
Long-Horizon Torque-Limited Planning through Contact
using Discrete Search and Continuous Optimization

Ramkumar Natarajan1, Garrison L.H. Johnston2, Nabil Simaan2, Maxim Likhachev1 and Howie Choset1

Abstract—By bracing against the environment robots can
expand their reachable workspace that would otherwise be
inaccessible due to exceeding actuator torque limits and as
well as accomplish tasks beyond their design specifications.
As such, it is desirable to interact with the environment to
explore new possibilities to complete a task. However, motion
planning for complex contact-rich tasks requires reasoning
through the permutations of different possible contact modes
and the bracing locations that grow exponentially with the
number of contact points and links in the robot. To address this
combinatorial problem, we developed INSAT [1] that interleaves
graph search to explore the manipulator joint configuration
space with incremental trajectory optimizations seeded by
neighborhood solutions to find a dynamically feasible trajectory
through contact. In this paper, we present recent additions to
the INSAT algorithm that improve its runtime performance. In
particular, we propose Lazy INSAT with reduced optimization
rejection that systematically procrastinates its calls to trajectory
optimization while reusing feasible solutions that violate bound-
ary constraints. The algorithm is evaluated on a heavy payload
transportation task in simulation and on physical hardware.
In simulation, we show that Lazy INSAT is able to discover
solutions for tasks that cannot be accomplished within its design
limits and without interacting with the environment. In com-
parison to executing the same trajectory without environment
support, we show that the utilization of bracing contacts reduces
the overall torque required to execute the trajectory.

I. Introduction

Collaborative robots can reduce the physiological burden
for humans performing physically demanding tasks.

These robots can assist humans by manipulating heavy pay-
loads. Such robots need large torque actuators and massive
links to support its own weight along with the payload. How-
ever, such operational requirements compromise the safety of
collaboration with the human worker at close proximity. As
a result, we are faced with a manipulation planning problem
where the planner should minimize the manipulator joint
torques and accelerations while respecting task manipula-
tion requirements and avoiding obstacles. To overcome the
conflicting requirements of safe collaboration, it has been
shown that the robot can brace against the environment to
reduce the overall effort required to manipulate heavy objects
[2]. The physical constraints imposed by the environment
can be transformed into opportunities that can be exploited
to enable efficient manipulation that expends low energy,
increases accuracy [3], [4], and reduces compliance [5].

1 The authors are with The Robotics Institute at Carnegie Mel-
lon University, Pittsburgh PA 15213. email: {rnataraj, maxim,
choset}@cs.cmu.edu

2 The authors are with the department of Mechanical Engi-
neering at Vanderbilt University. email: {garrison.l.johnston,
nabil.simaan}@vanderbilt.edu

This work was supported by NSF awards #1734461 and #1734460, ARL
grant W911NF-18-2-0218 and by Vanderbilt and Carnegie Mellon internal
university funds.

Fig. 1: Kinova Gen3 manipulator transferring and flipping (from
blue side to orange side facing up) a long heavy wooden plank
across a partitioned space by bracing against the environment for
support.

Recently, we developed a motion planning algorithm
for manipulation that automatically discovers and exploits
bracing locations along the entire trajectory to achieve
a desired contact-rich task [1]. Consequently, our torque-
limited manipulation planning algorithm can opportunisti-
cally make/break/sustain contact with the environment to
reach deep inside a confined space with insufficient actuator
torques or carry a heavy payload beyond the manipulator’s
capability. The algorithm presented here evolved from [1] in
the following ways:
• Based on the observation of the complexity of different
re-wiring operations in INSAT, we propose a lazy
version of INSAT that delays evaluating long-horizon
trajectory optimizations without sacrificing any of the
properties of INSAT.

• We extend INSAT to utilize a discrete seed path that is
not dynamically feasible. This seed path is also gener-
ated within the algorithm and dramatically increases the
runtime speed of INSAT.



• Using risk-sensitive cost function transformation and
other numerical techniques, we are able to simplify the
trajectory optimization when compared to [1].

• One of the biggest limitations of trajectory optimization
methods is their inability to work reliably for long-
horizon problems. However, in many cases, their solu-
tions are feasible but do not satisfy the given boundary
conditions. This work proposes a way to reuse such
partial solutions by introducing additional nodes to the
low-D graph.

The key idea behind our framework is (a) to identify a low-
D manifold, (b) perform a search over a grid-based graph that
discretizes this manifold, and (c) while searching the graph,
utilize contact-implicit trajectory optimization to compute the
cost of partial solutions found by the search. As a result,
the search over the lower-dimensional graph decides what
optimizations to run and with what seeds, while the cost of
the solution from the trajectory optimization drives the search
in the lower-dimensional graph until a dynamically feasible
trajectory from start to goal is found. The flowchart in Fig.
2 gives an overview of the algorithm.

Fig. 2: A schematic of the working principle of INSAT

II. Long-Horizon Torque-Limited Planning w/
Contact

Let the planning state of a # DoF robot be comprised of
joint angles and joint velocities x = [q, q̇] ∈ X ⊆ R2# . The
manipulator is controlled by bounded joint torque inputs u ∈
R# . Consider an invertible many-to-one mapping , : X −→
X! that projects a full-D state x = [q, ¤q] ∈ X into a low-D
state x! = [q] ∈ X! . So x! = ,(x), X and X! ⊆ R# are
full-D and low-D spaces. Then ,−1 : X! −→ X is an one-to-
many inverse mapping of , that lifts a low-D state x! ∈ X!
to any possible full-D state x ∈ X. So x = ,−1 (x!). The
time (C) parameterized full-D trajectory from the subspace
,−1 (x′

!
) to the subspace ,−1 (x′′

!
) is denoted as 5x′x′′ (C). For

trajectories, the argument C is dropped for brevity.

A. Tunable Smooth Contact Models

A dynamically feasible control trajectory for our ap-
plication might be non-smooth as the robot has to
make/break/sustain contact with the environment. To opti-
mize for such a trajectory using a gradient-based solver,
we use two tunable smooth contact models viz. (1) virtual
contact normal force model and (2) virtual contact friction
force, introduced in our previous work [1]. This enables the
opposing virtual friction to counteract the static friction from
the physics engine and automatically discover establishing
and sliding contact between the objects.

Algorithm 1 Trajectory Optimization Routine within INSAT
1: procedure GenerateTrajectory(x! , x′!)
2: for x′′

!
∈ �=24BC>AB(x!) do ⊲ From x(

!
to x!

3: if x′′
!
= x(

!
then

4: ,−1 (x′′
!
) = x(

5: else if x′
!
= x�

!
then

6: ,−1 (x′
!
) = x�

7: qx′′x′ = O(,−1 (x′′
!
), ,−1 (x′

!
)) ⊲ Eq. 1

8: if qx′′x′ .�B�>;;8B8>=�A44() then
9: qx(x′ = OF (qx(x′′ , qx′′x′) ⊲ Eq. 1 with warm-start
10: return qx(x′
11: return NULL w/ discrete ∞ cost

Algorithm 2 INSAT with Lazy Edge Evaluation and Re-
duced Optimization Rejection
1: procedure Key(x!)
2: return 6(x!) + n ∗ ℎ(x!)
3: procedure Main(x( , x�)
4: x(

!
= ,(x(); ∀x! , 6(x!) = ∞; 6(x(!) = 0

5: \x(x� = RRTConnect(x(
!
, x�
!
)

6: ∀x(
!
∈ \x(x� ; Insert x! in OPEN with Key(x!)

7: while Key(x�
!
) = ∞ do ⊲ x�

!
= ,(x�)

8: x! = OPEN.?>?()
9: qx(x = GenerateTrajectory(x! , x′!) ⊲ Sec.

II-C
10: if �C>C0; (qx(x) + ℎ(x!) > OPEN.<8=() ⊲ Eq. 2
11: Re-insert x! in OPEN with qx(x and Key(x!)
12: continue
13: if qx(x ()) ≠ x!
14: Insert _(qx(x ())) in OPEN with qx(x and

Key(_(qx(x ())))
15: 6(x!) = �C>C0; (qx(x)
16: X′! = {(D22(x!) ∪ {y! ∈ \x(x� | (x! , y!) ∈
(X \ X>1B) ∪ X(}}

17: for x′′
!
∈ X′! do

18: x′
!
= (> 5 C�>?H(x′′

!
) ⊲ Allow state revisiting

19: if x′
!
∈ CLOSED then

20: x′
!
= �44?�>?H(x′′

!
);

21: if 6(x!) + 2! (x! , x′!) < 6(x′!) then
22: 6(x′

!
) = 6(x!) + 2! (x! , x′!)

23: Insert x′
!
in OPEN with Key(x′

!
)

B. Low-Dimensional Graph Search

The low-D space X! (#-D) comprised of the joint angles
q. We build the low-D graph G! by discretizing the contact
inclusive joint configuration space of the manipulator. Each
edge in the graph corresponds to unit joint movement by
a known distance (Fig. 3). Every newly generated node
is checked to not violate joint angle and torque limits by
calculating the gravity compensation before adding to the
graph. So for an # DoF manipulator, the branching factor of
the graph is 2# (unit joint movement in either direction sat-
isfying joint angle and static joint torque limits). The graph
search can be sped up using a heuristic ℎ(x!) =



x! − x�! 

,
an underestimate on the cost-to-goal of the optimal trajectory.
In this low-D graph contact configurations are permitted and
generated as described in [1].



C. Trajectory Optimization for Planning through Contact
The mathematical program that we are trying to solve

within the graph search in INSAT is given by Eq. 1. Here
k, b are the stiffness and damping parameters of the virtual
contact normal force model and - is the virtual friction
coefficient of the virtual contact friction model (see [1] for
details). In [1], we used Successive Convexification (SCvx)
[6] which is similar to indirect methods like iLQR, with the
difference that SCvx computes the backward pass updates by
maintaining a trust region. The trust region is in turn grown
or shrunk depending on the quality of the update. This means
that the single update step in SCvx in the best case is the
same as iLQR and will be slower than iLQR in the cases
when the solution is rejected and the trust region has to be
modified.

min
u[.],k,b,-

; (x, u) =


x! [#] − x�! 

 + #−1∑

8=0
(‖u[8] ‖ + ‖ ¤x[8] ‖)

+
#Γ∑
==1
‖k‖ + ‖b‖ + ‖-‖

(1a)
s.t. x[0] = x0; x[8 + 1] = f(x8 , u8) (1b)

| ¤x(C) | ≤ ¤xlim; | ¥x(C) | ≤ ¥xlim; |u(C) | ≤ ulim (1c)

Using a parallel line search over the step size to find
the best improvement, constrained backward pass [7] that
enforces action limits, adaptive regularization and an expo-
nential scalar transformation corresponding to the classical
risk-sensitive control framework [8] such as Eq. 2 we are able
to obtain faster convergence and better performance using
iLQR over the trust region based SCvx.

�C>C0; = b (; (x, u), ') =
4'.; (x,u) − 1

'
(2)

D. INSAT: INterleaved Search with Trajectory Optimization
1) Lazy INSAT: A comprehensive exposition of INSAT

is presented in [1]. Here we present INSAT with Lazy edge
evaluation (magenta lines) using the pseudocode in Alg. 2.
We had a crucial observation that when using indirect trajec-
tory optimization techniques, warm-starting large problems
is significantly faster than solving from scratch but is slower
than solving small problems from scratch. Here the small
problems correspond to the incremental optimizations we
perform to get the trajectory from the state being expanded
to the successor and warm-starting corresponds to finding
the full trajectory to the successor from the start (Fig. 3). In
other words, although the warm-starting step in INSAT was
making a significant improvement to runtime and the con-
vergence of long-horizon problems, the longer the horizon
is, the higher the total runtime of the optimization is. Thus,
it would be beneficial to postpone as many warm-starting
and incremental optimizations as possible. To this end, we
propose a lazy version of INSAT (Alg. 2), that maintains
a lower bound on the solution of trajectory optimization as
a pseudo cost to sort the priority queue. The true cost is
computed only when the node is picked for expansion rather
than when it was generated as in [1]. The true cost will

increase the g-value of the node picked for expansion and
hence this node need not be at the top of the OPEN list
anymore. In that case, the node is inserted back into the
OPEN list and the next state at the top is picked. The state
picked for expansion is expanded only when its true cost is
also the lowest cost among the costs of the node in OPEN.

Fig. 3: Illustration of low-D graph, full-D subspaces of low-
D states, trajectory optimization O(.) and warm-started trajectory
optimization OF (.) and iterating over low-D ancestors (line 2).

2) Reduced Rejection of Optimized Trajectory: The graph
search in INSAT operates on a discrete low-D space. As a
result, the optimizer is required to solve a boundary value
problem that exactly connects the cell centers of discrete
cells. However, in practice, some relaxations are allowed on
these stiff constraints using penalty methods. Though this
improves the behavior of the optimization, there are many
instances where the optimization converges to a feasible
trajectory but does not satisfy the boundary condition. Since
we use indirect methods and rely on rollouts to generate
a dynamically feasible trajectory, the starting point condi-
tion is satisfied by definition. We reuse the feasible but
non-convergent trajectories by introducing or updating a
new/existing node in the low-D graph based on the terminal
point of the reused trajectory (orange lines).

3) Seed Low-D search with RRT-Connect: Bidirectional
sampling-based planners like RRT-Connect can be very fast
for high dimensional manipulation problems at the cost of
poor solution quality and dynamic infeasibility. We use the
RRT-Connect solution to seed the low-D discrete graph
search by inserting the OPEN priority queue with the nodes
on the RRT-Connect solution at the start of the algorithm
(red lines). These nodes from the RRT-Connect serve as
visibility nodes to escape local minima yet preserve bounded
suboptimality guarantees of the graph search.

III. Experiments and Results
A. Simulation Experiments

We evaluated Lazy INSAT for the task of transporting and
flipping a long wooden plank (Fig. 5) across a partition. Here
the flipped goal configuration of the payload is shown with a
lower alpha. The different colors of the faces of the payload
demonstrate the object being flipped when moved across the
partition. We evaluated the planner across three different
heights of the partition and several different combinations
of weight of the payload. The one shown in Fig. 5 is one of
the most difficult scenarios where the robot has to transport
and flip a 6kg payload well outside its capable limits. Further
note that the weight of the payload is concentrated far away



Fig. 4: Film strip showing a 7 DoF Kinova Gen3 robot utilizing bracing contacts to transfer a 2.5 kg payload between two cabinets using
minimal torque. The arm slides the payload all the way to the center by bracing with its wrist before lifting on its own. The payload is
then placed at the proximal end of the target shelf and pushed by bracing its forearm.

Fig. 5: Film strip showing Kinova Gen3 arm transporting and flipping an overweight payload of 6kg. The maximum manufacturer payload
limit is 4kg at configurations close to the base of the robot. The robot cannot lift the payload at any instant and has to find its way to
goal via a tiny constrained manifold of its entire workspace. Lazy INSAT finds the solution by leveraging contact.

from the tool tip because of the length of the payload making
the effective payload much more than 6kg. INSAT discovers
a 24s long-horizon trajectory to keep the payload in contact
throughout the task as it is the only option. The payload
cannot be lifted by the robot in any configuration with lower
momentum.

B. Real Robot Experiments

In order to experimentally validate our method, we used
the Kinova Gen 3 robot to lift a 2.5 Kg payload between
adjacent cabinets as shown in Fig. 4 and to flip a 1.7kg
bulky payload across the partition (same experiment as above
on physical hardware) as shown in Fig. 1. In both cases,
INSAT was able to accomplish the task successfully by
exhibiting different behaviors. As a comparison point, the
trajectories were executed in free space (i.e., without the
cabinets and the partition). Table I shows the RMS of the
sensed joint torques in both experiments. Note that in the
flipping task, the second joint (shoulder) of the arm reaches
very close to its maximum torque of 39Nm when executed
in the free space. The percentage RMS torque savings in
both experiments are 22% and 68% respectively. From these
values, it is clear that our planner was able to utilize bracing
contacts to meaningfully reduce the torque in most joints
when compared to free-space motion.

Joint ID 1 2 3 4 5 6 7 Total

Free 1.93 33.28 10.14 14.06 0.97 6.29 0.20 66.86
6.12 37.73 11.05 16.8 3.11 10.25 0.48 85.53

Bracing 4.65 23.96 6.67 11.80 1.28 5.67 0.59 54.62
8.61 15.5 3.39 10.71 4.94 5.11 2.41 50.68

Difference -2.72 9.32 3.46 2.26 -0.31 0.63 -0.40 12.24
-2.48 22.22 7.65 6.09 -1.83 5.13 -1.93 34.85

TABLE I: Grayed row corresponds to payload transportation
between shelves in Fig. 4 and white row corresponds to flipping
the bulky wooden plank in Fig. 1. Experimental RMS torques [Nm]
during (i) the braced trajectory shown in Fig. 4 and (ii) the same
trajectory running in free-space (i.e. without the cabinets or partition
wall) producing net savings of 12.24Nm and 34.85Nm respectively.

IV. Conclusion & Future Directions
With the Lazy edge evaluation in INSAT along with

reduced optimization rejection our planning time has come
down to an average of 3 minutes from >15 minutes in
[1]. Our current work on the multi-threaded version of
INSAT using parallelized graph search algorithms is showing
around further 15x reduction in planning time. We show that
planning with torque and obstacle constraints can be achieved
in a way that finds bracing locations in the environment
in order to make an otherwise inaccessible configuration
reachable due to the torque reduction achieved by bracing.
Experiments showed that the use of bracing contacts can
reduce the required actuator torque for a given trajectory.



References
[1] R. Natarajan, G. L. Johnston, N. Simaan, M. Likhachev, and H. Choset,

“Torque-limited manipulation planning through contact by interleaving
graph search and trajectory optimization,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2023, pp.
8148–8154.

[2] C. Fang, N. Kashiri, G. F. Rigano, A. Ajoudani, and N. G. Tsagarakis,
“Exploitation of environment support contacts for manipulation effort
reduction of a robot arm,” in 2019 International Conference on Robotics
and Automation (ICRA). IEEE, 2019, pp. 9502–9508.

[3] R. Hollis and R. Hammer, “Real and virtual coarse-fine robot bracing
strategies for precision assembly,” in Proceedings 1992 IEEE Interna-
tional Conference on Robotics and Automation. IEEE Comput. Soc.
Press, pp. 767–774.

[4] G. Wang and M. Minami, “Modelling and control of hyper-redundancy
mobile manipulator bracing multi-elbows for high accuracy/low-energy
consumption,” in Proceedings of SICE Annual Conference 2010. IEEE,
2010, pp. 2371–2376.

[5] G. L. Johnston, A. L. Orekhov, and N. Simaan, “Kinematic modeling
and compliance modulation of redundant manipulators under bracing
constraints,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), 2020, pp. 4709–4716.

[6] A. Ö. Önol, P. Long, and T. Padır, “Contact-implicit trajectory op-
timization based on a variable smooth contact model and successive
convexification,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 2447–2453.

[7] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential
dynamic programming,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2014, pp. 1168–1175.

[8] T. Howell, N. Gileadi, S. Tunyasuvunakool, K. Zakka, T. Erez, and
Y. Tassa, “Predictive sampling: Real-time behaviour synthesis with
mujoco,” 2022.


	Introduction
	Long-Horizon Torque-Limited Planning w/ Contact
	Tunable Smooth Contact Models
	Low-Dimensional Graph Search
	Trajectory Optimization for Planning through Contact
	INSAT: INterleaved Search with Trajectory Optimization
	magentaLazy INSAT
	orangeReduced Rejection of Optimized Trajectory
	red Seed Low-D search with RRT-Connect


	Experiments and Results
	Simulation Experiments
	Real Robot Experiments

	Conclusion & Future Directions
	References

