
UWNLP at the NTCIR-12 Short Text Conversation Task

Anqi Cui
University of Waterloo,

Canada
caq@uwaterloo.ca

Guangyu Feng
University of Waterloo,

Canada
gfeng@uwaterloo.ca

Borui Ye
University of Waterloo,

Canada
b7ye@uwaterloo.ca

Kun Xiong
University of Waterloo,

Canada
xiongkun04@gmail.com

Xing Yi Liu
University of Waterloo,

Canada
liuxingyi99@gmail.com

Ming Li
University of Waterloo,

Canada
mli@uwaterloo.ca

ABSTRACT
In this paper, we describe our submission to the NTCIR-
12 Short Text Conversation task. We consider short text
conversation as a community Question-Answering problem,
hence we solve this task in three steps: First, we retrieve
a set of candidate posts from a pre-built indexing service.
Second, these candidate posts are ranked according to their
similarity with the original input post. Finally, we rank
the comments to the top-ranked posts and output these
comments as answers. Two ranking models and three com-
ment selection strategies have been introduced to generate
five runs. Among them, our best approach receives per-
formances of mean nDCG@1 0.2767, mean P+ 0.4284 and
mean nERR@10 0.4095.

Team Name
uwnlp

Subtasks
Short Text Conversation (Chinese)

Keywords
community question answering, semantic distance, informa-
tion retrieval

1. INTRODUCTION
The UWNLP team participated in the Short Text Con-

versation (STC) pilot task in NTCIR-12 [8]. The team
comprises members from University of Waterloo and RSVP
Technologies Inc., a Waterloo-based start-up company. We
analyzed and studied the task and evaluation methods care-
fully, and submitted five runs based on our best understand-
ing.

Conversation is one of the challenging problems in the
field of natural language processing. In this STC task, it
treats conversation as an information retrieval (IR) problem,
by responding the input from existing repository. Hence
we adopt the community Question-Answering (cQA) frame-
work to solve this task.

In a cQA problem, the existing repository consists of a
huge number of question-answer pairs. The cQA algorithm
answers the input question by retrieving a similar question
in the repository and use the corresponding answer as the

output. As long as the repository is big enough, we are then
able to answer every possible question.

Following this philosophy, we build a repository of post-
comment pairs from microblogging sites. Then given an in-
put sentence (new post), we retrieve some similar posts from
this repository, and use their corresponding comments as the
responses.

We have investigated several ranking models, both super-
vised and unsupervised, involving character-based and word-
based features. We have also trained a Word2Vec model to
generate more features. Different strategies are applied to
select the best comment. We aim at discovering the most
similar sentences (questions), i.e. shortest semantic distance
between the input and the post candidates [3].

The rest of the paper is organized as follows: Detailed
algorithm, features and models are introduced in Section 2.
Submitted results are shown and discussed in Section 3. We
conclude our paper in Section 4.

2. THE CQA-BASED ALGORITHM

2.1 Algorithm Architecture
We consider this short text conversation as a cQA task,

hence our algorithm follows the retrieval-based cQA frame-
work: It retrieves posts in the post-comment repository as
“questions”, and then uses the corresponding comments to
reply as “answers”. Under this philosophy, we believe that
comments are the best responses to the original sentence,
hence as long as we find out the most similar “question” to
the user’s input, we would discover the best “answer” from
the comments repository.

2.2 Post-comment Indexing
We index all the posts to easily retrieve relevant posts

from the input sentence. In this way we do not need to scan
all posts for each input, but instead retrieve a limit number
of posts efficiently.

We apply Apache Solr [1], the Lucene-based indexing ser-
vice to index the post-comment pairs. In practice, we use
the default settings of Solr version 5.3.1. Since the retrieval
algorithm only retrieves relevant posts, we index only the
post texts in the service. We store all data of the pairs, in-
cluding post id, comments (text and their id’s) within the
Solr service as well. Note we store all the comments of a
post together in one record, i.e. the number of the records
is equal to the number of different posts.

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

485

Tokenization of the input posts is achieved by Chinese
word segmentation, hence we could retrieve the relevant
posts from a given sentence. We use Ansj [7] version 2.0.7
for Chinese word segmentation. This algorithm is based on
the Google semantics model and conditional random fields
(CRFs).

The process of indexing significantly increases the time-
efficiency of retrieving relevant posts. However the ranking
of “relevant” posts may not be suitable for our goal, since we
aim to discover the best reply to the original sentence; the
posts are acting as a bridge between the new post and the old
comments. Hence we develop our own ranking algorithm to
find the most proper posts which contain the best comments.

2.3 Posts Ranking
After retrieving some relevant posts in the repository, we

rank these posts by the similarity between the input and the
posts.

2.3.1 Features
The similarity methods are based on some textual fea-

tures, including character-based and word-based features:

1. Character-based features:

(a) Length of the longest common substring (LCS)
between A and B.

(b) Overlapping of any character in the two sentences,
1 if at least one same character, 0 if not.

2. Word-based features:

(a) Cosine similarity [9]:

cos(A,B) =

n∑
i=1

AiBi√
n∑

i=1

A2
i

√
n∑

i=1

B2
i

(1)

where Ai and Bi are components (words) of sen-
tence vector A and B respectively.

(b) Overlap similarity [5]:

overlap(A,B) =
|A ∩B|

min(|A|, |B|) (2)

(c) Word order similarity [4]:

order(r1, r2) = 1− ||r1 − r2||
||r1 + r2||

(3)

where r1 and r2 are the word order vectors of the
sentences.

(d) Inverse document frequency (IDF) scores: The
sum of the IDF of the common words in the sen-
tence, based on a large set of Chinese sentences.

(e) Latent semantic analysis (LSA) similarity [2]: The
sentence vectors are decomposed by singular value
decomposition (SVD), and the similarity is then
computed by the cosine similarity of the two ma-
trices.

(f) Word2Vec similarity [6]: The Word2Vec similar-
ity is the cosine similarity between two word vec-
tors, generated from the sentence word vectors
with the additive synthesize method.

For the word-based features, we firstly segment the sen-
tences with the Ansj word segmentation algorithm, and then
generate the sentence vector with the bag-of-words (BoW)
model. In addition, for the features 2a and 2b, we select
some important words in each sentence to form a new sen-
tence vector, hence generate two new features.

The important words are determined by their Part-Of-
Speech (POS) tags, including: Nouns, verbs, adjectives,
conjunctives, distinguishing words, numbers, and words de-
noting time, places etc. These words usually carry more
semantic information hence we increase their weights.

2.3.2 Ranking Models
Based on the features mentioned above, each retrieved

post, as a candidate, is assigned a score for ranking. The
score is generated from two similarity methods:

• Linear combination: The score is combined from the
features 1a, 1b, 2a (all-words and important-words)
and 2b (all-words and important-words). Each of the
features is given a weight of 0.5, except 2a (all-words)
and 2b (all-words), with a weight of 1.

• Random forest: The score is generated from a random
forest model, using all the features mentioned above.

The candidate posts are ranked in an order, that the posts
with higher scores are more relevant or similar to the input.
The comments to these posts are more suitable to reply the
original input.

2.3.3 Comment Selection
In addition to the similarity between the input and the

post, we also compute the similarity between the input and
the comments. We then rank the comments by different
strategies, by assigning scores to the comments:

1. Length: The score of the comment is its length, i.e.
number of characters of the comment.

2. Max comment similarity: For each post p, we retrieve
all its comments {c|c ∈ p}, and compute the similarity
between the input q and these comments. Then we
use the comment with the maximum similarity score
as a representative, and add up this score to the post
similarity score. I.e.,

score′(p) = sim(q, p) + max
c∈p
{sim(q, c)} (4)

After that, we use the post with the highest score′,
and output all its comments as the submitted results.

3. Combined similarity: In this strategy we consider each
comment separately. The score is assigned to the com-
ment c itself, i.e.

score′(c) = simc∈p(q, p) + sim(q, c) (5)

Then rank all the comments by this score, and output
the comments with the highest scores.

2.4 Experiment Settings
We have collected 200 million question-answer pairs from

two of the biggest Chinese cQA websites: Baidu Zhidao1

1http://zhidao.baidu.com/

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

486

and Sogou Wenwen2. These pairs are used both as the IDF
repository and the training data of the Word2Vec model. In
practice the word vectors consist of 200 dimensions.

We have gathered 3,809 sentence pairs from search query
logs of Baidu3, the biggest search engine in China, annotated
with labels same meaning, similar, and dissimilar. These
pairs serve as the training data for the random forest model.
In practice the random forest model is set up with 97 trees.

3. SUBMITTED RESULTS
In NTCIR-12 STC task, we have submitted five runs, cor-

responding to different combinations of ranking models and
comment selection methods, as shown in Table 1.

Table 1: Ranking Models and Comment Selection
Methods of the Submitted Runs

Run ID Ranking model Comment selection
uwnlp-C-R1

Linear
combination

Combined sim.
uwnlp-C-R2 Max comment sim.
uwnlp-C-R3 Length
uwnlp-C-R4 Random

forest

Combined sim.
uwnlp-C-R5 Max comment sim.

The evaluated results provided by the task organizers are
shown in Table 2 [8]. The evaluation measures are also in-
troduced in the reference [8].

Table 2: Ranking Models and Comment Selection
Methods of the Submitted Runs

Run ID Mean nDCG@1 Mean P+ Mean nERR@10

uwnlp-C-R1 0.2767 0.4284 0.4095
uwnlp-C-R2 0.2767 0.3977 0.3740
uwnlp-C-R3 0.1733 0.2564 0.2255
uwnlp-C-R4 0.1033 0.2085 0.1867
uwnlp-C-R5 0.1067 0.1862 0.1732

From the results we discover that the first three runs have
better results than the rest two. We can conclude that the
linear combination model ranks the posts better than the
random forest model. This is mainly because of the different
distribution of our training data against the post-comment
repository. Especially, the search engine queries do not carry
all the semantic information as in conversational sentences.

Moreover, the combined similarity method is better than
the maximum comment similarity method, showing that the
comments also provide useful semantic information with the
posts. Sometimes the comment containing some repeating
words in the post, showing that it is more relevant towards
the topic of the post. This is also proved by the results
that runs R1 and R2 are better than R4 and R5, since they
retrieve better posts.

Within the runs of the linear combination ranking model,
the run R3 is the worst among the three runs. This run
chooses longer comments as better ones. We can conclude
that although they are longer, the information they contain
may be irrelevant. They may even about a different topic
(spams or advertisements). However, the fact that R3 is

2http://wenwen.sogou.com/
3http://www.baidu.com/

even better than R4 and R5 proves that the retrieving a rel-
evant post is more important, as comments to the irrelevant
posts are totally non-related to the original input.

In addition to the results provided by the organizers, we
have also summarized the number of topics which we pro-
vide good comments. Table 3 shows that out of the 100 test
topics, we could comment (reply) to 17 topics perfectly (la-
beled as L2) with our first candidate (@1), and similarly, we
reply to 93 topics with acceptable comments (labeled as L1
or L2) within the ten candidates (@10). We can conclude
from these results that, in a practical conversation system
with only one reply per input, our method may only reply
with satisfiable answers one fifth of the time. However if we
could furthermore choose one of the ten candidates wisely,
we may achieve a satisfaction rate of more than 90%.

Table 3: Number of Test Topics Containing Good
Comments. #L2@n stands for the number of posts
we reply with at least one L2 comment within the
top-n candidates, and similarly L1+ for L1 or L2.

Run ID #L2@1 #L1+@1 #L2@10 #L1+@10

uwnlp-C-R1 17 25 64 93
uwnlp-C-R2 17 25 49 80
uwnlp-C-R3 8 12 32 59
uwnlp-C-R4 8 7 35 61
uwnlp-C-R5 8 8 30 53

As revealed from these results, we are interested in com-
bining the comment candidates from different strategies to-
gether and vote to rank them:

1. For each post (test topic), we first discover at most ten
candidate comments from each of the five strategies,
together with their rank (one to ten). There may be
duplicate comments generated by different strategies.

2. Then we merge the candidates together, and rank the
merged list again according to the score. The score to
each candidate is assigned with a sum of five scores
from all strategies, where the top candidate in a strat-
egy has a score of ten, the second candidate has a score
of nine, etc.

3. Finally we examine the top-one (@1) or top-ten (@10)
candidate comments.

The performance of this merge-and-vote strategy is:

• #L2@1: 19

• #L1+@1: 42

• #L2@10: 47

• #L1+@10: 79

Therefore we may conclude that the top candidate be-
comes better than a single strategy – the majority rule helps
discover the best comment. However, the top-ten results be-
come worse probably because the better choice is influenced
by worse strategies. Nevertheless, we may choose different
strategies (single or combined) according to different scenar-
ios and different applications.

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

487

4. CONCLUSIONS
In this paper, we describe our efforts in the participation

of the NTCIR-12 STC task. We have explored some textual
features to capture the similarity between two sentences.
Our results show that these features help us rank the rel-
evant posts. Moreover, we discover that longer comments
may be better to respond the original post as they carry
more information.

For the future work, we will continue digging out better
features and models to measure the semantic distance be-
tween sentences.

5. ACKNOWLEDGEMENTS
We would like to thank the organizers for organizing this

task. This work has been supported by an NSERC grant
OGP0046506, the Canada Research Chair program, an ORF
grant 115354, and CFI.

6. REFERENCES
[1] Apache Solr. Apache solr.

http://lucene.apache.org/solr/. Accessed: 2016-02-22.

[2] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.
Landauer, and R. Harshman. Indexing by latent
semantic analysis. Journal of the American society for
information science, 41(6):391, 1990.

[3] G. Feng, K. Xiong, Y. Tang, A. Cui, J. Bai, H. Li,
Q. Yang, and M. Li. Question classification by
approximating semantics. In Proceedings of the 24th
International Conference on World Wide Web
Companion, pages 407–417. International World Wide
Web Conferences Steering Committee, 2015.

[4] T. K. Landauer, D. Laham, B. Rehder, and M. E.
Schreiner. How well can passage meaning be derived
without using word order? a comparison of latent
semantic analysis and humans. In Proceedings of the
19th annual meeting of the Cognitive Science Society,
pages 412–417, 1997.

[5] D. Metzler, Y. Bernstein, W. B. Croft, A. Moffat, and
J. Zobel. Similarity measures for tracking information
flow. In Proceedings of the 14th ACM international
conference on Information and knowledge management,
pages 517–524. ACM, 2005.

[6] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013.

[7] NLPchina. Ansj chinese word segmentation.
https://github.com/NLPchina/ansj seg. Accessed:
2016-02-22.

[8] L. Shang, T. Sakai, Z. Lu, H. Li, R. Higashinaka, and
Y. Miyao. Overview of the NTCIR-12 short text
conversation task. In NTCIR, 2016.

[9] Wikipedia. Cosine similarity.
https://en.wikipedia.org/wiki/Cosine similarity.
Accessed: 2016-02-23.

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

488

