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Abstract
Detecting a minor average treatment effect is a
major challenge in large-scale applications, where
even minimal improvements can have a signifi-
cant economic impact. Traditional methods, re-
liant on normal distribution-based or expanded
statistics, often fail to identify such minor ef-
fects because of their inability to handle small dis-
crepancies with sufficient sensitivity. This work
leverages a counterfactual outcome framework
and proposes a maximum probability-driven two-
armed bandit (TAB) process by weighting the
mean volatility statistic, which controls Type I
error. The implementation of permutation meth-
ods further enhances the robustness and efficacy.
The established strategic central limit theorem
(SCLT) demonstrates that our approach yields a
more concentrated distribution under the null hy-
pothesis and a less concentrated one under the
alternative hypothesis, greatly improving statis-
tical power. The experimental results indicate a
significant improvement in the A/B testing, high-
lighting the potential to reduce experimental costs
while maintaining high statistical power.

1. Introduction
Background and Motivation. A / B testing, which is ubiq-
uitous in tech companies, has become the gold standard
for evaluating the discrepancy between new and existing
strategies (Kohavi et al., 2009; 2013), providing crucial in-
formation for decision-making. Having efficient and reliable
methods for A/B testing is critical in accelerating the pace
of strategic improvement (Pearl, 2009; Kong et al., 2022).
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In practice, to facilitate a comparison between two strategies
(e.g., two distinct ad configurations), users of the platform
are randomly divided into two groups, with each group
exposed to one of the test strategies. Subsequently, the in-
teractions of the subjects with the site or app are recorded.
After the experiment is completed, the performance of the
two groups will be compared in several key metrics, such as
the estimated mean difference in click counts or the volume
of gross merchandise (GMV), to determine which strategy
is preferred (Hohnhold et al., 2015; Xu & Chen, 2016).

Goal. Let A = 1 and 0 denote that the subjects are as-
signed to the treatment group (new strategy) and the control
group (existing strategy), with a potential outcome Y (1) and
Y (0), respectively. The interest that whether the treatment
group significantly outperforms the control group can be
formalized by

H0 : µ ≤ 0 H1 : µ > 0, (1)

where µ = E(Y (1) − Y (0)) denotes the average treatment
effect. This test is widely adopted in the decision-making
market, such as one of the world’s leading ride-sharing
companies, to quantify the “Causal Discrepancy” be-
tween the A / B strategies. A new strategy can be accepted
if it demonstrates statistically significant performance im-
provements over the existing one (Yao et al., 2021).

Challenge. Normal distribution-based or expanded test
statistics are unable to statistically identify minor improve-
ments of the average treatment effect µ.

• Minor average treatment effect (ATE). Practically,
the marginal returns of the strategies become increas-
ingly indistinguishable as the business expands, and
conventional A/B testing methods are unable to sta-
tistically identify minor improvements (Kohavi et al.,
2013). However, due to economies of scale, any benefit
from improved sensitivity will be magnified, as even
minor differences detected in key metrics can have a
significant impact on total revenue (Deng et al., 2013).
To illustrate, a strategy that increases revenue by $0.02
per user could generate millions of dollars in total rev-
enue for fifty million users. Alternatively, enhanced
sensitivity facilitates the conduct of experimentation
in smaller user groups or over shorter time periods
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while maintaining equivalent statistical power, thereby
reducing experimental costs.

• Exchangeable integration. Existing approaches in
this field can generally include G-computation that
constructs regression models between outcomes and
covariates (Keil et al., 2014; Wang et al., 2017), propen-
sity score (PS) based methods that employ the PS to
adjust the response (Williamson et al., 2014; Austin
& Stuart, 2017), and doubly robust methods that com-
bine the principles of G-computation and PS (Zhang
et al., 2012; Chernozhukov et al., 2018). But the afore-
mentioned methods are constrained by utilizing normal
distribution-based statistics for the purpose of hypothe-
sis testing minor ATE.

Contributions. This work focuses on minor ATE detection
based on the counterfactual outcome framework and breaks
the exchangeable structure of original data by a novel two-
armed bandit model. Our contributions are summarized as
follows:

• Methodologically, this work proposes a new maxi-
mum probability-driven TAB process by weighting the
mean volatility statistic (Chen et al., 2022; 2023) for a
more powerful A/B testing. By modifying the weights
assigned to the mean and volatility terms in the statis-
tic, it is available to control the type I error. A doubly
robust technique is employed to assess counterfactual
outcomes and to obtain robust estimation. Finally, a
permutation approach based on meta-analysis is intro-
duced to increase both the robustness and efficacy.

• Theoretically, we develop a new strategic central limit
theorem (SCLT) under the optimal ranking policy of
the data in a larger probability space. The proposed
weighted mean-volatility statistic demonstrates greater
concentration under the null hypothesis and less con-
centration under the alternative than the classic central
limit theorem (CLT), thereby enhancing the statistical
power.

2. Preliminaries and Related Work
2.1. A/B testing and variance reduction

A/B testing without confounders. The purpose of the A/B
testing is to ascertain whether the strategy of treatment group
exhibits significant superiority in comparison to that of the
control group. In this paper, we focus on statistical inference
for the average treatment effect (ATE), as illustrated in (1).
Let A denote a binary treatment indicator, where A = 1
means that subjects are assigned to the treatment group,
and A = 0 indicates assignment to the control group. Y
is employed to represent some interesting outcome metrics

observed from the subjects. Denote the number of samples
with A = 1 and A = 0 by n(1) and n(0), respectively. Fol-
lowing the Rubin Causal Model (RCM) (Holland, 1986;
Imbens & Rubin, 2010), let Y (1) and Y (0) be the corre-
sponding potential outcome when the subject is assigned
with the treatment or not. When there is no confounder, the
common difference in the mean estimator (DIM) for ATE
can be constructed as:

DIM =

∑
i:Ai=1 Yi

n(1)
−
∑

i:Ai=0 Yi

n(0)
,

with its variance var(DIM)= σ̂2
1/n

(1) + σ̂2
0/n

(0), where σ̂2
1

and σ̂2
0 are the sample variances in the treatment and control

groups, respectively.

A/B testing with confounders. However, DIM is no longer
an unbiased estimate of ATE in instances where there exists
confounding variables. Consequently, some state-of-the-art
approaches have been proposed to overcome the impact of
confounders. Existing approaches in this field can generally
be classified into three main groups:

1. G-computation. G-computation, also known as the
parametric g-formula or g-standardization, estimates
the counterfactual outcomes by constructing a regres-
sion model (linear or non-linear) between the outcome
metrics and the covariates (Robins, 1986; Snowden
et al., 2011; Vansteelandt & Keiding, 2011; Keil et al.,
2014; Wang et al., 2017).

2. Propensity score-based methods. These methods gen-
erate a pseudo population in which A is independent of
covariates, allowing the estimation of marginal struc-
tural model parameters and ATE (Hirano et al., 2003;
Brookhart et al., 2006; Gayat et al., 2010; Williamson
et al., 2014; Austin & Stuart, 2017).

3. Doubly Robust methods. These methods combine
G-computation techniques and propensity score-based
methods to achieve consistency under more relaxed
conditions and to obtain a lower estimation variance
(Bang & Robins, 2005; Tan, 2010; Funk et al., 2011;
Zhang et al., 2012; Chernozhukov et al., 2018).

Variance reduction. In randomized controlled trials
(RCTs), where no confounders are present, elevated vari-
ance and slow convergence speed result in a decreased effi-
cacy of DIM-based hypothesis testing. One technique for
reducing variance involves incorporating relevant data from
the pre-experiment period as covariates to reduce the vari-
ability of the outcome metrics. CUPED (Deng et al., 2013)
employs the linear correlation between the pre-treatment
data and the outcome metrics to reduce the variance of the
experimental and control groups, constructing unbiased es-
timators with lower variance. However, its effectiveness is
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limited by the linear correlation assumption between the
covariates and the outcome metrics. Consequently, to iden-
tify nonlinear relationships between covariates and outcome
metrics, several machine learning (ML)-based estimators
have been developed (Wu & Gagnon-Bartsch, 2018; Guo
et al., 2021; Jin & Ba, 2023). CUPAC (Tang et al., 2020)
and MLRATE (Guo et al., 2021) are two of the most ad-
vanced estimators in this category, both based on regression
adjustment methods to capture more complex regression
relationships.

Note: However, the aforementioned methods construct the
test statistic under the data exchangeability and use the
IID-based central limit theorem to study their asymptotic
distributions under null and alternative hypothesis. The
efficacy of normal distribution-based or expanded statistics
for the purpose of testing the minor ATE is limited.

2.2. Two–armed bandit framework

Based on the framework of the strategic central limit the-
orem (Chen et al., 2022; 2023), data exchangeability can
be broken to use data dependence to attain some objective,
which aims at improving the testing power for the minor
ATE in this work.

The two-armed bandit is a classic and widely studied model
in reinforcement learning, which consists of three elements:
the agent, the action space, and the reward space. Let ϑi ∈
{0, 1} represent the two arms of the bandit, where i denotes
the time step. At each step, the agent selects an arm ϑi and
obtains an independent reward R

(ϑi)
i . The decisions made

by the agent at each time step are driven by the sequence
of responses obtained so far and the goal of the two-armed
bandit is to find an optimal policy θ∗n = (ϑ∗

1, . . . , ϑ
∗
n) that

maximizes the expected cumulative reward.

Drawing inspiration from the efficacy of the two-armed
bandit problem in utilizing sequential data to maximize
the given objective, Chen et al. (2022; 2023) proposed the
implementation of a novel TAB process to construct a test
statistic that maximizes the probability of the tail. This
approach breaks the exchangeable structure and constructs a
novel asymptotic distribution. To better illustrate, consider
an oracle scenario in which the counterfactual outcomes of
each subject Y (1)

i and Y
(0)
i can be observed simultaneously.

When arm ϑi = 0 is selected, the reward R
(0)
i = Y

(0)
i −

Y
(1)
i is observed. In contrast, when arm ϑi = 1 is chosen,

reward R
(1)
i = Y

(1)
i − Y

(0)
i is obtained. The following

statistic can be derived under the policy θn = (ϑ1, . . . , ϑn):

Tn(θn) =
1

n

n∑
i=1

R̄(ϑi)
n︸ ︷︷ ︸

Mean

+
1√
n

n∑
i=1

R
(ϑi)
i

σ̂︸ ︷︷ ︸
Volatility

, (2)

where σ̂2 =
∑n

i=1(R
(1)
i − R̄

(1)
n )2/(n − 1) and R̄

(1)
n =∑n

i=1 R
(1)
i /n = −R̄

(0)
n . This statistic is similar to a combi-

nation of the classic causal discrepancy index and traditional
hypothesis testing statistics, providing a comprehensive per-
spective for performance evaluation.

From the expression of Tn(θn), it can be seen that if the
baseline policy θbn is employed: for any n ≥ 1, P(θbn =
{1, 1, . . . , 1}) = P(θbn = {0, 0, . . . , 0}) = 0.5, then the
second term of Tn(θn) will simplify to the z-test:∑n

i=1 R
(1)
i√

nσ̂
or

∑n
i=1 R

(0)
i√

nσ̂
. (3)

Both test statistics converge asymptotically to a normal
distribution, only with a distinct expectation. However, the
information of Y (1)

i − Y
(0)
i for each i, including its sign

and magnitude, is not fully utilized in the statistic z. The
objective of the policy θn is to reconstruct the two statistics
in (3) to make full use of the data information. The different
policies correspond to different distributions of Tn(θn), as
shown in Figure 1 (bottom). Therefore, the optimal policy
θ∗n for maximizing tail probability (Chen et al., 2022; 2023)
is given by Lemma 2.1.

Lemma 2.1. For any n ≥ 1, we can construct the strategy
θ∗n = {ϑ∗

1, . . . , ϑ
∗
n} as follows: for i = 1, P(ϑ∗

1 = 1) =
P(ϑ∗

1 = 0) = 0.5, and for i ≥ 2,

ϑ∗
i =

{
1, if Ti−1(θ

∗
i−1) ≥ 0,

0, else.
(4)

Under the guidance of the optimal policy θ∗n, Tn(θ
∗
n) has the

following property: limn→∞ P(|Tn(θ
∗
n)| > z1−α/2

∣∣H1) =

limn→∞ supθn∈Θ P(|Tn(θn)| > z1−α/2

∣∣H1), where zα de-
notes the αth quantile of a standard normal distribution and
P(·
∣∣H1) denotes the conditional probability given that the

alternative hypothesis H1 is true.

Remark 2.2. Lemma 2.1 shows that θ∗n has the highest prob-
ability of rejecting the null hypothesis when the alternative
hypothesis is true, minimizing the probability of a Type
II error. The corresponding rejection region is the brown
shaded area in Figure 1 (top).

3. Method
3.1. Weighted two-armed bandit (WTAB) process

Oracle test via WTAB statistic. Equation (2) provides an
expression for the statistic Tn(θn), where the term R̄

(ϑi)
n /n

and the term R
(ϑi)
i /(

√
nσ̂) are assigned equal weights.

However, a more thorough study of Tn(θn) revealed that
employing distinct weights for these two terms could poten-
tially improve statistical power, as illustrated in Figure 2(a).
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Figure 1: The power under the optimal strategy θ∗n (brown
shadow) (top) and the probability density plot of the test
statistic Tn(θn) under different strategies (bottom).

Specifically, rewrite Tn(θn) as:

Tn,λ(θn) =
1

n

n∑
i=1

λR̄(ϑi)
n +

1√
n

n∑
i=1

(1− λ)
R

(ϑi)
i

σ̂
.

where λ ∈ (0, 1). Equivalently, to obtain a uniform form
for the limiting distribution, Tn,λ(θn) can be rewritten as:

Tn,λ(θn) =
1

n

n∑
i=1

λ

1− λ
R̄(ϑi)

n +
1√
n

n∑
i=1

R
(ϑi)
i

σ̂
. (5)

Intuitively, a change in the form of the statistic may result in
a change in the optimal policy θ∗n. Surprisingly, the optimal
policy θ∗n corresponding to the statistic Tn,λ(θn) remains
formally identical to that given in Equation (4). Theorem
4.1 and 4.2 show that this policy continues to be optimal in
terms of maximizing statistical power.

The parameter λ in Tn,λ(θ
∗
n) serves to balance the trade-

off between the Type I error rate and statistical power. As
illustrated in Figures 2(a) and 3, increasing λ generally
leads to higher statistical power. However, according to
Theorem 4.1, it is not reasonable to blindly pursue a larger
λ when constructing the test statistic. Specifically, for fixed
values of n and σ, an excessively large λ can slow down the
convergence of Tn,λ(θ

∗
n), thereby affecting the efficacy of

the test. This observation is further supported by Figure 2(b),
which shows that a mismatch between λ and the current
values of n and σ can lead to inflated Type I error rates,
ultimately resulting in an overestimation of the strategy’s
efficacy.

As demonstrated in Theorem 4.1, the presence of λ has
been shown to reduce the convergence rate of Tn,λ(θ

∗
n) by

λσ/
(
(1 − λ)

√
n
)
. Consequently, a threshold (typically

0.03) is selected to regulate the magnitude of λ, that is, to
identify the largest that satisfies λσ/

(
(1− λ)

√
n
)
≤ 0.03.

Alternatively, a data-driven approach can be employed to
select an appropriate value of λ. Specifically, bootstrap
methods (Hesterberg, 2011) can be combined with a type I
error rate test to identify the optimal λ that maximizes the
statistical power while controlling the type I error.

(a) Statistical power across dif-
ferent λ and µ.

(b) The empirical type I error rate
across different λ and σ, fixed
n = 20000.

Figure 2: Plot of statistical power and empirical type I error
rate as λ varies. It shows that test efficacy follows a same
trend to λ, with a concurrent risk of inflation in the type I
error rate.

In contrast to traditional hypothesis testing methods, which
rely on the CLT and assume exchangeable data, the TAB
framework introduces non-exchangeability. Specifically,
the policy θ∗n causes earlier samples to influence subsequent
ones, making the construction of the test statistic Tn,λ(θ

∗
n)

dependent on the order of observations. By using SCLT, the
test statistic no longer requires the normality assumption,
enhancing statistical power while maintaining type I error
control. Under the null hypothesis µ ≤ 0, the statistic
Tn,λ(θ

∗
n) exhibits a more centralized distribution around

zero and satisfies P(
∣∣Tn,λ(θ

∗
n)
∣∣ < z1−α/2) < α, when

the alternative hypothesis µ > 0 holds, it demonstrates a
greater dispersion away from zero. The distinct distributions
of Tn,λ(θ

∗
n) allow us to effectively differentiate between

them. Consequently, the two-tailed rejection region for one-
sided hypothesis testing based on Tn,λ(θ

∗
n) is defined as

|Tn,λ(θ
∗
n)| > z1−α/2. Furthermore, Theorem 4.2 provides

evidence to support the validity of Tn,λ(θ
∗
n).

Estimation of the counterfactual outcomes. In contrast
to oracle cases, a serious challenge under A/B testing is the
issue of missing data, which means that only one outcome
can be observed for each subject. A nuisance issue that
requires resolution is the simultaneous acquisition of Y (1)

i

and Y
(0)
i for each subject. Given that the same subject

will only be included in one of the control or treatment
groups in an experiment, it is not feasible to observe their
counterfactual results. Consequently, a pseudo population
will be constructed for the purpose of estimating the missing
data. According to the properties of conditional expectation
and the assumptions of RCM, we can derive the following:

µ = E(Y (1) − Y (0))

= E
[
E(Y (1)

∣∣A = 1, X)
]
− E

[
E(Y (0)

∣∣A = 0, X)
]

= E
[
E(Y

∣∣A = 1, X)
]
− E

[
E(Y

∣∣A = 0, X)
]
. (6)

Consequently, let m1(x) and m0(x) denote the outcome re-
gression function, and e(x) denote the propensity score func-
tion such that m1(x) = E(Y

∣∣A = 1, X = x), m0(x) =
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E(Y
∣∣A = 0, X = x) and e(x) = P(A = 1

∣∣X = x). Us-
ing the Doubly Robust (DR) estimator, Equation (6) can be
rewritten as:

µ =

1∑
a=0

(−1)a+1E
[
ma(X) +

I(A = a)

ea(X)

(
Y −ma(X)

)]
,

where ea(X) = e(X) · I(a = 1) + (1 − e(X)) · I(a = 0)
and I(·) denotes the indicator function. The use of a doubly
robust estimator provides several advantages. Primarily, the
estimator requires only that either the outcome regression
models or the propensity score model be correctly specified
to yield an unbiased estimate of ATE, a property known
as double robustness. Secondly, in cases where both the
outcome regression model and the propensity score model
are correctly specified, the doubly robust estimator achieves
lower variance compared to traditional propensity score-
based methods (Bang & Robins, 2005; Chernozhukov et al.,
2024). Once the estimates of the outcome regression models
and the propensity score model have been obtained, they
can be used to estimate the ATE. Denote

µ̂i =

1∑
a=0

(−1)a+1

[
m̂a(xi) +

I(Ai = a)

êa(xi)

(
Yi − m̂a(xi)

)]
,

and µ̂
(1)
i = µ̂i = −µ̂

(0)
i , then Tn,λ(θ

∗
n) can be constructed

as:

Tn,λ(θ
∗
n) =

1

n

n∑
i=1

λ

1− λ
µ̄
(ϑ∗

i )
n +

1√
n

n∑
i=1

µ̂
(ϑ∗

i )
i

σ̂
, (7)

where σ̂2 =
∑n

i=1(µ̂
(1)
i − µ̄

(1)
n )2/(n − 1) and µ̄

(1)
n =∑n

i=1 µ̂
(1)
i /n = −µ̄

(0)
n . The use of sample variance as

an estimator for true variance is supported by both theo-
retical and empirical evidence. Under the null hypothe-
sis, after obtaining µ̂

(1)
i , the z-test statistic is computed as∑n

i=1 µ̂
(1)
i /(

√
nσ̂), and its p-value distribution follows a

uniform distribution U(0, 1). This justifies the use of sam-
ple variance as an estimator of true variance, as detailed in
Chernozhukov et al. (2018; 2024).

A key challenge lies in obtaining accurate estimates for func-
tions m0(x), m1(x), and e(x). Traditional methods such as
CUPAC, which rely solely on linear regression, might fail to
capture these intricate patterns. To overcome this limitation,
advanced machine learning methods are introduced. Specifi-
cally, LightGBM (Ke et al., 2017), a state-of-the-art gradient
boosting algorithm, is employed within the double machine
learning (DML) framework (Chernozhukov et al., 2018). In
practice, the observation dataset D is divided into K equal
subsets Dk. For each Dk, a LightGBM model is trained
on the remaining data D/Dk and applied to estimate coun-
terfactual results of Dk. This procedure is repeated for all
subsets Dk. Intuitively, the DML approach mitigates over-
fitting and reduces regularization biases by partitioning the

dataset into multiple subsets. Each subset is used iteratively
to estimate conditional relationships, ensuring robustness
and improved predictive performance. (Chernozhukov et al.,
2018; 2024). Additionally, XGBoost (Chen & Guestrin,
2016) is used to estimate m1(x), m0(x), and e(x), exhibit-
ing similar performance to LightGBM. To further improve
efficacy, the ensemble learning technique stacking (Wolpert,
1992; Breiman, 1996) is applied, with LightGBM and XG-
Boost as the primary learners and linear regression serving
as the meta-learner (Ting & Witten, 1999).

3.2. Permuted WTAB

As discussed previously, the Tn,λ(θ
∗
n) statistic has demon-

strated superior performance, but it is worth highlighting
that it does not possess the property of sample order ex-
changeability, which implies that it is sensitive to the or-
der in which the samples are presented, leading to the “p-
value lottery” (Meinshausen et al., 2009). To address this
issue, we perform multiple samples reorderings, repeatedly
calculate the p-value of Tn,λ(θ

∗
n), and aggregate these via

meta-analysis to enhance the robustness of statistical infer-
ence. Specifically, first determine a number of permutations,
denoted as B. Subsequently, the sequence {1, 2, . . . , n}
is reordered into a new one by applying a mapping πb :
{1, 2, . . . , n} → {1, 2, . . . , n}. For each element i in the
original sequence, its position in the reordered sequence is
given by πb(i). For b = 1, . . . , B, the mapping πb is applied
to the counterfactual outcomes {µ̂i, i = 1, . . . , n}, result-
ing in reordered samples {µ̂πb(i), i = 1, . . . , n}. Finally,
T

(b)
n,λ(θ

∗
n) and its corresponding p-value p

(b)
λ is calculated

based on {µ̂πb(i), i = 1, . . . , n}.

However, varying sample orderings can yield inconsistent
p
(b)
λ values, and the conclusions drawn from individual

p-value may be unclear. To resolve this, we apply meta-
analysis to synthesize an overall p-value, improving the re-
liability of the results derived from individual p(b)λ (Walker
et al., 2008; Lee, 2019). Several research studies are con-
ducted on the subject of combining p-values, including
Fisher’s combination test (Fisher, 1970), quantile-based
combination test (Meinshausen et al., 2009) and Cauchy
combination test (Liu & Xie, 2020). Cauchy combination
test is used for the combination of p-values in this paper,
since it is straightforward and easy to implement and has
also been shown to effectively aggregate multiple small ef-
fects, even when the p-values are dependent (Liu & Xie,
2020). The p-values are aggregated by Cauchy combination
as follows:

CB =
1

B

B∑
b=1

tan
[
(0.5− p

(b)
λ )π

]
. (8)
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Algorithm 1 Permuted WTAB algorithm
Input: data D = {(Xi, Yi, Ai), i = 1, . . . , n}, threshold τ ,
permutation times B.
Output: the aggregated p-value pa.

1: n0 = number of samples in D.
2: Divide D = {(Xi, Yi, Ai), i = 1, . . . , n} into K dis-

joint subset Dk, each of equal size.
3: while k ≤ K do
4: Estimate outcome regression functions m0(x),

m1(x) and propensity score function e(x) using
LightGBM based on D/Dk, denoted by m̂

(k)
0 (x),

m̂
(k)
1 (x) and ê(k)(x);

5: Substitute Dk into the expression of µ̂i to obtain the
estimates of counterfactual outcomes.

6: end while
7: Estimate sample variance for the counterfactual out-

comes as σ̂2 =
∑n

i=1(µ̂
(1)
i − µ̄(1))/(n − 1), where

µ̄(1) =
∑n

i=1 µ̂
(1)
i /n.

8: Compute λ = τ
√
n/(σ̂ + τ

√
n).

9: while b ≤ B do
10: Get a set of reordered samples of {µ̂i, i = 1, . . . , n},

denoted by {µ̂πb(i), i = 1, . . . , n};
11: Calculate the test statistic T

(b)
n,λ(θ

∗
n) based on{

µ̂πb(i), i = 1, . . . , n
}

and its corresponding p-value

p
(b)
λ = 2Φ

(
−
∣∣∣T (b)

n,λ(θ
∗
n)
∣∣∣).

12: end while
13: Aggregate {p(b)λ , b = 1, . . . , B} by Equation (8).
14: Compute and output the aggregated p-value pa by Equa-

tion (9).
15: Return pa.

The aggregated p-value is calculated as

pa = 0.5− arctan(CB)/π, (9)

and subsequently employed to ascertain whether the null
hypothesis should be rejected. In this paper, B is set to
25, as it has been observed that increasing B further does
not substantially improve statistical power. The Algorithm
1 provides a comprehensive illustration of the proposed
permuted WTAB algorithm (PWTAB).

4. Theoretical Properties
In this section, we first summarize the asymptotic proper-
ties of the oracle test statistic Tn,λ(θ

∗
n) to demonstrate the

practicality of the maximum probability-driven two-armed
bandit framework.

Theorem 4.1. Let φ ∈ C(R), the set of all continu-
ous functions on R with finite limits at ±∞, be an even
function and monotone on (0,∞). For any n ≥ 1, con-
struct the oracle test statistic Tn,λ(θ

∗
n) and the strategy

θ∗n = argmaxθn∈Θ E[φ(Tn,λ(θn))] when φ is decreasing
on (0,∞) as follows: for i = 1, P(ϑ∗

1 = 1) = P(ϑ∗
1 =

0) = 0.5, and for i ≥ 2,

ϑ∗
i =

{
1, Ti−1,λ(θ

∗
i−1) ≥ 0,

0, Ti−1,λ(θ
∗
i−1) < 0.

(10)

Under the assumptions of RCM, we obtain

E [|φ (Tn,λ(θ
∗
n))− φ (ηn)|] = O

(
σ

(1− λ)
√
n

)
, (11)

where ηn ∼ B (ωn, σ0) is a spike distribution with the pa-
rameter ωn = λµ/(1− λ) +

√
nµ/σ, σ0 =

√
1 + µ2/σ2.

The bandit distribution B (ωn, σ0) has the density function

fωn,σ0(y) =
1√
2πσ0

exp

(
− (|y| − ωn)

2

2σ2
0

)
− ωn

σ2
0

e2ωn|y|/σ2
0Φ

(
−|y|+ ωn

σ0

)
.

(12)

It can be seen that in the specified probability density func-
tion fωn,σ0(y), the parameter ωn exhibits a positive correla-
tion with λ, n, and µ, regulating the extent of the left-right
shift of the dual peaks in the distribution. Figure 3 provides
an example illustrating the effect of varying λ. Meanwhile,
the parameter σ0 influences the overall height of these peaks.
When µ = 0, the probability density function fωn,σ0(y)
degenerates into the probability density function of the stan-
dard normal distribution.

Figure 3: Density plots of asymptotic distributions under
two hypotheses, compared with a standard normal distri-
bution. The left graph is the density function under the
alternative hypothesis. Intuitively, a larger λ corresponding
to a greater statistical power. The right graph is the density
function when the null hypothesis holds. As illustrated, type
I error can be effectively controlled.

Theorem 4.2. Under aforementioned policy θ∗n, the oracle
test statistic Tn,λ(θ

∗
n) satisfies

lim
n→∞

P
(
|Tn,λ(θ

∗
n)| > z1−α/2

)
= Φ

(
ωn − z1−α/2

σ0

)
+ e

2ωnz1−α/2

σ2
0 Φ

(
−
ωn + z1−α/2

σ0

)
.
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Consequently, it attains the following properties:

(i). (Type I error control): Under the null hypothesis,

lim
n→∞

P
(
|Tn,λ(θ

∗
n)| > z1−α/2

)
≤ α.

(ii). (Consistency against fixed alternatives): For a given
fixed µ > 0,

lim
n→∞

P
(
|Tn,λ(θ

∗
n)| > z1−α/2

)
= lim

n→∞
sup
θn∈Θ

P
(
|Tn,λ(θn)| > z1−α/2

)
= 1.

Theorem 4.2 demonstrates that θ∗n is the optimal policy for
hypothesis testing, as it ensures control over the type I error
rate under the null hypothesis and achieves the maximum
rejection probability under the alternative hypothesis. This
finding indicates that Tn,λ(θ

∗
n) reaches the highest level of

statistical efficacy. To ensure validity under the non-oracle
test, we impose the following assumptions.

Assumption 1. (Boundedness). (i) There exists a scalar
ε > 0 such that ê(X) ≥ ε. (ii) There exists some constant
M such that max(m0(X),m1(X)) ≤ M .

Assumption 2. (Doubly Robust Specification). At least one
of the outcome regression functions and the propensity score
function is correctly specified.

The boundedness condition in Assumption 1 (i) is also re-
ferred to as the positivity assumption in the RCM. The
double robustness condition in Assumption 2 can be re-
placed by requiring the outcome regression functions and
the propensity score function to satisfy certain convergence
rate conditions (Chernozhukov et al., 2018). Typically, ma-
chine learning algorithms satisfy the above convergence
rate.
Remark 4.3. Corollary 2 of Liu & Xie (2020) demonstrates
that the use of the Cauchy combination effectively mitigates
the type I error rate. Moreover, Section 3 of Liu & Xie
(2020) suggests that the statistical power is improved when
the alternative hypothesis is true.
Remark 4.4. Under Assumption 2, we have E(µ̂) =
E(Y (1) − Y (0)), indicating that Tn,λ(θ

∗
n) satisfies the prop-

erties of Theorem 4.1 and Theorem 4.2.
Remark 4.5. The choice of K in cross fitting does not affect
the asymptotic distribution of the estimator (Chernozhukov
et al., 2018; Guo et al., 2021). The simulations in Section 5
show that a good performance is achievable with K = 2.

5. Experiments
In this section, we conduct detailed comparisons between
the proposed method and other state-of-the-art methods via
synthetic data (Section 5.1) and real-world data (Section
5.2).

5.1. Simulations studies

First, we conduct simulations studies to investigate the finite
sample performance of the proposed method. Consider the
following synthetic data-generating process:

The covariates X1 and X2 are two independent mean zero
Gaussian distributions with var(X1) = var(X2) = 1. Con-
sider a randomized controlled trial, where the value of A
is independent of any covariates and follows a Bernoulli
distribution with a success probability P(A = 1) = 0.5.
The outcome Y is generated by Y = F (X1, X2) + A ·
G(X1, X2) + ε, where ε is a Gaussian noise with a mean
of zero and a standard deviation σε.

Table 1: Functions and standard deviation considered in the
simulation studies.

F (X1, X2) G(X1, X2) σε

I 2X1 +X2 0 0.5II X1(X2 + 1) (X1 + 2X2)/10
III X2

1 +X2 + 1 (X2
1 +X2

2 )/110 0.6IV 0.5X1e
X2 (X1 + 2X2

2 )/105

Table 1 presents a more detailed illustration of the config-
urations. We consider four different functions F (X1, X2)
and G(X1, X2), including both linear and nonlinear forms
with two different values for standard deviations σε. These
configurations collectively result in a total of 32 distinct
simulation settings. The initial two functions GI(X1, X2)
and GII(X1, X2) represent scenarios where the null hypoth-
esis is true, while the latter two functions GIII(X1, X2)
and GIV(X1, X2) correspond to cases where the alternative
hypothesis holds. Note that GII, GIII, and GIV are all het-
erogeneous, meaning that the treatment effect varies with
the covariates. The effect of treatment is positive for all
samples in GIII, differing only in magnitude. However, a
portion of the samples exhibit negative treatment effects in
GIV, complicating the accurate testing of ATE. The empir-
ical type I error rates and power of five distinct methods
are evaluated: (i) Permuted WTAB, denoted by PWTAB;
(ii) Weighted Two-Arm Bandit process, denoted by WTAB;
(iii) z-test based on DML, denoted by z-DML; (iv) CUPED;
(v) Difference-in-mean estimator, denoted by DIM, and the
sample size is fixed to n = 20000.

The results for both the null and alternative hypotheses are
presented in Table 2 and Figure 4, respectively. As evi-
denced by the results presented in Table 2, the five methods
demonstrate the capacity to control the type I error rate un-
der a range of conditions, including different functions and
noise. In terms of power, Figure 4 presents a comparison of
different methods, with fixed G(X1, X2) and σε in each sub-
figure. When confronted with a linear function F (X1, X2),
CUPED, z -DML, WTAB, and PWTAB exhibit comparable
power, and PWTAB shows superior performance. In the
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Table 2: Type I error rates of five different statistics when null hypothesis holds.

H0 GI(X1, X2) GII(X1, X2)

σε F (X1, X2) PWTAB WTAB z-DML CUPED DIM PWTAB WTAB z-DML CUPED DIM

0.5

I 0.046 0.052 0.042 0.034 0.052 0.030 0.030 0.022 0.028 0.032
II 0.046 0.050 0.042 0.040 0.040 0.056 0.054 0.052 0.053 0.056
III 0.054 0.056 0.042 0.042 0.036 0.046 0.052 0.042 0.032 0.044
IV 0.044 0.046 0.040 0.054 0.038 0.046 0.042 0.040 0.056 0.042

0.6

I 0.044 0.042 0.042 0.044 0.060 0.060 0.056 0.060 0.050 0.058
II 0.040 0.048 0.036 0.028 0.042 0.040 0.050 0.032 0.054 0.038
III 0.044 0.052 0.044 0.070 0.060 0.048 0.050 0.046 0.030 0.054
IV 0.052 0.052 0.044 0.056 0.048 0.050 0.050 0.042 0.024 0.032

Figure 4: Power comparisons of various methods across dif-
ferent settings, presented in descending order, with PWTAB
consistently demonstrating the best performance.

case of a nonlinear function, the efficacy of CUPED is signif-
icantly reduced. In contrast, z-DML, WTAB, and PWTAB
retain their effectiveness, demonstrating greater adaptabil-
ity to complex functions, greater robustness, and improved
power. Furthermore, PWTAB consistently outperforms z
-DML, since WTAB and z -DML exhibit comparable power
in almost all cases. As a result, a higher statistical power is
achieved after the aggregation of the p-values. It is impor-
tant to emphasize that the similarity in performance between
WTAB and the test z does not contradict our theory. In fact,
we construct Tn,λ(θn) with the objective of maximizing tail
probabilities, ensuring that Tn,λ(θ

∗
n) achieves the largest

statistical power in one-sided hypothesis testing with a two-
tailed rejection region.

More ML-based simulation studies. As discussed pre-
viously, additional simulation studies were performed to
evaluate the effectiveness of the proposed method, includ-

ing the use of another machine learning algorithm XGBoost
and the stacking of the ensemble learning approach. A more
detailed comparison can be found in the Appendix A, and
PWTAB consistently outperforms other methods.

5.2. Real Data Analysis

In this section, the application of the proposed method is
demonstrated through an analysis of three real data sets
obtained from a world-leading ride-sharing company. Due
to privacy considerations, we refer to them as data sets A, B,
and C. The company leverages different exposures within
the app to incentivize users to consume. Specifically, the
dataset is collected through a randomized controlled trial.
The company randomly decides whether or not to expose
new marketing strategies to target consumers. To improve
returns, it is crucial for the company to accurately assess the
long-term impacts of various strategies.

Figure 5: Variance reduction compared to DIM (left y-axis)
and p-values of statistics (right y-axis).

The numerical results are reported in Figure 5 and Table
3. It can be seen in Figure 5 that, compared to DIM, both
the proposed method and CUPED exhibit a comparable
reduction in variance. However, PWTAB yields smaller
p-values regardless of the machine learning algorithm used,
indicating that PWTAB offers superior statistical power.
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Table 3: Hypothesis testing p-values obtained based on
different machine learning algorithms and statistics for real-
world datasets.

(a) p-values on dataset B

Method PWTAB WTAB z-DML CUPED DIM

LightGBM 0.044 0.043 0.055 0.053 0.228
XGBoost 0.044 0.069 0.052 0.053 0.228
Stacking 0.032 0.055 0.053 0.053 0.228

(b) p-values on dataset C

Method PWTAB WTAB z-DML CUPED DIM

LightGBM 0.837 0.839 0.713 0.745 0.850
XGBoost 0.909 0.491 0.726 0.745 0.850
Stacking 0.807 0.827 0.731 0.745 0.850

Additionally, the use of stacking allows for the integration
of the strengths of different machine learning algorithms,
leading to more accurate and robust results. This conclusion
is further supported by the results presented in Table 3 (a),
where the p-value of CUPED fails to reach the threshold
necessary to reject the null hypothesis, whereas PWTAB
successfully meets this criterion, demonstrating its superior
efficacy.

Given that real-world data distributions are often difficult
to replicate using purely synthetic data, we additionally
construct a semi-synthetic dataset based on real-world data.
Following the approach proposed in (Kohavi et al., 2020),
we generate synthetic data based on real-world observations.
The corresponding numerical results are presented in Table
4. We can see that the proposed PWTAB method effectively
controls type I error while achieving the highest statisti-
cal power among all compared methods, even in scenarios
involving high-variance data or challenging distributional
characteristics. This demonstrates that the proposed statistic
substantially enhances the sensitivity of the A/B testing and
exhibits strong robustness.

Table 4: Type I error rates and statistical power based on
synthetic data derived from real-world dataset.

Method Metric PWTAB WTAB z-DML CUPED DIM

LightGBM Type I Error 0.052 0.052 0.044 0.050 0.048
Power 0.758 0.738 0.744 0.740 0.498

XGBoost Type I Error 0.052 0.034 0.046 0.050 0.048
Power 0.758 0.738 0.746 0.740 0.498

Stacking Type I Error 0.052 0.052 0.046 0.050 0.048
Power 0.764 0.732 0.746 0.740 0.498

6. Conclusion and Future Works
In this paper, we propose a new maximum probability-
driven TAB process by weighting the mean volatility statis-
tic for a more powerful A/B testing. The proposed method
constructs counterfactual results through doubly robust esti-
mation, controls the type I error rate, and improves statistical
power by incorporating weights and permutation. Our nu-
merical results in both simulation and real-world data analy-
sis demonstrate the effectiveness of the proposed approach.
By increasing the sensitivity of randomized controlled trials,
our method allows for more precise value assessments and
the ability to conduct experiments on smaller populations.
Although machine learning provides a general approach to
capture the distribution characteristics of data, it is not re-
fined enough compared to explicit models which should be
explored in the ride-sharing company. We leave the task of
modeling the data distribution to future work.

Acknowledgements
We thank the anonymous referees and the meta reviewer for
their constructive comments, which have led to a significant
improvement of the earlier version of this article. Yan’s
research is partially sponsored by CCF-DiDi GAIA Collab-
orative Research Funds for Young Scholars and the National
Natural Science Foundation of China (No. 12371292).

Impact Statement
This paper presents work whose goal is to improve the sen-
sitivity, shorten the cycle time and reduce the cost of A/B
testing. There are many potential societal consequences of
our work, none which we feel must be specifically high-
lighted here.

References
Austin, P. C. and Stuart, E. A. Estimating the effect of

treatment on binary outcomes using full matching on the
propensity score. Statistical methods in medical research,
26(6):2505–2525, 2017.

Bang, H. and Robins, J. M. Doubly robust estimation in
missing data and causal inference models. Biometrics, 61
(4):962–973, 2005.

Breiman, L. Bagging predictors. Machine learning, 24:
123–140, 1996.

Brookhart, M. A., Schneeweiss, S., Rothman, K. J., Glynn,
R. J., Avorn, J., and Stürmer, T. Variable selection for
propensity score models. American journal of epidemiol-
ogy, 163(12):1149–1156, 2006.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting

9



Strategic A/B testing via Maximum Probability-driven Two-armed Bandit

system. In Proceedings of the 22nd acm sigkdd inter-
national conference on knowledge discovery and data
mining, pp. 785–794, 2016.

Chen, Z., Feng, S., and Zhang, G. Strategy-driven limit
theorems associated bandit problems. arXiv preprint
arXiv:2204.04442, 2022.

Chen, Z., Yan, X., and Zhang, G. Strategic two-sample test
via the two-armed bandit process. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 85
(4):1271–1298, 2023.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E.,
Hansen, C., Newey, W., and Robins, J. Double/debiased
machine learning for treatment and structural parameters,
2018.

Chernozhukov, V., Hansen, C., Kallus, N., Spindler, M., and
Syrgkanis, V. Applied causal inference powered by ml
and ai. arXiv preprint arXiv:2403.02467, 2024.

Deng, A., Xu, Y., Kohavi, R., and Walker, T. Improving the
sensitivity of online controlled experiments by utilizing
pre-experiment data. In Proceedings of the sixth ACM
international conference on Web search and data mining,
pp. 123–132, 2013.

Fisher, R. A. Statistical methods for research workers. In
Breakthroughs in statistics: Methodology and distribu-
tion, pp. 66–70. Springer, 1970.

Funk, M. J., Westreich, D., Wiesen, C., Stürmer, T.,
Brookhart, M. A., and Davidian, M. Doubly robust
estimation of causal effects. American journal of epi-
demiology, 173(7):761–767, 2011.

Gayat, E., Pirracchio, R., Resche-Rigon, M., Mebazaa, A.,
Mary, J.-Y., and Porcher, R. Propensity scores in intensive
care and anaesthesiology literature: a systematic review.
Intensive care medicine, 36:1993–2003, 2010.

Guo, Y., Coey, D., Konutgan, M., Li, W., Schoener, C., and
Goldman, M. Machine learning for variance reduction
in online experiments. Advances in Neural Information
Processing Systems, 34:8637–8648, 2021.

Hesterberg, T. Bootstrap. Wiley Interdisciplinary Reviews:
Computational Statistics, 3(6):497–526, 2011.

Hirano, K., Imbens, G. W., and Ridder, G. Efficient esti-
mation of average treatment effects using the estimated
propensity score. Econometrica, 71(4):1161–1189, 2003.

Hohnhold, H., O’Brien, D., and Tang, D. Focusing on the
long-term: It’s good for users and business. In Proceed-
ings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 1849–
1858, 2015.

Holland, P. W. Statistics and causal inference. Journal of
the American statistical Association, 81(396):945–960,
1986.

Imbens, G. W. and Rubin, D. B. Rubin causal model. In
Microeconometrics, pp. 229–241. Springer, 2010.

Jin, Y. and Ba, S. Toward optimal variance reduction in
online controlled experiments. Technometrics, 65(2):231–
242, 2023.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma,
W., Ye, Q., and Liu, T.-Y. Lightgbm: A highly efficient
gradient boosting decision tree. Advances in neural infor-
mation processing systems, 30, 2017.

Keil, A. P., Edwards, J. K., Richardson, D. B., Naimi, A. I.,
and Cole, S. R. The parametric g-formula for time-to-
event data: intuition and a worked example. Epidemiol-
ogy, 25(6):889–897, 2014.

Kohavi, R., Longbotham, R., Sommerfield, D., and Henne,
R. M. Controlled experiments on the web: survey and
practical guide. Data mining and knowledge discovery,
18:140–181, 2009.

Kohavi, R., Deng, A., Frasca, B., Walker, T., Xu, Y., and
Pohlmann, N. Online controlled experiments at large
scale. In Proceedings of the 19th ACM SIGKDD inter-
national conference on Knowledge discovery and data
mining, pp. 1168–1176, 2013.

Kohavi, R., Tang, D., and Xu, Y. Trustworthy online con-
trolled experiments: A practical guide to a/b testing. Cam-
bridge University Press, 2020.

Kong, D., Yang, S., and Wang, L. Identifiability of
causal effects with multiple causes and a binary outcome.
Biometrika, 109(1):265–272, 2022.

Lee, Y. H. Strengths and limitations of meta-analysis. The
Korean Journal of Medicine, 94(5):391–395, 2019.

Liu, Y. and Xie, J. Cauchy combination test: a powerful
test with analytic p-value calculation under arbitrary de-
pendency structures. Journal of the American Statistical
Association, 115(529):393–402, 2020.

Meinshausen, N., Meier, L., and Bühlmann, P. P-values for
high-dimensional regression. Journal of the American
Statistical Association, 104(488):1671–1681, 2009.

Mel’nikov, A. V. On strong solutions of stochastic differ-
ential equations with nonsmooth coefficients. Theory of
Probability & Its Applications, 24(1):147–150, 1979.

Pearl, J. Causal inference in statistics: An overview. 2009.

10



Strategic A/B testing via Maximum Probability-driven Two-armed Bandit

Robins, J. A new approach to causal inference in mortality
studies with a sustained exposure period—application to
control of the healthy worker survivor effect. Mathemati-
cal modelling, 7(9-12):1393–1512, 1986.

Snowden, J. M., Rose, S., and Mortimer, K. M. Implementa-
tion of g-computation on a simulated data set: demonstra-
tion of a causal inference technique. American journal of
epidemiology, 173(7):731–738, 2011.

Tan, Z. Bounded, efficient and doubly robust estimation with
inverse weighting. Biometrika, 97(3):661–682, 2010.

Tang, Y., Huang, C., Kastelman, D., and Bauman, J. Control
using predictions as covariates in switchback experiments.
2020.

Ting, K. M. and Witten, I. H. Issues in stacked general-
ization. Journal of artificial intelligence research, 10:
271–289, 1999.

Vansteelandt, S. and Keiding, N. Invited commentary: G-
computation–lost in translation? American journal of
epidemiology, 173(7):739–742, 2011.

Walker, E., Hernandez, A. V., and Kattan, M. W. Meta-
analysis: Its strengths and limitations. Cleveland Clinic
journal of medicine, 75(6):431, 2008.

Wang, A., Nianogo, R. A., and Arah, O. A. G-computation
of average treatment effects on the treated and the un-
treated. BMC medical research methodology, 17:1–5,
2017.

Williamson, E. J., Forbes, A., and White, I. R. Variance re-
duction in randomised trials by inverse probability weight-
ing using the propensity score. Statistics in medicine, 33
(5):721–737, 2014.

Wolpert, D. H. Stacked generalization. Neural networks, 5
(2):241–259, 1992.

Wu, E. and Gagnon-Bartsch, J. A. The loop estimator: Ad-
justing for covariates in randomized experiments. Evalu-
ation review, 42(4):458–488, 2018.

Xu, Y. and Chen, N. Evaluating mobile apps with a/b and
quasi a/b tests. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pp. 313–322, 2016.

Yao, L., Chu, Z., Li, S., Li, Y., Gao, J., and Zhang, A.
A survey on causal inference. ACM Transactions on
Knowledge Discovery from Data (TKDD), 15(5):1–46,
2021.

Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M. A
robust method for estimating optimal treatment regimes.
Biometrics, 68(4):1010–1018, 2012.

11



Strategic A/B testing via Maximum Probability-driven Two-armed Bandit

A. Additional experiments
Table 5 presents the empirical type I error rates for all methods in the synthetic data-based experiment. It further validates
the effectiveness of the proposed methods, with findings aligning closely with those in Section 5. Specifically, under both
sharp null hypothesis and null hypothesis with heterogeneous treatment effects, as well as different variance of noise, the
proposed method demonstrates robust control of type I error rates, effectively preventing overestimation of the average
treatment effect.

Table 5: More simulation results of type I error rates of five different statistics when null hypothesis holds.

H0 GI(X1, X2) GII(X1, X2)

Methods σε F (X1, X2) PWTAB WTAB z-DML CUPED DIM PWTAB WTAB z-DML CUPED DIM

LightGBM 0.5

I 0.046 0.052 0.042 0.034 0.052 0.030 0.030 0.022 0.028 0.032
II 0.046 0.050 0.042 0.040 0.040 0.056 0.054 0.052 0.053 0.056
III 0.054 0.056 0.042 0.042 0.036 0.046 0.052 0.042 0.032 0.044
IV 0.044 0.046 0.040 0.054 0.038 0.046 0.042 0.040 0.056 0.042

LightGBM 0.6

I 0.044 0.042 0.042 0.044 0.060 0.060 0.056 0.060 0.050 0.058
II 0.040 0.048 0.036 0.028 0.042 0.040 0.050 0.032 0.054 0.038
III 0.044 0.052 0.044 0.070 0.060 0.048 0.050 0.046 0.030 0.054
IV 0.052 0.052 0.044 0.056 0.048 0.050 0.050 0.042 0.024 0.032

XGBoost 0.5

I 0.052 0.036 0.046 0.034 0.052 0.032 0.042 0.026 0.028 0.032
II 0.050 0.050 0.044 0.040 0.040 0.044 0.050 0.042 0.052 0.056
III 0.046 0.052 0.044 0.042 0.036 0.052 0.046 0.048 0.032 0.044
IV 0.038 0.044 0.032 0.054 0.038 0.058 0.060 0.056 0.056 0.042

XGBoost 0.6

I 0.048 0.046 0.040 0.044 0.060 0.054 0.062 0.048 0.050 0.058
II 0.042 0.044 0.040 0.028 0.042 0.044 0.026 0.036 0.054 0.038
III 0.068 0.058 0.058 0.070 0.060 0.046 0.054 0.042 0.030 0.054
IV 0.064 0.062 0.046 0.056 0.048 0.044 0.044 0.040 0.024 0.032

Stacking 0.5

I 0.044 0.040 0.042 0.034 0.052 0.032 0.032 0.028 0.028 0.032
II 0.056 0.048 0.048 0.040 0.040 0.054 0.048 0.044 0.052 0.056
III 0.054 0.046 0.046 0.042 0.036 0.056 0.050 0.040 0.032 0.044
IV 0.044 0.040 0.038 0.054 0.038 0.058 0.060 0.050 0.056 0.042

Stacking 0.6

I 0.044 0.048 0.040 0.044 0.060 0.060 0.056 0.060 0.050 0.058
II 0.040 0.044 0.038 0.028 0.042 0.026 0.038 0.028 0.054 0.038
III 0.054 0.052 0.048 0.070 0.060 0.054 0.062 0.044 0.030 0.054
IV 0.060 0.066 0.048 0.056 0.048 0.046 0.046 0.040 0.024 0.032

Figure 6 presents the power comparison for all methods in the synthetic data-based. The comparative analysis reveals two
key findings regarding the performance characteristics. Horizontally, under the same machine learning algorithms, PWTAB
consistently demonstrates superior statistical power, indicating its optimal performance. Vertically, when employing fixed
statistics, the ensemble learning-based stacking approach effectively integrates the strengths of different machine learning
algorithms, achieving comparable or even enhanced performance relative to the current best methods.

B. Asymptotic distribution and Proofs
Let {Bs}s≥0 be the standard Brownian motion on (Ω,F , P ) and (F∗

s )s≥0 be the natural filtration generated by {Bs}s≥0.

For any integer m ≥ 1, let Cm
b (R) denote the set of functions on R that have bounded derivatives up to order m. Let

φ ∈ C3
b (R) be an even function, for any δ ∈ R, β > 0 and t ∈ [0, 1), we define F1(x) = φ(x), and

Ft(x) =

∫
R
φ(z)qδ,β(t, x, z)dz, (13)

where

qδ,β(t, x, z) =
1

β
√

2π(1− t)
e
− (x−z)2−2δ(1−t)(|z|−|x|)+δ2(1−t)2

2(1−t)β2 − δ

β2
e

2δ|z|
β2 Φ

(
−|z|+ |x|+ δ(1− t)

β
√
1− t

)
.

12
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Here, the dependence of Ft on φ, δ, and β is not explicitly noted for simplicity. It is clear from the definition that

F0(0) = E[φ(η)],

where η ∼ B(δ, β) is a spike distribution.

Figure 6: More power comparisons of various methods across different settings, presented in descending order.

The following lemma lists some analytic properties of the family {Ft(x)}t∈[0,1].

Lemma B.1. Let the number of dots on top of a function denote the same order derivatives with respect to x.

(1) For each fixed t ∈ [0, 1], Ft(x) ∈ C2
b (R). In addition, the first and second order derivatives of Ft(x) are uniformly

bounded for all 0 ≤ t ≤ 1 and x.

(2) The family {F̈t(x)}t∈[0,1] is uniformly Lipschitz, i.e., there exists a constant L, independent with t, such that∣∣∣F̈t (x1)− F̈t (x2)
∣∣∣ ≤ L |x1 − x2| , x1, x2 ∈ R.

(3) For any t ∈ [0, 1], Ft(x) is an even function. Furthermore, if for any x ∈ R,

sgn(φ̇(x)) = ± sgn(x),

13



Strategic A/B testing via Maximum Probability-driven Two-armed Bandit

then
sgn(Ḟt(x)) = ± sgn(x), x ∈ R.

(4) If sgn(φ̇(x)) = ± sgn(x) for all x ∈ R, then

n∑
m=1

sup
x∈R

∣∣∣∣Fm−1
n

(x)− Fm
n
(x)∓ δ

n

∣∣∣Ḟm
n
(x)
∣∣∣− β2

2n
F̈m

n
(x)

∣∣∣∣ = O

(
β|δ|
n

+
β√
n

)
.

Proof. We prove the lemma in numerical order.

(1) For t = 1, F1(x) ≡ φ(x) and the result is trivial.

Next, we assume that 0 ≤ t < 1. Since φ is an even function, with the definition of Ft(x), it follows by direct calculation
that

Ḟt(x) =

∫ ∞

0

sgn(x)

β
√
2π(1− t)

φ̇(z)e
− (z−δ(1−t)−|x|)2

2(1−t)β2

[
1− e

− 2|x|z
(1−t)β2

]
dz,

F̈t(x) =

∫ ∞

0

1

β
√

2π(1− t)
φ̈(z)e

− (z−δ(1−t)−|x|)2

2(1−t)β2

[
1 + e

− 2|x|z
(1−t)β2

]
dz

+

∫ ∞

0

2δ

β2
√
2π(1− t)

φ̇(z)e
− (z+δ(1−t)+|x|)2

2(1−t)β2 e
2δz
β2 dz

=

∫ ∞

0

1

β
√

2π(1− t)
φ̈(z)e

− (z−δ(1−t)−|x|)2

2(1−t)β2

[
1 + e

− 2|x|z
(1−t)β2

]
dz

+

∫ ∞

0

2δ

β2
√
2π(1− t)

φ̇(z)e
− (z−δ(1−t)+|x|)2

2(1−t)β2 e
− 2δ|x|

β2 dz.

(14)

Since φ ∈ C3
b (R), we conclude that Ft(x) ∈ C2

b (R), and the first- and second-order derivatives of Ft(x) are uniformly
bounded for all t and x.

(2) For x < 0, we have

...
F (x) =

∫ ∞

0

1

β
√
2π(1− t)

...
φ (z)e

− (z−δ(1−t)+x)2

2(1−t)β2

[
e

2xz
(1−t)β2 − 1

]
dz

+

∫ ∞

0

4δ

β3
√

2π(1− t)
[δφ̇(z) + βφ̈(z)]e

− (z+δ(1−t)−x)2

2(1−t)β2 e
2δz
β2 dz

=

∫ ∞

0

1

β
√
2π(1− t)

...
φ (z)e

− (z−δ(1−t)+x)2

2(1−t)β2

[
e

2xz
(1−t)β2 − 1

]
dz

+

∫ ∞

0

4δ

β3
√

2π(1− t)
[δφ̇(z) + βφ̈(z)]e

− (z−δ(1−t)−x)2

2(1−t)β2 e
2δx
β2 dz.

For x > 0, we have

...
F t(x) =

∫ ∞

0

1

β
√
2π(1− t)

...
φ (z)e

− (z−δ(1−t)−x)2

2(1−t)β2

[
1− e

− 2xz
(1−t)β2

]
dz

−
∫ ∞

0

4δ

β3
√
2π(1− t)

[βφ̈(z) + δφ̇(z)]e
− (z+δ(1−t)+x)2

2(1−t)β2 e
2δz
β2 dz

=

∫ ∞

0

1

β
√
2π(1− t)

...
φ (z)e

− (z−δ(1−t)−x)2

2(1−t)β2

[
1− e

− 2xz
(1−t)β2

]
dz

−
∫ ∞

0

4δ

β3
√
2π(1− t)

[βφ̈(z) + δφ̇(z)]e
− (z−δ(1−t)+x)2

2(1−t)β2 e
− 2δx

β2 dz.

Since φ ∈ C3
b (R), it follows that

...
F t(x) is uniformly bounded for all t and x ̸= 0. For x = 0, the third-order left and right

derivatives of Ft(x) can be shown to exist and are also bounded uniformly in t. Thus by the mean value theorem, one can

14
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find a constant L, independent with t, such that for any x1, x2 ∈ R,∣∣∣F̈t (x1)− F̈t (x2)
∣∣∣ ≤ L |x1 − x2| .

(3) It follows by direct calculation that for any x ∈ R,

Ft(x) =

∫
R
φ(z)qδ,β(t, x, z)dz =

∫
R
φ(z)qδ,β(t,−x,−z)dz

=

∫
R
φ(z)qδ,β(t,−x, z)dz

= Ft(−x).

That is Ft is an even function. By (14) we have that for any x ∈ R,

sgn
(
Ḟt(x)

)
= ± sgn(x) when sgn (φ̇(x)) = ± sgn(x).

(4) We only prove the case sgn (φ̇(x)) = sgn(x). The other case follows by similar arguments.

For any (t, x) ∈ [0, 1]× R, let {Y t,x
s }s∈[t,1] denote the solution of the SDE{

dY t,x
s = δ

β sgn (Y t,x
s ) ds+ dBs, s ∈ [t, 1]

Y t,x
t = x.

(15)

Although the drift coefficient is discontinuous, this equation does have a unique strong solution (see Mel’nikov (1979),
Theorem 1). Fortunately, {Y t,x

s }s∈[t,1] has an explicit probability density function, which can be denoted by

q δ
β
(t, x; s, z) =

1√
2π(s− t)

e−
(x−z)2−2δ(s−t)(|z|−|x|)/β+δ2(s−t)2/β2

2(s−t) − δ

β
e

2δ|z|
β

∫ ∞

|x|+|z|+δ(s−t)/β

1√
2π(s− t)

e−
u2

2(s−t) du.

Then, the basic function Ft can also be denoted by

Ft(x) = E
[
φ
(
βY

t, xβ
1

)]
. (16)

Follows from the Markov property of (Y t,x
s ), we have for any b ∈ [0, 1− t],

Ft(x) = E
[
φ
(
βY

t, xβ
1

)]
= E

[
E
[
φ
(
βY

t, xβ
1

)
|F∗

t+h

]]
= E

[
Ft+h

(
βY

t, xβ
t+b

)]
.

Applying the Markov property and (16), we have for any 1 ≤ m ≤ n,

Fm−1
n

(x) = E
[
Fm

n

(
βY

m−1
n , xβ

m
n

)]
.

By Itô’s formula, we have

Fm
n

(
βY

m−1
n , xβ

m
n

)
= Fm

n
(x) +

∫ m
n

m−1
n

Ḟm
n

(
βY

m−1
n , xβ

s

)
βdY

m−1
n , xβ

s +
β2

2

∫ m
n

m−1
n

F̈m
n

(
βY

m−1
n , xβ

s

)
ds.

This combined with (3) implies that

Fm−1
n

(x) =E

[
Fm

n
(x) +

∫ m
n

m−1
n

Ḟm
n

(
βY

m−1
n , xβ

s

)
βdY

m−1
n , xβ

s +
β2

2

∫ m
n

m−1
n

F̈m
n

(
βY

m−1
n , xβ

s

)
ds

]

=E

[
Fm

n
(x) +

∫ m
n

m−1
n

δḞm
n

(
βY

m−1
n , xβ

s

)
sgn

(
βY

m−1
n , xβ

s

)
ds+

β2

2

∫ m
n

m−1
n

F̈m
n

(
βY

m−1
n , xβ

s

)
ds

]

=E

[
Fm

n
(x) +

∫ m
n

m−1
n

δ

∣∣∣∣Ḟm
n

(
βY

m−1
n , xβ

s

)∣∣∣∣ ds+ β2

2

∫ m
n

m−1
n

F̈m
n

(
βY

m−1
n , xβ

s

)
ds

]
.

15
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Taking the supremum over x, we obtain

n∑
m=1

sup
x∈R

∣∣∣∣Fm−1
n

(x)− Fm
n
(x)− δ

n

∣∣∣Ḟm
n
(x)
∣∣∣− β2

2n
F̈m

n
(x)

∣∣∣∣
≤

n∑
m=1

sup
x∈R

E

[∫ m
n

m−1
n

|δ|
∣∣∣∣Ḟm

n

(
βY

m−1
n , xβ

s

)
− Ḟm

n
(x)

∣∣∣∣ds+ 1

2

∫ m
n

m−1
n

∣∣∣∣F̈m
n

(
βY

m−1
n , xβ

s

)
− F̈m

n
(x)

∣∣∣∣ds
]

≤
n∑

m=1

sup
x∈R

C

n
E

 sup
s∈[m−1

n ,mn ]

∣∣∣∣βY m−1
n , xβ

s − x

∣∣∣∣


≤
n∑

m=1

Cβ

n
E

 |δ|
n

+ sup
s∈[m−1

n ,mn ]

∣∣∣Bs −Bm−1
n

∣∣∣


≤Cβ

(
|δ|
n

+
1√
n

)
,

where C is a constant depending only on δ, L and the bound of F̈t(x). This concludes the proof of the lemma.

All results below are under the assumptions Theorems 4.1 and 4.2.

Lemma B.2. Let φ ∈ C3
b (R) be symmetric with centre c ∈ R, and {Ft(x)}t∈[0,1] be defined as in (13). For any θn ∈ Θ,

n ∈ N+ and 1 ≤ m ≤ n, set

Γ(m,n, θn) = Fm
n
(Tm−1,λ(θn))+ Ḟm

n
(Tm−1,λ(θn))

(
λR̄

(ϑm)
m

(1− λ)n
+

R
(ϑm)
m√
nσ̂

)
+

1

2
F̈m

n
(Tm−1,λ(θn))

(
R

(ϑm)
m√
nσ̂

)2

. (17)

Then, we have
n∑

m=1

E
[∣∣Fm

n
(Tm,λ(θn))− Γ(m,n, θn)

∣∣] = O

(
σ

(1− λ)
√
n

)
. (18)

Proof. In fact, by (1) and (2) of Lemma B.1, there exists a constant C > 0 such that

sup
t∈[0,1]

sup
x∈R

∣∣∣F̈t(x)
∣∣∣ ≤ C, sup

t∈[0,1]

sup
x,y∈R,x ̸=y

∣∣∣F̈t(x)− F̈t(y)
∣∣∣

|x− y|
≤ C.

It follows from Taylor’s expansion that for any x, y ∈ R, and t ∈ [0, 1],∣∣∣∣Ft(x+ y)− Ft(x)− Ḟt(x)y −
1

2
F̈t(x)y

2

∣∣∣∣ ≤ C

2
|y|3. (19)

For any 1 ≤ m ≤ n, taking x = Tm−1,λ(θn), y =
λR̄(ϑm)

m

(1−λ)n +
R(ϑm)

m√
nσ̂

in (19), we obtain

n∑
m=1

E
[∣∣Fm

n
(Tm,λ(θn))− Γ(m,n, θn)

∣∣]
≤C1

2

n∑
m=1

E

∣∣∣∣∣ λR̄(ϑm)
m

(1− λ)n

∣∣∣∣∣
2

+ 2

∣∣∣∣∣ λR̄(ϑm)
m

(1− λ)n

∣∣∣∣∣
∣∣∣∣∣R(ϑm)

m√
nσ̂

∣∣∣∣∣+
∣∣∣∣∣ λR̄(ϑm)

m

(1− λ)n
+

R
(ϑm)
m√
nσ̂

∣∣∣∣∣
3


≤C1

2

(
2σ

(1− λ)
√
n
+

λ2

(1− λ)2n
+

3λσ

(1− λ)n

)
≤ C1σ

(1− λ)
√
n
,

The penultimate inequality is due to the uniform boundedness of {R(ϑm)
m }. Therefore, Equation (18) holds evidently.
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Lemma B.3. Define the family of functions {Lm,n(x)}nm=1 and {L̂m,n(x)}nm=1 by

Lm,n(x) = Fm
n
(x)− ωn

n

∣∣∣Ḟm
n
(x)
∣∣∣+ σ2

0

2n
F̈m

n
(x), x ∈ R, (20)

L̂m,n(x) = Fm
n
(x) +

ωn

n

∣∣∣Ḟm
n
(x)
∣∣∣+ σ2

0

2n
F̈m

n
(x), x ∈ R, (21)

where ωn and σ0 is given in (12). Let θ∗n be the strategy given in Theorem 4.1, then the followings hold.

(1) If sgn(φ̇(x)) = − sgn(x) for all x ∈ R, then

n∑
m=1

∣∣E [Fm
n
(Tm,λ(θ

∗
n))
]
− E [Lm,n (Tm−1,λ(θ

∗
n))]

∣∣ = O

(
σ

(1− λ)
√
n

)
. (22)

(2) If sgn(φ̇(x)) = sgn(x) for all x ∈ R, then

n∑
m=1

∣∣∣E [Fm
n
(Tm,λ(θ

∗
n))
]
− E

[
L̂m,n (Tm−1,λ(θ

∗
n))
]∣∣∣ = O

(
σ

(1− λ)
√
n

)
. (23)

Proof. We only give the proof of (1), the rest of the proofs are similar. For any x ∈ R, sgn(φ̇(x)) = − sgn(x). It follows
from (3) in Lemma B.1 and direct calculation that, for 1 ≤ m ≤ n,

E [Γ (m,n, θ∗n)]

=E

Fm
n
(Tm−1,λ(θ

∗
n)) + Ḟm

n
(Tm−1,λ(θ

∗
n))

(
λR̄

(ϑ∗
m)

m

(1− λ)n
+

R
(ϑ∗

m)
m√
nσ̂

)
+

1

2
F̈m

n
(Tm−1,λ(θ

∗
n))

(
R

(ϑ∗
m)

m√
nσ̂

)2


=E

[
Fm

n
(Tm−1,λ(θ

∗
n)) + I{ϑ∗

m=1}Ḟm
n
(Tm−1,λ(θ

∗
n))

(
λR̄

(1)
m

(1− λ)n
+

R
(1)
m√
nσ̂

)

+ I{ϑ∗
m=0}Ḟm

n
(Tm−1,λ(θ

∗
n))

(
λR̄

(0)
m

(1− λ)n
+

R
(0)
m√
nσ̂

)
+ F̈m

n
(Tm−1,λ(θ

∗
n))

(R
(1)
m )2

2nσ̂2

]
=E [Lm,n (Tm−1,λ(θ

∗
n))] ,

then, according to (1) of Lemma B.1 and Equation (18), we have

n∑
m=1

∣∣E [Fm
n
(Tm,λ(θ

∗
n))
]
− E [Lm,n (Tm−1,λ(θ

∗
n))]

∣∣
=

n∑
m=1

∣∣E [Fm
n
(Tm,λ(θ

∗
n))
]
− E [Γ (m,n, θ∗n)]

∣∣
≤ C1σ

(1− λ)
√
n
.

(24)

Lemma B.4. With the assumptions and notations in Lemma B.3, the followings hold.

(1) If sgn(φ̇(x)) = − sgn(x) for all x ∈ R, then

n∑
m=1

∣∣∣∣ sup
θn∈Θ

E
[
Fm

n
(Tm,λ(θn))

]
− sup

θn∈Θ
E [Lm,n (Tm−1,λ(θn))]

∣∣∣∣ = O

(
σ

(1− λ)
√
n

)
. (25)

(2) If sgn(φ̇(x)) = sgn(x) for all x ∈ R, then

n∑
m=1

∣∣∣∣ sup
θn∈Θ

E
[
Fm

n
(Tm,λ(θn))

]
− sup

θn∈Θ
E
[
L̂m,n (Tm−1,λ(θn))

]∣∣∣∣ = O

(
σ

(1− λ)
√
n

)
. (26)
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Proof. We only give the proof of (1), the rest of the proofs are similar. For any x ∈ R, sgn(φ̇(x)) = − sgn(x). It follows
from (3) in Lemma B.1 and direct calculation that, for 1 ≤ m ≤ n,

sup
θn∈Θ

E [Γ (m,n, θn)]

= sup
θn∈Θ

E

Fm
n
(Tm−1,λ(θn)) + Ḟm

n
(Tm−1,λ(θn))

(
λR̄

(ϑm)
m

(1− λ)n
+

R
(ϑm)
m√
nσ̂

)
+

1

2
F̈m

n
(Tm−1,λ(θn))

(
R

(ϑm)
m√
nσ̂

)2


= sup
θn∈Θ

E

[
Fm

n
(Tm−1,λ(θn))−

(
Ḟm

n
(Tm−1,λ(θn))

)−( λR̄
(1)
m

(1− λ)n
+

R
(1)
m√
nσ̂

)

+
(
Ḟm

n
(Tm−1,λ(θn))

)+( λR̄
(0)
m

(1− λ)n
+

R
(0)
m√
nσ̂

)
+ F̈m

n
(Tm−1,λ(θn))

(R
(1)
m )2

2nσ̂2

]
= sup

θn∈Θ
E [Lm,n (Tm−1,λ(θn))] ,

then, according to (1) of Lemma B.1 and Equation (18), we have

n∑
m=1

∣∣∣∣ sup
θn∈Θ

E
[
Fm

n
(Tm,λ(θn))

]
− sup

θn∈Θ
E [Lm,n (Tm−1,λ(θ

∗
n))]

∣∣∣∣
=

n∑
m=1

∣∣∣∣ sup
θn∈Θ

E
[
Fm

n
(Tm,λ(θn))

]
− sup

θn∈Θ
E [Γ (m,n, θn)]

∣∣∣∣
≤ C1σ

(1− λ)
√
n
.

(27)

Having presented the aforementioned lemma, we now proceed to prove Theorem 4.1.

Proof. (Proof of Theorem 4.1.) Let φ ∈ C(R) be an even function. The result is clear if φ is globally constant. Thus, we
assume that φ is not a constant function. We only give the proof for the case that φ is decreasing on (0,∞), when φ is
increasing on (0,∞) it can be proved similarly. Assume that φ is decreasing on (0,∞). For any h > 0, define the function
φh by

φh(x) =

∫ ∞

−∞

1√
2π

φ(x+ hy)e−
y2

2 dy.

By the Approximation Lemma, we have that

lim
h→0

sup
x∈R

|φ(x)− φh(x)| = 0. (28)

It follows from direct calculation that

φh(x) =

∫ ∞

−∞

1√
2π

φ(x+ hy)e−
y2

2 dy =

∫ ∞

−∞

1√
2π

φ(−x+ hy)e−
y2

2 dy = φh(−x).

Thus, φh is symmetric with centre c. In addition, we have

φ̇h(x) =

∫ ∞

−∞

1√
2πh3

φ(x+ y)ye−
y2

2h2 dy

=

∫ ∞

0

1√
2πh3

φ(y + x)ye−
y2

2h2 dy +

∫ 0

−∞

1√
2πh3

φ(y + x)ye−
y2

2h2 dy

=

∫ ∞

0

1√
2πh3

(φ(y + x)− φ(y − x))ye−
y2

2h2 dy.

18
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Since φ is decreasing on (0,∞), it follows that

sgn (φ̇h(x)) = − sgn(x).

In the remaining proof of this theorem, we continue to use {Ft(x)}t∈[0,1] to denote the functions defined in Equation
(13) with φh in place of φ and δ = ωn, β = σ0 there. Let {Lm,n(x)}nm=1 be functions defined in Equation (20) with
{Ft(x)}t∈[0,1] here. Let ηn ∼ B(ωn, σ0), by direct calculation we obtain

E [φh (Tn,λ(θ
∗
n))]− E [φh (ηn)] =E [F1 (Tn,λ(θ

∗
n))]− F0(0)

=E [F1 (Tn,λ(θ
∗
n))]− E

[
Fn−1

n
(Tn−1,λ(θ

∗
n))
]
+ . . .+ E

[
Fm

n
(Tm,λ(θ

∗
n))
]

− E
[
Fm−1

n
(Tm−1,λ(θ

∗
n))
]
+ . . .+ E

[
F 1

n
(T1,λ(θ

∗
n))
]
− F0 (T0,λ(θ

∗
n))

=

n∑
m=1

{
E
[
Fm

n
(Tm,λ(θ

∗
n))
]
− E

[
Fm−1

n
(Tm−1,λ(θ

∗
n))
]}

=

n∑
m=1

{
E
[
Fm

n
(Tm,λ(θ

∗
n))
]
− E [Lm,n (Tm−1,λ(θ

∗
n))]

}
+

n∑
m=1

{
E [Lm,n (Tm−1,λ(θ

∗
n))]− E

[
Fm−1

n
(Tm−1,λ(θ

∗
n))
]}

=:I1n + I2n.

According to Lemma B.3 and (4) in Lemma B.1, we can infer

|I1n|+ |I2n| ≤ K ′
(
|ωn|σ
n

+
σ

(1− λ)
√
n

)
.

Which implies that

lim
h→0

|E [φh (Tn,λ(θ
∗
n))]− E [φh (ηn)]| = O

(
λ|µ|σ

(1− λ)n
+

σ

(1− λ)
√
n

)
. (29)

Putting together Equation (28) and (29), we have

lim
n→∞

|E [φ (Tn,λ(θ
∗
n))]− E [φ (ηn)]| ≤ lim

h→0
lim

n→∞
|E [φ (Tn,λ(θ

∗
n))]− E [φh (Tn,λ(θ

∗
n))]|

+ lim
h→0

lim
n→∞

|E [φh (Tn,λ(θ
∗
n))]− E [φh (ηn)]|

+ lim
h→0

|E [φh (ηn)]− E [φ (ηn)]|

= 0.

where ηn ∼ B(ωn, σ0). Then we complete the proof of Theorem 4.1.

Theorem 4.2 is a corollary directly from Theorem 4.1. We still give the Proof of Theorem 4.2 here.

Proof. (Proof of Theorem 4.2.) Let φ ∈ C(R) be an even function and monotonic on (0,∞). We first prove that

lim
n→∞

|E [φ (Tn,λ(θ
∗
n))]− E [φ (ηn)]| = 0

where ηn ∼ B(ωn, σ0) is a spike distribution with the parameter ωn, σ0 given in Equation (12).

The result is clear if φ is globally constant. Thus, we assume that φ is not a constant function. We only give the proof for
the case that φ is decreasing on (0,∞), when φ is increasing on (0,∞) it can be proved similarly.

Assume that φ is decreasing on (0,∞). For any h > 0, define the function φh by

φh(x) =

∫ ∞

−∞

1√
2π

φ(x+ hy)e−
y2

2 dy.
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By the Approximation Lemma, we have that

lim
h→0

sup
x∈R

|φ(x)− φh(x)| = 0.

By the proof of Theorem 4.1, we also have φh is an even function, an when φ is decreasing on (0,∞), it follows that

sgn (φ̇h(x)) = − sgn(x).

In the remaining proof of this theorem, we continue to use {Ft(x)}t∈[0,1] to denote the functions defined in (13) with φh

in place of φ and δ = ωn, β = σ0 there. Let {Lm,n(x)}nm=1 be functions defined in (22) with {Ft(x)}t∈[0,1] here. Let
ηn ∼ B (ωn, σ0) be a spike distribution, by direct calculation we obtain

E [φh (Tn,λ(θ
∗
n))]− E [φh (ηn)] =E [F1 (Tn,λ(θ

∗
n))]− F0(0)

=E [F1 (Tn,λ(θ
∗
n))]− E

[
Fn−1

n
(Tn−1,λ(θ

∗
n))
]
+ . . .+ E

[
Fm

n
(Tm,λ(θ

∗
n))
]

− E
[
Fm−1

n
(Tm−1,λ(θ

∗
n))
]
+ . . .+ E

[
F 1

n
(T1,λ(θ

∗
n))
]
− F0 (T0,λ(θ

∗
n))

=

n∑
m=1

{
E
[
Fm

n
(Tm,λ(θ

∗
n))
]
− E

[
Fm−1

n
(Tm−1,λ(θ

∗
n))
]}

=

n∑
m=1

{
E
[
Fm

n
(Tm,λ(θ

∗
n))
]
− E [Lm,n (Tm−1,λ(θ

∗
n))]

}
+

n∑
m=1

{
E [Lm,n (Tm−1,λ(θ

∗
n))]− E

[
Fm−1

n
(Tm−1,λ(θ

∗
n))
]}

=:I1n + I2n.

According to Lemma B.3 and (4) in Lemma B.1, we can infer

lim
h→0

lim
n→∞

|E [φh (Tn,λ(θ
∗
n))]− E [φh (ηn)]| = 0.

Putting together Equation (28) and (29), we have

lim
n→∞

|E [φ (Tn,λ(θ
∗
n))]− E [φ (ηn)]| ≤ lim

h→0
lim

n→∞
|E [φ (Tn,λ(θ

∗
n))]− E [φh (Tn,λ(θ

∗
n))]|

+ lim
h→0

lim
n→∞

|E [φh (Tn,λ(θ
∗
n))]− E [φh (ηn)]|

+ lim
h→0

|E [φh (ηn)]− E [φ (ηn)]|

= 0.

With the standard approximation arguments, we have for any a ∈ R, we have

lim
n→∞

{
P (|Tn,λ(θ

∗
n)| ≤ a)−

[
Φ

(
ωn − a

σ0

)
− e

2ωna

σ2
0 Φ

(
−ωn + a

σ0

)]}
= 0.

Next, when φ is decreasing on (0,∞), by Lemma B.4 (1), with the similar arguments as above, we have

lim
n→∞

∣∣∣∣ sup
θn∈Θ

E [φh (Tn,λ(θn))]− E [φh (ηn)]

∣∣∣∣ = 0

and for any a ∈ R, we have

lim
n→∞

{
sup
θn∈Θ

P (|Tn,λ(θn)| ≤ a)−
[
Φ

(
ωn − a

σ0

)
− e

2ωna

σ2
0 Φ

(
−ωn + a

σ0

)]}
= 0.

Then, we complete the proof of Theorem 4.2.
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To ensure the completeness of the proof, we now present the derivation of Lemma 2.1 within our framework, independently
of Theorem 3.3 in Chen et al. (2022), by considering the case where λ = 0.5 and assuming an oracle scenario in which the
counterfactual outcomes Y (1)

i and Y
(0)
i for each subject can be observed simultaneously.

Proof. (Proof of Lemma 2.1.) First, when λ = 0.5 and the counterfactual outcomes Y (1)
i and Y

(0)
i for each subject can be

observed simultaneously, it is clear from Theorem 4.1 that we can derive

E [|φ (Tn(θ
∗
n))− φ (ηn)|] = O

(
σ√
n

)
.

With the standard approximation arguments, we have for any α ∈ [0, 1], we have

lim
n→∞

{
P
(
|Tn(θ

∗
n)| > z1−α/2

∣∣H1

)
−

[
Φ

(
ω′
n − z1−α/2

σ0

)
+ e

2ω′
nz1−α/2

σ2
0 Φ

(
−
ω′
n + z1−α/2

σ0

)]}
= 0,

where ω′
n = µ+

√
nµ/σ and zα denotes the αth quantile of a standard normal distribution. Next, when φ is decreasing on

(0,∞), by Lemma B.4 (1), with the similar arguments as above, we have

lim
n→∞

∣∣∣∣ sup
θn∈Θ

E [φ (Tn(θn))]− E [φ (ηn)]

∣∣∣∣ = 0,

and for any α ∈ [0, 1], we have

lim
n→∞

{
sup
θn∈Θ

P
(
|Tn(θn)| > z1−α/2

∣∣H1

)
−

[
Φ

(
ω′
n − z1−α/2

σ0

)
+ e

2ω′
nz1−α/2

σ2
0 Φ

(
−
ω′
n + z1−α/2

σ0

)]}
= 0.

Therefore, it is clear that we can obtain

lim
n→∞

P
(
|Tn(θ

∗
n)| > z1−α/2

∣∣H1

)
= lim

n→∞
sup
θn∈Θ

P
(
|Tn(θn)| > z1−α/2

∣∣H1

)
.

Similarly, when φ is increasing on (0,∞), the above conclusion still holds by Lemma B.4 and Theorem 4.1. Then, we
complete the proof of Lemma 2.1.
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