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ABSTRACT

Existing contextual multi-armed bandit (MAB) algorithms struggle to simultane-
ously capture long-term trends as well as local patterns across all arms, leading to
suboptimal performance in complex environments with rapidly changing reward
structures. Additionally, they typically employ static exploration rates, which do
not adapt to dynamic conditions. To address these issues, we present LNUCB-TA,
a hybrid bandit model that introduces a novel nonlinear component (adaptive k-
Nearest Neighbors (k-NN)) designed to reduce time complexity, and an innovative
global-and-local attention-based exploration mechanism. Our method incorpo-
rates a unique synthesis of linear and nonlinear estimation techniques, where the
nonlinear component dynamically adjusts k based on reward variance, thereby
effectively capturing spatiotemporal patterns in the data. This is critical for reduc-
ing the likelihood of selecting suboptimal arms and accurately estimating rewards
while reducing computational time. Also, our proposed attention-based mechanism
prioritizes arms based on their historical performance and frequency of selection,
thereby balancing exploration and exploitation in real-time without the need for
fine-tuning exploration parameters. Incorporating both global attention (based on
overall performance across all arms) and local attention (focusing on individual arm
performance), the algorithm efficiently adapts to temporal and spatial complexities
in the available context. Empirical evaluation demonstrates that LNUCB-TA signif-
icantly outperforms state-of-the-art contextual MAB algorithms, including purely
linear, nonlinear, and vanilla combination of linear and nonlinear bandits based
on cumulative and mean rewards, convergence performance, and demonstrates
consistency of results across different exploration rates. Theoretical analysis further
proves the robustness of LNUCB-TA with a sub-linear regret bound.

1 INTRODUCTION

The multi-armed bandit (MAB) problem brings to light a fundamental challenge in decision-making
dynamics, emphasizing the need to strike balance between exploration and exploitation (Russac et al.,
2019; Audibert et al., 2009; Hillel et al., 2013). In Reinforcement Learning (RL), this challenge
manifests as a continuous decision-making process (Zhu et al., 2022). Specifically, the RL agents
must navigate the trade-off between uncovering new opportunities to better utilize their environment
versus leveraging proven strategies to realize immediate benefits (Reeve et al., 2018; Bouneffouf
et al., 2020; Sani et al., 2012). Balancing this trade-off is critical for developing adaptive strategies
to improve outcomes across various domains such as online advertising (Schwartz et al., 2017),
recommendation systems (Li et al., 2010; Ding et al., 2021), and clinical trials (Villar et al., 2015;
Aziz et al., 2021). This dilemma becomes pronounced in environments marked by uncertainty,
e.g.digital marketing (Shi et al., 2023). Particularly, algorithms aim to maximize user engagement
by deciding advertisements displays to different segments, i.e., weighing the benefits of exploring
diverse advertisements against exploiting those with proven success.

Foundational approaches. Given the extensive literature on MAB, our study specifically concen-
trates on Upper Confidence Bound (UCB) variants and linear estimation methods. Foundational
methods such as the UCB algorithm optimize decision-making by constructing confidence bounds
around estimated rewards and selecting the action with the highest upper bound (Auer et al., 2002a).
This technique is further refined in the Kullback-Leibler Upper Confidence Bound (KL-UCB) algo-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

rithm, which enhances the accuracy of these intervals using the Kullback-Leibler divergence (Garivier
& Cappé, 2011). Despite their efficacy, both UCB and KL-UCB often overlook the crucial role of
contextual information, where each action can be tailored to the specific observable environmental
factors, or ‘contexts’ to maximize the obtained rewards (Bubeck et al., 2012).

Extending these concepts to address contextual dynamics, the Linear Upper Confidence Bound
(LinUCB) algorithm assumes a linear relationship between contextual features and expected rewards
(Chu et al., 2011; Dimakopoulou et al., 2019). LinUCB constructs confidence bounds around these
estimated rewards and selects actions based on the upper bounds of these estimates (Li et al., 2010).
Linear Thompson Sampling (LinThompson) also operates under the assumption that expected rewards
are linearly related to contextual features, utilizing Thompson Sampling (TS) to balance exploration
and exploitation(Agrawal & Goyal, 2013). Despite its strategic approach, LinThompson can fall
short by often estimating influence probabilities directly, which can lead to locally optimal solutions
due to insufficient exploration. To address this, the LinThompsonUCB algorithm combines linear
estimation with TS’s probabilistic approach and UCB confidence intervals to enhance exploration and
performance. (Zhang, 2019). However, while effective, the reliance of LinUCB, LinThompson, and
LinThompsonUCB on linear assumptions can limit their performance in more complex environments.
To address this limitation, the k-Nearest Neighbour UCB (k-NN UCB) and k-Nearest Neighbour
KL-UCB (k-NN KL-UCB) methods utilize the locality of feature space to enhance action selection
(Reeve et al., 2018). These models leverage contextual information by considering environmental
features, thereby improving accuracy.

Existing gaps and intuition. Despite advancements in MAB algorithms, existing algorithms
predominantly fail to incorporate adaptive strategies for reward estimation as a function of the context.
Linear models, constrained by static parameter updates, often fail in scenarios with inherently
nonlinear relationships between contextual features and rewards, leading to outdated estimations
and slower convergence (Russac et al., 2019; Dimakopoulou et al., 2019; Zhang, 2019). While
nonlinear approaches like k-NN-based models (Reeve et al., 2018) offer flexibility, they often struggle
with computational efficiency and adaptability in dynamic environments. Moreover, these models
usually overlook crucial long-term trends, which can lead to overfitting in sparse scenarios, degraded
generalization, and increased variance in reward estimations (Eleftheriadis et al., 2024). These
limitations restrict existing algorithms’ ability to capture both long-term trends and immediate local
patterns effectively, leading to inconsistent performance across various scenarios.

In addition, conventional methods rely on static exploration rates, leading to inefficient convergence
and suboptimal decision-making (Bubeck et al., 2012). Specifically, high exploration rates cause
algorithms to frequently test suboptimal options, slowing progress and increasing regret (Audibert
et al., 2009). Conversely, low exploration rates leads to premature conclusions on less optimal
solutions, foregoing potentially better options (Odeyomi, 2020). To address this, studies have
proposed fine-tuning, experimentation, and dynamic exploration rates (Carlsson et al., 2021; Russac
et al., 2019; Alon et al., 2015). However, these approaches often fall short in fully capturing the
intricate, evolving patterns of rewards in non-stationary environments, such as recommendation
systems or clinical trials (Villar et al., 2015; Liu et al., 2024b; De Curtò et al., 2023). Existing
solutions typically rely on pre-defined heuristics or manual tuning, which can be suboptimal when
rewards shift unexpectedly, complicating the search for an optimal setting (Bouneffouf et al., 2020;
Russac et al., 2019). A key challenge of the existing approaches is to effectively adapt exploration
rates as reward distributions change over time. As a result, context-awareness becomes critical to
successfully manage exploration (Liu et al., 2024b).

Contribution. In this work, we have developed LNUCB-TA, which introduces a novel nonlinear
strategy through an adaptive k-NN that dynamically adapts based on reward characteristics and shifts,
effectively solving the time complexity issues commonly associated with nonlinear models. It also
presents an attention-based exploration factor to move beyond the constraints of existing exploration
rates. This model culminates in a unique synthesis of linear and nonlinear hybrid contextual MAB
algorithms, comprehensively addressing the need for adaptive strategies in reward estimation to
simultaneously capture long-term trends as well as local patterns across all arms. As shown in Table
1, LNUCB-TA incorporates a linear component for a global approximation of the reward function
and a unique nonlinear component for capturing local patterns. The proposed nonlinear component
employs a data driven (variance-guided), non-parametric criterion for k selection based on reward
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Table 1: Key attributes in our approach compared to existing MAB algorithms. ”Yes” indicates the
presence of the feature, ”No” indicates the absence of the feature, and ”N/A” indicates not applicable.

Algorithm Linear
Modeling

Local History
Modeling

Attention
Mechanism

k Selection Method

UCB No No No N/A
KL-UCB No No No N/A
k-NN UCB No Yes No Function optimization
k-NN KL-UCB No Yes No Function optimization
LinThompson Yes No No N/A
LinThompsonUCB Yes No No N/A
LinUCB Yes No No N/A
LNUCB-TA Yes Yes Yes Variance guided,

nonparametric

histories to reduce time complexity. Complementing this, the attention-based mechanism, inspired
by the global-and-local attention (GALA) concept (Linsley et al., 2018), dynamically adjusts the
exploration strategy by utilizing past interactions and rewards. This temporal attention approach
adaptively prioritizes arms based on their historical rewards and selection frequency, eliminating the
need for fine-tuning and precisely balancing exploration and exploitation in real-time.

Motivating examples. One application of the proposed hybrid model is in online advertisement
recommendation, aiming to maximize user engagement through demographics, browsing history,
and time-specific data (Zeng et al., 2016). The linear component captures broad trends, such as
higher click-through rates for fashion advertisements among users aged 18 to 25, while the adaptive
k-NN component refines this by recognizing local patterns. For instance, users within the 18 to
25 age group who frequently visit sports websites might prefer sports equipment advertisements.
Furthermore, the novel exploration mechanism dynamically balances exploring new advertisement
types and exploiting known preferences, thus optimizing real-time recommendations by leveraging
both global trends and individual user behaviors.

Another application is in the exploration of partially observed social networks to maximize node
discovery within a set query budget (Madhawa & Murata, 2019b), where our proposed hybrid
model proves beneficial. The linear model identifies nodes with high-degree centrality as valuable
targets based on their potential to connect to many others. The adaptive k-NN model enhances
this strategy by pinpointing densely connected sub-communities within these high-centrality nodes,
likely revealing new nodes when queried. Meanwhile, the attention mechanism dynamically shifts
the exploration and exploitation based on the real-time performance of each node, enhancing the
efficiency of network exploration by focusing on nodes that show promising connectivity trends while
still exploring lesser-known parts of the network.

Organization. The rest of the paper is structured as follows. Section 2 covers the rigorous
mathematical setup of the problem. Section 3 presents the LNUCB-TA algorithm. The theoretical
analysis of the algorithm is presented in Section 4. Section 5 provides the experimental results.
Conclusions are discussed in Section 6. Detailed proofs of the theoretical results, additional findings,
limitations, future research directions, and implementation guidelines are included in the Appendix.

2 HYBRID CONTEXTUAL MAB LEARNING

Problem definition. We consider a hybrid contextual MAB problem within a metric space (X ×
Z, ρ), where X ×Z represents the joint space of context features and reward history. Time is indexed
discretely as t = 1, 2, . . . , T , where T is the total number of time steps. Each context xt ∈ X at time
t corresponds to a set of possible actions, or ”arms,” indexed by a within the set A = {1, . . . , A},
where A is the total number of arms. The reward corresponding to each arm a for a given context
xt at time t is denoted as a random variable Y a

t , constrained within the interval [−1, 1]. The vector
Yt = (Y a

t )a∈A ∈ RA comprises the stochastic rewards for all arms at time t, and the random variable

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Y a
t is defined conditionally on the context and the history of previous rewards. Upon observation, the

realized reward for arm a is given by Ŷ a
t = oat (xt, zt) + ξat , where ξat is the noise term, capturing

stochastic errors not explained by the model predictions for arm a. Here, the expected reward for arm
a at time t is given by the function oat : X × Z → [−1, 1], defined as:

oat (x
a
t , z

a
t ) = E[Y a

t | Xt = xt, Zt = zt] = lat (x
a
t )+fa

k,t(x
a
t , z

a
t ) = µa

t ·xa
t +k-NNa

k,t(x
a
t , z

a
t ), (1)

where E denotes the expectation, and zat = {Ŷ a
s : s < t, a ∈ A} represents the observed historical

rewards for arm a up to time t with zt ∈ Z , and the feature vector Xt is drawn independently
and identically distributed (i.i.d.) from a fixed marginal distribution D over X . The linear model’s
prediction for arm a at the context xa

t , which represents the specific feature vector for arm a at time t,
is given by lat (x

a
t ) = µa

t · xa
t . The k-NN model’s estimation using k number of nearest neighbors for

each arm is based on the corresponding historical observed rewards for the selected neighbors up to
time t. The value of kat is determined dynamically based on the variance of the reward history for
each arm at time step t, ensuring that the model adapts to changes in the distribution of rewards over
time. The k-NN estimation is defined as fa

k,t(x
a
t , z

a
t ) =

1
ka
t

∑
s∈Nka

t
(xa

t )
Ŷ a
s , where Ŷ a

s represents

the observed reward for arm a at time step s (with s < t). The set of neighbors Nka
t
(xa

t ) denotes
the indices of the kat -nearest neighbors to xa

t , selected based on the Euclidean distance within the
contextual feature space. Thus, fa

k,t uses only the observed rewards from zat for neighbors that are
closest in terms of context similarity. Furthermore, for any context xa

t ∈ X and a radius r > 0,
BALLa

t (x
a
t , r) denotes the open metric ball centered at xa

t with radius r for arm a. This metric ball
is pivotal for analyzing distances and neighborhood relations within the joint space X × Z .

Decision policy. The decision-making process within the hybrid contextual MAB framework is
guided by a policy π = {πt}t∈[T ], where each policy function πt : X × Z → [A] maps the observed
context and reward history to an arm. This mapping is based on integration of linear estimation and
nonlinear estimation utilizing the historical data Ht−1 = {(Xs, πs, Y

πs
s )}s∈[t−1], which consists of

previously observed contexts, the arms chosen, and the corresponding rewards, respectively.

Exploration-exploitation trade-off. In our problem, the exploration-exploitation trade-off is
managed through a dynamic, attention-based exploration factor. This approach adapts the exploration
parameter α in real-time based on both global performance (g) and specific reward patterns of
individual arms (na

t ), ensuring a more balanced and effective strategy. The exploration parameter α
is updated dynamically according to the formula with weight factor κ as:

αNa
t
=

α0

Na
t + 1

· (κg + (1− κ)na
t ) , (2)

where na
t = 1

Na
t

∑
Ŷ a
s ∈za

t
Ŷ a
s = 1

Na
t

∑t−1
s=1 Ŷ

a
s represents the average reward history of arm a up to

time t (reward patterns of an individual arm), with Na
t = |Ŷ a

1:t−1| as the number of pulls of arm a up
to time t. If Na

t = 0, na
t is set to zero.

Objective. The primary aim is to maximize the cumulative reward over T time steps, represented
by
∑

t∈[T ] Y
πt
t , and to minimize the regret relative to an oracle policy π∗ = {π∗

t }t∈[T ], where
π∗
t = argmaxa∈[A] o

a
t (xt, zt). In LNUCB-TA, the optimal decision (πa

t )
∗ through the optimal

context (xa
t )

∗ for each arm would be the decision that maximizes the expected combined reward
based on the linear model predictions and the adjustments made by the k-NN model, using the best
available historical data up to time step t defined as:

(xa
t )

∗ ∈ argmax
x∈D

(
(µa)∗ · (xa

t ) + fa
k,t(x

a
t , z

a
t )
)
, (3)

where (πa
t )

∗ refers to the best reward obtained for arm a based on its history over t steps, which leads
to the theoretical optimal action π∗

t , and D represents the decision space. Although we compute an
optimal action for each arm, the model ultimately selects only one arm to play per time step, choosing
the one with the highest expected reward, (µa)∗ is the best estimate of the parameter vector across
arm a, assuming an oracle setting, or the true underlying model known retrospectively.
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Regret analysis. The regret, RT (π), is a measure of the performance difference and is defined as:

RT (π) =
∑
t∈[T ]

(Y
π∗
t

t − Y πt
t ). (4)

In our proposed model, for a single arm a, the regret at time t can be defined as:

regretat = ∆a
t (g

a
t ((x

a
t )

∗, (zat )
∗)− oat (x

a
t , z

a
t )) , (5)

where gat ((x
a
t )

∗, (zat )
∗) is the optimal expected reward for arm a at the optimal context (xa

t )
∗, which

is the feature vector that would yield the highest reward for arm a, leading to optimal (zat )
∗, and ∆a

t
is the indicator function that equals 1 if arm a is selected at time t and 0 otherwise. The function
oat (x

a
t , z

a
t ) represents the expected reward under the decision made by the policy πa

t at context xa
t

with reward history of zat . As a result, the total cumulative regret for LNUCB-TA over a time horizon
T across all arms is calculated as:

RT =

A∑
a=1

T∑
t=0

∆a
t (g

a ((xa
t )

∗, (zat )
∗)− oat (x

a
t , z

a
t ))

=

A∑
a=1

T∑
t=0

∆a
t

(
lat ((x

a
t )

∗) + fa
k,t ((x

a
t )

∗, (zat )
∗)−

(
lat (x

a
t ) + fa

k,t (x
a
t , z

a
t )
))

=

A∑
a=1

T∑
t=0

∆a
t

(
(µa

t )
∗ · (xa

t )
∗ + k-NNa

k,t ((x
a
t )

∗, (zat )
∗)−

(
µa
t · xa

t + k-NNa
k,t (x

a
t , z

a
t )
))

.

(6)

3 METHODOLOGY

3.1 OVERALL CONCEPT

Intuition. We propose the LNUCB-TA model, which introduces two significant innovations to
previously proposed contextual UCB algorithms. Both of these advancements enhance the adaptability
and accuracy in dynamic environments. The proposed method, shown in Algorithm 1, is initiated
using the structural framework of the LinUCB algorithm, which employs a linear model to estimate
the rewards for each arm a based on contextual features indicated as lat = (xa

t )
⊤
µa
t . This basic

linear framework is then augmented using a nonlinear component through the use of the k-Nearest
Neighbors method. This enhancement integrates insights from the history of both the reward and
context, and effectively captures the recent profile of the features (Algorithm 2).

In addition to refining reward estimations, our approach introduces an attention-based exploration
factor, αNa

t
, which tunes the exploration-exploitation balance dynamically (Algorithm 3). This

provides the dynamic upper confidence bound as:

UCBa
t = (αNa

t
) ·
√
(xa

t )
⊤(Σa

t )
−1xa

t (7)

Algorithm 1 LNUCB-TA

1: Input: λ, β, α0, κ ▷ Model parameters
2: for t = 0, 1, 2, . . . do
3: for each arm a in A do
4: Compute lat = (xa

t )
⊤µa

t ▷ Linear estimation
5: Compute k-NN score (reward adjustment) ▷ Nonlinear estimation
6: Compute UCBa

t based on attention-based exploration rate ▷ Dynamic UCB
7: end for
8: Select arm at = argmaxa∈A (lat + k-NN adjustment + UCBa

t )
9: Update BALLa

t+1 and model parameters ▷ Uncertainty region
10: end for

5
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Method. LNUCB-TA model, shown in Algorithm 1, not only maintains the structure of the original
LinUCB framework but also seamlessly integrates adaptive nonlinear adjustments and real-time
refinements in confidence bounds and exploration rates. These enhance the model’s adaptability and
accuracy in complex environments. Through this careful augmentation, we extend the LinUCB’s
capability while preserving its theoretical underpinnings, ensuring that our contributions are both
innovative and robustly grounded in established methodologies. In the following section, the two
novel components are discussed in more detail.

3.2 NONLINEAR ESTIMATION USING FEATURE AND REWARD HISTORY

Intuition. The adaptive k-NN ensures that the model adjusts its reliance on the reward history of
each arm based on the stability of the rewards. It seamlessly integrates more insights from k-NN
as additional data becomes available and defaults to a more conservative approach when data is
sparse. This unique method effectively captures local patterns with improved time efficiency, without
the need for extensive function optimization, thereby enhancing adaptability and responsiveness in
dynamic environments.

Method. The adaptive k-NN strategy employed in the model, detailed in Algorithm 2, takes both
the reward history and the feature vector of each arm as inputs. This method is applied conditionally,
specifically when the length of the feature vector xa

t (where xa
t represents the contextual features of

arm a at time t) is greater than or equal to the number of neighbors kat (where kat is the dynamically
determined number of nearest neighbors for arm a at time t). This ensures sufficient historical data is
available for accurate neighbor selection and reward estimation.

Algorithm 2 Adaptive k-NN integration for LNUCB-TA

1: Input: Decision space D, Historical data H, θmin and θmax to determine the number of neighbors
2: Observe context Xt, Reward history Zt

3: for each arm a in A at time t do
4: Compute variance of rewards Var(zat ) ▷ Reward variance
5: kat = θmin + (θmax − θmin)× Var(zat )
6: if len(xa

t ) ≥ kat then
7: fa

k,t(x
a
t , z

a
t ) = k-NNa

k,t(x
a
t , z

a
t ) ▷ k-NN-score

8: Estimated reward = lat (x
a
t ) + fa

k,t(x
a
t , z

a
t ) ▷ Reward estimation

9: Model update = Estimated reward + UCBa
t

10: Select arm a with the highest updated model prediction
11: end if
12: end for

In Algorithm 2, the variance in rewards for each arm at time t, Var(zat ), drives the adaptive selection
of k, which influences the depth of historical data utilized for the k-NN based prediction. The k
value dynamically adjusts between predefined minimum (θmin) and maximum (θmax) thresholds. The
selection of θmin and θmax is determined through hyper-parameter tuning as they define the range for
k, based on the observed variability of rewards, where

• Low Variance: Indicates stable reward patterns, suggesting that fewer historical data points
are sufficient for accurate predictions. This stability allows the model to maintain a smaller
k, closer to the minimum threshold, optimizing computational efficiency while maintaining
predictive accuracy.

• High Variance: Reflects irregular or unpredictable reward patterns, necessitating a larger k
to incorporate a broader historical context. This expanded view helps to mitigate the impact
of variability, enhancing the robustness of reward predictions.

Furthermore, unlike existing nonlinear approaches that use a static k or involve searching over the
preceding time steps k ∈ [1, t− 1] (Park et al., 2014; Reeve et al., 2018), our proposed model utilizes
a data driven approach for selecting k. The algorithm achieves a time complexity of O(t), which can
reach O(1) per update in the optimal case, significantly decreasing time complexity compared to the
function optimization techniques used in k-NN UCB and k-NN KL-UCB.

6
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3.3 TEMPORAL ATTENTION

Intuition. Our model replaces static exploration parameters with an attention-based mechanism,
which allows for dynamic adjustment of exploration efforts based on time-dependent changes
(temporal) and distinct reward patterns across different arms or contexts (spatial). The proposed
method analyzes global performance across all arms, specific reward patterns of individual arms,
and the frequency of arm selections, dynamically adjusting α for each arm at each time step. This
innovation leads to consistent results, independent of the initial choice of the exploration rate.

Algorithm 3 Temporal attention-based exploration rate for LNUCB-TA

1: Input: α0, Na
t (number of times arm a played up to t), g as global average of rewards, na

t as
mean average of each arm, κ as weight factor

2: for each arm a in A at time t do
3: na

t = 1
Na

t

∑
Ŷ a
s ∈za

t
Ŷ a
s ▷ Local attention for arm a

4: αNa
t
=

α0

(Na
t + 1)

· (κg + (1− κ)na
t ) ▷ Attention based exploration factor

5: Update UCBa
t

6: end for

Method. As shown in Algorithm 3, the attention-based αNa
t

dynamically decreases as the frequency
of arm selection increases, signifying a shift from exploration to exploitation, which reflects a
reduction in uncertainty about the performance of each arm. Parallelly, increase in local reward for
specific arms further tailor the exploration factor, enabling focused investigation of arms showing
promising trends. This mechanism adeptly balances exploration and exploitation by adapting to
both overall performance and individual arm dynamics, thus providing significantly more consistent
results where traditional MAB models falter.

4 THEORETICAL ANALYSIS

Theorem 1 (Regret bound). Suppose the noise |ξat | is bounded by σ (|ξat | ≤ σ), the true parameter
vector (µa)∗ has a norm bounded by W (∥(µa)∗∥ ≤ W ), and the context vectors x are bounded such
that ∥x∥ ≤ B for all x ∈ D, and let λ = σ2

W 2 . Then βa
t can be defined as:

βa
t := σ2

(
2 + 4d log

(
1 +

TB2W 2

d
+

∑A
a=1 T

a(ua
t,k)

2

d

)
+ 8 log

(
4

δ

))
, (8)

with probability greater than 1− δ, for all t ≥ 0,

RT ≤ bσ

√√√√T

(
d log

(
1 +

TB2W 2

dσ2
+

∑A
a=1 T

a(ua
t,k)

2

dσ2

)
+ log

(
4

δ

))
. (9)

where σ2 represents the total variance accounting for both the linear component and the additional
variance from the k-NN model, δ is the probability with which the confidence bounds are held, b is
an absolute constant, and

∑A
a=1 T

a(ua
t,k)

2 represents the sum of the squared uncertainties for each
arm a, capturing the influence of k-NN’s neighborhood-based uncertainty for each specific arm. This
sum is scaled by the number of times each arm a is played T a, where

∑A
a=1 T

a ≤ T as not all arms
may utilize the k-NN adjustment at every time step. This sum represents an upper bound, capturing
the maximum possible contribution from the k-NN component. Given these conditions, the simplified
regret bound for LNUCB-TA gives RT = O(

√
dT log T ), which by absorbing logarithmic factors

into Õ, we can state
RT = Õ(

√
dT ). (10)

This bound demonstrates that LNUCB-TA achieves sub-linear regret, highlighting its diminishing
regret growth rate over time, contrasting with linear regret, where regret scales linearly with time
steps. To prove this Theorem, we need to establish two critical propositions as outlined below:
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Proposition 1 (Uniform confidence bound). Let δ > 0. We have

Pr (∀t, (µa)∗ ∈ BALLa
t ) ≥ 1− δ. (11)

The second key proposition in analyzing LNUCB-TA involves demonstrating that, provided the
aforementioned high-probability event occurs, the growth of the regret can be effectively controlled.
Let us define the instantaneous regret as

regretat = (µa)∗ · (xa
t )

∗ + k-NNa
k,t ((x

a
t )

∗, (zat )
∗)−

(
(µa)∗ · xa

t + k-NNa
k,t(x

a
t , z

a
t )
)
. (12)

The following proposition provides an upper bound on the sum of the squares of the instantaneous
regret.
Proposition 2 (Sum of squares regret bound). Suppose ∥x∥ ≤ B for all x ∈ D, as we can suppose
(µa)∗ ∈ BALLa

t for all t. Then, the sum of the squares of instantaneous regret for each arm a over
time is bounded as

T−1∑
t=0

(regretat )
2 ≤ 8βa

t d log

(
1 +

TB2

dλ
+

∑A
a=1 T

a(ua
t,k)

2

dλ

)
. (13)

The cumulative squared regret bound is given by

RT =

A∑
a=1

T−1∑
t=0

regretat ≤

√√√√T

T−1∑
t=0

(regretat )2

≤

√√√√8Tβa
t d log

(
1 +

TB2

dλ
+

∑A
a=1 T

a(ua
t,k)

2

dλ

)
.

(14)

Theorem 2 (Temporal exploration-exploitation balance). Given a set of arms {1, 2, . . . , A} in a
MAB problem, where each arm a has a set of observed rewards denoted by Yt = (Y a

t )a∈A in RA,
and Na

t is the number of times arm a has been selected up to time t. An attention mechanism can be
designed, which dynamically updates the exploration parameter α according to the formula

αNa
t
=

α0

Na
t + 1

· (κg + (1− κ)na
t ) , (15)

where g represents the global attention derived from the average rewards across all arms, na
t

represents local attention derived from the average reward of arm a at time t, and κ is a weighting
factor that balances global and local attention components.

5 RESULTS

We have evaluated LNUCB-TA on a benchmark news recommendation dataset with 10,000 entries,
each with 102 features. The first feature indicates one of ten news articles, the second represents user
engagement (click/no click), and the remaining features provide contextual information (Li et al.,
2010; 2011). Both the estimated reward and its variability serve as critical metrics in our analysis.
Additional validations using other datasets and a broader comparison of metrics are provided in the
Appendix B, offering a comprehensive view of the model’s applicability across different scenarios.

Figure 1 provides a comparative analysis over 800 steps, showcasing cumulative and mean rewards
of LNUCB-TA against 11 state-of-the-art (SOTA) MAB models, including enhanced Epsilon Greedy,
BetaThompson, and Lin Thompson models with our adaptive k-NN method and a temporal attention
mechanism. Each model was tested under six exploration settings to determine optimal performance,
ensuring a rigorous comparison. The mean reward graph in Figure 1(b) provides further insights into
the efficiency of the models at each step. The LNUCB-TA model has demonstrated rapid convergence
to higher mean rewards, maintaining leading performance throughout the trials. Notably, while models
such as k-NN KL-UCB and LinUCB show competitive performance initially, they do not sustain
high rewards as consistently as LNUCB-TA. Additionally, the enhancements introduced through
Algorithm 2 and an attention mechanism to traditional models have also resulted in performance
improvements (please refer to Appendix B). However, these improvements do not reach the level
achieved by LNUCB-TA.

8
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Figure 1: (a) cumulative rewards over 800 steps for LNUCB-TA and other SOTA models, demonstrat-
ing LNUCB-TA’s superior performance. (b) mean rewards per time step, highlighting LNUCB-TA’s
rapid convergence and consistent high performance.

Table 2: Comparative analysis of LNUCB-TA against conventional linear, nonlinear, and vanilla
combination model. It contrasts LNUCB-TA’s superior cumulative and mean rewards with those of
solely linear (LinUCB), non-linear (k-NN UCB), and basic linear-non-linear combinations ((Lin+k-
NN)-UCB) across various exploration rates, demonstrating enhanced stability and effectiveness in
dynamic decision-making environments.

Model Exploration
Rate (α/ρ)

Cumulative
Reward

Mean
Reward

Run Time
(s)

Std Dev of
Mean

Reward

(Lin+k-NN)-UCB 0.1 662 0.83 715.02 0.35
(Lin+k-NN)-UCB 1 617 0.77 733.72 0.35
(Lin+k-NN)-UCB 10 160 0.20 758.82 0.35
LinUCB 0.1 567 0.71 8.09 0.30
LinUCB 1 424 0.53 8.73 0.30
LinUCB 10 98 0.12 5.97 0.30
k-NN UCB 0.1 195 0.24 459.71 0.05
k-NN UCB 1 192 0.24 434.08 0.05
k-NN UCB 10 260 0.33 457.07 0.05
LNUCB-TA 0.1 741 0.93 324.5 0.01
LNUCB-TA 1 752 0.94 293.83 0.01
LNUCB-TA 10 752 0.94 297.28 0.01

Complementing Figure 1, Table 2 contrasts the performance of LNUCB-TA with solely linear models
(LinUCB), solely nonlinear models (k-NN UCB), and a basic linear-nonlinear combination ((Lin+k-
NN)-UCB) across various exploration rates. This table demonstrates that at lower exploration rates
(0.1 and 1), linear models outperform nonlinear models, whereas at a higher exploration rate (10),
nonlinear models excel. The basic combination generally surpasses both linear and nonlinear models
at exploration rates of 0.1 and 1 but performs worse than nonlinear models at an exploration rate
of 10. However, our hybrid model, LNUCB-TA, consistently outperforms all these models at every
exploration rate, demonstrating superior reward accumulation and greater operational efficiency. It
also requires less time compared to the vanilla combinations, highlighting the refined efficacy and
efficiency of LNUCB-TA in dynamically adjusting to complex environments.

9
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Ablation study. We have assessed the impact of integrating our novel components through various
model variants, as shown in Figure 2. Model a represents the base LinUCB model. Model b, which
incorporates the temporal attention mechanism, significantly enhances reward consistency, reducing
the standard deviation from 0.32 (Model a) to 0.02. This indicates that dynamic adjustment of the
exploration parameter, informed by historical data relevance, effectively stabilizes reward outcomes.
Model c, which implements the adaptive k-NN approach, increases average mean rewards from 0.37
to 0.62 by optimizing the number of neighbors based on observed reward variance, capturing more
nuanced patterns and improving prediction accuracy. While Model b ensures robustness against
environmental fluctuations, Model c, despite its higher average reward, exhibits greater variability.
Model d (LNUCB-TA), integrating both temporal attention and adaptive k-NN, achieves the highest
average mean reward (0.90) and median reward (0.91), with the greatest consistency among all
models tested. This demonstrates that combining these enhancements effectively balances exploration
and exploitation, setting a new standard for adaptability and precision in dynamic MAB environments.

Figure 2: Impact of integrating the novel components. Model a is the base LinUCB model. Model
b incorporates the temporal attention mechanism, significantly enhancing consistency. Model c
implements the adaptive k-NN approach, increasing average mean rewards. Model d (LNUCB-TA)
integrates both temporal attention and adaptive k-NN, achieving the highest average and median
rewards with the greatest consistency.

6 CONCLUSION

In this paper, we address a hybrid contextual MAB problem within the joint space of context features
and reward history by introducing a distinctive synthesis of linear and nonlinear algorithms, named
LNUCB-TA, which features an innovative nonlinear estimation along with an attention-based explo-
ration mechanism. Our proposed nonlinear component, adaptive k-NN, enhances reward predictions
by continuously adapting to changes in reward history and feature vectors. The temporal attention
mechanism further refines this process by dynamically balancing exploration and exploitation, ad-
justing exploration factors in real-time based on data variations. These enhancements have shown
the potential to improve performance of different MAB model regardless of the underlying model,
providing a robust framework for complex decision-making tasks. We also prove that the regret of
LNUCB-TA is optimal up to RT = O(

√
dT log(T )), demonstrating a sub-linear regret.

10
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Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends® in Machine Learning, 5(1):1–122, 2012.

Emil Carlsson, Devdatt Dubhashi, and Fredrik D Johansson. Thompson sampling for bandits with
clustered arms. arXiv preprint arXiv:2109.01656, 2021.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff
functions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pp. 208–214. JMLR Workshop and Conference Proceedings, 2011.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zdravko Cvetkovski. Inequalities: theorems, techniques and selected problems. Springer Science &
Business Media, 2012.
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Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

John M Lee. Riemannian manifolds: an introduction to curvature, volume 176. Springer Science &
Business Media, 2006.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference on
World wide web, pp. 661–670, 2010.

Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. Unbiased offline evaluation of contextual-
bandit-based news article recommendation algorithms. In Proceedings of the fourth ACM interna-
tional conference on Web search and data mining, pp. 297–306, 2011.

Drew Linsley, Dan Shiebler, Sven Eberhardt, and Thomas Serre. Learning what and where to attend.
arXiv preprint arXiv:1805.08819, 2018.

Jinyi Liu, Zhi Wang, Yan Zheng, Jianye Hao, Chenjia Bai, Junjie Ye, Zhen Wang, Haiyin Piao,
and Yang Sun. Ovd-explorer: Optimism should not be the sole pursuit of exploration in noisy
environments. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
13954–13962, 2024a.

Xutong Liu, Jinhang Zuo, Junkai Wang, Zhiyong Wang, Yuedong Xu, and John CS Lui. Learning
context-aware probabilistic maximum coverage bandits: A variance-adaptive approach. In IEEE
INFOCOM 2024-IEEE Conference on Computer Communications, pp. 2189–2198. IEEE, 2024b.
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Amir Sani, Alessandro Lazaric, and Rémi Munos. Risk-aversion in multi-armed bandits. Advances
in neural information processing systems, 25, 2012.

Eric M Schwartz, Eric T Bradlow, and Peter S Fader. Customer acquisition via display advertising
using multi-armed bandit experiments. Marketing Science, 36(4):500–522, 2017.

Elham Shadkam. Parameter setting of meta-heuristic algorithms: a new hybrid method based on dea
and rsm. Environmental Science and Pollution Research, 29(15):22404–22426, 2022.

Weiwei Shen, Jun Wang, Yu-Gang Jiang, and Hongyuan Zha. Portfolio choices with orthogonal
bandit learning. In Twenty-fourth international joint conference on artificial intelligence, 2015.

Jack Sherman and Winifred J Morrison. Adjustment of an inverse matrix corresponding to a change
in one element of a given matrix. The Annals of Mathematical Statistics, 21(1):124–127, 1950.

Qicai Shi, Feng Xiao, Douglas Pickard, Inga Chen, and Liang Chen. Deep neural network with linucb:
A contextual bandit approach for personalized recommendation. In Companion Proceedings of the
ACM Web Conference 2023, pp. 778–782, 2023.

Gilbert Strang. Introduction to linear algebra. SIAM, 2022.

Ryan Turner, David Eriksson, Michael McCourt, Juha Kiili, Eero Laaksonen, Zhen Xu, and Isabelle
Guyon. Bayesian optimization is superior to random search for machine learning hyperparameter
tuning: Analysis of the black-box optimization challenge 2020. In NeurIPS 2020 Competition and
Demonstration Track, pp. 3–26. PMLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Sofı́a S Villar, Jack Bowden, and James Wason. Multi-armed bandit models for the optimal design
of clinical trials: benefits and challenges. Statistical science: a review journal of the Institute of
Mathematical Statistics, 30(2):199, 2015.

Chunqiu Zeng, Qing Wang, Shekoofeh Mokhtari, and Tao Li. Online context-aware recommendation
with time varying multi-armed bandit. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 2025–2034, 2016.

Xiaojin Zhang. Automatic ensemble learning for online influence maximization. arXiv preprint
arXiv:1911.10728, 2019.

Qian Zhou, XiaoFang Zhang, Jin Xu, and Bin Liang. Large-scale bandit approaches for recommender
systems. In Neural Information Processing: 24th International Conference, ICONIP 2017,
Guangzhou, China, November 14-18, 2017, Proceedings, Part I 24, pp. 811–821. Springer, 2017.

Jinbiao Zhu, Dongshu Wang, and Jikai Si. Flexible behavioral decision making of mobile robot
in dynamic environment. IEEE Transactions on Cognitive and Developmental Systems, 15(1):
134–149, 2022.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PROOFS

Proof sketch. This section provides a structured and detailed exposition of the proofs for Theorems
1 and 2. For Theorem 1, the proof is comprehensive and requires the establishment of the two critical
propositions 1 and 2. We begin with an overview of the model’s parameters and introduce definitions
crucial for understanding the proofs. Next, we list the key assumptions that underpin the theorem
and its supporting propositions. Following this, we detail and prove the supporting lemmas that
provide the necessary groundwork for the propositions. Using these lemmas, we rigorously prove
each proposition, which directly supports the final proof of Theorem 1. Finally, after proving the
sub-linear regret bound (Theorem 1), we prove Theorem 2 by relying on fundamental principles of
the GALA concept.

Model overview. As discussed in Section 3 of the paper, we have a hybrid contextual MAB problem,
where the expected reward for each arm a at context xt is modeled through a linear and a nonlinear
component defined as equation (1). This formulation seeks to effectively combine linear insights
with the local history learned from the k-NN approach, adjusting for historical reward data zt, which
comprises past rewards related to arm a according to Algorithm 2. Additionally, the regret associated
with each arm a at time t quantifies the difference between the reward that could have been achieved
by selecting the optimal action and the reward actually received by equation (5). As a result, total
regret is calculated as equation (6). This measure of regret reflects the performance difference and
highlights the effectiveness of the decision policy in approximating the optimal action choices over
time.
Corollary 1 (Uncertainty region). The essence of LNUCB-TA revolves around the concept of

”optimism in the face of uncertainty” (Liu et al., 2024a; Kamiura & Sano, 2017; Lykouris et al., 2021;
Li et al., 2010; Russo & Van Roy, 2013). Following (Chu et al., 2011, Section 8.3), the center of an
uncertainty region, BALLa

t is µ̂a
t , which is the solution of the following ridge regression problem:

µ̂a
t = argmin

θ

∥∥(Xa
t )

T θ − (Y a
t − fa

k,t(x
a
t , z

a
t ))
∥∥2
2
+ λ∥θ∥22

= ((Xa
t )

TXa
t + λI)−1(Xa

t )
T (Y a

t − fa
k,t(x

a
t , z

a
t ))

= (Σa
t )

−1
t−1∑
t=0

Xa
t (Y

a
t − fa

k,t(x
a
t , z

a
t )),

(16)

where θ is the parameter vector being optimized, λ is the regularization parameter, and Σa
t =

(Xa
t )

TXa
t + λI is the covariance matrix (Lattimore & Szepesvári, 2020, equation 20.1) updated to

time t for arm a, reflecting the context feature information and the regularization term.
Definition 1. For LNUCB-TA, the shape of the region BALLa

t following corollary 1 is defined
through the feature covariance Σa

t . Precisely, the uncertainty region, or confidence ball, is defined as:

BALLa
t = {µ | (µ− µ̂a

t )
TΣa

t (µ− µ̂a
t ) ≤ βa

t }. (17)

Corollary 2 (Uncertainty of nonlinear estimation). Following (Reeve et al., 2018, Section 3.1), for
each context xa

t in X and each arm a, at a given time step t ∈ [n] and with access to the reward history
up to t, represented as Zt, we define an enumeration of indices from [t− 1] as {τat,q(xa

t )}q∈[t−1] for
each arm a as

ρ((xa
t , z

a
t ), (Xτa

t,q(x
a
t )
, Zτa

t,q(x
a
t )
)) ≤ ρ((xa

t , z
a
t ), (Xτa

t,q+1(x
a
t )
, Zτa

t,q+1(x
a
t )
)). (18)

This enumeration is ordered such that for each q ≤ t − 2, where q is a numeric N, Xτa
t,q(x

a
t )

and
Zτa

t,q(x
a
t )

are the historical contexts and rewards associated with arm a at index τat,q(x
a
t ). Given

k ∈ [t− 1], Γa
t,k(x

a
t ) is defined as

Γa
t,k(x

a
t ) = {τat,q(xa

t ) : q ∈ [k]} ⊆ [t− 1]. (19)

This set includes indices of the k closest historical data points to the current feature vector xa
t for

arm a, selected based on their proximity in the combined feature and reward space as measured by ρ.
The maximum distance or uncertainty measure for arm a at time t, ua

t,k(x
a
t ), satisfies

ua
t,k = max{ρ((xa

t , z
a
t ), (Xs, Z

a
s )) : s ∈ Γa

t,k(x
a
t )} = ρ((xa

t , z
a
t ), (Xτa

t,k(x
a
t )
, Zτa

t,k(x
a
t )
)). (20)
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This measure assesses the greatest distance between the current feature vector and reward data
(xa

t , z
a
t ) and those of the historical data within the nearest neighbors.

Corollary 3 (Arm-specific regular sets and measures). Using (Reeve et al., 2018, Definition 1), we
can state that in the extended metric space (X × Z, ρ), where X × Z represents the joint space of
context features and reward history for arm a, and ρ is the metric, a subset A ⊂ X ×Z is a (c0, r

a
0)

regular set if for all (xa, za) ∈ A and all r ∈ (0, ra0),

va(A ∩ BALLa((xa, za); r)) ≥ c0 · va(BALLa((xa, za); r)). (21)

A measure νa with supp(νa) ⊂ X × Z is a (c0, r
a
0 , ν

a
min, ν

a
max) regular measure with respect to va if

supp(νa) is a (c0, r
a
0)-regular set with respect to va and νa is absolutely continuous with respect to

va with Radon-Nikodym derivative (Folland, 1999, Theorem 3.8) as

va(xa, za) =
dνa(xa, za)

dva(xa, za)
, (22)

ensuring
νamin ≤ va(xa, za) ≤ νamax. (23)

Assumption 1 (Arm-specific dimension assumption). Applying (Rigollet & Zeevi, 2010, Section
2.2), we can assume that for each arm a ∈ {1, . . . , A}, there exist constants Cd, d, and Ra

X > 0 such
that for all (xa, za) ∈ supp(νa) and r ∈ (0, Ra

X), it holds

νa(BALLa((xa, za); r)) ≥ Cd · rd. (24)

Here, r represents the radius of the ball in the joint space of features and reward history for arm
a, indicating the scale of the local neighborhood around (xa, za) considered for the measure. The
BALLa((xa, za); r) highlights the dependency on both context and past rewards within this radius.
To prove this assumption, we shall follow a corollary followed from (Eftekhari & Wakin, 2015,
Lemma 12).
Corollary 4 (Arm-specific dimension). For each arm a, let M ⊆ RD be a C∞-smooth compact
sub-manifold of uniform dimension d (Lee, 2006) with a defined reach τa (Federer, 1959), quantified
based on (Niyogi et al., 2008) as

τa := sup

{
r > 0 : ∀j ∈ RD, inf

q∈M
{∥j − q∥2} < r =⇒ ∃! p ∈ M, ∥j − p∥2 = inf

q∈M
{∥j − q∥2}

}
.

(25)
This reach reflects the maximum radius such that for every point j within this distance from the
manifold M , there is a nearest point on the manifold, ensuring stable local geometric properties,
supported by (Boissonnat et al., 2018, Lemma 7.2). If νa is a (c0, R

a
0 , ν

a
min, ν

a
max) regular measure

with respect to VM , then νa satisfies assumption 1 with constants Ra
X = min{τa/4, Ra

0}, d, and
Cd = νamin · c0 · vad · 2−d, where vad is the Lebesgue measure of the unit ball in Rd.

Proof. For each arm a, consider any point (xa, za) ∈ supp(νa) and radius r ∈ (0, Ra
X). Applying

the (Niyogi et al., 2008, Lemma 5.3), for arm a, the volume within the BALLr((x
a, za)) can be

estimated by

VM (BALLr((x
a, za))) ≥

(
1− r2

4(τa)2

) d
2

· vd · rd. (26)

This equation reflects the geometrical properties of the manifold within a local neighborhood around
(xa, za), given the manifold’s reach and dimensionality.

Moreover, since νa is (c0, Ra
0 , ν

a
min, ν

a
max)-regular using corollary 3, it holds

νa(BALLr((x
a, za))) ≥ νamin · c0 · VM (BALLr((x

a, za))) (27)

Combining this with the volume estimation provided by corollary 4, we get

νa(BALLr((x
a, za))) ≥ νamin · c0 ·

(
1− r2

4(τa)2

) d
2

· vd · rd, (28)

νa(BALLr((x
a, za))) ≥ νamin · c0 · vd · 2−d · rd, (29)

.
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This calculation demonstrates that the measure νa within the ball BALLr((x
a, za)) exceeds a

lower bound that scales with rd, the dimensionally-scaled radius of influence. This establishes the
local density and regularity of νa around each point in its support, confirming the validity of the
arm-specific dimension assumption for the manifold M .

Assumption 2 (Bounded rewards assumption). For all time steps t ∈ [n] and for each arm a ∈ [A],
the rewards Y a

t observed after integrating both linear and k-Nearest Neighbors (k-NN) adjustments
are bounded within an interval assumed as

−1 ≤ Y a
t ≤ 1. (30)

Assumption 3 (Confidence in parameter estimation). For all time steps t ∈ [n] and for each arm
a ∈ [A], we shall assume that the true parameter vector µ∗ resides within a confidence ball centered
around the estimated parameter µa

t . This confidence ball, denoted as BALL(t,a), is defined based on
the estimation error and the uncertainty in the measurements up to time t, incorporating adjustments
for both linear and nonlinear adjustments.

Lemma 1 (Width of confidence Ball for LNUCB-TA). Let x ∈ D. As µ belongs to BALLa
t for each

arm a and x ∈ D according to assumption 3, then

| (µ− µ̂a
t )

T
x| ≤

√
βa
t x

T (Σa
t )

−1x. (31)

This lemma follows (Agarwal et al., 2019, Lemma 6.8).

Proof. Starting with the absolute value of the dot product of (µ− µ̂a
t ) and x, we get

| (µ− µ̂a
t )

T
x|. (32)

By utilizing the Cauchy-Schwarz inequality (Strang, 2022, Section 1.2), which states that for all
vectors u and v in an inner product space, we have

|⟨u, v⟩|2 ≤ ⟨u, u⟩ · ⟨v, v⟩, (33)

where ⟨·, ·⟩ is the inner product. Every inner product gives rise to a Euclidean l2 norm, called the
canonical or induced norm, where the norm of a vector u is defined by

∥u∥ :=
√
⟨u, u⟩. (34)

By taking the square root of both sides of equation(34), the Cauchy-Schwarz inequality can be written
in terms of the norm

|⟨u, v⟩| ≤ ∥u∥∥v∥. (35)

Moreover, the two sides are equal if and only if u and v are linearly dependent. Applying this
inequality to u = (Σa

t )
1/2(µ− µ̂a

t ) and v = (Σa
t )

−1/2xa
t , we get

|(µ− µ̂a
t )

Tx| = |((Σa
t )

1/2(µ− µ̂a
t ))

T (Σa
t )

−1/2x| ≤ ∥(Σa
t )

1/2(µ− µ̂t,a)∥ · ∥(Σa
t )

−1/2x∥

=
√
(µ− µ̂a

t )
TΣa

t (µ− µ̂a
t ) ·

√
xT (Σa

t )
−1x.

(36)

Since µ is assumed to be within the confidence set BALLa
t as assumption 3, we have

(µ− µ̂a
t )

TΣa
t (µ− µ̂a

t ) ≤ βa
t , (37)

plugging this back into equation (36), we can obtain

|(µ− µ̂a
t )

Tx| ≤
√
βa
t ·
√
xT (Σa

t )
−1x =

√
βa
t x

T (Σa
t )

−1x. (38)

Lemma 2 (Normalized width for LNUCB-TA)). Fix t ≤ T . As (µa)∗ ∈ BALLa
t based on assumption

3, we define

wa
t =

√
(xa

t )
T (Σa

t )
−1xa

t , (39)

which is the ”normalized width” at time t for arm a in the direction of the chosen decision, then

regretat ≤ 2min
(√

βa
t w

a
t , 1
)
≤ 2
√
βa
T min(wa

t , 1). (40)
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This lemma is inspired by the theoretical analysis of nonlinear bandits presented in (Dong et al., 2021),
where the sample complexity for finding an approximate local maximum is discussed, leveraging
the model complexity rather than the action dimension. Additionally, the approach to handling
confidence bounds in linear bandits (Agrawal & Goyal, 2013; Li et al., 2010), provides a foundational
understanding for the linear components of this work.

Proof. Let µ̃ ∈ BALLa
t , wedefine instantaneous regret as

regretat = (µa)T (xa)
∗ − (µa)Txa

t ≤ (µ̃− (µa)∗)⊤xa
t

= (µ̃− µ̂a
t )

⊤xa
t + (µ̂a

t − (µa)∗)⊤xa
t .

(41)

For the sum of two inner products, the triangle inequality (Axler, 2015, Section 4.5) gives

|(µ̃− µ̂a
t )

⊤xa
t + (µ̂a

t − (µa)∗)⊤xa
t | ≤ |(µ̃− µ̂a

t )
⊤xa

t |+ |(µ̂a
t − (µa)∗)⊤xa

t |, (42)

and by using the given bound for |(µ− µ̂a
t )

⊤x| in lemma 1, we can obtain

|(µ̃− µ̂a
t )

⊤xa
t | ≤

√
βa
t (x

a
t )

T (Σa
t )

−1xa
t =

√
βa
t w

a
t , (43)

|(µ̂a
t − (µa)∗)⊤xa

t | ≤
√
βa
t (x

a
t )

T (Σa
t )

−1xa
t =

√
βa
t w

a
t . (44)

Thus,
|(µ̃− µ̂a

t )
⊤xa

t + (µ̂a
t − (µa)∗)⊤xa

t | ≤ 2
√

βa
t w

a
t , (45)

and since −1 ≤ Y a
t ≤ 1 (assumption 2), the regret is at most 2, then

regretat ≤ 2
√

βa
t w

a
t ≤ min(2

√
βa
t w

a
t , 2). (46)

Expressing it with 2 outside the minimum function for clarity and to align with the bound mentioned
in assumption 2, satisfies

regretat ≤ 2min(
√

βa
t w

a
t , 1), (47)

and as βa
t is non-decreasing over time (common in learning systems where confidence typically

increases with more data), βa
T ≥ βa

t for any t ≤ T . Thus, applying this monotonicity property of βa
t ,

2
√
βa
t min(wa

t , 1) ≤ 2
√

βa
T min(wa

t , 1), (48)

which completes the proof.
Lemma 3 (Determinant expansion). We have

det(Σa
T ) = det(Σa

0)

T−1∏
t=0

(1 + (wa
t )

2 + γeat,k), (49)

where eat,k =
(
ua
t,k

)2
. This lemma is structured based on (Agarwal et al., 2019, Lemma 6.8) and

(Perrault et al., 2020, Theorem 1).

Proof. By definition of Σa
t+1, we get

Σa
t+1 = Σa

t + xa
t (x

a
t )

⊤ + γeat,kI, (50)

where γ helps to scale the identity matrix I multiplied by the variance term eat,k, which quantifies
the uncertainty contributed by the k-NN predictions at each time step for arm a. Considering the
determinant, we have

det(Σa
t+1) = det(Σa

t + xa
t (x

a
t )

⊤ + γeat,kI). (51)

Then, a special case of ”matrix determinant lemma” attributed to (Harville, 1998, Corollary 18.2.10),
originated from (Sherman & Morrison, 1950) is utilized as equation (52)

det(A+ uv⊤) = det(A)(1 + v⊤A−1u). (52)
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Applying the concept of equation (52) in equation (51), we can obtain

det(Σa
t+1) = det(Σa

t )det
(
I + (Σa

t )
−1/2xa

t (x
a
t )

⊤(Σa
t )

−1/2 + γeat,k(Σ
a
t )

−1/2I(Σa
t )

−1/2
)
. (53)

Then, by decomposing the calculation further, considering vt = (Σa
t )

−1/2xa
t and ut = γeat,kI ,

det(I + vtv
⊤
t + γeat,k(Σ

a
t )

−1/2I(Σa
t )

−1/2) = det(I + vtv
⊤
t + γeat,kI). (54)

Since I is the identity matrix and commutes with any matrix, using the property that
Σa

t
−1/2IΣa

t
−1/2 = I due to normalization, and where vat = (Σa

t )
−1/2xa

t based on the proof of
lemma 2. Now we can observe (vat )

⊤vat = (wa
t )

2 and

(I + vat (v
a
t )

⊤)vat = vat + vat ((v
a
t )

⊤vat ) = (1 + (wa
t )

2)vat . (55)

For this reason (1 + (wa
t )

2) is an eigenvalue of I + vat (v
a
t )

⊤. Since vat (v
a
t )

⊤ is a rank one matrix, all
other eigenvalues of I + vat (v

a
t )

⊤ equal 1. Hence, det(I + vat (v
a
t )

⊤) = (1 + (wa
t )

2), is implies

det(I + vat (v
a
t )

⊤ + γeat,kI) = det(I + (wa
t )

2 + γeat,k), (56)

which gets
det(Σa

t+1) = (1 + (wa
t )

2 + γeat,k)det(Σa
t ). (57)

Finally, iterating equation (57) from t = 0 to T − 1 gives

det(Σa
T ) = det(Σa

0)

T−1∏
t=0

(1 + (wa
t )

2 + γeat,k). (58)

Lemma 4 (Potential function bound). Consider the sequence xa
0 , . . . , x

a
T−1 such that ∥xa

t ∥2 ≤ B
for all t < T , the potential function bound is given by

log

(
det(Σa

T−1)

det(Σa
0)

)
= log

(
det

(
I +

1

λ

(
T−1∑
t=0

xa
t (x

a
t )

⊤ +

A∑
a=1

γeat,kI

)))

= log

(
det

(
I +

1

λ

(
T−1∑
t=0

xa
t (x

a
t )

⊤ +

A∑
a=1

γ(ua
t,k)

2I

)))

≤ d log

(
1 +

1

dλ

(
TB2 +

A∑
a=1

T a(ua
t,k)

2

))
.

(59)

Proof. For Σa
T−1, we have

Σa
T−1 = Σa

0 +

T−1∑
t=0

xa
t (x

a
t )

⊤ +

A∑
a=1

γ(ua
t,k)

2I. (60)

Then, we use the identity that relates the determinant of a sum to the product of eigenvalues

log

(
det(Σa

T−1)

det(Σa
0)

)
= log

(
det

(
I + (Σa

0)
−1

(
T−1∑
t=0

xa
t (x

a
t )

⊤ +

A∑
a=1

γ(ua
t,k)

2I

)))
, (61)

which simplifies to

log

(
det

(
I +

1

λ

(
T−1∑
t=0

xa
t (x

a
t )

⊤ +

A∑
a=1

γ(ua
t,k)

2I

)))
. (62)

Let σ1, . . . , σd be the eigenvalues of
∑T−1

t=0 xa
t (x

a
t )

⊤ +
∑A

a=1 γ(u
a
t,k)

2I . Applying the Arithmetic
Mean-Geometric Mean (AM-GM) Inequality (Cvetkovski, 2012, Theorem 2.1), we can obtain

Trace

(
T−1∑
t=0

xa
t (x

a
t )

⊤ +

A∑
a=1

γ(ua
t,k)

2I

)
=

T−1∑
t=0

∥xa
t ∥2 +Aγ(ua

t,k)
2. (63)
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Then, we shall assume
∑T−1

t=0 ∥xa
t ∥2 ≤ TB2, and by summing the regularizing terms, we get

d∑
i=1

σi ≤ TB2 +

A∑
a=1

γ(ua
t,k)

2. (64)

Finally, using the equation (63),

log

(
det

(
I +

1

λ

(
T−1∑
t=0

xa
t (x

a
t )

⊤ +

A∑
a=1

γ(ua
t,k)

2I

)))
(65)

= log

(
d∏

i=1

(
1 +

σi

λ

))
(66)

=

d∑
i=1

log
(
1 +

σi

λ

)
≤ d log

(
1 +

1

dλ

(
TB2 +

A∑
a=1

γ(ua
t,k)

2

))
. (67)

This inequality uses the AM-GM inequality in the form log
(∏d

i=1

(
1 + σi

λ

))
≤ d log

(
1 + Trace

dλ

)
.

Lemma 5 (Linear Operator). Let Σa
0 be an initial covariance matrix, xa

t a feature vector for arm a
at time t, and γ a scaling constant, and ua

t,k is defined as stated in the description. The operator

Σa
T−1 = Σa

0 +

T−1∑
t=0

xa
t (x

a
t )

⊤ + γ

A∑
a=1

(ua
t,k)

2I (68)

is a linear operator from Rd to Rd, where d is the dimension of the feature vectors.

Proof. A linear operator in the context of linear algebra is a mapping L : V → W between two vector
spaces V and W that satisfies the linearity conditions (Rudin et al., 1964):

• Additivity: L(u+ v) = L(u) + L(v) for any vectors u, v ∈ V .
• Homogeneity: L(αu) = αL(u) for any scalar α and vector u ∈ V .

Additivity: For any vectors u, v ∈ Rd,

Σa
T−1(u+ v) = Σa

0(u+ v) +

T−1∑
t=0

xa
t (x

a
t )

⊤(u+ v) + γ

A∑
a=1

(ua
t,k)

2I(u+ v) (69)

= Σa
0(u) + Σa

0(v) +

T−1∑
t=0

xa
t ((x

a
t )

⊤u+ (xa
t )

⊤v) + γ

A∑
a=1

(ua
t,k)

2(Iu+ Iv) (70)

= Σa
0(u) +

T−1∑
t=0

xa
t (x

a
t )

⊤u+ γ

A∑
a=1

(ua
t,k)

2Iu+Σa
0(v) +

T−1∑
t=0

xa
t (x

a
t )

⊤v + γ

A∑
a=1

(ua
t,k)

2Iv (71)

= Σa
T−1(u) + Σa

T−1(v). (72)

Homogeneity: For any scalar α and vector u ∈ Rd,

Σa
T−1(αu) = Σa

0(αu) +

T−1∑
t=0

xa
t (x

a
t )

⊤(αu) + γ

A∑
a=1

(ua
t,k)

2I(αu) (73)

= αΣa
0(u) + α

T−1∑
t=0

xa
t (x

a
t )

⊤u+ αγ

A∑
a=1

(ua
t,k)

2Iu (74)

= α(Σa
0(u) +

T−1∑
t=0

xa
t (x

a
t )

⊤u+ γ

A∑
a=1

(ua
t,k)

2Iu) (75)

= αΣa
T−1(u). (76)

Since Σa
T−1 satisfies both additivity and homogeneity, it is a linear operator. Hence, the lemma 5 is

proved.
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Corollary 5 (Self-normalized bound). For each arm a, the reward is generated as

Y a
t = lat + fa

k,t(x
a
t , z

a
t ) + ξat = µa

t · xa
t + k-NNa

k,t(x
a
t , z

a
t ) + ξat . (77)

Here, ξat is the noise term associated with arm a, which captures the inherent randomness in the
rewards after accounting for both the linear model’s predictions and the k-NN adjustments. This
term remains conditionally δ-sub-Gaussian.

Given the linear operator proved in lemma 5, the self-normalized bound, structured by (Abbasi-
Yadkori et al., 2011, Theorem 1) and (Auer et al., 2002b), with the probability at least 1 − δ is
followed by ∥∥∥∥∥

T∑
t=1

Xa
t ξ

a
t

∥∥∥∥∥
2

(Σa
t )

−1

≤ σ2 log

(
det(Σa

t ) det(Σ
a
0)

−1

δ2

)
, (78)

where ξat encapsulates both inherent randomness and any deviation from k-NN estimates.

A.1.1 PROOF OF THEOREM 1

Proof of proposition 1. Consider the defined reward for each arm a in equation (77) in corollary 5,
the deviation of the estimated parameter µa

t from the true parameter (µa)∗ is calculated as

µa
t − (µa)

∗
= Σa

t
−1

(
t−1∑
t=0

xa
t

(
(µa)

∗
+ ξat + k-NNa

k,t(x
a
t , z

a
t )
)
xa
t − λΣa

t
−1
(
(µa)

∗))
. (79)

By utilizing lemma 2, we can obtain√
(µa

t − (µa)
∗
)⊤Σa

t (µ
a
t − (µa)

∗
) = ∥Σa

t
1/2(µa

t − (µa)
∗
)∥ (80)

≤ ∥λΣa
t
−1/2 (µa)

∗ ∥+ ∥Σa
t
−1/2

t−1∑
t=0

ξat x
a
t ∥ (81)

≤
√
λ∥ (µa)

∗ ∥+

√
2σ2 log

(
det(Σa

t ) det(Σ0)−1

δ

)
. (82)

Using the triangle inequality and considering Σa
t
−1 as always positive definite, implying (Σa

t )
−1 ≥

1
λI . Our goal is to lower bound Pr(∀t; (µa)

∗ ∈ BALLa
t ). At t = 0, by our initial choice, BALLa

0

contains (µa)
∗, hence Pr((µa)

∗
/∈ BALLa

0) = 0. For t ≥ 1, we designate the failure probability for
the t-th event as

δt =

(
3

π2

)
1

t2
· 2δ. (83)

Using the preceding results and a union bound, gives us an upper bound on the cumulative failure
probability as

1−Pr(∀t; (µa)
∗ ∈ BALLa

t ) = Pr(∃t; (µa)
∗
/∈ BALLa

t ) ≤
∞∑
t=1

(
1

t2
− 3

2t

)
2δ =

1

2
· 2δ = δ. (84)

Proof of Proposition 2. Considering assumption 3 for all time steps t and arms a, we start by
expressing the sum of squared regrets

T−1∑
t=0

(regretat )
2 ≤

T−1∑
t=0

4βa
t min((wa

t )
2, 1) (85)

≤ 4βa
T

T−1∑
t=0

min((wa
t )

2, 1) ≤ max{8, 4

log 2
}βa

T

T−1∑
t=0

log(1 + (wa
t )

2 + γ(ua
t,k)

2) (86)
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≤ 8βa
T log

(
det(Σa

T−1)

det(Σa
0)

)
= 8βa

T d log

(
1 +

TB2

dλ
+

∑A
a=1

∑T−1
t=0 (ua

t,k)
2

dλ

)
(87)

The first inequality follows from lemma 2. The second is from since βa
t is an increasing function of t,

βa
t ≤ βa

t+1 for all t where 0 ≤ t < T − 1 and
∑T−1

t=0 βa
t = βa

T . The third follows that for 0 ≤ y ≤ 1,
the inequality y ≥ log(1 + y) ≥ y

1+y ≥ y
2 holds, and specifically for (wa

t )
2 within these bounds, we

have
(wa

t )
2 + γ(ua

t,k)
2 ≤ 2 log(1 + (wa

t )
2 + γ(ua

t,k)
2). (88)

When (wa
t )

2 > 1, the relationship shifts to

4βa
T =

4

log 2
βa
T log 2 ≤ 4

log 2
βa
T log(1 + (wa

t )
2 + γ(ua

t,k)
2). (89)

The equation (88) follow lemma 3, and equation (89) follows lemma 4.

With the proof of the two propositions, we can conclude the Theorem 1, showing the regret bound as

RT ≤ bσ

√√√√T

(
d log

(
1 +

TB2W 2

dσ2
+

∑A
a=1 T

a(ua
t,k)

2

dσ2

)
+ log

(
4

δ

))
. (90)

To prove the sub-linear regret bound, we need to analyze and simplify the dominant terms within the
regret bound.

Dominant term analysis. To identify the dominant term, we carefully analyze how each term
scales with T :

Term 1: TB2W 2

dσ2 , which grows linearly with T .

Term 2:
∑A

a=1 Ta(ua
t,k)

2

dσ2 , which scales with
∑A

a=1 T
a, which is at most T , as not all arms may utilize

the k-NN adjustment at every time step. This sum represents an upper bound, capturing the maximum
possible contribution from the k-NN component.

Simplifying the logarithmic term. Considering both terms inside the logarithm, we have

log

(
1 +

TB2W 2

dσ2
+

∑A
a=1 T

a(ua
t,k)

2

dσ2

)
, (91)

which for large T , we can approximate the logarithm as

log

(
1 +

TB2W 2

dσ2
+

∑A
a=1 T

a(ua
t,k)

2

dσ2

)
≈ log

(
T (B2W 2 +

∑A
a=1(u

a
t,k)

2)

dσ2

)
. (92)

Refined bound. Given that both terms grow with T , for large T , we have

log

(
1 +

T (B2W 2 +
∑A

a=1(u
a
t,k)

2)

dσ2

)
. (93)

So, the regret bound becomes

RT ≤ bσ

√√√√T

(
d log

(
T (B2W 2 +

∑A
a=1(u

a
t,k)

2)

dσ2

))
. (94)

And for large T , we have
RT = O

(
σ
√
dT log T

)
. (95)

Without assuming any term is negligible, the regret of LNUCB-TA is optimal up to

RT = O(
√

dT log T ). (96)
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And by absorbing logarithmic factors into Õ, we can state

RT = Õ(
√
dT ). (97)

This result establishes the optimality and efficiency of LNUCB-TA in achieving sub-linear regret,
proving Theorem 1.

A.1.2 PROOF THEOREM 2

We begin by considering the exploration parameter αNa
t

, which is dynamically updated as:

αNa
t
=

α0

Na
t + 1

· (κg + (1− κ)na
t ) , (98)

where g represents the global attention and na
t is the local attention for arm a up to time t. Specifically,

the global attention g is defined as:

g =
1

A

A∑
a=1

Y
a
, (99)

with A being the number of arms and Y
a

the average reward of arm a. The local attention na
t is given

by:

na
t =

1

Na
t

t−1∑
s=1

Ŷ a
s , (100)

where Na
t is the number of times arm a has been selected up to time t, and Ŷ a

s is the reward observed

from arm a at time s. Our goal is to compute
dαNa

t

dNa
t

, representing the rate of change of the exploration
parameter as Na

t increases, i.e., how the system shifts from exploration to exploitation as more pulls
are made on arm a.

First, applying the product rule to differentiate αNa
t

with respect to Na
t , we have:

dαNa
t

dNa
t

=
d

dNa
t

(
α0

Na
t + 1

· (κg + (1− κ)na
t )

)
. (101)

This can be expanded as:

dαNa
t

dNa
t

=
α0

Na
t + 1

· d

dNa
t

(κg + (1− κ)na
t ) + (κg + (1− κ)na

t ) ·
d

dNa
t

(
α0

Na
t + 1

)
. (102)

Next, we compute the derivatives of each term separately. Since g is the global attention and does not
depend on Na

t , its derivative is zero, and we only need to differentiate na
t . Using the quotient rule,

we compute the derivative of na
t as follows:

na
t =

1

Na
t

t−1∑
s=1

Ŷ a
s , (103)

hence,

dna
t

dNa
t

= − 1

(Na
t )

2

t−1∑
s=1

Ŷ a
s . (104)
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Substituting this into the derivative of the first term:

d

dNa
t

(κg + (1− κ)na
t ) = (1− κ) ·

(
− 1

(Na
t )

2

t−1∑
s=1

Ŷ a
s

)
. (105)

For the second term, we differentiate α0

Na
t +1 with respect to Na

t :

d

dNa
t

(
α0

Na
t + 1

)
= − α0

(Na
t + 1)2

. (106)

Now, substituting these results back into the expression for
dαNa

t

dNa
t

, we obtain:

dαNa
t

dNa
t

=
α0

Na
t + 1

· (1− κ) ·

(
− 1

(Na
t )

2

t−1∑
s=1

Ŷ a
s

)
− α0

(Na
t + 1)2

· (κg + (1− κ)na
t ) . (107)

Expanding na
t in the second term gives:

na
t =

1

Na
t

t−1∑
s=1

Ŷ a
s , (108)

so we substitute this into the second term to obtain:

dαNa
t

dNa
t

=
α0

Na
t + 1

· (1− κ) ·

(
− 1

(Na
t )

2

t−1∑
s=1

Ŷ a
s

)
− α0

(Na
t + 1)2

·

(
κg + (1− κ) · 1

Na
t

t−1∑
s=1

Ŷ a
s

)
.

(109)

We can further expand both terms. The first term becomes:

α0

Na
t + 1

· (1− κ) ·

(
− 1

(Na
t )

2

t−1∑
s=1

Ŷ a
s

)
= − α0(1− κ)

(Na
t + 1) · (Na

t )
2

t−1∑
s=1

Ŷ a
s . (110)

The second term expands as:

− α0

(Na
t + 1)2

·

(
κg + (1− κ) · 1

Na
t

t−1∑
s=1

Ŷ a
s

)
. (111)

This can be split into two parts:

− α0κg

(Na
t + 1)2

− α0(1− κ)

(Na
t + 1)2 ·Na

t

t−1∑
s=1

Ŷ a
s . (112)

Finally, the complete expanded expression for
dαNa

t

dNa
t

is:

dαNa
t

dNa
t

= − α0(1− κ)

(Na
t + 1) · (Na

t )
2

t−1∑
s=1

Ŷ a
s − α0κg

(Na
t + 1)2

− α0(1− κ)

(Na
t + 1)2 ·Na

t

t−1∑
s=1

Ŷ a
s . (113)

This result shows how the exploration parameter αNa
t

decreases as Na
t increases, driven by both

local attention (na
t ) and global attention (g). The terms decay quadratically with Na

t , highlighting the
shift from exploration to more focused exploitation as more observational data is gathered and the
rewards from each arm become better understood.
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B ADDITIONAL RESULTS

In this Section, more quantitative results are provided.

Analysis of models with different parameters. The experimental results, shown in Figures 3
and 4 and summarized in Table 3, highlight the performance of various MAB algorithms across
different parameter settings. In this section, we set κ = 0.5, θmin = 1, and θmax = 5. The maximum
value of k for k-NN KL-UCB and k-NN UCB is considered to be 5 to ensure a fair comparison
among the models. The BetaThompson model, which was tested with six combinations of (α, β)
parameters, achieved its best performance with parameters (4, 4), resulting in a mean reward of
0.22 and a cumulative reward of 176. Similarly, the Epsilon Greedy algorithm, evaluated with six
different ϵ values, achieved the highest mean reward of 0.26 and a cumulative reward of 208 at
ϵ = 0.2. KL-UCB, another prominent algorithm, demonstrated its best performance at c = 0.1,
with a mean reward of 0.25 and a cumulative reward of 200. k-NN KL-UCB and k-NN UCB,
incorporating k-Nearest Neighbors, showed optimal results at c = 5 and ρ = 10, respectively, with
mean rewards of 0.76 and 0.34. Notably, LinThompson and LinUCB algorithms, which leverage
linear estimations, achieved mean rewards of 0.42 and 0.73, with cumulative rewards of 336 and 584.
The UCB algorithm, when tested with six different ρ values, performed best at ρ = 10, resulting in a
mean reward of 0.14 and a cumulative reward of 112.

Figure 3: Performance comparison of models based on cumulative reward across six distinct parameter
settings. The LNUCB-TA model demonstrates superior performance and more stable results compared
to other models.

As indicated in Table 3, our novel LNUCB-TA model significantly outperformed all the aforemen-
tioned algorithms, achieving a mean reward of 0.94 and a cumulative reward of 753. The improvement
by LNUCB-TA over other models is substantial, with the highest relative improvement observed
over UCB (572%), followed by BetaThompson (327%), Epsilon Greedy (262%), KL-UCB (276%),
k-NN UCB (176%), LinThompson (124%), LinUCB (28%), and k-NN KL-UCB (23%). The signif-
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Figure 4: Comparison of model performance based on mean reward across six distinct parameter
settings. The LNUCB-TA model achieves the highest mean rewards and exhibits stable performance.

icant enhancement and consistent performance underscore the robustness and effectiveness of the
LNUCB-TA model, particularly its integration of linear and nonlinear estimations, adaptive k-Nearest
Neighbors, and an attention-based exploration mechanism.

Improvement over other models. Figure 5 illustrates the performance enhancements achieved by
integrating the k-NN adaptive strategy and an attention mechanism inspired by (Vaswani et al., 2017)
(for each arm a at time t, the exploration rate is weighted by an attention score as

attention-score =
exp(−γ ·Na

t )∑
(exp(−γ ·Na

t ))
, (114)

where, γ is a scaling parameter) into three traditional models namely BetaThompson, Epsilon Greedy,
and LinThompson. Each enhanced model demonstrates a marked improvement in both cumulative
and mean rewards over 800 steps. Specifically, the BetaThompson-enhanced model, with the best
parameter combination (α, β) = (0.5, 0.5), achieves a mean reward of 0.79 and a cumulative reward
of 632. Similarly, the Epsilon Greedy-enhanced model, optimized with ϵ = 0.25, reaches a mean
reward of 0.58 and a cumulative reward of 464. The LinThompson-enhanced model, with v = 2,
shows a significant increase in performance, attaining a mean reward of 0.69 and a cumulative reward
of 552.

Table 4 summarizes these results highlights the substantial improvements over their respective base
models. The BetaThompson-enhanced model shows a 259.09% improvement over the base model,
the Epsilon Greedy-enhanced model shows a 123.08% improvement, and the LinThompson-enhanced
model demonstrates a 64.29% enhancement. Despite these significant gains, the comparison to the
LNUCB-TA model reveals that while these enhancements are substantial, they still fall short of the
performance of LNUCB-TA, which achieves a mean reward of 0.94. Specifically, the BetaThompson-
enhanced model performs 16.08% worse than LNUCB-TA, Epsilon Greedy-enhanced 38.38% worse,
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Table 3: Comparison of model parameters and performance: The table summarizes the various models
(Model), the parameters tested (Param.), their values (Vals.), and the best-performing parameters
(Best Param.). It also includes the best mean reward (BMR) and best cumulative reward (BCR)
achieved by each model, as well as the percentage improvement of our model LNUCB-TA compared
to others (Imp. by LNUCB-TA).

Model Param. Vals. Best
Param.

BMR BCR Imp. by
LNUCB-TA
(%)

BetaThompson (α, β) (1, 1), (2, 2), (0.5,
0.5), (3, 1), (1, 3),
(4, 4)

(4, 4) 0.22 176 327.27

Epsilon Greedy ϵ 0.01, 0.05, 0.1,
0.2, 0.25, 0.5

0.2 0.26 208 262.98

KL-UCB c 0.1, 0.5, 1, 2, 5,
10

0.1 0.25 200 276.50

k-NN KL-UCB c 0.1, 0.5, 1, 2, 5,
10

5 0.76 608 23.87

k-NN UCB ρ 0.1, 0.5, 1, 2, 5,
10

10 0.34 272 176.47

LinThompson v 0.1, 0.5, 1, 2, 5,
10

0.1 0.42 336 124.11

LinUCB α 0.01, 0.05, 0.1,
0.5, 1, 10

0.01 0.73 584 28.91

UCB ρ 0.1, 0.5, 1, 2, 5,
10

10 0.14 112 572.32

LNUCB-TA α 0.01, 0.05, 0.1,
0.5, 1, 10

1 0.94 753 N/A

and LinThompson-enhanced 26.69% worse. The superior performance of LNUCB-TA is attributed
to its unique combination of both linear and nonlinear estimations. The results highlight the impact
of the two key novelties—adaptive k-NN and attention mechanisms—setting a new framework for
MAB algorithms through these innovative enhancements.

Table 4: Performance Comparison of Enhanced Models: The table presents the best parameters (Best
Param.), best mean reward (BMR), and best cumulative reward (BCR), the improvement percentage
over the base model, and the comparison percentage to LNUCB-TA (Comp. to LNUCB-TA (%)).

Model Best
Param.

BMR BCR Imp. Over
Base Model
(%)

Comp. to
LNUCB-TA
(%)

BetaThompson-enhanced (0.5, 0.5) 0.79 632 259.09 -16.08
Epsilon Greedy-enhanced 0.25 0.58 464 123.08 -38.38
LinThompson-enhanced 2 0.69 552 64.29 -26.69

Error bars. Based on the error bar plot in Figure 6, we can observe that the LNUCB-TA model
demonstrates remarkable consistency in its performance across a variety of parameter settings. The
plot shows the mean reward for different combinations of θmin and θmax, and different values of
κ, which is the weight of the global overall reward. Despite the changes in these parameters, the
mean reward remains relatively stable, indicating that the model’s performance is not heavily reliant
on specific parameter choices. This consistency underscores the robustness of the LNUCB-TA
model, making it a reliable choice for complex decision-making tasks where parameter tuning can be
challenging.
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Figure 5: Performance enhancements achieved by integrating the k-NN adaptive strategy in Algorithm
2 and the attention mechanism in equation (114) into traditional models BetaThompson, Epsilon
Greedy, and LinThompson.

Additional datasets. We extend our analysis of the LNUCB-TA model to additional real-world
datasets to further validate its efficacy across diverse settings. One such dataset involves the AstroPh
co-authorship network, initially observed at 5% (Madhawa & Murata, 2019a). Here, we focus on the
cumulative reward comparison of our model against other state-of-the-art algorithms, demonstrating
its capability in effectively expanding network visibility within a fixed query budget. Another dataset
explored is an article matching dataset (Li et al., 2010; 2011), where the LNUCB-TA’s performance is
assessed in the context of matching relevant articles based on user preferences and interactions. These
expanded evaluations provide a broader perspective on the model’s versatility and its applicability to
complex, real-world problems such as network exploration and content recommendation.

In Figure 7, the LNUCB-TA model, marked by the bold red line, outperforms other models with its
superior performance as the evaluation progresses. This highlights the model’s efficiency in adapting
and optimizing its strategy over time, solidifying its effectiveness in dynamic settings. Additionally,
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Figure 6: Performance stability of LNUCB-TA across various parameter settings: The plot illustrates
the mean reward ranges for different combinations of θmin and θmax, and different values of κ. Despite
variations in these parameters, the model consistently maintains high performance, underscoring its
robustness and the effectiveness of integrating adaptive k-NN and attention mechanisms.

our innovative approach that integrates k-NN with an attention mechanism into the ϵ-Greedy strategy
is represented by the bold green line. This combination shows significant improvements over the
traditional KNN-ϵ-Greedy model, underscoring the effectiveness of our proposed modifications in
handling the exploration-exploitation balance more dynamically and efficiently.

Figure 8 presents the difference runtime between our proposed model against the vanilla combination
of LinUCB and k-NN UCB model. The LNUCB-TA model, represented by the bold red line,
consistently exhibits the lowest runtime, particularly as the maximum number of neighbors increases,
underscoring its computational efficiency compared to the Lin+k-NN-UCB model (blue line) and
other setups denoted by the dotted lines for varying NSteps. This demonstrates the LNUCB-TA
model’s capability to maintain lower computational costs even as the complexity of the task increases.

Additionally, the results presented in Table 5 shows that the LNUCB-TA model consistently out-
performs purely linear models, purely nonlinear models, and the vanilla combination of linear and
nonlinear approaches in terms of cumulative rewards across various exploration rates and operational
steps. For instance, at an exploration rate of 0.1 and 7500 steps, it achieves the highest cumulative
reward of 7261. The model is also substantially more efficient than the straightforward combination
model (Lin+k-NN)-UCB, which takes 3381.71 seconds for a lower reward score, compared to the
LNUCB-TA’s 102.00 seconds.

C LIMITATION AND FUTURE DIRECTION

Limitation. One limitation of our approach is the assumption of equal weights for the linear and
nonlinear components in the model. While this simplifies the model, it may not fully capture the
complexities of the underlying data. Future work could explore assigning different weights to these
components, potentially enhancing performance by better capturing the data’s structure. Additionally,
the weights could be dynamically adjusted for each arm at each time step using attention mechanisms,
further improving adaptability.

Also, our current implementation of the GALA mechanism employs a fixed weight (κ) to balance
global and local attention in adjusting the exploration factor. While we have tried different fixed
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Figure 7: Cumulative reward (y-axis) comparison of models on AstroPh co-authorship network
initially observed at (5%). Our LNUCB-TA model, represented by the red line, outperforms other
models. Also, the green line, representing our novel k-NN approach with attention combined with
ϵ-Greedy, surpasses KNN-ϵ-Greedy, showing the superiority of our proposed k-NN over existing
k-NN bandit settings.

Table 5: Comparison of models on the article matching dataset, using a maximum of 5 neighbors
based on cumulative reward (CR). We observe varying performance between the purely linear, purely
nonlinear, and the vanilla combination model with neither of them demonstrating absolute dominance.
However, the LNUCB-TA model consistently outperforms all three of them.

α/ρ Steps LinUCB
(CR)

LinUCB
Run-
time

k-NN
UCB
(CR)

k-NN
UCB
Run-
time

(Lin+k-
NN)-
UCB
(CR)

(Lin+k-
NN)-
UCB
Run-
time

LNUCB-
TA

(CR)

LNUCB-
TA

Run-
time

0.1 2500 2089 10.11 1618 14.79 2126 287.85 2262 26.21
0.1 5000 4570 12.36 3763 35.80 4604 1333.2 4762 92.01
0.1 7500 7063 19.79 6004 62.92 7099 3381.71 7261 102.00
1 2500 1349 5.80 1607 15.98 1401 295.59 1997 24.08
1 5000 3720 12.30 3739 36.17 3785 1331.09 4497 58.43
1 7500 6149 19.02 5996 62.03 6186 3226.52 6996 98.57

10 2500 410 6.53 1595 15.84 410 279.34 1601 21.65
10 5000 1197 13.37 3721 36.57 1311 1169.57 4019 55.50
10 7500 2282 18.07 5966 61.90 2536 3223.6 6519 95.48

values for κ, these weights might be not optimized. Determining the optimal value for κ could further
enhance the model’s performance.
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Figure 8: Runtime and scalability comparison of our model against the straightforward combination
model on the article matching dataset. The LNUCB-TA model is more scalable, maintaining quite
consistent processing times, even as maxk and the number of steps increase.

Attention mechanisms in MAB frameworks. The introduction of attention mechanisms in the
MAB framework opens new avenues for enhancing decision-making processes in various domains.
While our work applied attention to the exploration rate, there are numerous other areas within the
MAB framework where attention mechanisms can be beneficial. For instance, attention could be
used to dynamically prioritize contexts based on their significance or complexity, thereby improving
overall efficiency and effectiveness. Additionally, attention mechanisms could be applied to weight
the influence of historical rewards differently over time, allowing for more nuanced learning from
past experiences. Another potential application could be the use of attention to identify and focus on
emerging trends or shifts in the data, ensuring that the model adapts swiftly to new patterns

Impact on industrial settings. LNUCB-TA, as it dynamically adjusts its exploration rate, can be
beneficial in various areas where initial parameters need to be optimized, such as in recommendation
systems (Zhou et al., 2017; Bouneffouf et al., 2012; 2014) where initial user preferences are unknown,
in finance (Shen et al., 2015; Huo & Fu, 2017) for portfolio optimization where initial risk preferences
must be set, and in healthcare (Bastani & Bayati, 2020; Durand et al., 2018) for personalized treatment
plans where patient-specific parameters need to be optimized. Our model can also be applied to areas
not yet extensively covered by MAB approaches (Bouneffouf & Rish, 2019), such as manufacturing.
In this context, each arm represents a different material or material property configuration, while
the context includes features describing the manufacturing conditions and requirements. The reward
corresponds to the performance or suitability of the material under these conditions. By leveraging
both linear and nonlinear estimations along with attention-based mechanisms, LNUCB-TA can
effectively balance exploration and exploitation, identifying optimal material properties under varying
conditions. This ability to dynamically adapt and refine decisions based on historical data and
contextual insights makes our model particularly well-suited for such applications.

A new paradigm for MAB algorithms. Moreover, the incorporation of adaptive k-NN discussed
in Algorithm 2, and attention mechanisms discussed in Algorithm 3 and equation (114) not only
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enhances the performance of LNUCB-TA but also improves the performance of other models. This
sets a new framework for MAB algorithms by integrating these advanced modifications.

Technical extensions in other areas. The inspiration from how we used attention mechanisms
to make our model independent of initial parameter choices can be applied in various technical
fields. This approach can enhance meta-heuristic algorithms for combinatorial optimization problems
(Agushaka & Ezugwu, 2022; Shadkam, 2022), evolutionary algorithms where initial population
parameters must be set (Lobo et al., 2007; Qin, 2023), and machine and federated learning models
where hyperparameters need to be tuned (Koskela & Kulkarni, 2024; Khodak et al., 2021; Turner
et al., 2021). By reducing the dependency on the initial parameter settings, this concept can improve
the robustness and efficiency of these techniques, ensuring consistent performance irrespective of the
chosen initial parameters.

D IMPLEMENTATION GUIDELINE.

For implementing the LNUCB-TA algorithm and other models, the chosen parameters, detailed in
Table 3 and illustrated in Figure 6, were selected based on a comprehensive review of the literature to
cover a wide range for thorough analysis. The implementation was conducted using Google Colab,
which provides an accessible and efficient environment for running Python code. The essential
libraries required for this implementation include NumPy (version 1.25.2) for scientific computing,
pandas (version 2.0.3) for data manipulation and analysis, Matplotlib for visualizations, scikit-learn
for machine learning tasks (including KNeighborsRegressor), tqdm for progress bars, Requests
(version 2.31.0) for handling HTTP requests, and the ABC module for defining abstract base classes.
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