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Abstract
Reinforcement learning (RL) has emerged as a promising strategy for improving the reasoning capabilities of
language models (LMs) in domains such as mathematics and coding. However, most modern RL algorithms were
designed to target robotics applications, which differ significantly from LM reasoning. We analyze RL algorithm
design decisions for LM reasoning, for both accuracy and computational efficiency, focusing on relatively small
models due to computational constraints. Our findings are: (i) on-policy RL significantly outperforms supervised
fine-tuning (SFT), (ii) PPO-based off-policy updates increase accuracy instead of reduce variance, and (iii)
removing KL divergence can lead to concise generations and higher accuracy. Furthermore, we find that a key
bottleneck to computational efficiency is that the optimal batch sizes for inference and backpropagation are
different. We propose a novel algorithm, DASH, that performs preemptive sampling (i.e., sample a large batch and
accumulate gradient updates in small increments), and gradient filtering (i.e., drop samples with small advantage
estimates). We show that DASH reduces training time by 83% compared to a standard implementation of GRPO
without sacrificing accuracy. Our findings provide valuable insights on designing effective RL algorithms for LM
reasoning.1

1. Introduction
Recent advancements have shown that reinforcement learning (RL) algorithms can significantly enhance the mathematical
reasoning capabilities of language models (LMs) (DeepSeek-AI et al., 2025a; Qwen et al., 2025; Zeng et al., 2025).
Despite these results, there has been little systematic understanding of how different RL design decisions contribute
to their effectiveness in the LM reasoning setting. Many of these algorithms were originally designed for robotics,
while LM reasoning exhibits qualitatively different learning patterns, meaning different design decisions may be more
effective (Ahmadian et al., 2024); indeed, even the space of relevant design decisions may be different for LM reasoning
compared to robotics. Our goal is to answer the following question: How do we design effective RL algorithms for
improving the reasoning capabilities of LMs? Importantly, we are interested not only in the performance (i.e., the final
accuracy), but also efficiency (i.e., how quickly the algorithm converges). Furthermore, we focus on relatively small models
(0.5B, 1.5B, and 3B) where we can explore a variety of different RL algorithms.

We perform a systematic analysis of the different design decisions in an RL algorithm. We start by considering the two most
prevalent types of algorithms: supervised fine-tuning (SFT) (Chen et al., 2023; Zeng et al., 2023), also known as behavior
cloning, and on-policy RL (e.g., policy gradient (Sutton et al., 1999), PPO (Schulman et al., 2017a), GRPO (Shao et al.,
2024), etc.). While SFT is much more efficient, we find it to be significantly less effective at improving reasoning ability for
the models we consider; this may be due to the inability for smaller models to effectively mimic the reasoning traces of
larger models or humans. In contrast, we find that on-policy RL is highly effective at improving performance.

Next, we compare different kinds of on-policy RL algorithms. Compared to the original policy gradient (PG) algorithm,
PPO is designed to improve stability by “freezing” the inference policy and taking multiple gradient steps. We find that
while PPO can improve accuracy, it has significantly higher variance compared to PG, which is the opposite of conventional
wisdom. PPO also introduces a KL divergence term to regularize the training policy; however, we find that it leads to
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lengthier generations and worse performance.
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Figure 1. DASH can reduce running time by 83% compared to GRPO
by using preemptive sampling (Section 2.4) and gradient filtering
(Section 2.5).

While on-policy RL is highly effective, existing algo-
rithms are computationally expensive to run. Analyzing
their performance bottlenecks, we find that the sampling
procedure is a key bottleneck. The key issue is that in-
ference and training require significantly different batch
sizes to make optimal use of computational resources.
Thus, it is much more effective to perform inference in a
single large batch, and then accumulate gradient steps for
this batch over multiple training steps. This strategy al-
lows us to perform efficient sampling while using the PG
algorithm. Combined with strategies to filter out samples
with small advantage estimates, we call the resulting algo-
rithm Distributed-Aggregated Sampling Handler (DASH).
Compared to GRPO, DASH reduces on-policy training
time by 83% without sacrificing accuracy (Figure 1). We
open-source DASH to facilitate further research.

To summarize, our key findings are as follows: 1, For the
models we consider, we find on-policy RL to be effective
but not SFT (Section A.2 and 2.1); 2, We propose DASH,
which accelerates on-policy training by 83% without compromising accuracy (Section A.3, 2.4 and 2.5); 3, We find that
while PPO-style gradient updates can slightly improve accuracy, it can introduce instability into training (Section A.4
and 2.2); 4, We find that removing KL divergence regularization can lead to more concise generations and higher accuracies
(Section A.5).

2. Effective RL for LM Reasoning
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Figure 2. Illustration of preemptive sampling. We use H GPUs for inference and H ′ for backpropagation; they are shown in blue
and green, respectively. Given a batch of M prompts {x1, . . . ,xM}. The inference GPUs then generate corresponding responses
{ŷ1, . . . , ŷM}, which are aggregated across GPUs into CPU memory. When a backpropagation GPU requests generations for a prompt
xm, the corresponding cached response ym is retrieved and delivered. Since we are using groups for advantage estimation, each prompt
xm is duplicated to form groups, and all generations in the same group are sent to the backpropagation GPU upon request.

First, we describe basic design decisions of our RL algorithm rooted in the prior literature; these are based either on
experiments from prior work or our own experiments. Specifically, we consider an LM πθ with parameters θ, which takes in
a user prompt x and generates a reasoning trace ŷ, which we call a trajectory. We let ŷt denote the tth token in trajectory
ŷ. For a training prompt xn, we can check whether a generated trajectory ŷn produces the correct answer, represented as
a scalar reward rn = R(xn, ŷn) ∈ R. We assume that rn is for the entire trajectory; typically, it is a binary indicator of
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whether the final answer is correct.2

2.1. RL Strategy

The first decision is what kind of RL strategy to use. We consider two strategies: supervised finetuning (SFT) and on-policy
RL. SFT is effectively the same as behavior cloning, a popular imitation learning algorithm. Given a prompt training set
D = {xn}Nn=1, SFT collects corresponding expert trajectories Y = {yn}Nn=1, either from a human or a stronger LM. Then,
the LM is optimized via maximizing the log likelihood on (D,Y):

θ∗ = argmax
θ

N∑
n=1

log πθ(yn | xn) πθ(yn | xn) =

T∏
t=1

πθ(ŷn,t | xn, ŷn,1, ..., ŷn,t−1)

Alternatively, on-policy RL learns from trajectories generated by the current LM πθ. Given the a prompt set D, a typical
on-policy RL algorithm optimizes the expected reward:

πθ∗ = argmax
θ

J(θ) J(θ) =
1

N

∑
xn∈D

Eŷn∼πθ(·|xn)[R(xn, ŷn)].

While SFT has been shown to be effective in settings such as Muennighoff et al. (2025), they use a post-trained larger sized
model (Qwen2.5-32B-Instruct); our experiments show that it can be ineffective when the gap between the expert and πθ is
too large (specifically, we use small base models instead of larger instruction-tuned models). For instance, an expert may
take leaps of reasoning that are incomprehensible to the learner. Thus, DASH uses on-policy RL. Another alternative that
has been studied in the literature is self-imitation (Oh et al., 2018), where “expert” trajectories are obtained by performing
search guided by πθ, but results applying this strategy to LMs have so far been mixed (Shao et al., 2024).

2.2. Gradient Update Strategy

Next, we discuss the gradient update strategy. We consider both policy gradient (PG) (Sutton et al., 1999) and PPO (Schulman
et al., 2017b) (which includes GRPO (Shao et al., 2024)). In general, we consider gradient approximations ∇θJ(θ) ≈
N−1

∑N
n=1 Jn where Jn encodes the gradient approximation for the nth summand of J(θ). First, by the Policy Gradient

Theorem, using

JPG
n = Eyn∼πθ(·|xn)

[
∇θπθ(ŷn | xn)

πθ(ŷn | xn)
Aπθ (xn, ŷn)

]
(1)

is exact, i.e., ∇θJ(θ) = N−1
∑N

n=1 J
PG
n . Here, Aπθ (xn, ŷn) is the advantage function, which we discuss below. This

update is truly on-policy since the trajectories ŷ must be sampled using the current policy πθ. In robotics, PG can be unstable
due to high variance when estimating the gradient ∇θπθ(ŷn | xn); as a consequence, πθ can change rapidly across gradient
steps, sometimes even becoming worse. PPO was devised to mitigate this instability. Specifically, they weaken the on-policy
requirement, and “freeze” the data-generating policy πθold for some number of gradient steps. The resulting update has the
alternative form

JPPO
n = Eŷn∼πθold (·|xn)

[
∇θπθ(ŷn | xn)

πθold(ŷn | xn)
Aπθold (xn, ŷn)

]
,

where the differences compared to (1) are highlighted in red. Because this gradient is only valid when θ ≈ θold, a KL
regularization is imposed, to obtain JPPO-KL

n = JPPO
n + βJKL

n , where JKL
n = ∇θDKL(πθbase(· | xn) ∥ πθ(· | xn)). Following

Jaques et al. (2019); Ouyang et al. (2022), the KL divergence term is with respect to the original model πθbase instead of πθold

as in PPO.

Critically, in PPO, θold is updated to be θ every K steps, where K is a hyperparameter. To further improve stability, the
gradient is often clipped. GRPO uses the same gradient update as PPO; early versions include a weight 1/len(ŷn) on the
nth term to normalize by the length of the trajectory, but this term was removed in later versions (Liu et al., 2025). Finally,
we note that when θ = θold, this gradient update is equivalent to the PG update (1); this property holds even with gradient
clipping.

2Recent work has found that process rewards (Wang et al., 2024) may not be effective in our setting due to the difficulty predicting
whether a reasoning trace is on the right track (DeepSeek-AI et al., 2025a).
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Now, assume we have sampled a batch of M samples {(xm, ŷm)}Mm=1 from πθold , where initially θ = θold. If we take a
single gradient step on all examples, then PPO coincides with PG. This is the strategy used by DASH. We consider two
implementations of PPO that do not devolve into PG. First, we can take K gradient steps using all M samples, which we
call PPO-Multi (or just Multi). Second, we can divide the M examples into K mini-batches of size M/K each, and take
one gradient step on each mini-batch, which we call PPO-Mini (or just Mini). In our experiments, we find that DASH is
more stable than Multi and Mini, suggesting that the added complexity of PPO-based off-policy gradient updates increases
variance.

We include the KL term in DASH (i.e., JDASH
n = JPG

n + βJKL
n ) for closer comparison of DASH to Multi and Mini. However,

in our experiments, we find that omitting the KL term improves accuracy.

2.3. Advantage Estimation

A key challenge in RL is estimating the quantity Aπ(ŷ | x), which is called the advantage (Sutton & Barto, 2018); it is
defined to be Aπ(ŷ | x) = Qπ(ŷ | x)− V π(x), where Qπ is the Q-function and V π is the value function. Intuitively, it
captures how the specific generation ŷ compares to a random sample ŷ′ ∼ πθ(· | x). In general, Aπ is not known and must
be estimated from data. We consider three strategies: (i) training a model to predict Aπ , (ii) a Monte Carlo estimate called
the single-path method, and (iii) a Monte Carlo estimate introduced by GRPO. The first approach is to train a model to
predict Qπ(ŷ | x), which can be used to compute V π and Aπ (Schulman et al., 2017a). This approach can reduce variance,
but recent work has found that it is highly biased due to the difficulty in predicting Qπ for reasoning tasks (Liang et al.,
2022). Thus, we focus on Monte Carlo approaches.

The most popular Monte Carlo approach is the single-path method, which uses the estimate Aπθ (ŷn | xn) ≈ rn −
1
N

∑N
n′=1 rn′ , i.e., it is the centered reward; b = N−1

∑N
n′=1 rn′ is called the baseline. Intuitively, rn is an estimate of the

Q-function, and b is an estimate of the value function. A standard modification is to normalize by the standard deviation;
this normalization can be useful when rewards tend to increase significantly as learning progresses, but our rewards are
bounded so this cannot happen. Another modification is to leave out the reward for rollout n when estimating the value for
rollout n, which reduces bias (Sutton & Barto, 2018); this modification can be important when N is small (e.g., N = 2) but
only has a minor impact for larger N since the bias is small.

A shortcoming of the single-path method is that b is an estimate of the average value N−1
∑N

n′=1 V (xn′) across all samples,
whereas it ideally should estimate the value V (xn). One alternative is the vine method (Kazemnejad et al., 2024; Schulman
et al., 2017a), which uses a targeted sampling strategy to fix this issue; however, the vine method requires a large number of
samples, making it computationally expensive. GRPO uses an advantage estimate that interpolates between the single-path
and vine methods. It exploits the fact that in the reasoning setting, we typically train on multiple samples ŷn for a single
user prompt xn. In our formulation, we can think of there being multiple xn that are identical. Suppose that we partition N
into groups N1, ..., NK , where xn is the same for all n ∈ Nk. Then, it estimates the advantage using the formula

Aπθ (ŷn | xn) ≈ rn − 1

Nk

∑
n′∈Nk

rn′ , (2)

where Nk is the group containing n. In other words, it replaces the baseline with a state-dependent baseline b(xn) =
N−1

k

∑
n′∈Nk

rn′ ; now, b(xn) is an unbiased estimate of V (xn). This strategy can be viewed as performing a vine estimate
of the advantage at state xn, but not at any other state. DASH uses the GRPO advantage estimate (Section 2).

2.4. Preemptive Sampling

A key feature of RL for LMs is that inference typically occurs on specialized inference servers such as vLLM (Kwon et al.,
2023a). Importantly, inference is typically much more memory efficient than backpropagation, meaning much larger batches
are optimal for inference compared to backpropagation. Empirically, sampling takes up a much larger portion of training
time than backpropagation if performed in small batches (Figure 1). Thus, we propose preemptive sampling, where we
sample a large number of trajectories in one batch, and then perform backpropagation on these samples in smaller batches.
Preemptive sampling can be further sped up by using multiple inference servers in parallel (Figure 2). In practice, our
method can be used for both on-policy and off-policy sampling, depending on algorithmic design choices, as detailed in
Section 2.2. Figure 2 illustrates preemptive sampling. DASH uses preemptive sampling.

4



Effective Reinforcement Learning for Reasoning in Language Models

2.5. Gradient Filtering

Finally, we propose to drop examples with small advantage estimates (which is equivalent to clipping small advantage values
to zero, effectively dropping them from the gradient update). If the advantage estimate is small, then the contribution to the
gradient is likely to be small (unless ∇θπθ(ŷn | xn) happens to be very large, which we find to be unlikely in practice).
Intuitively, these are examples where the model either almost always gets the answer right (in which case there is nothing
new to learn) or almost always gets it wrong (in which case the problem is currently too difficult to learn). In addition, even
if we only drop advantages that are exactly zero, this strategy can provide a speedup since backpropagation still takes time
to compute the gradients ∇θπθ(ŷn | xn) before they are multiplied by Aπθ (ŷn | xn) = 0. DASH uses gradient filtering.

3. Conclusion
We have performed a careful theoretical and empirical analysis (Appendix A) of some key design decisions in RL algorithms
for improving language model reasoning, focusing on computationally constrained scenarios. We believe that systematizing
the study of RL for language model reasoning is key to designing more effective RL algorithms in this domain, which differs
significantly from robotics targeted by existing RL algorithms such as PPO. Our study is a first step in this direction.
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A. Experimental Results
We perform experiments showing that (i) on-policy RL significantly outperforms SFT (Section A.2, (ii) DASH significantly
reduces running time compared to standard GRPO (Section A.3), (iii) PG gradient updates outperform PPO-based gradient
updates (Section A.4), and (iv) removing KL divergence can lead to more concise more generations and higher accuracies
(Section A.5).

A.1. Experimental Setup

We use Qwen2.5-{0.5B, 1.5B, 3B} models as our base models, all of which are not post-trained (i.e., no instruction tuning).
We use the MATH dataset (Hendrycks et al., 2021), with the MATH-500 split (Lightman et al., 2023), which contains
12,000 examples for training and 500 examples for evaluation. We additionally use the GSM8K dataset (Cobbe et al.,
2021) for out-of-distribution evaluation, which contains 1,319 examples. Finally, we also perform some experiments in
the coding domain using the MBPP+ dataset (Liu et al., 2023), a 378-problem subset of verified problems from the MBPP
dataset (Austin et al., 2021); we use 264 problems for training and 114 for evaluation. Additional details are provided in
Table 7.

A.2. SFT vs. On-Policy RL

We compare three algorithms: (i) SFT with human-written reasoning traces, denoted SFT-H, (ii) SFT with reasoning
traces from Qwen2.5-7B-Instruct, denoted SFT-M, and (iii) DASH. Results are shown in Table 1. As can be seen, DASH
improves performance both in-distribution and out-of-distribution, demonstrating that on-policy algorithms can efficiently
learn mathematical reasoning skills that generalize across datasets. On the other hand, neither SFT-H nor SFT-M improve
performance, with SFT-H significantly degrading both in-distribution and out-of-distribution performance. Intuitively, the
substantial performance degradation caused by SFT-H can be attributed to the fact that human reasoning often omits many
intermediate steps, which is especially problematic for smaller LMs.

For coding, we train on human programs in MBPP+. Results are shown in Table 2. As can be seen, DASH outperforms SFT
in most cases, demonstrating the the general effectiveness of on-policy RL at improving the reasoning capabilities of LMs.
To the best of our knowledge, these are among the first results to show that on-policy RL can improve code generation for
smaller LMs.

Method Size (B) MATH (%) GSM8K (%)

Base 0.5 22.6 30.3
1.5 48.0 58.8
3.0 58.8 66.0

SFT-H 0.5 8.0 7.2
1.5 17.2 32.8
3.0 24.0 30.6

SFT-M 0.5 24.0 22.7
1.5 46.2 46.0
3.0 53.0 66.0

DASH 0.5 27.2 31.1
1.5 54.0 58.8
3.0 64.6 64.6

Table 1. Comparison of SFT to on-policy RL on math.

Method Size (B) pass1 (%) pass@8 (%)

BASE 0.5 2.6 22.8
1.5 7.1 60.5

SFT-H 0.5 8.77 29.0
1.5 19.3 42.1

DASH 0.5 11.4 40.4
1.5 23.7 63.2

Table 2. Comparison of SFT to on-policy RL on coding.

A.3. DASH vs. GRPO

Next, we compare DASH to GRPO both in terms of accuracy and running time by training Qwen2.5-0.5B using both GRPO
and DASH. We also use an ablation of DASH without gradient filtering, denoted No-GF. Results are shown in Table 3 and
illustrated in Figure 1. As can be seen, DASH significantly reduces GRPO training time (from 39 hours to 6.6 hours) without
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any significant reduction in performance, highlighting the effectiveness of preemptive sampling and gradient filtering.

Compared to No-GF, DASH reduces running time by 4% without any significant reduction in performance. The effectiveness
of gradient filtering can be improved; see Appendix C. We additionally show results for coding in Table 4. For coding,
we again see a significant speedup, though it is smaller since the generation length is much smaller so the gap in optimal
inference and backpropagation batch sizes is smaller.

The impact of GF on training dynamics is illustrated in Figure 3. Specifically, as shown in Figure 3(a), gradient filtering
increases the average absolute advantage values, leading to more significant gradient updates; consequently, as shown in
Figure 3(b), forward and backward pass running times are reduced. Finally, since only samples inducing trivial gradient
updates are filtered out, the training curves remain similar before and after applying gradient filtering, as shown in Figure 3(c).

Method Time (h) MATH (%) GSM8K (%)

BASE N/A 22.6 30.3
GRPO 38.9 27.6 32.8
No-GF 6.9 27.4 31.6
DASH 6.6 27.2 31.1

Table 3. Comparing on-policy RL algorithms on Qwen2.5-
0.5B for math.

Method Time (m) pass@1 (%) pass@8 (%)

BASE N/A 2.3 22.8
GRPO 35.3 11.4 49.1
No-GF 16.3 10.5 43.9
DASH 16.5 11.4 40.4

Table 4. Comparing on-policy RL algorithms using Qwen2.5-
0.5B for coding.
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Figure 3. Comparison between DASH and No-GF for Qwen2.5-0.5B on math.
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A.4. PG vs. PPO Gradient Updates

Next, we compare DASH to Multi and Mini. DASH uses a batch size of M = 256 (with K = 1), Multi uses M = 256
and K = 3, and Mini uses M = 8 so K = 32. Multi and Mini are slower than DASH; for fair comparison, we truncate
their training times to match the wall-clock time of DASH. The results are shown in Table 5, and training curves are shown
in Figure 4. As can be seen, Multi and Mini achieve faster initial performance improvements and have slightly higher
accuracies; however, they have significantly more unstable training curves. Similar results for the 1.5B model are shown in
Appendix C.
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Figure 4. Training reward curves for PG vs. PPO on Qwen2.5-
0.5B for math.

Method Size (B) MATH (%) GSM8K (%)

DASH 0.5 27.2 31.1
1.5 54.0 58.8

Multi 0.5 28.8 31.5
1.5 54.0 61.0

Mini 0.5 29.8 31.6
1.5 36.0 8.1

Table 5. Comparing PG to PPO for math.

A.5. KL Divergence Regularization

Next, we compare DASH to an ablation without the KL divergence term, denoted No-KL. Training reward curves are shown
in Figure 6(a). As can be seen, removing KL divergence regularization generally leads to higher rewards during training;
most likely, No-KL can focus on reward optimization without being constrained to stay close to the initial model. As shown
in Table 6, No-KL achieves greater in- and out-of-distribution than DASH (except in the case of the out-of-distribution
accuracy of the 3B model).

Furthermore, as shown in Figure 6(b), we find that for No-KL, the average generation length is shorter, thereby reducing
overall training time; this difference is also reflected in Table 6. We hypothesize that to compensate for KL divergence
regularization, models must generate longer reasoning traces.

Finally, for the 3B model, we study how KL divergence regularization affects pass@k. We follow Chen et al. (2021) to
evaluate pass@k in an unbiased way. Results are in Figure 5: No-KL performs best for small k, although the gap closes for
larger k. Intuitively, RL concentrates probability mass and reduces generation diversity (Shypula et al., 2025; West & Potts,
2025).
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Figure 6. Comparing KL divergence regularization on math.
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Figure 5. Impact of KL divergence regularization on pass@k for
Qwen2.5-3B on math.

Method Size (B) Time (h) MATH (%) GSM8K (%)

0.5 N/A 22.6 30.3
Base 1.5 N/A 48.0 58.8

3.0 N/A 58.8 66.0

0.5 6.6 27.2 31.1
DASH (with KL) 1.5 12.8 54.0 58.8

3.0 22.6 64.6 64.6

0.5 5.7 31.4 34.0
No-KL 1.5 10.3 56.8 62.1

3.0 17.6 66.4 60.0

Table 6. Comparing No-KL to DASH and Base on math.

B. Additional Experimental Setup
Math. All GRPO experiments are conducted using 6 Nvidia A6000 GPUs; we use 4 GPUs for backpropagation and 2 for
inference across all three model sizes (Qwen2.5-{0.5B, 1.5B, 3B}) (in practice, the 0.5B model only needs 2 GPUs for
backpropagation, but we still use 4 for consistency).

Our implementation is based on Huggingface’s GRPO Trainer; the hyperparameters are as follows:

• Learning rate: 1e-06; for comparing to Multi and Mini on Qwen2.5-1.5B, we use 3e-06 due to larger batch size

• Backpropagation batch size per GPU: 2 (so batch size is 8)

• # generations per prompt: 4 (resulting in 2 prompts backpropagated on in each step)
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• Maximum completion length: 2048

• Inference batch size for DASH: 256 (128 per inference GPU); for comparing to Multi and Mini on Qwen2.5-1.5B, we
use 1024 (512 per inference GPU)

• Gradient accumulation steps for DASH: 32 (so the effective batch size is 256); for comparing to Multi and Mini on
Qwen2.5-1.5B, we use 128 (so the effective batch size is 1024)

• Gradient steps per batch for Multi: 3

• Batch size for Mini: 8 (equivalently, no gradient accumulation)

• Gradient filtering threshold: 0.1

All other parameters are set to the default of the Huggingface trainer; a summary of the GRPO hyperparamaters is in Table 7.
To reduce memory footprint, we use DeepSpeed (Rajbhandari et al., 2020) ZeRO Stage 3 as well as CPU offload, gradient
clipping, and mixed precision; our DeepSpeed configuration is shown in Figure 7.

Parameters for SFT are shown in Table 8. All SFT experiments use end-to-end fine-tuning instead of using parameter
efficient methods such as LoRA (Hu et al., 2021). For model-generated reasoning traces, we use Qwen2.5-7B-Instruct as the
teacher to keep the distribution of generations in the Qwen family. We use a temperature of 0.7 and filter out reasoning
traces with the wrong answer. The resulting training set has 8,955 examples.

Versions of python and key libraries are shown in Table 9. The dev version of trl was cloned directly from trl’s GitHub
repository on April 10, 2025.

Hyperparameter Qwen2.5-0.5B Qwen2.5-1.5B Qwen2.5-3B

NVIDIA A6000 GPUs (training / sampling) 4 / 2 (2 / 2 using ZeRO) 4 / 2 4 / 2
Learning rate for DASH based runs 1× 10−6 1× 10−6 1× 10−6

Learning rate for Multi and Mini 1× 10−6 3× 10−6 N/A
Epochs 3 3 3
Batch size per device 2 2 2
Generations per prompt 4 4 4
Max completion length (tokens) 2048 2048 2048
Gradient accumulation steps for DASH based runs 32 32 32
Gradient accumulation steps for Multi and Mini 32 128 N/A
Gradient steps per sampled batch for Multi 3 3 N/A
Gradient-filtering threshold 0.1 0.1 0.1
Normalize gradients by generation length? No No No

Table 7. Experimental configuration and hyperparameters for on-policy RL on MATH.

Parameter Value

Learning rate 2× 10−5

Epochs 3
Batch size per device 4
Gradient accumulation steps 2

Table 8. Experimental configuration and hyperpa-
rameters for SFT.

Package Version

python 3.11.11
trl 0.17.0.dev0
vllm 0.8.1
pytorch 2.6.0

Table 9. Package versions.
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Figure 7. DeepSpeed configuration.

Coding. All experiments with MBPP+ on coding using on-policy RL for Qwen2.5-0.5B were conducted on AWS EC2
g6.12xlarge instances with 48 vCPUs, 192 GiB memory, and 4 NVIDIA L4 Tensor Core GPUs with 96 GiB total GPU
memory, with 2 GPUs dedicated to training and 2 to sampling. Experiments with Qwen2.5-1.5B and Qwen2.5-3B were
conducted on AWS EC2 g6e.12xlarge instances with 48 vCPUs, 384 GiB memory, and 4 NVIDIA L40S Tensor Core GPUs
with 192 GB total GPU memory, with 2 GPUs dedicated to training and 2 to sampling. All SFT experiments on MBPP+
were conducted using 2 NVIDIA A6000 GPUs. The hyperparameters for coding are the same as for math.

C. Additional Experiment Results
We compare gradient filtering with larger batch sizes, finding that gradient filtering is more effective when the per device
batch size is 4 (instead of 2). This experiment is only possible for the for Qwen2.5-0.5B on the math dataset using our
compute. Results are shown in Table 10 and training curves are shown in Figure 8. The time reduction achieved is larger
than before (10% instead of 4%). These results suggest that gradient filtering may become more effective with larger batch
sizes.

Method Time (h) MATH (%) GSM8K(%)

No-GF 5.1 31.8 31.3
DASH 4.6 28.4 30.9

Table 10. Comparing No-GF to DASH with per device batch of 4 instead of 2 for Qwen2.5-0.5B on math.

We also show the comparison of Mini, Multi, and DASH on the 1.5B model (Figure 9). Conclusions are similar to
Section A.4. In this case we stabilize Multi by increasing the gradient accumulation step to 128, but the high instability of
Mini leads to decrease in training rewards as well as accuracies as shown in Table 5.

14



Effective Reinforcement Learning for Reasoning in Language Models

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Epoch

0.30
0.35
0.40
0.45
0.50

Ab
so

lu
te

 A
dv

an
ta

ge

DASH NO-GF

(a) Average absolute advantage values

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Epoch

0.16
0.17
0.18
0.19
0.20

Ti
m

e

(b) Loss computation time

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Epoch

0.18

0.20

0.22

0.24

0.26

0.28

Re
wa

rd

(c) Trainning reward curves

Figure 8. Comparison of No-GF and DASH with a per-device batch size of 4 for Qwen2.5-0.5B on math.
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Figure 9. Training reward curves for PG vs. PPO on Qwen2.5-1.5B for math.
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D. Related Work
LM Reasoning. Given the promising performance of language models (LMs), numerous studies have explored their
application to mathematical problem solving (Hendrycks et al., 2021; Cobbe et al., 2021; Glazer et al., 2024), program
synthesis (Austin et al., 2021; Puri et al., 2021), and other reasoning tasks. Since LMs often exhibit varying performance
when directly prompted for these tasks, various methods have been proposed to explicitly elicit reasoning. For instance,
Chain-of-Thought prompting (Wei et al., 2023) encourages LMs to generate intermediate reasoning steps before producing
the final answer. Tree-of-Thought (Yao et al., 2023a) and Graph-of-Thought (Besta et al., 2024) extend this idea by imposing
logical structure to organize the reasoning process. LM reasoning has also been enhanced through tool use (Yao et al., 2023b;
Shinn et al., 2023). While these methods have proven effective in guiding LM reasoning and improving downstream task
performance, they primarily focus on better prompt design rather than improving the models’ inherent reasoning capabilities.

RL for LM reasoning. Recent efforts have focused on using RL to improve LM reasoning capabilities. In question-
answering tasks, FireAct (Chen et al., 2023) and AgentTuning (Zeng et al., 2023) enhance reasoning capabilities by learning
from demonstrations from humans or stronger models. These approaches are commonly referred to as supervised fine-tuning
(SFT), or behavior cloning in the RL literature. However, several studies have found limits on the effectiveness of SFT,
instead proposing to use on-policy RL (DeepSeek-AI et al., 2025a; Shao et al., 2024; Zeng et al., 2025).

On the other hand, on-policy RL can be very computationally expensive, leading to a great deal of interest in improving
efficiency. One shortcoming is that they require re-sampling generations after each model update, leading to sample
inefficiency and prolonged training times. To mitigate this, DeepSeek-AI et al. (2025b) propose more efficient transformer
architectures to accelerate pretraining, and Kwon et al. (2023b) introduce advanced memory management techniques to
speed up sampling in post-training. Although current RL algorithms can leverage vLLM acceleration, the full potential of
vLLM remains underutilized, leaving significant room for improving RL efficiency.
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