints for near-boundary graph
generation, as it still may lead to the minimization of one of the logit values of the boundary classes. This
does not serve the goal of producing near-boundary graphs that have features of both adjacent classes.
An improved objective function is proposed that encourages posterior probabilities for boundary classes,
p(c1) = p(c2) = 0.5, while minimizing unwanted class probabilities, b′ /∈ {c1, c2}. Additionally, a squared
penalty is introduced that penalizes logit values that differ from the target class probability vector. This
optimization technique is essentially an “enhanced” cross-entropy that encourages higher probabilities for
both adjacent classes and penalizes deviated logits. Formally,

min
G

L(G) = min
G

∑
b′ /∈{c1,c2}

βf(G)b′ · p∗(b′)2 −
∑

b∈{c1,c2}

αf(G)b · (1 − p∗(b))2 · Ip∗(b)<maxc∈[1,C] p∗(c), (4)

where f(G)c1 and f(G)c2 are logits of the function f(G) of the two adjacent classes and α and β are constant
hyperparameters.
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Regularization. To control the graph size in terms of the number of nodes and edges, Wang & Shen
propose the use of L1 and L2 regularization:

Rbudget = Softplus (∥Sigmoid(Ω)∥1 − B)2
, (5)

with B being the expected maximum number of nodes in a boundary graph G. Given that certain patterns
require certain graph sizes, a size penalty is a potential problem for convergence. Hence, the authors propose
a dynamic scheduling method within the training procedure that adapts the budget penalty. To not hinder
convergence, a smaller penalty is applied on graphs further away from the decision boundary and bigger
penalty on graphs closer to the decision boundary. The budget penalty weight is defined as,

w
(t)
budget = w

(t−1)
budget · s

I{Ψ(G(t))}
inc · s

I{¬Ψ(G(t))∧(sdec·w(t−1)
budget≥w

(0)
budget)}

dec , (6)

where w
(0)
budget is a hyperparameter for the initial weight, sinc is for weight increment, sdec is for weight

decrement and G(t) = EG∼P (G)[G] for an optimization iteration t. The dynamic regularization can help
convergence by permitting the budget penalty to interfere with the main loss function.

4.3 Boundary Analysis

Margin. The boundary margin quantifies the minimum separation between decision regions in a graph
classification model (Yang et al., 2020). Unlike classical margin definitions, which are based on worst-
case distances, Wang & Shen (2024) use class representative graphs (also denoted as Gc1 in the following)
generated using the GNNInterpreter framework (Wang & Shen, 2022). Given a dataset D, a classification
function f , and graph representations Gc1 and Gc1∥c2 belonging to different decision regions, the boundary
margin is defined as:

Φ(f, c1, c2) = min
(Gc1, Gc1∥c2 )

∥ϕl(Gc1) − ϕl(Gc1∥c2)∥ (7)

where Gc1 ∈ Rc1 and Gc1∥c2 ∈ Bc1 represent graph samples from class c1 and its nearest boundary region with
class c2, respectively. The function ϕl(G) denotes the graph embedding function extracted from classifier
f , mapping the input graphs into a learned feature space. A larger margin implies better class separation,
contributing to model robustness, while a smaller margin suggests higher decision boundary instability,
increasing the risk of misclassification (Yang et al., 2020).

Thickness. Boundary thickness is a metric that quantifies the width of a decision boundary. Given a
classification function f , the asymmetric boundary thickness Θ(f, γ, c1, c2) is defined as the expected distance
between pairs of graphs Gc1 and Gc1∥c2 , sampled from a distribution P , weighted by the fraction of a
continuous interpolation between these graphs where the posterior difference satisfies a margin condition.
Formally, this is expressed as:

Θ(f, γ, c1, c2) = E(Gc1 ,Gc1∥c2 )∼P

[∥∥ϕl(Gc1) − ϕl(Gc1∥c2)
∥∥∫ 1

0
Iγ>σ(ηl(h(t)))c1 −σ(ηl(h(t)))c2

dt

]
(8)

where h(t) = (1− t) ·ϕl(Gc1)+ t ·ϕl(Gc1∥c2) defines an interpolation between the boundary graph embedding
ϕl(Gc1∥c2) and class graph embedding ϕl(Gc1). Boundary thickness captures the average width of the decision
boundary. If the decision boundary has a low width and thus separates the data well, the integral in eq. (8)
will become a small number. Hence, a low boundary thickness corresponds to a low graph density around
the decision boundary and with that good separation of the data.

Complexity. The boundary complexity measure calculates the structural complexity of a classifier’s de-
cision boundary by analyzing the distribution of adversarial examples in feature space. Using Principal
Component Analysis (PCA), the spread of adversarial examples is captured through the eigenvalues λ of
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their covariance matrix (Guan & Loew (2020)). A simpler decision boundary results in adversarial exam-
ples aligning along a single eigenvector, whereas a more complex boundary distributes them across multiple
eigenvectors. This complexity is computed as the Shannon entropy of the normalized eigenvalues:

Γ(f, c1, c2) = H

(
λ

∥λ∥1

)
/ log D =

(
−
∑

i

λi

∥λ∥1
log
(

λi

∥λ∥1

))
/ log D. (9)

Here, λ = (λ1, λ2, . . . , λn) represents the eigenvalues of the covariance matrix of the adversarial set, and ∥λ∥1
is the sum of all eigenvalues, ensuring a normalized representation. The entropy function H(·) measures how
evenly variance is distributed across eigenvectors, and D denotes the dimensionality of the feature space,
normalizing the complexity measure to the range [0, 1]. A higher complexity indicates a more uneven decision
boundary, implying greater sensitivity to perturbations and risk of over-fitting. On the other hand, a lower
complexity score suggests a smoother boundary, which is more likely to generalize well to unseen data.

5 Experimental Setup

In addition to reproducing the results from Wang & Shen (2024), in order to confirm the validity and robust-
ness of the described methods, we aim to convey an empirically-driven intuition behind the GNNBoundary
and to make it more accessible to practitioners and researchers. To reproduce the results, we utilized the
authors’ publicly available code repository1. However, several critical components were absent in the original
implementation, as detailed in Appendix H. We implement the missing parts and make it public as linked
in the abstract.

5.1 Adjacency Discovery

To verify claim 1, we run the algorithm for identifying adjacent class pairs proposed by Wang & Shen for
all datasets. To further verify the resulting adjacency scores, we analyze the measured success rates for
near-boundary graph generation on the adjacent class pairs as well as on a selection of non-adjacent class
pairs. High success rates would generally be expected on adjacent class pairs and low success rates would
be expected on non-adjacent class pairs.

5.2 Datasets

The GNNBoundary method was originally evaluated on three datasets: Motif, Collab, and Enzymes, with
the latter two being real-world graph datasets. The synthetic Motif dataset, introduced in Wang & Shen
(2022), consists of graphs labeled with one of four predefined motifs: House, HouseX, Comp4, and Comp5.
The Collab dataset comprises ego-networks of scientific collaboration, representing co-authorship networks in
the fields of High Energy Physics (HE), Condensed Matter Physics (CM), and Astrophysics (Astro) Yanardag
& Vishwanathan (2015). The Enzymes dataset Schomburg et al. (2004) consists tertiary-structured proteins
classified into one of six enzyme classes.

Given that only 3 datasets are used in Wang & Shen (2024), we further assess the method’s performance
in real-world settings, using two additional real-world datasets: IMDB and Reddit-Mulitclass. The IMDB
dataset consists of 1,500 graphs, where nodes represent actors and actresses. An edge is formed between
two nodes if the corresponding individuals appeared in the same movie. Each graph is categorized into one
of three genres: Comedy, Romance, or Sci-Fi. The Reddit dataset contains 232,965 posts collected from
the social media platform Reddit. Each graph instance represents a subreddit community, where nodes
correspond to posts, and edges indicate that a user commented on both posts. The dataset includes five
class labels corresponding to different subreddits: worldnews, videos (general video-sharing), AdviceAnimals
(humorous advice posts featuring animals), Aww (cute content), and Mildlyinteresting. This dataset contains
larger graphs compared to the other datasets (cf. table 5) to test the scalability of the method.

1The authors’ GitHub repository can be accessed at: https://github.com/yolandalalala/GNNBoundary
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5.3 Hyperparameters

Wang & Shen report one set of hyperparameters for all datasets. Moreover, it is missing configurations
for the dynamic regularization scheduler as well as the graph target size. Consequently, we ran Bayesian
Optimization Shahriari et al. (2015) to find the optimal hyperparameter configuration for each dataset. The
search space consists of the sample size K, the target size, the target probabilities, the learning rate, the
temperature, and the weight budget increase for the dynamic regularization scheduler and the weight budget
decrease. Details on the search space are given in appendix G. Moreover, we employed a simple custom loss
for the hyperparameter tuning, being the average deviation of the class probabilities from the target 0.5:

L(CP ) = 1
Ncp

∑
cp

|p(ccp
1 ) − 0.5| + |p(ccp

2 ) − 0.5|
2

where Ncp is the number of class pairs in adjacent class-pair set CP and ccp
1 & ccp

2 are class one and two
of a class pair respectively. We chose this simple criterion instead of GNNBoundaries’ dynamic boundary
criterion to be independent of the tested method as well as for simplicity and thus easier interpretability.

5.4 Baselines

Wang & Shen propose a random baseline that generates boundary graphs using a graph from c1 and a graph
from c2 and combines them with a random edge.

Dataset-based Graph Sampling. In the absence of prior methods for analyzing the decision boundary
of GNN-based classifiers, the authors proposed a simple baseline that samples a graph from the dataset
for each class in the class pair and connects them with a randomly assigned edge to obtain a graph that
is theoretically representative of both classes. Thus, it is expected to activate the classifier’s probability
distributions maximally for these two classes. Our reproduction of this baseline corroborates the authors’
findings, demonstrating that this approach frequently fails to produce near-boundary graphs, as the randomly
sampled graph structures often lack the properties needed to elicit near-boundary probability activations.

GNNInterpreter-based Graph Sampling. To address the limitations of the random sampling base-
line, we devised a novel baseline leveraging GNNInterpreter (Wang & Shen, 2022). Specifically, we generate
class-representative graphs with GNNInterpreter and connect them with a random edge. This aims at pro-
ducing graph features more representative of each class. One limitation is that it introduces significant
complexity due to the hyperparameter tuning required for GNNInterpreter (e.g., generating hundreds of
graphs per class). These challenges render the GNNInterpreter-based baseline infeasible in settings where
finding class-representative graphs (e.g. using GNNInterpreter) is not needed anyways. This reaffirms the
need for better baselines for generating near-boundary graphs.

5.5 Boundary Embedding Discovery

In an attempt to shed light on the position of the near-boundary graphs in the discriminators embedding
space (i.e., after applying the graph embedding function ηL−1(G)), we implement a method that randomly
initializes an embedding and then optimizes it to a point in the embedding space where the discriminator
assigns a probability in the [0.45, 0.55] target range for the corresponding class pair classes. This is to inspect
the near-boundary regions in the embedding space after plotting it’s UMAP (McInnes et al., 2020) and PCA
(Jolliffe, 2002) 2D representation.
Formally, with ηL being the last layer of discriminator function f that assigns a probability to a given
embedding, let z be an embedding, which does not necessarily have to correspond to an actual valid graph.
We seek a near-boundary embedding z∗ that satisfies:

z∗ = arg min
z

LCE(ηL(z), y∗)

where LCE is the Cross-Entropy loss and y∗ is the target vector of shape C. Suppose, we want to find
a boundary embedding for class i and j, then y∗

i = y∗
j = 0.5 and y∗

k = 0 ∀k ̸= i, j. The optimization is
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performed over an initially random embedding z to cover most near-boundary regions in the embedding
space. Note that this is only to find near-boundary points in the embedding space for the purpose of
visualization and hence there is no need for z∗ to be the embedding of a valid graph.

5.6 Boundary Statistics under Different Target Probability Ranges

The accuracy of boundary metric approximations depends on both the quantity and quality of near-boundary
graphs. The quality refers to how close these graphs are to the boundary (defined as having a probability of
0.5 for c1 and c2). To investigate this, we evaluate the boundary statistics (complexity, margin and thickness)
for different target probability ranges and analyze the patterns.

6 Results & Discussion

To verify the stated claims 1, 2 and 3 we reproduce all experiments from Wang & Shen (2024) as well as the
extensions described in section 5, report the results and discuss them in this section.

6.1 Reproduction of Results

Before contributing additional insights on the optimized hyperparameters, new real-world datasets, the new
baseline and the boundary statistics, we attempt to reproduce the results from Wang & Shen (2024) as good
as possible under their reported configurations (refer to table 8 in appendix G for an overview of the authors’
hyperparameters). Since some hyperparameters are not explicitly stated in Wang & Shen (2024), we infer
the values and ranges from the demo notebooks provided in the authors’ code base: initial weight budget as
1, the weight increase as 1.15, the decrease as 0.95, and the target size as 30.

Figure 1: Comparison of success rate to adjacency
score obtained using their adjacency finding algorithm.
Success rates are measured under optimized hyper-
parameters we obtained from HPO (cf. section 6.2).
Adjacent means that the GNNBoundary author’s re-
ported these as adjacent.

Finding Adjacent Class Pairs. We repro-
duce the results for the Collab, Motif and En-
zymes datasets using their provided code and ob-
serve insignificant differences in adjacency scores
(appendix A). As layed out in section 5.1, we also
analyze the correlation between the adjacency score
and the corresponding GNNBoundary success rate
to verify the author’s proposed adjacency discovery
algorithm. Figure 1 depicts the measurements of the
adjacency score and the GNNBoundary success rate
for class pairs across datasets. Class pairs that were
determined to be adjacent by Wang & Shen are de-
picted in blue, while a selection of non-adjacent class
pairs is plotted in orange. The adjacency score used
for fig. 1 is the one we obtained from the author’s
adjacency discovery algorithm.
As expected, we can see a clear correlation between
the adjacency score and success rate, indicating that
the obtained adjacency score is a good proxy for ad-
jacency. To further quantify these results, we find
that the Pearson correlation coefficient is 0.6 and
the p-value of the regression is 0.0139. Hence, there is a clear positive correlation and the regression is
statistically significant under a 98% confidence level.

Given the clear positive correlation and statistical significance, we accept claim 1.

Boundary Graph Generation. When comparing our table 1 with table 1 in Wang & Shen (2024), we
observe that we were mostly able to obtain very similar results when it comes to the ability of GNNBoundary
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to generate near-boundary graphs with both class-probabilities being close to 0.5. An exception of this
are the first four class-pairs of the Enzymes dataset which did not converge under the target probability
range of pmin = 0.45 and pmax = 0.55. We hypothesize this discrepancy between our and the authors’
results to be caused by subpar hyperparameter settings, slight differences in discriminator performance (cf.
appendix D and figure 3 in Wang & Shen (2024)) and to some extend random variation. In terms of
complexity, we mostly observe higher values, i.e. greater sensitivity to perturbations and overfitting, thus
worse generalization to unseen graphs. As we reproduce their random baseline, we observe different values,
but a similarly strong discrepancy between the class-probabilities and the targeted 0.5 probability as well as
high standard deviations.
Despite the small discrepancy regarding the Enzymes dataset, we can mostly confirm the results from Wang
& Shen regarding the class-pair probabilities of GNNBoundary boundary graphs. We confirm the superiority
of GNNBoundary over the random baseline without limitations.

Table 1: Comparison of GNNBoundary and baseline near-boundary graph probabilities across datasets. We
report the mean class probability among 500 boundary graphs and the corresponding standard deviation. No
results were obtained for the Reddit dataset and convergence could not be reached for the "Romance-Sci-Fi"
class pair (view section 6.3 for more details). Probabilities closer to 0.5 are better.

Dataset c1 c2
GNNBoundary Random Baseline

Complexity p(c1) p(c2) p(c1) p(c2)

Motif
House HouseX 0.015 0.506 ± 0.030 0.494 ± 0.030 0.719 ± 0.264 0.064 ± 0.148
House Comp4 0.072 0.506 ± 0.029 0.493 ± 0.029 0.590 ± 0.308 0.382 ± 0.322

HouseX Comp5 0.230 0.506 ± 0.056 0.494 ± 0.056 0.886 ± 0.256 0.004 ± 0.018

Collab HE CM 0.313 0.481 ± 0.019 0.475 ± 0.018 0.314 ± 0.443 0.000 ± 0.000
HE Astro 0.253 0.495 ± 0.028 0.493 ± 0.027 0.046 ± 0.200 0.954 ± 0.200

Enzymes

EC1 EC4 0.198 0.436 ± 0.030 0.426 ± 0.022 0.190 ± 0.315 0.299 ± 0.434
EC1 EC5 0.112 0.426 ± 0.021 0.510 ± 0.013 0.196 ± 0.304 0.203 ± 0.333
EC1 EC6 0.206 0.435 ± 0.023 0.488 ± 0.037 0.227 ± 0.320 0.011 ± 0.070
EC2 EC3 0.319 0.447 ± 0.040 0.463 ± 0.045 0.131 ± 0.286 0.371 ± 0.407
EC4 EC5 0.126 0.490 ± 0.044 0.493 ± 0.044 0.302 ± 0.432 0.200 ± 0.330
EC4 EC6 0.357 0.462 ± 0.042 0.450 ± 0.039 0.334 ± 0.380 0.053 ± 0.167

IMDB
Comedy Romance 0.028 0.457 ± 0.006 0.463 ± 0.009 0.303 ± 0.136 0.112 ± 0.196
Comedy Sci-Fi 0.265 0.496 ± 0.028 0.496 ± 0.026 0.303 ± 0.132 0.622 ± 0.156
Romance Sci-Fi – – – – –

Success Rate in Boundary Graph Generation. Under the authors’ hyperparameter settings we
cannot confirm the high reported success rates from Wang & Shen (2024) as well as we cannot confirm
GNNBoundary consistently outperforming the cross-entropy baseline (cf. table 2) under their hyperparam-
eter settings. When using our hyperparameter settings, we obtain success rates much closer to the authors’
ones and consistent superiority over cross-entropy for the Motif and Collab dataset (cf. table 3). For Enzymes
we again struggle to confirm their results even with optimized hyperparameters.

To summarize, we confirm the ability of GNNBoundary to find faithful near-boundary
graphs and its superiority over the random baseline. However we cannot confirm their high

convergence rates. Under this limitation, we still consider claim 2 to be valid.

Boundary Statistics Analysis. Based on the case study provided in section 5.3 of Wang & Shen (2024)
we implement the boundary margin, boundary thickness and boundary complexity metrics and reproduce
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the results for their three datasets and report them in appendix D. We generally observe significantly higher
values for the boundary thickness, which corresponds to a comparatively high probability density of graphs
on the boundary as opposed to the class regions. This can be interpreted as worse separability.
For Motif, the margins are comparable for about half of the class combinations and significantly higher for the
remaining half. Given that higher margins indicate better class-separability and with that better robustness,
our results for Motif are even better than the ones reported by Wang & Shen. For Collab, we observe mostly
lower margins, i.e. worse separability and robustness when compared to the authors results and for Enzymes
we also observe mostly mixed results compared to the authors reports, where some are higher and other are
lower without a clear tendency. In general, there are significant discrepancies between our results and the
author’s results, which makes us question the reliability and precision of the employed boundary statistics.
Based on our observations, we would rather see these statistics as an approximate low-precision indicator of
the boundary structure. Beyond that, we hypothesize the worse separability exhibited by a lower margin and
higher thickness to be connected to a slightly worse classification performance as compared to the authors
(cf. the confusion matrix in appendix D to figure 3 in Wang & Shen (2024)). This is despite the fact that
we used the authors’ provided discriminator model checkpoints.

In the light of these findings, we accept claim 3 only under the strong limitation that the
boundary statistics cannot be considered reliable or precise given their significant

discrepancies under small changes of discriminator accuracy.

While we are mostly able to confirm the results from Wang & Shen (2024) on the Motif and Collab datasets,
we face challenges in reproducing the results for the Enzymes dataset throughout all experiments. Wang
& Shen also observe class pair probabilities closer to the edges of the [0.45, 0.55] range, lower success rates
and higher boundary thickness for the Enzymes dataset in comparison to the other datasets. However, we
cannot reach their results, not even under optimized hyperparameters (cf. table 1, table 3, appendix D). We
hypothesize this to be connected to the high complexity of the dataset given the higher number of classes
and worse classifier performance. This highlights the methods dependency on classifier performance and
its limitations when it comes to more complex datasets. Our attempts to improve the performance for the
Enzymes classifier or to use a different model architecture to enhance classifier performance did not succeed.

6.2 Hyperparameters

Among the hyperparameters that were reported by the authors we tuned the target probability range,
the learning rate and the temperature. As can be seen in table 8 in appendix G, the discovered optimal
configurations are highly dependent on the dataset and mostly deviate significantly from the author’s
reported configuration. This highlights the need for dataset specific reporting of hyperparameters and offers
an explanation for the large discrepancy in convergence between our table 2 and table 2 in Wang & Shen
(2024). Notably, the optimal values for temperature and learning rate can mostly be found at the boundaries
of our tuning ranges designed around the values provided by the authors, which highlights that the optimal
configurations are far from the values reported by Wang & Shen. These results are expected given that
different datasets come with different optimization landscapes that require appropriate hyperparameters.
For instance, an optimization landscape with a higher number of local minima usually requires a higher
learning rate to enable global convergence.

6.3 New Datasets

We find that GNNBoundary works mostly well for IMDB, while it is not possible to run it in a reasonable
amount of time for the Reddit dataset.

IMDB Dataset. We obtain fast and stable convergence for boundary graphs in class pairs "Comedy-
Romance" and "Comedy-SciFi", while we could not achieve convergence for class pair "Romance-SciFi". The
same goes for GNNInterpreter training: we obtain good results for classes "Comedy" and "SciFi", but not
for "Romance". We observe that the boundary graphs for "Romance-SciFi" are very sparsely connected (cf.
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appendix E.1) and usually even contain several disconnected graphs. This is inherently problematic given
that GNNs are based on message-passing and thus likely the reason for the described convergence issues.

Reddit Dataset. For training the boundary graph sampler, we increased the maximum number of nodes
from 25 2 to 550, which is slightly above the average graph size of 508 nodes (cf. table 5) to make convergence
more likely. However, such a large graph has up to n(n−1)

2 undirected edges, which for 550 nodes would be up
to 150.975 edges. This leads to training times of around 330 minutes for a single boundary graph sampler on
an Apple M3 chip. HPO and generating 500 boundary graphs to compute the boundary statistics was hence
not possible under the resource constraints of this work. Thus, we cannot report results for this dataset.

6.4 Random Baseline for Boundary Graph Class-Probabilities

Comparing table 1 and table 4, we cannot observe that the baseline based on dataset graphs has class
probabilities closer to 0.5 than the one based on GNNInterpreter graphs: on average 35.7% for p(c1) and
23.1% for p(c2) when using dataset class graphs whereas the average probabilities for GNNInterpreter-based
class graphs are 37.3% for p(c1) and 20.0% for p(c2). The variances of the class probabilities across the
GNNInterpreter- and dataset-based baselines are also comparable. We also investigated using 2, 3 and 5
random edges but did not observe significant changes in the results and hence omit further details on this.

6.5 Robustness of Boundary Detection

Figure 2: 2D PCA plot for showing the classifier em-
beddings for the dataset, the GNNBoundary embed-
dings and our boundary embeddings for the Motif class
pair House-Comp 4.

As described in section 5.5, we attempt to inspect
the classifier embedding space by plotting the 2D
UMAP and PCA of each adjacent class pair, the cor-
responding GNNBoundary near-boundary graphs
and the near-boundary embeddings discovered by
our cross-entropy based method described in sec-
tion 5.5. As can be seen in fig. 2 3, the GNNBound-
ary graphs form a larger structure throughout the
embedding space, while our boundary embeddings
are concentrated in one location. This is due to
the fact that our cross-entropy based method opti-
mizes for probabilities under the use of a Softmax
instead of the logits. Given that the logits are un-
bounded, our method always resorts to the same
minimum for which the difference in magnitude of
the logits enable the desired probability distribu-
tion. The GNNBoundary graph embeddings on the
other hand, escape this issue and distribute along
a larger structure in the latent space, highlighting
GNNBoundary’s robustness.
We note that PCA is not locality-preserving. Hence,
the fact that the boundary graphs do not appear in-
between the classes on the plot does not necessar-
ily corresponding to the actual proximity in high-
dimensional latent space. Consequently, this empir-
ical study might give an intuition for the existence of structures in latent space, but it cannot be used to
argue about the precise location of the found boundary graphs in that latent space.

2We used a maximum number of nodes of 25 per graph for the other datasets.
3The corresponding UMAP plot can be found in appendix I
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6.6 Boundary Statistics under Different Target Probability Ranges

To validate the [0.45, 0.55] probability range [pmin, pmax], we analyzed boundary statistics (thickness, margin,
complexity) across several probability ranges, from [0.42, 0.58] to [0.495, 0.505] and present the full results
in appendix J. This approach helps assess whether the range suggested by Wang & Shen (2024) reliably
includes near-boundary graph properties.
Overall, [0.45, 0.55] serves as a good baseline, but variations in some cases highlight the general instability of
the graph generation process. This instability mainly comes from the stochastic nature of graph sampling,
where small fluctuations in probability estimates can lead to different graph configurations. For example,
in the Motif dataset, boundary thickness for the House-Comp4 class pair remains stable, while the Collab
dataset shows larger deviations at [0.495, 0.505]. Similarly, the Enzymes dataset exhibits increasing margins
for class pair EC4 and EC5 in narrower ranges.
Despite these fluctuations, the variance trend remains mostly stable, with occasional outliers. The [0.45, 0.55]
range balances precision and stability, though the observed variations reflect the inherent instability of the
boundary graph generation approach.

7 Conclusion

GNNBoundary is a pioneering framework that enables finding near-boundary graphs in GNN classifiers that
can be used to collect the boundary statistics margin, thickness and complexity for a quantitative assessment
of a GNN classifiers robustness. It is the first work to offer explainability on the decision boundary of a
GNN classifier. In this study, we reproduced the author’s results and confirm the author’s claims: (1) we
observe similar results when using their adjacency discovery algorithm and report a high correlation between
the obtained adjacency scores and near-boundary graph generation success rates. Further, (2) we find
that GNNBoundary can consistently generate near-boundary graphs and is superior to the cross-entropy
baseline. However, this was only possible after extensive hyperparameter optimization. Finally, (3) we
observe high variations on the boundary statistics, which makes us question their reliability and precision.
Nonetheless, they can still provide some orientation on the generalization capabilities of the classifier. As a
result, we confirm only limited applicability of the boundary statistics. Throughout experiments, we observe
performance issues with the Enzymes dataset and explain this with it’s relatively high complexity and low
classifier performance. To further assess GNNBoundary’s general applicability, we test the method on two
additional real-world datasets. In that, we observe fair results for one dataset (IMDB) and no results for
the other (Reddit) due to a deficient scalability with larger graphs. Moreover, we conduct an empirical
analysis of GNNBoundary’s robustness in boundary detection and find it to be robust compared to a simple
cross-entropy based baseline method for finding near-boundary embeddings that we introduce. Finally, we
perform a study on the stability of the boundary statistics under different target class probability ranges
and confirm the [0.45, 0.55] range suggested by the authors.
In summary, we can commend the effort of the GNNBoundary authors as the interpretability of GNN
classifiers is a valuable and underexplored topic, but issues around the usability of their method, including
hurdles like the need for extensive hyperparameter optimization, confine future researchers ease to build
upon this idea.

8 Next Steps

Future research could work on a more realistic graph sampling framework that overcomes the strong indepen-
dence assumption being made by the independence of the distributions for edges, nodes and node features.
Attempts to reduce the method’s need for hyperparameter optimization or alternative approaches that are
easier to apply could further contribute to GNN classifier explainability. Despite our extensive hyperparam-
eter optimization efforts, we cannot confirm the author’s consistently high convergence rates and observe
significant discrepancies on the boundary statistics, highlighting the need for more robust methods.

12



Under review as submission to TMLR

References
Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph neural

networks for graph classification. arXiv preprint arXiv:1912.09893, 2019.

Fan Fan, Gang Wu, Yining Yang, Fu Liu, Yuli Qian, Qingmiao Yu, Hongqiang Ren, and Jinju Geng. A
graph neural network model with a transparent decision-making process defines the applicability domain
for environmental estrogen screening. Environmental Science & Technology, 57(46):18236–18245, 2023.

E. N. Gilbert. Random Graphs. The Annals of Mathematical Statistics, 30(4):1141 – 1144, 1959. doi:
10.1214/aoms/1177706098. URL https://doi.org/10.1214/aoms/1177706098.

Shuyue Guan and Murray Loew. Analysis of generalizability of deep neural networks based on the complexity
of decision boundary. In 2020 19th IEEE international conference on machine learning and applications
(ICMLA), pp. 101–106. IEEE, 2020.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

I. T. Jolliffe. Principal Component Analysis. Springer, 2 edition, 2002. ISBN 978-0387954424. ISBN:
978-0387954424.

Jaykumar Kakkad, Jaspal Jannu, Kartik Sharma, Charu Aggarwal, and Sourav Medya. A survey on ex-
plainability of graph neural networks. arXiv preprint arXiv:2306.01958, 2023.

Hamid Karimi, Tyler Derr, and Jiliang Tang. Characterizing the decision boundary of deep neural networks.
arXiv preprint arXiv:1912.11460, 2019.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang. Pa-
rameterized explainer for graph neural network. Advances in neural information processing systems, 33:
19620–19631, 2020.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation of
discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection
for dimension reduction, 2020. URL https://arxiv.org/abs/1802.03426.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph
neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009. doi: 10.1109/TNN.
2008.2005605.

Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt, Gregor Huhn, and Di-
etmar Schomburg. Brenda, the enzyme database: updates and major new developments. Nucleic Acids
Research, 32(Database issue):D431–D433, 2004.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the human out
of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2015.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Xiaoqi Wang and Han-Wei Shen. Gnninterpreter: A probabilistic generative model-level explanation for
graph neural networks. arXiv preprint arXiv:2209.07924, 2022.

Xiaoqi Wang and Han Wei Shen. Gnnboundary: Towards explaining graph neural networks through the
lens of decision boundaries. In The Twelfth International Conference on Learning Representations, 2024.

13

https://doi.org/10.1214/aoms/1177706098
https://arxiv.org/abs/1802.03426


Under review as submission to TMLR

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A comprehensive
survey on graph neural networks. IEEE transactions on neural networks and learning systems, 32(1):4–24,
2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826, 2018.

Pinar Yanardag and S. V. N. Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374. ACM, 2015.

Yaoqing Yang, Rajiv Khanna, Yaodong Yu, Amir Gholami, Kurt Keutzer, Joseph E Gonzalez, Kannan
Ramchandran, and Michael W Mahoney. Boundary thickness and robustness in learning models. Advances
in Neural Information Processing Systems, 33:6223–6234, 2020.

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of graph neural
networks. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery &
data mining, pp. 430–438, 2020.

14



Under review as submission to TMLR

A Adjacency Finding

Adjacency rates reported in the original work differ slightly from the values obtained when reproducing
adjacency tables, using the checkpoints provided and the seed noted in the open source code. As the
differences are minimal, we decide upon accepting the adjacent pairs stated by the authors and proceed
further with the research using them.

Figure 3: Adjacency matrices for each dataset. Small adjacency values indicate that no decision boundary
between the two classes is present in the classifier. A threshold of 0.8 is applied to explore the adjacent
class-pairs, while the class-pairs below this threshold are considered non-adjacent.

B Success Rates of Boundary Graph Generation

Given that the reported success rates were not achieved using the authors’ implementation, HPO was used
to find improved configurations. Given the discrepancy between the success rates using the author’s hyper-
parameters and our optimized ones with the reported results, we consider their report of experimental setup
insufficient for reproducing their work.

Table 2: Convergence success rates under the author’s hyperparameters across class pairs comparing
GNNBoundary to the baseline cross-entropy criterion for success rate and average convergence iteration.
Higher success rate is better.

Dataset c1 c2
Success Rate Avg. Convergence Iteration

GNN- Cross GNN- Cross
Boundary Entropy Boundary Entropy

Motif
House HouseX 0.072 0.055 125.24 273.40
House Comp4 0.681 0.653 79.86 64.59

HouseX Comp5 0.000 0.002 – 429.50

Collab HE CM 0.793 0.998 118.00 65.30
HE Astro 0.998 0.923 12.38 109.27

Enzymes

EC1 EC4 0.120 0.004 216.62 103.25
EC1 EC5 0.054 0.631 222.30 174.01
EC1 EC6 0.184 0.853 241.34 51.63
EC2 EC3 0.242 0.776 158.28 103.92
EC4 EC5 0.102 0.720 103.84 157.04
EC5 EC6 0.440 0.972 59.08 72.80

No results were obtained for the Reddit dataset (cf. section 6.3 for more details) and convergence could not
be reached for the "Romance-SciFi" class pair (cf. section 6.3).
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Table 3: Convergence success rates under optimized hyperparameters across class pairs comparing
GNNBoundary to the baseline cross-entropy criterion for success rate and average convergence iteration.
Higher success rate is better.

Dataset c1 c2
Success Rate Avg. Convergence Iteration

GNN- Cross GNN- Cross
Boundary Entropy Boundary Entropy

Motif
House HouseX 0.527 0.055 201.65 273.40
House Comp4 0.950 0.653 41.45 64.59

HouseX Comp5 0.010 0.002 343.23 429.50

Collab HE CM 1.000 0.998 77.75 65.30
HE Astro 0.900 0.923 19.71 109.27

Enzymes

EC1 EC4 0.180 0.004 216.62 103.25
EC1 EC5 0.487 0.631 222.30 174.01
EC1 EC6 0.328 0.853 241.34 51.63
EC2 EC3 0.555 0.776 158.28 103.92
EC4 EC5 0.197 0.720 103.84 157.04
EC5 EC6 0.763 0.972 59.08 72.80

IMDB
Comedy Romance 0.750 0.0720 86.11 182.92
Comedy Sci-Fi 0.770 0.5080 228.52 243.43
Romance Sci-Fi – – – –

C Baseline using GNNInterpreter

Given some ambiguities in Wang & Shen (2024) and the fact that GNNInterpreter graphs are used for
the boundary statistics, we also compute the random baseline using GNNInterpreter graphs. It works the
same way as the standard random baseline with the only difference being that it samples class-graphs from
previously trained GNNInterpreter samplers instead of the labeled training datasets themselves.

Table 4: Baseline probabilities for datasets and class tuples sampling using GNNInterpreter class graphs
connected using a random edge to obtain boundary graphs.

Dataset Class Pairs Baseline
c1 c2 p(c1) p(c2)

Motif
House HouseX 0.3799 ± 0.4140 0.0742 ± 0.2260
House Comp4 0.3171 ± 0.3784 0.4397 ± 0.4307

HouseX Comp5 0.2394 ± 0.3648 0.4669 ± 0.4934

Collab HE CM 0.9607 ± 0.0008 0.0000 ± 0.0000
HE Astro 0.9607 ± 0.0008 0.0393 ± 0.0008

Enzymes

EC1 EC4 0.0360 ± 0.1575 0.0272 ± 0.1551
EC1 EC5 0.0736 ± 0.2442 0.0250 ± 0.1501
EC1 EC6 0.4461 ± 0.4790 0.0010 ± 0.0160
EC2 EC3 0.0748 ± 0.2462 0.6005 ± 0.4589
EC4 EC5 0.3377 ± 0.4299 0.5146 ± 0.4564
EC5 EC6 0.2760 ± 0.4256 0.0211 ± 0.1212
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D Boundary Statistics

We run the boundary complexity, margin and thickness as well as a confusion matrix for all three datasets
from Wang & Shen (2024) and report on all of them except for the boundary complexity (which can be
found in table 1) in the following fig. 4. These results are discussed in section 6.1.

Figure 4: Boundary metric analyses and confusion matrices.

E Datasets

Apart from the datasets we added, Wang & Shen (2024) employ the Motif, Collab and Enzymes datasets
described in the following. For a better understanding of the employed datasets, we provide table 5.

Table 5: Dataset statistics. Size refers to the number of nodes in a graph.

Statistic Size Mean Median Min Max Std
(Nodes) Graph Size Graph Size Graph Size Graph Size Graph Size

Motif 11,531 57.07 51.00 14 112 25.65
Collab 5,000 74.49 52.00 32 492 62.30
Enzymes 600 32.46 32.00 2 125 14.87
Reddit 4,999 508.51 374.00 22 3,648 452.57
IMDB 1,500 13.0 10.0 7 89 8.52
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E.1 Details on the IMDB Dataset

Following the challenges on generating boundary graphs for the "Romance-SciFi" class pair and GNNIn-
terpreter graphs for the "Romance" class, we provide examples of "Romance"-graphs and "Romance-SciFi"-
graphs to identify potential root causes.

(a) (b) (c) (d) (e)

Figure 5: Examples of Romance-SciFi near-boundary graphs.

(a) Near-boundary graph for Romance-Comedy. (b) Near-boundary graph for Comedy-SciFi.

Figure 6: Comparison of near-boundary graphs for Romance-Comedy and Comedy-SciFi class pairs.

18



Under review as submission to TMLR

F GCN Classifier

Table 6: Classifier accuracies, class-wise F1-scores, and GNN architecture hyperparameters for each dataset,
using pre-trained checkpoints from the authors’ work. For IMDB, the classifier was trained with architecture
parameters informed by the dataset’s graph properties.

Dataset Test Accuracy Class F1 Score Architecture
Hidden Num

Channels Layers

Motif 0.961

House 0.923

6 3House X 0.984
Comp 4 0.946
Comp 5 0.994

Collab 0.782
High Energy 0.802

64 5Condensed Matter 0.617
Astro 0.823

Enzymes 0.483

EC1 0.273

32 3

EC2 0.526
EC3 0.750
EC4 0.348
EC5 0.500
EC6 0.500

IMDB 0.453
Comedy 0.156

64 5Romance 0.491
Sci-Fi 0.573

Input Graph GCN Layers

Sum Pool

Mean Pool

Concat Linear + ReLU Linear Softmax

3 - 5
layers
6 - 64

channels

Reduce
dimen-
sions

by half
Map to
logits

Figure 7: Architecture overview of the GCN classifier. The model processes input graphs through multiple
GCN layers with LeakyReLU and Dropout, performs global weighted pooling operations, and uses linear
layers for the final classification.
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G Hyperparameter Optimization

The following table shows the search space employed for automatic hyperparameter optimization using
Bayesian Optimization. We worked with 8 random starts, 200 tuning iterations and 3 runs per iteration.
We found that the results within those 3 runs were mostly consistent and we took the mean performance
across those 3 runs as the performance of the entire tuning iteration. Each run had 1000 training iterations.
Hyperparameter optimization was done separately for each of the datasets.

Table 7: Search Space for Hyperparameters

Hyperparameter Data Type Range / Values Prior Distribution

Target Size Integer [20, 60] Uniform
Target Probabilities Categorical {"0.45-0.55", "0.4-0.6", "0.35-0.65"} Uniform
Learning Rate Real [0.01, 1] Uniform
Temperature Real [0.05, 0.5] Log-Uniform
Weight Budget inc. Real [1.05, 1.2] Uniform
Weight Budget dec. Real [0.94, 0.99] Uniform

Table 8: Hyperparameter optimization results. The search space includes the sample size K, the target
size, the target probabilities, the learning rate, the temperature, the weight budget increase for the dynamic
regularization scheduler and the weight budget decrease. HPO for the Reddit dataset was not possible under
the given configurations due to the high graph size (cf. section 6.3).

Hyperparameter Collab Motif Enzymes IMDB Reddit Authors

Iterations 1000 1000 1000 1000 1000 1000
Sample Size K 32 32 32 32 32 32
Init. Weight Budget 1 1 1 1 - -
Target Size 60 50 46 60 - -
Target Probabilities [0.45, 0.55] (0.4, 0.6) (0.35, 0.65) (0.4, 0.6) - [0.45, 0.55]
Learning Rate 0.01 1.0 0.02 0.9 - 1.0
Temperature 0.05 0.05 0.5 0.49 - 0.15
Weight Budget Inc. 1.20 1.05 1.10 1.12 - -
Weight Budget Dec. 0.99 0.99 0.95 0.94 - -
Custom Loss 0.038 0.118 0.170 0.10 - -

H Remarks on Implementation

We commend the authors for their efforts to ensure the reproducibility of their work by releasing their code,
pre-trained model checkpoints, and providing detailed Readme instructions. In the spirit of transparency,
we offer additional context on the implementation process and suggestions for improvement, with the hope
of contributing to future learning opportunities in the field.

Reproducing the main results of the study required a significant investment of both time and computational
resources. While the provided notebooks served as helpful examples, we encountered issues with hyper-
parameter configurations as they led to convergence problems and were incomplete. Since no dedicated
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training script was included to replicate the results in the original paper, we implemented our own training
runs using the parameters specified in the paper or inferred from the notebooks. As shown in table 2,
this configuration often failed to generate sufficient near-boundary graphs, making the reproduction of the
results significantly harder. To address this, we conducted hyperparameter optimization (HPO) to derive
class-pair-specific configurations that improved convergence. However, even with the optimized parameters,
the success rates remained lower than the authors reported ones.

An implementation for the boundary complexity, thickness and margin was also a not included in the code
publicized by the authors.

The environment setup was facilitated by both an environment.yml and a pyproject.toml file. The latter
included a Git dependency from a common XAI library4 used by both the GNNInterpreter (Wang & Shen
(2022)) and GNNBoundary (Wang & Shen (2024)) repositories. This common library contains several crucial
components, but its inheritance structure introduced implementation challenges. Specifically, overlapping
versions of key components within the shared repository led to confusion. Notably, the absence of a clear
training script, the lack of well-defined boundary metric calculations, and the presence of multiple versions
of graph sampling implementations required significant effort to understand and resolve the intended design.

I Embedding Space Inspection

Figure 8: 2D UMAP plot for showing the classifier embeddings
for the dataset, the GNNBoundary embeddings and our boundary
embeddings for the Motif class pair House-Comp 4.

In fig. 8, we can see a very similar phe-
nomenon as in fig. 2. The GNNBound-
ary near-boundary graph embeddings are
spread across a larger area in a specific
structure while the near-boundary em-
beddings are collapsed to the same loca-
tion in the embedding space during op-
timization. This supports the findings
that the GNNBoundary dynamic bound-
ary criterion allows for a more robust op-
timization process than our cross-entropy
based method. More details on our rea-
soning are provided in section 6.5.

4The gnn-common-xai repository can be found at: https://github.com/yolandalalala/gnn-xai-common
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Table 9: Relationship between boundary thickness and target range

Dataset Class (0.43,0.57) (0.44,0.56) (0.45,0.55) (0.47,0.53) (0.48,0.52) (0.49,0.51) (0.495,0.505)
Motif

House 21.860 21.860 21.860 21.039 20.657 22.296 24.124
Comp-4 23.006 23.006 23.006 22.959 22.366 23.980 24.727

HouseX 94.832 94.108 92.528 89.067 87.809 95.975 95.114
Comp-5 49.071 48.010 46.773 46.545 46.309 48.020 49.969

House 36.431 36.431 36.431 34.393 35.824 35.774 37.607
HouseX 65.062 65.062 65.062 64.079 62.873 68.698 64.628

Collab
High Energy 69.331 69.331 69.331 73.337 69.895 93.291 44.445

Astro 2047.92 2047.92 2047.92 1605.01 1741.06 2198.34 3204.41

High Energy 222.807 222.807 222.807 209.575 160.713 - -
Condensed Matter 36.111 36.111 36.111 25.734 22.746 - -

Enzymes
EC4 205.928 206.793 210.382 220.714 219.387 230.614 229.475
EC5 286.960 282.358 292.259 308.021 300.307 363.206 298.949

EC5 207.833 209.161 204.640 180.781 162.449 163.469 -
EC6 115.654 110.911 114.174 75.252 77.022 84.510 -

EC1 272.131 272.131 303.868 327.851 - - -
EC5 255.304 255.304 333.342 272.701 - - -

EC1 374.599 315.357 143.406 - - - -
EC4 174.381 105.329 75.279 - - - -

EC1 216.613 209.391 227.606 151.933 - - -
EC6 100.109 77.762 74.587 48.068 - - -

EC2 91.520 96.992 86.903 77.186 81.010 113.270 98.641
EC3 1192.97 1192.71 1052.94 277.830 453.337 67.647 43.763
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Table 10: Relationship between boundary margin and target range

Dataset Class (0.43,0.57) (0.44,0.56) (0.45,0.55) (0.47,0.53) (0.48,0.52) (0.49,0.51) (0.495,0.505)
Motif

House 0.337 0.337 0.337 0.337 0.123 0.123 0.915
Comp-4 0.416 0.416 0.416 0.416 0.220 0.347 0.744

HouseX 0.492 0.755 0.755 0.755 0.909 3.046 3.046
Comp-5 1.626 3.797 3.797 3.797 4.480 4.480 7.069

House 1.236 1.236 1.236 1.503 1.430 1.430 1.922
HouseX 0.972 0.972 0.972 0.972 1.456 2.011 2.996

Collab
High Energy 3.023 3.023 3.023 2.598 3.333 3.318 4.097

Astro 2.796 2.796 2.796 2.689 2.979 12.058 9.505

High Energy 1.997 1.997 1.997 1.997 2.497 - -
Condensed Matter 1.645 1.645 1.645 1.645 1.982 - -

Enzymes
EC4 17.748 17.748 17.748 32.503 32.503 32.300 34.783
EC5 4.815 4.815 4.815 33.999 33.999 33.633 33.633

EC5 3.045 3.045 3.045 17.337 24.270 16.537 -
EC6 11.425 11.425 11.425 10.411 14.968 6.294 -

EC1 17.251 17.251 18.542 18.542 - - -
EC5 12.642 12.642 24.377 24.377 - - -

EC1 5.919 4.399 28.629 - - - -
EC4 13.383 12.763 28.059 - - - -

EC1 20.664 20.677 9.465 25.900 - - -
EC6 13.949 15.315 10.926 36.139 - - -

EC2 12.138 3.154 3.154 18.348 18.348 27.913 37.612
EC3 9.944 10.469 14.045 18.061 18.061 27.764 34.422

Table 11: Relationship between boundary complexity and target range

Dataset Class (0.43,0.57) (0.44,0.56) (0.45,0.55) (0.47,0.53) (0.48,0.52) (0.49,0.51) (0.495,0.505)
Motif

House and Comp4 0.072 0.072 0.072 0.064 0.062 0.064 0.060

HouseX and Comp-5 0.182 0.135 0.114 0.080 0.057 0.058 0.066

House and HouseX 0.015 0.015 0.015 0.012 0.010 0.008 0.007
Collab

High Energy and Astro 0.253 0.253 0.253 0.229 0.217 0.240 0.253

High Energy and Condensed Matter 0.313 0.313 0.313 0.298 0.343 - -
Enzymes

EC4 and EC5 0.138 0.168 0.166 0.187 0.189 0.182 0.247

EC5 and EC6 0.349 0.326 0.335 0.403 0.413 0.374 -

EC1 and EC5 0.0455 0.0455 0.021 0.000 - - -

EC1 and EC4 0.199 0.122 0.189 - - - -

EC1 and EC6 0.168 0.171 0.167 0.099 - - -

EC2 and EC3 0.306 0.289 0.296 0.313 0.348 0.596 0.000
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