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(II) Night-time fusion scenario with composite degradation  
(Visible image suffers from noise and illumination degradation, Infrared image suffers from low resolution and noise)

(d) DIVFusion (InfFus 23)(b) DDFM (ICCV 23) (e) DRMF (Ours)(a) Infrared / Visible images

(I) Practical night-time fusion scenario (Visible image suffers from illumination degradation)

(d) DIVFusion (InfFus 23) (e) DRMF (Ours)(b) DDFM (ICCV 23)(a) Infrared / Visible images

(c) DiffLL & CAT (NIPS 22) & DDFM

(c) DiffLL (ICCV 23) & DDFM (ICCV 23)

Figure 1: Fusion schematic in challenging scenarios for MMIF tasks. DDFM [64] and DiffLL [12] are Diffusion-based methods
for image fusion and low-light image enhancement. DIVFusion [40] is an illumination-robust image fusion method, and
CAT [2] is a SOTA universal image restoration method for preparatory denoising and super-resolution.

ABSTRACT
Existing multi-modal image fusion algorithms are typically de-
signed for high-quality images and fail to tackle degradation (e.g.,
low light, low resolution, and noise), which restricts image fusion
from unleashing the potential in practice. In this work, we present
Degradation-Robust Multi-modality image Fusion (DRMF), lever-
aging the powerful generative properties of diffusion models to
counteract various degradations during image fusion. Our critical
insight is that generative diffusionmodels driven by different modal-
ities and degradation are inherently complementary during the
denoising process. Specifically, we pre-train multiple degradation-
robust conditional diffusion models for different modalities to han-
dle degradations. Subsequently, the diffusion priori combination
module is devised to integrate generative priors from pre-trained
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uni-modal models, enabling effective multi-modal image fusion.
Extensive experiments demonstrate that DRMF excels in infrared-
visible and medical image fusion, even under complex degradations.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Multi-modal image fusion, image enhancement, diffusion model

1 INTRODUCTION
Multi-modal image fusion (MMIF) is an essential image enhance-
ment technique that aggregates significant information from di-
verse sensors or modalities for a comprehensive scene representa-
tion [13]. Infrared-visible image fusion (IVIF) and medical image
fusion (MIF) are the most representative MMIF tasks. IVIF aims to
merge essential thermal radiation information from infrared (IR)
images and rich texture from visible (VI) images. The fusion results
can overcome the limitations of IR images suffering from noise and
low resolution as well as VI images affected by illumination and
camouflage [60]. MIF seeks to integrate functional and metabolic
information in functional images with structural and anatomical

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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information in structural images into a single image, aiding in sub-
sequent disease diagnosis and treatment [7]. Sufficient information
aggregation and pleasing visual outcomes enableMMIF to be widely
applicable across various domains, such as intelligent medical ser-
vice [67], nighttime assisted driving [1], object detection [10], and
semantic segmentation [58].

In recent years, MMIF has gained increasing attention, and nu-
merous algorithms have been developed to achieve greater visual
appeal. Owing to powerful feature extraction and representation
abilities, auto-encoder (AE)-based [16, 17, 21, 63], convolutional neu-
ral network (CNN)-based [27, 40, 51, 62], generative adversarial net-
work (GAN)-based [20, 28, 29] and Transformer-based [26, 44, 57]
frameworks dominate the MMIF field. In addition, the diffusion
model [8, 35] with strong distribution modeling and generative abil-
ities shows great potential for MMIF [55, 64]. DDFM [64] migrates
the generative prior of the pre-trained large-scale natural image
diffusion model to MMIF using the score matching technique [38].
However, the implementation of score matching involves tedious
design and requires re-optimizing an objective function for each
specific scenario, making it time-consuming. Moreover, the distri-
bution variation between natural and multi-modal images limits
the performance of pre-trained diffusion models in MMIF.

Additionally, most existing fusion methods are tailored for nor-
mal scenarios. As illustrated in Figure 1 (I), the VI image in a realistic
night scene experiences severe illumination degradation. Conse-
quently, even the advanced diffusion model-based fusion method
(i.e., DDFM) struggles to represent the scene information effectively.
Several works attempt to simultaneously enhance and aggregate
complementary information in challenging scenarios [40, 48]. DIV-
Fusion [40] first leverages the Retinex theory to extract reflectance-
related and illumination-related features from VI images. Then, it
only integrates reflectance-related features in the subsequent fu-
sion stage, mitigating the negative impact of illumination degrada-
tion. Nevertheless, since the illumination component is completely
dropped, the fusion result of DIVFusion, shown in Figure 1 (I (d)),
appears unnatural and suffers from noticeable color distortion. Note
that source images in challenging scenarios may be affected by mul-
tiple degradations, including noise, low contrast, low resolution,
low light, etc. As illustrated in Figure 1(II), existing fusion methods
struggle to effectively address composite degradation, leading to fu-
sion results that exhibit noise and blurriness, which greatly restrict
the practical application of MMIF. It is worth mentioning that some
preprocessing techniques (e.g. DiffLL [12] for low-light image en-
hancement and CAT [2] for denoising as well as super-resolution)
can be utilized to pre-enhance source images. Nevertheless, the
poor coupling between multiple cascading tasks leads to error am-
plification and thus synthesizes unsatisfactory fusion results, as
presented in Figure 1 (I (c)) and (II (c)).

To overcome the above challenges, we propose a degradation-
robust fusion method based on composable diffusion prior, termed
DRMF, which is a novel diffusion-based paradigm for MMIF. DRMF
fully leverages the inherent complementary potential of diffusion
models driven by different modalities and degradations to mitigate
various degradations.We begin by pre-trainingmultiple degradation-
robust conditional diffusion models, which are conditioned on de-
graded source images to estimate the distribution of corresponding

high-quality images. Since generative diffusion priors are charac-
terized by Gaussian noise, the priors of various diffusion models
can be combined in the noise space. Specifically, during the sam-
pling process, given the fusion sample 𝑥 𝑓𝑡 at 𝑡-step, the diffusion
model 𝜖𝑖

𝜃
driven by 𝑖-modality is employed to estimate the noise

(i.e., generative prior) 𝑛𝑖𝑡 to approximate high-quality revision of
𝑖-modality. Then, the diffusion priori combination module estimates
the combination weights of different modality-driven diffusion pri-
ors 𝑛𝑖𝑡 and produces the next sample 𝑥 𝑓

𝑡−1. Gradually, DRMF can
yield a high-quality fused image conditioned on degraded source
images. As shown in Figure 1, DRMF effectively addresses various
complex degradations and generates impressive fusion results that
emphasize significant targets and vividly portray scene details. To
sum up, our major contributions are threefold:

- We propose a novel diffusion model-based framework for
MMIF, which harnesses the powerful generative properties
of diffusionmodels to mitigate various complex degradations
in source images.

- We develop a diffusion prior combination module to aggre-
gate generative diffusion priors from different modalities,
effectively leveraging the complementary nature of diffusion
models driven by various modalities and degradations.

- Extensive experiments demonstrate the superiority of our
method in the IVIF and MIF tasks, especially when source
images are afflicted by composite degradations.

2 RELATEDWORK
Multi-modal image fusion. The booming development of deep
learning has energized the field of MMIF. AE [16, 65], CNN [51, 62],
GAN [20, 29], and Transformer [26, 44] are the major network archi-
tectures used in deep learning-based MMIF methods. In response
to the practical demands of subsequent high-level vision tasks,
the image fusion community has proposed numerous semantic-
driven approaches [20, 22, 41, 43], which constrain the fusion net-
work to retain richer semantic cues. Additionally, RFNet [53], UMF-
CMGR [47], SuperFusion [39], and MURF [54] jointly model image
registration and fusion tasks, correcting the parallax and aberration
in actual shooting. Furthermore, some universal methods [18, 26,
52, 56] uniformly fulfill various image fusion tasks. Specifically, re-
alizing that source images are usually affected by degradation, Tang
et al. [40] and Wang et al. [48] devised illumination-robust fusion
approaches, which take into account low-light image enhancement
and information fusion. However, these methods are specifically
designed for illumination degradation and fail to address other com-
mon degradations, such as noise and low resolution. In this work,
we utilize the diffusion models with powerful generative abilities
to tackle the challenges of composite degradation.

Diffusion model. Recently, the diffusion model [8] has gained
widespread attentionwithin the computer vision community, which
samples high-quality images from the estimated target distribu-
tion. Benefiting from their powerful generative capabilities, dif-
fusion models have found extensive applications in various low-
level visual tasks, such as text-to-image generation [3, 35], im-
age manipulation [15], super-resolution [36], de-raining [30], de-
blurring [50], and low-light image enhancement [5], consistently
delivering remarkable results. In addition, composable diffusion
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Figure 2: Forward and reverse processes of diffusionmodels.

models [9, 15, 23] are proposed to exploit multi-modality conditions
for controlling the generation process more accurately.

The diffusion model is also introduced to the field of MMIF. Dif-
Fusion [55] for the first time employs the denoising network of the
diffusion model as a potent feature extractor, while the whole image
fusion process is detached from the diffusion model. DDFM [64]
combines the score matching and a pre-trained unconditional dif-
fusion model to transfer the generative prior learned from natural
images to multi-modal images for image fusion. Notably, existing
diffusion model-based methods are not specifically designed for the
challenges in MMIF. As a result, the remarkable generative abilities
of diffusion models are not unleashed. In this work, we design task-
specific conditional diffusion models tailored to cope with various
degradations in multi-modal images. Then, we propose a diffusion
prior combination module to achieve image fusion using generative
priors driven by different modalities and degradations.

3 METHOD
Given complementary degraded source images {𝑥𝑖𝑐 } where 𝑖 ∈
{𝑖𝑟, 𝑣𝑖, 𝑐𝑡,𝑚𝑟𝑖}, our method starts from random Gaussian noises 𝑥𝑇
and generates high-quality fused images 𝑥 𝑓 by step-by-step de-
noising conditional on {𝑥𝑖𝑐 }. We devise a diffusion prior combina-
tion module to combine the noises {𝑛𝑖𝑡 } from multiple diffusion
models {𝜖𝑖

𝜃
} and infer the next fusion sample during the denois-

ing process. In particular, the estimated noises characterize the
degradation-robust diffusion priors driven by different modalities
and degradations, thereby we can achieve multi-modality informa-
tion aggregation. Our sampling process adheres to the standard
conditional diffusion model. Therefore, in the following we present
the typical diffusion model, degradation-robust conditional diffu-
sion models, and diffusion prior combination modules in sequence.

3.1 Diffusion Preliminary
Denoising diffusion probabilistic model [8] is a classical gen-
erative model that utilizes a Markov chain to transform complex
data distributions into a simple Gaussian noise distribution. It then
recovers the desired data distribution from the noise distribution
through step-by-step denoising. As shown in Figure 2, in the for-
ward process, the given data distribution 𝑥0 ∼ 𝑝 (𝑥0) is progres-
sively corrupted through a pre-defined Marchkov chain. This is
accomplished by gradually introducing Gaussian noise, and the
pre-defined Markov chain satisfies the following distribution:

𝑞(𝑥𝑡 |𝑥𝑡−1) = N(𝑥𝑡 ;
√
𝛼𝑡𝑥𝑡−1, 𝛽𝑡 𝐼 ), (1)

where 𝛽𝑡 governs the noise variance added at 𝑡-step and 𝛼𝑡 = 1−𝛽𝑡 .
Thus the marginal distribution is derived as:

𝑞(𝑥𝑡 |𝑥0) = N(𝑥𝑡 ;
√
𝛼𝑡𝑥0, 𝛽𝑡 𝐼 ), (2)

where 𝛼𝑡 = Π𝑡
𝑖=1𝛼𝑖 and 𝛽𝑡 = 1−𝛼𝑡 . As 𝑡 approaches a large value𝑇 ,

𝛼𝑇 tends to 0 and 𝑞(𝑥𝑇 |𝑥0) approximates the normal distribution
N(0, 𝐼 ), the forward process is finished.

The reverse process starts with a Gaussian noise 𝑥𝑇 ∼ N(0, 𝐼 )
and progressively denoises to generate a clean image through a
Markov chain, defined as:

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) = N(𝑥𝑡−1; 𝜇𝜃 (𝑥𝑡 , 𝑡), 𝜎2
𝑡 𝐼 ). (3)

As presented in [8], the mean 𝜇𝜃 (𝑥𝑡 , 𝑡) is calculated based on esti-
mated results of the noise estimation network 𝜖𝜃 with parameters
𝜃 , and the variance 𝜎2

𝑡 is a time-dependent constant. Specifically,
the above processes are formulated as:

𝜇𝜃 (𝑥𝑡 , 𝑡) =
1
√
𝛼𝑡
(𝑥𝑡 −

𝛽𝑡√
1 − 𝛼𝑡

𝜖𝜃 (𝑥𝑡 , 𝑡)),

𝜎2
𝑡 =
(1 − 𝛼𝑡−1)
(1 − 𝛼𝑡 )

𝛽𝑡 .

(4)

Ultimately, the optimization objective is defined as:

E𝑥0,𝑛𝑡 ,𝑡
[
∥𝑛𝑡 − 𝜖𝜃 (

√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝑛𝑡 , 𝑡)∥2

]
, (5)

where 𝑛𝑡 is sampled from a standard Gaussian noise.
Denoising diffusion implicit model [37] presents an accel-

erated deterministic sampling manner for pre-trained diffusion
models, where the forward process follows a non-Markovian pro-
cess. The marginal distribution 𝑞(𝑥𝑡 |𝑥0) still obeys Eq. (2), and the
mean in Eq. (3) is re-formulated as:

𝜇𝜃 (𝑥𝑡 , 𝑡) =
√
𝛼𝑡−1𝑥0 +

√
1 − 𝛼𝑡−1 − 𝜆2

𝑡 𝜖𝜃 (𝑥𝑡 , 𝑡), (6)

where 𝑥0 =
𝑥𝑡−
√

1−𝛼𝑡𝜖𝜃 (𝑥𝑡 ,𝑡 )√
𝛼𝑡

indicates the estimated 𝑥0 at the cur-
rent step, and 𝜆𝑡 is a tunable hyper-parameter controlling the vari-
ance of the marginal distribution. Thus, 𝜎2

𝑡 in Eq. (3) is set to 𝜆2
𝑡 .

3.2 Degradation-robust Conditional Diffusion
Conditional diffusionmodels have been shining in the field of image
generation [3, 35], enhancement [5], and degraded image restora-
tion [30, 36, 50]. However, diffusion models in MMIF are primarily
employed to extract features [55] and provide routine generative
priors of natural images [64] without tackling degradations. In
this work, we first present degradation-robust conditional diffusion
models (DRCDMs) to restore degraded source images. As shown in
Figure 3, given the degraded image 𝑥𝑖𝑐 and the high-quality versions
𝑥𝑖0, the forward process in the training stage follows Eq. (1), i.e.,
𝑞(𝑥𝑖𝑡 |𝑥𝑖𝑡−1) = N(𝑥

𝑖
𝑡 ;√𝛼𝑡𝑥𝑖𝑡−1, 𝛽𝑡 𝐼 ). The reverse process is defined as

𝑝𝜃 (𝑥𝑖𝑡−1 |𝑥
𝑖
𝑡 , 𝑥

𝑖
𝑐 ) = N(𝑥𝑖𝑡−1; 𝜇𝜃 (𝑥𝑖𝑡 , 𝑥𝑖𝑐 , 𝑡), 𝜎2

𝑡 𝐼 ), where the posterior is
further conditioned on degraded image 𝑥𝑖𝑐 as:

𝜇𝜃 (𝑥𝑖𝑡 , 𝑥𝑖𝑐 , 𝑡) =
1
√
𝛼𝑡
(𝑥𝑖𝑡 −

𝛽𝑡√
1 − 𝛼𝑡

𝜖𝑖
𝜃
(𝑥𝑖𝑡 , 𝑥𝑖𝑐 , 𝑡)). (7)

Specifically, the intermediate sample 𝑥𝑖𝑡 is concatenated with the
degraded image 𝑥𝑖𝑐 and fed into the noise estimation network 𝜖𝑖

𝜃
,

where the degraded image plays a crucial role in providing valuable
semantic and structural information. Furthermore, the optimization
objective is modified as:

E𝑥𝑖0,𝑥
𝑖
𝑐 ,𝑛𝑡 ,𝑡

[
∥𝑛𝑡 − 𝜖𝑖𝜃 (

√
𝛼𝑡𝑥

𝑖
0 +
√

1 − 𝛼𝑡𝑛𝑡 , 𝑥𝑖𝑐 , 𝑡)∥2
]
. (8)
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LR infrared with stripe noise and low-contrast

HR infrared with 
high-contrast

𝒙𝒙𝑻𝑻𝒗𝒗𝒊𝒊 𝒙𝒙𝒕𝒕𝒗𝒗𝒊𝒊 𝒙𝒙𝒕𝒕−𝟏𝟏𝒗𝒗𝒊𝒊 𝒙𝒙𝟎𝟎𝒗𝒗𝒊𝒊… …𝒑𝒑𝜽𝜽 (𝒙𝒙𝒕𝒕−𝟏𝟏𝒗𝒗𝒊𝒊 |𝒙𝒙𝒕𝒕𝒗𝒗𝒊𝒊,𝒙𝒙𝒄𝒄𝒗𝒗𝒊𝒊, 𝒕𝒕)
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time embedding (𝑡𝑡)

Noise Prediction Network (𝜺𝜺𝜽𝜽𝒗𝒗𝒊𝒊)

𝑪𝑪

Degraded conditional image (𝒙𝒙𝒄𝒄𝒗𝒗𝒊𝒊)
Low-light visible with noise

High-quality visible

Stage I : Degradation-Robust Conditional Diffusion Model 

Stage II : Degradation-Robust Multi-modality Image Fusion Model

Figure 3: The framework of our DRMF (IVIF as an example). Stage I presents the pipeline of the DRCDMs. Stage II indicates
the procedure of directly generating fusion results with the pre-trained degradation-robust diffusion prior. Given complemen-
tary degraded images {𝑥𝑖𝑐 } and arbitrary Gaussian noise 𝑥 𝑓

𝑇
, DRMF first predicts the degradation-robust generative prior (i.e.,

noise) {𝑛𝑖𝑡 } using noise estimation networks {𝜖𝑖
𝜃
}. Then, the generative priors provided by various modalities are aggregated

with the DPCM to infer the subsequent fusion sample 𝑥 𝑓𝑡 until the final high-quality fused image 𝑥 𝑓 is generated.

During the inference stage, high-quality source images are gener-
ated via iterative denoising, starting from a standard Gaussian noise
and guided by degraded conditional images. Note that in our solu-
tion, DRCDMs not only recover high-quality images from degraded
ones but also offer degradation-robust generative diffusion priors,
which are employed to yield high-quality fused images directly.

3.3 Diffusion Prior Combination
After pre-training, DRCDMs have learned the prior distributions of
high-quality uni-modal images. The priors are determined by noises
predicted at each sampling step. Related works [9, 15, 23] confirm
that combining noises from multiple diffusion models can generate
a result containing corresponding prior distributions. Therefore,
to directly generate a fused image that carries characteristics from
high-quality uni-modal priors, we devise a diffusion prior combi-
nation module (DPCM) to flexibly merge complementary noises.
In detail, as shown in Figure 3, we invert the image from random
Gaussian noise with pre-trained DRCDMs and update the mean
during the DDIM sampling process according to the rule:

𝜇 (𝑥 𝑓𝑡 , 𝑥𝑐 , 𝑡) =
√
𝛼𝑡−1

∑
𝑖𝛾

𝑖
𝑡𝑥

𝑖
0𝑡 +

√
1 − 𝛼𝑡−1 − 𝜆2

𝑡

∑
𝑖𝛾

𝑖
𝑡𝜖

𝑖
𝜃
(𝑥 𝑓𝑡 , 𝑥𝑖𝑐 , 𝑡),

(9)

where 𝑥𝑖0𝑡 =
𝑥
𝑓

𝑡 −
√

1−𝛼𝑡𝜖𝑖𝜃 (𝑥
𝑓

𝑡 ,𝑥
𝑖
𝑐 ,𝑡 )√

𝛼𝑡
denotes the estimated sample as-

sociated with 𝑖-modality conditioned on 𝑥𝑖𝑐 from the fusion sample
at 𝑡-step. {𝛾𝑖𝑡 }𝑇𝑡=1 is the sequence weights for each generative diffu-
sion prior satisfying

∑
𝑖 𝛾

𝑖
𝑡 = 1.

In this way, the goal of DPCM is to estimate sequence weights
for each modality. The learnable weights need to take into account
several considerations. They 1) should measure the complementary
properties of different modalities, 2) are expected to be learned
from high-quality images, 3) are modulated by timestep 𝑡 , and 4)
are guided by the weight from the previous step. Therefore, the
process of generating weights with a U-Net 𝜑 is defined as:

𝛾𝑖𝑡 = 𝜑 (𝑥 𝑓𝑡 , 𝑥
𝑖
0𝑡 , 𝛾

𝑖
𝑡+1, 𝑡) . (10)

The current fusion sample 𝑥 𝑓𝑡 , the predicted high-quality sample
𝑥𝑖0𝑡 for 𝑖-modality, and the weight 𝛾𝑖

𝑡+1 from the previous step are
concatenated and fed into the U-Net. To normalize weights of dif-
ferent modalities, we perform softmax across all weights {𝛾𝑖𝑡 } to
obtain the final combination weight {𝛾𝑖𝑡 } by 𝛾𝑖𝑡 =

exp(𝛾𝑖𝑡 )∑
𝑗 exp(𝛾 𝑗

𝑡 )
. Specif-

ically, in the fusion task involving two complementary modalities,
one weight 𝛾𝑖𝑡 is estimated, and the weight for the other modality
can be directly derived as 1 − 𝛾𝑖𝑡 .
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Algorithm 1: Training Algorithm of DPCM
Input: Pre-trained diffusion models {𝜖𝑖

𝜃
}, degraded images

{𝑥𝑖𝑐 }, and their estimated high-quality versions {𝑥𝑖0}
1 repeat
2 Initializing sample 𝑥 𝑓

𝑇
∼ N(0, 𝐼 );

3 for 𝑡 = 𝑇 − 1, · · · , 1 do
4 for 𝑖 in {𝑖𝑟, 𝑣𝑖} do

5 𝑥𝑖0𝑡 ←
𝑥
𝑓

𝑡 −
√

1−𝛼𝑡𝜖𝑖𝜃 (𝑥
𝑓

𝑡 ,𝑥
𝑖
𝑐 ,𝑡 )√

𝛼𝑡
;

6 𝛾𝑖𝑡 ← 𝜑 (𝑥 𝑓𝑡 , 𝑥𝑖0𝑡 , 𝛾
𝑖
𝑡+1, 𝑡);

7 end

8 𝛾𝑖𝑡 ←
exp(𝛾𝑖𝑡 )∑
𝑗 exp(𝛾 𝑗

𝑡 )
;

9 𝑥
𝑓

0𝑡 ←
𝑥
𝑓

𝑡 −
√

1−𝛼𝑡
∑

𝑖 𝛾
𝑖
𝑡𝜖

𝑖
𝜃
(𝑥 𝑓

𝑡 ,𝑥
𝑖
𝑐 ,𝑡 )√

𝛼𝑡
;

10 Updating 𝑥 𝑓
𝑡−1 by Eq. (9);

11 end
12 Calculating L by Eq. (11), Eq. (12) and Eq. (13);
13 Taking gradient descent step on ∇𝜑L;
14 until converged;

We also devise corresponding losses to optimize the weight
prediction network 𝜑 . The fusion loss is defined as:

L𝑓 =
∑
𝑖,𝑡

(
√
𝛼𝑡 ∥𝑥 𝑓0𝑡 −max

𝑖
({𝑥𝑖0})∥1 +

√
𝛼𝑡 ∥∇𝑥 𝑓0𝑡 −max

𝑖
({∇𝑥𝑖0})∥1

)
,

(11)

where 𝑥 𝑓0𝑡 =
𝑥
𝑓

𝑡 −
√

1−𝛼𝑡
∑

𝑖 𝛾
𝑖
𝑡𝜖

𝑖
𝜃
(𝑥 𝑓

𝑡 ,𝑥
𝑖
𝑐 ,𝑡 )√

𝛼𝑡
denotes a clean fused image

predicted at 𝑡-step and 𝑥𝑖0 is the high-quality source image restored
by the pre-trained DRCDM. The max(·) means the maximum ag-
gregation strategy and ∇ represents the gradient operator [41, 43].
As the denoising proceeds (i.e., as 𝑡 decreases), the estimated fu-
sion results get closer to the desired ones, thereby we weight the
fusion loss with time-dependent coefficient √𝛼𝑡 . In addition, we
introduce a regularization term to constraint the smoothness of the
combination weights 𝛾𝑖𝑡 , which is defined as:

L𝑟𝑒 =
∑
𝑖,𝑡 ∥∇𝛾𝑖𝑡 ∥1 . (12)

The full objective function for 𝜑 is a weighted sum of L𝑓 and L𝑟𝑒 :

L = L𝑓 + 𝜆𝑟𝑒 · L𝑟𝑒 . (13)

In particular, the IVIF task is expected to retain salient objects in IR
images. To achieve this, we design an additional mask-guided loss,
utilizing the salient target mask𝑚 to guide 𝛾𝑖𝑟𝑡 learning, as defined:

L𝑚 =
∑
𝑡 − (𝑚 log(𝛾𝑖𝑟𝑡 ) + (1 −𝑚) log(1 − 𝛾𝑖𝑟𝑡 )) . (14)

The training procedure of DPCM is summarized in Algorithm 1,
which uses IVIF as an example and involves only fusion and regu-
larization losses to ensure generality. During the inference stage,
we employ DDIM [37] fast sampling and update 𝑥 𝑓 at each step ac-
cording to Eq. (9), iteratively generating high-quality fused images.

4 EXPERIMENTS
4.1 Implementation Details
We train multiple DRCDMs separately. For IVIF, we initially train
DRCDMs for VI and IR images on the LOL [49] and MSRS [42]
datasets, respectively. LOL consists of paired low- and norm-light
images. We down-sample the low-contrast IR images with down-
sampling factor of 1/4 and add streak noise with 𝜎2 = 15 to simulate
degraded images. The high-quality versions are provided by MSRS.
Subsequently, the illumination-robust CDM pre-trained on LOL
is used to enhance the VI images in MSRS. Finally, we employ
enhanced VI and high-quality IR images from MSRS to train the
DPCM, and the salient target mask𝑚 is in Eq. (14) converted from
segmentation labels in MSRS. For MIF, we introduce degradation
in the form of Gaussian noise (with 𝜎2 = 25) to MRI images and
down-sample CT images using a down-sampling factor of 1/4.

During DRCDM training, the batch size is set at 64, the learning
rate is set at 2 × 10−5, the training iteration is set at 2 × 106, and
all images are randomly cropped into 64 × 64. We introduce the
attention mechanism at 1/4 resolution for computational efficiency,
and other settings adhere to the default settings of diffusion mod-
els [30]. When training the DPCM, we employ DDIM deterministic
sampling with 𝜆𝑡 = 0 for generating fused images and set the sam-
pling step to 5. The batch size and training iteration are adjusted to
1 and 1× 105, and source images are randomly cropped to 128× 128.

We first evaluate the fusion performance of the proposed scheme
in practical scenarios on LLVIP [11], MSRS, and Harvard [45]
datasets, which contain 216, 361, and 20 test images, respectively.
Then, we utilize degraded images in these datasets to demonstrate
the superiority of DRMF in solving composite degradation forMMIF.
Moreover, the test set of LOL with 15 image pairs is used to validate
the strong performance of DRCDMs in tackling degradation.

4.2 Image Fusion in Practical Scenarios
We first consider practical scenarios, where all source images are
captured directly by sensors. DRMF is compared with 8 SOTAmeth-
ods, i.e., DeFusion [18], TarDAL [20], U2Fusion [52], DIVFusion [40],
LRRNet [17], MURF [54], PAIF [25] and DDFM [64]. Visual com-
parisons for IVIF and MIF tasks are shown in Figures 4 and 5. In
nighttime IVIF scenarios, DRMF effectively lights up information
in the dark and enhances the contrast of IR images. Our results
thus provide bright backgrounds and significant targets. DIVFusion
also lights up VI images, but it suffers from overexposure and color
saturation reduction. Other approaches struggle to mine valuable
information in the dark or even diminish salient targets. As in Fig-
ure 5, only DRMF completely integrates functional and structural
information in CT and MRI images, benefiting from the adaptive
aggregation ability of DPCM. Quantitative results using MI [32],
SF [4], SD [33], and VIF [6] are displayed in Table 1. A SOTA low-
light enhancement (LLIE) method (i.e, DiffLL [12]) is employed to
enhance low-light VI images for comparing fusion performance
fairly. Orig. denotes the practical fusion results, whereas En. means
fusion results with LLIE for VI images. Achieving the best SD and
VIF means our method has optimal contrast and visual effects. The
superior MI suggests that DRMF effectively transfers valuable in-
formation from source images to fusion results. The comparable SF
shows that our fusion results integrate abundant textures.
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Figure 4: Visual comparison of DRMF with state-of-the-art approaches on practical and challenging fusion scenarios for IVIF.
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Figure 5: Visual comparison of our DRMF with state-of-the-art approaches on normal and challenging scenarios for MIF.

Table 1: Quantitative comparison of DRMF with state-of-the-art methods on IVIF and MIF tasks in practical fusion scenarios.
The best and second results are highlighted in red and blue, respectively.

LLVIP MSRS CT-MRI

MI SF SD VIF MI SF SD VIF MI SF SD VIFMethod
Orig. En. Orig. En. Orig. En. Orig. En. Orig. En. Orig. En. Orig. En. Orig. En. Orig. Orig. Orig. Orig.

DeF. [18] 2.98 2.15 13.97 12.81 41.09 34.72 0.60 0.47 2.71 3.00 5.95 7.00 24.10 27.89 0.67 0.62 2.69 19.59 76.22 0.45
TarDAL [20] 2.96 2.52 17.04 17.81 50.28 51.26 0.56 0.48 3.02 3.15 10.01 11.66 36.73 41.07 0.74 0.66 2.75 20.25 67.29 0.43
U2F. [52] 2.11 1.91 16.94 19.71 35.34 42.81 0.52 0.52 2.77 2.70 10.50 13.53 33.44 39.07 0.75 0.73 2.38 20.82 58.74 0.39
DIVF. [40] 2.07 2.01 16.12 16.84 53.16 53.33 0.68 0.50 2.77 2.56 12.21 14.10 53.58 53.94 0.88 0.64 2.29 14.74 55.56 0.31
LRRNet [17] 2.05 2.19 15.74 16.39 28.97 35.09 0.42 0.48 3.01 3.35 8.48 10.47 32.04 38.85 0.66 0.68 2.31 15.23 42.56 0.33
MURF [54] 1.92 1.45 14.37 14.81 22.04 22.77 0.33 0.30 1.87 1.72 9.75 11.55 19.42 21.17 0.48 0.42 2.41 38.01 81.26 0.37
PAIF [25] 2.63 2.38 14.63 12.40 46.41 40.67 0.42 0.40 2.96 3.00 7.26 7.53 24.76 24.74 0.49 0.50 2.53 18.79 86.84 0.29
DDFM [64] 2.52 2.01 16.73 17.04 37.86 38.22 0.59 0.51 2.75 3.00 7.46 9.80 29.24 35.43 0.79 0.76 3.23 18.11 65.44 0.47
DRMF (Ours) 3.82 3.82 25.83 25.83 54.02 54.02 0.93 0.93 4.58 4.58 12.05 12.05 54.26 54.26 0.97 0.97 2.81 26.42 87.74 0.54

4.3 Image Fusion in Challenging Scenarios
Figures 4 and 5 also show visual comparisons of various fusionmeth-
ods in challenging scenarios with composite degradation. Specif-
ically, VI images experience noise and low light, while IR images
endure low contrast, low resolution, and streak noise. CT and MRI

images suffer from low resolution and noise, respectively. These
degradations are typical challenges in real-life shoots. For fair com-
parisons, we employ DiffLL to pre-enhance VI images, and fine-tune
CAT [2] to denoise VI, IR, andMRI images. CAT is also fine-tuned to
super-resolution IR and CT images. As shown in Figures 4 and 5, our
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Table 2: Quantitative comparison of DRMF with state-of-the-art methods on IVIF and MIF tasks in challenging scenarios.

LLVIP MSRS CT-MRI

MI SF SD VIF MI SF SD VIF MI SF SD VIFMethod
Orig. En. Orig. En. Orig. En. Orig. En. Orig. En. Orig. En. Orig. En. Orig. En. Orig. En. Orig. En. Orig. En. Orig. En.

DeF. [18] 2.84 2.36 11.49 8.82 39.62 33.57 0.56 0.53 2.22 3.23 6.57 6.52 24.41 27.53 0.54 0.69 2.73 3.41 19.67 14.24 65.59 71.19 0.36 0.52
TarDAL [20] 2.61 2.70 17.60 14.41 49.32 49.38 0.48 0.56 2.34 3.36 13.47 10.92 36.77 40.27 0.50 0.73 3.04 3.64 24.70 18.78 68.81 67.53 0.39 0.46
U2F. [52] 1.93 2.01 16.35 15.22 36.79 45.42 0.43 0.60 2.03 2.88 12.39 12.29 34.64 38.12 0.49 0.82 2.74 3.12 25.72 17.38 57.73 60.54 0.32 0.40
DIVF. [40] 1.78 2.10 16.41 15.23 53.04 53.38 0.48 0.60 1.97 2.79 15.36 13.22 53.33 53.95 0.48 0.76 2.46 3.15 10.84 14.07 55.97 55.16 0.25 0.38
LRRNet [17] 1.94 2.36 15.83 14.20 31.13 41.28 0.39 0.61 2.18 3.59 11.70 10.18 33.18 39.78 0.49 0.76 2.76 3.29 32.79 14.96 40.91 46.11 0.37 0.38
MURF [54] 1.75 1.58 12.93 11.56 22.26 23.16 0.31 0.34 1.37 1.97 10.55 11.13 20.00 21.49 0.38 0.49 2.72 3.23 84.46 30.97 76.56 80.93 0.37 0.41
PAIF [25] 2.43 2.51 13.16 8.38 44.41 38.21 0.37 0.46 2.30 3.14 7.26 7.50 24.16 24.63 0.36 0.54 3.03 3.30 19.55 15.68 81.41 83.13 0.38 0.36
DDFM [64] 2.31 2.07 15.06 13.33 38.51 40.83 0.51 0.59 2.21 3.11 10.78 9.06 31.91 34.77 0.57 0.85 4.38 3.94 27.95 13.31 61.54 66.77 0.52 0.51
DRMF (Ours) 3.13 3.13 25.12 25.12 54.06 54.06 0.72 0.72 3.68 3.68 13.81 13.81 57.70 57.70 0.69 0.69 3.36 3.36 25.72 25.72 87.72 87.72 0.63 0.63

Figure 6: A typical example of low-light enhancement.

fusion results distinctly present scene information (e.g., abundant
textures and prominent objectives in IVIF), even amidst complex
image degradation. Additionally, only DRMF can synthesize the
cleanest and sharpest fused images in MIF, owing to the exceptional
degradation elimination capability of DRCDM. In contrast, other
alternatives suffer from the harsh effects of composite degradation,
leading to decreased fusion performance. Although employing cas-
caded pre-enhancement methods can mitigate these effects, it usu-
ally amplifies deficiencies in specific tasks, leading to unsatisfactory
performance. Table 2 further substantiates the remarkable perfor-
mance of DRMF in degraded fusion scenarios. Particularly, DRMF
exploits the composable property of diffusion models to organically
integrate enhancement into fusion tasks, avoiding incompatibility
between various tasks and enabling impressive performance. In
summary, both qualitative and quantitative experiments on IVIF
and MIF demonstrate the superiority of DRMF in inhibiting degra-
dation and aggregating complementary information.

4.4 Extension Experiment
Low-light image enhancement. We verify the effectiveness of
our DRCDM on low-light image enhancement (LLIE), which is a
prominent image restoration task. DRCDM is compared with sev-
eralmainstream algorithms, including KinD [61], ChebyLighter [31],
RUAS [24], CLIP-LIT [19], CUE [66], FourLLIE [46], and DiffLL [12].
A typical example is shown in Figure 6. It is evident that only KinD,
CUE, DiffLL, and DRCDM can faithfully render the scene with nat-
ural brightness. Remarkably, DRCDM with powerful generative
ability can mine information in the darkness, as highlighted by
rectangular boxes. The quantitative assessments, involving PSNR,
SSIM, MUSIQ [14], and LIQE [59], are presented in Table 3. The best

Table 3: Quantitative comparison results on LOL dataset.

KinD ChebyL. RUAS CLIP-LIT CUE FourLLIE DiffLL DRCDM

PSNR 19.39 22.40 12.77 14.13 24.57 20.81 30.76 26.13
SSIM 0.78 0.75 0.44 0.49 0.77 0.68 0.84 0.83
MUSIQ 68.88 65.55 47.63 60.12 61.90 57.92 67.42 72.66
LIQE 2.84 3.47 2.86 2.12 2.51 2.55 2.78 3.90
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Figure 7: Pre-enhancement for existing approaches.

MUSIQ and LIQE indicate that DRCDM achieves the best percep-
tual quality, while elevated PSNR and SSIM imply that our results
closely match reference images. These demonstrate the capability of
DRCDM in addressing challenging image degradations. Qualitative
and quantitative experiments on the LLIE task collectively demon-
strate the practicability of DRCDM in addressing image degradation
challenges. Notably, DiffLL not only achieves optimal SSIM and
PSNR, but also has considerable visual effects, thus we adopt it as
the LLIE preprocessing method for other fusion methods.

Pre-enhancement for other fusion methods. Our DRCDM
can directly enhance source images as preprocessing for other
fusion approaches. Figure 7 displays some representative examples.
DRCDM yields high-quality source images for both actual and
degraded scenarios. When existing fusion methods take enhanced
source images as input, both qualitative and quantitative results
show significant improvements. For instance, the background (e.g.,
fences) in VI images and structure in MRI images are presented
more clearly, and the SD and VIF metric are increased remarkably.
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Table 4: Object detection on LLVIP. mAP is the average of all APs at various IoU thresholds, from 0.5 to 0.95 in steps of 0.05.

Practical scenarios Challenging scenarios

Prec. Recall AP@.50 mAP Prec. Recall AP@.50 mAPMethod
Orig. En. Orig. En. Orig. En. Orig. En. Orig. En. Orig. En. Orig. En. Orig. En.

IR 0.857 0.857 0.764 0.764 0.834 0.834 0.499 0.499 0.737 0.649 0.652 0.595 0.705 0.658 0.359 0.306
VI 0.820 0.815 0.578 0.621 0.664 0.703 0.345 0.371 0.808 0.865 0.532 0.674 0.586 0.748 0.316 0.402
DeF. [18] 0.854 0.903 0.723 0.726 0.797 0.827 0.449 0.482 0.824 0.827 0.715 0.735 0.796 0.802 0.439 0.454
TarDAL [20] 0.870 0.874 0.682 0.740 0.803 0.831 0.456 0.483 0.841 0.868 0.715 0.740 0.801 0.826 0.453 0.457
U2F. [52] 0.886 0.863 0.666 0.710 0.775 0.803 0.432 0.462 0.882 0.851 0.717 0.715 0.807 0.787 0.459 0.444
DIVF. [40] 0.863 0.837 0.719 0.791 0.810 0.841 0.457 0.487 0.842 0.812 0.711 0.684 0.794 0.762 0.442 0.424
LRRNet [17] 0.867 0.881 0.663 0.690 0.753 0.781 0.421 0.446 0.866 0.862 0.714 0.715 0.794 0.790 0.449 0.445
MURF [54] 0.872 0.889 0.697 0.739 0.785 0.817 0.451 0.483 0.817 0.870 0.650 0.702 0.745 0.788 0.421 0.440
PAIF [25] 0.843 0.876 0.733 0.771 0.816 0.844 0.458 0.489 0.860 0.873 0.770 0.757 0.833 0.837 0.467 0.488
DDFM [64] 0.846 0.863 0.689 0.721 0.781 0.811 0.437 0.475 0.844 0.872 0.693 0.702 0.780 0.791 0.437 0.446
DRMF (Ours) 0.894 0.894 0.770 0.770 0.850 0.850 0.507 0.507 0.876 0.876 0.780 0.780 0.845 0.845 0.500 0.500
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Figure 8: Visual comparison of object detection on LLVIP.
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Figure 9: Visual comparison of ablation studies.

Object detection. Effective information enhancement and ag-
gregation not only aid in visual perception, but also promote ma-
chine vision performance. Thus, we evaluate object detection perfor-
mance on LLVIP to further reveal the superiority of DRMF, where
the re-trained YOLO v8 [34] is employed as the detector. In Figure 8,
DRMF successfully detects all pedestrians in both practical and chal-
lenging scenarios. In contrast, source images and other methods
suffer from varying degrees of missed detection. The quantitative
results in Table 4 show that DRMF balances precision and recall,
thereby achieving better average precision (AP). In particular, the
best mean AP (mAP) across various IoU thresholds implies that
DRMF can adapt to different IoU settings.

4.5 Ablation Studies
Degradation-robust conditional diffusion model (DRCDM).
DRCDM harnesses the potent generative abilities of diffusion mod-
els to eliminate the effects of various degradations. As presented

Table 5: Quantitative comparison of ablation studies.

Practical scenarios Challenging scenarios

MI SF SD VIF MI SF SD VIF

w/o DRCDM 5.06 20.55 36.66 0.87 2.97 20.61 36.58 0.56
w/o DPCM 2.13 13.76 40.78 0.56 2.11 13.61 42.75 0.54
DRMF 3.82 25.83 54.02 0.93 3.13 25.12 54.06 0.72

in Figure 9(c), when replace DRCDM with a typical conditional
diffusion model, providing the prior of reconstructing inputs, the
results are faithful to source images. Specifically, the fused images
retain common information in source images but fail to eliminate
nasty degradations. As shown in Table 5, the higher MI means the
fusion model without priors provided by DRCDM transfers more
information from source images to fused images. Unfortunately,
there is a noticeable degradation in textures and visual quality.

Diffusion prior combination module (DPCM). DPCM aims
to adaptively integrate diffusion priors driven by various modali-
ties, thus preserving crucial information. We perform an ablation
study using a simple average weighting strategy instead of DPCM.
As depicted in Figure 9(d), the fusion results tend to average the
enhanced source images. Specifically, even with DRCDM provid-
ing robust priors, the fusion results still experience degradations
due to the inability to adaptively aggregate relevant priors. The
descent results in Table 5 also confirm this issue. In contrast, DRMF
equipped with both DRCDM and DPCM can effectively cope with
complex degradation and retain essential details and targets.

5 CONCLUSION
This work presents a degradation-robust multi-modal image fusion
framework based on composable diffusion priors. The degradation-
robust conditional diffusion models are devised to eliminate unfa-
vorable degradations in source images and offer robust diffusion pri-
ors. Furthermore, we develop a diffusion prior combination module
to adaptively aggregate diffusion priors driven by various modali-
ties and progressively generate fused images. Experiments on IVIF
and MIF demonstrate the superiority of our method in suppressing
degradation and aggregating information during both practical and
challenging scenarios.
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