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Which button on the 
image do I click to 
reserve this new car?

Use your imagination to design a concept 
image for Artificial General Intelligence (AGI).

Chatting with SEED-X

Here is an image

Tell me about your design idea.

I designed the image to represent the concept 
of Artificial General Intelligence (AGI). AGI is a 
hypothetical AI that possesses the ability to 
understand, learn, and apply knowledge across 
a wide range of tasks at a level equal to or 
beyond human capability. In the image, I used a 
humanoid robot with advanced technology and 
futuristic elements to represent the advanced 
capabilities of AGI. The robot is equipped with 
various sensors, antennas, and other 
technological devices, symbolizing its ability to 
gather and process vast amounts of 
information. The background features a 
network of connections and nodes, 
representing the complex and interconnected 
nature of AGI’s cognitive processes. The overall 
design aims to convey the idea of AGI as a 
powerful and sophisticated AI that can perform 
a wide range of tasks and has the potential to 
revolutionize various aspects of society.

I want to make the room look more 
vibrant, do you have any suggestion?

Yes, you could consider adding 
some colorful decorations or 
artwork to the room. For 
example, you could hang a 
colorful painting or a piece of art 
on the wall, or add some colorful 
throw pillows to the couch. This 
can make the room feel more 
lively and welcoming.

Show me a picture after the 
decorations are added to the room.

Yes, there are several options suitable for 
your dinner. You can find a container of salad 
at green bbox, a container of cottage cheese 
at red bbox , and a container of yogurt at
yellow bbox.

The foods in the refrigerator are suitable for 
weight loss because they are low in calories 
and high in nutrients. The salad is a low-
calorie food that is high in fiber and vitamins, 
which can help you feel full and satisfied. The 
cottage cheese is a good source of protein, 
and it’s also low in calories. The yogurt is a 
good source of protein and calcium, and it’s 
also low in calories. 

The button to reserve the new 
car is the "Reserve Now" button, 
which is located in the top left 
corner of the image.

Make the man wear a red hat and 
change the background to the mountain.

Here’s a picture.
Generate a slide with texts emphasizing the significance of 
perseverance. Below is a vivid picture of a magnificent 
mountain peak under the sun.

{‘slide_height’: 6858000, ‘slide_width’: 9144000, ‘elements’: [{‘type’: 
‘image’, ‘image_path’: 'x': ' <loc-0> ', 'y': ' <loc-0> ', 'width': '<loc-224>', 
'height': '<loc-224>'}, {'type': 'text', 'x': ' <loc-49> ', 'y': ' <loc-42> ', 'width': ' 
<loc-131> ', 'height': ' <loc-21> ', 'paragraphs': [{'texts': 'Perseverance', 
'font_size': 40.0}]}, {'type': 'text', 'x': ' <loc-38> ', 'y': ' <loc-105> ', 'width': ' 
<loc-141> ', 'height': ' <loc-21> ', 'paragraphs': [{'texts': 'The capacity to 
persevere, even in the most difficult circumstances is what separates the 
successful from the unsuccessful.', 'font_size': 20.0}]}]}

Please write a brief appreciation for this painting.

Here’s a picture.

Are you curious about the 
scenery on the mountain?

The flowers are in 
full bloom.

The water is flowing 
over the rocks.

The view from the
top is amazing.

Change the top clothes of the model. Generate the following story.

I’ve been on a diet recently, is 
there any suitable food in the 
refrigerator for my dinner?

This is a captivating panoramic view of a traditional Chinese landscape painting. The scene is dominated by a river that meanders through the center of the composition, flanked by lush greenery and a variety of structures. 
The architecture is intricate, with buildings of different sizes and designs, some of which are adorned with traditional Chinese roofs. The painting is rich in detail, with numerous figures engaged in various activities, such as 
farming, fishing, and traveling. The colors are vibrant, with a predominance of greens and browns that bring the scene to life. The perspective is particularly striking, with the river serving as a central axis that draws the 
viewer’s eye through the composition. The painting is a testament to the artistic and cultural heritage of China, offering a glimpse into the country’s past through its depiction of everyday life and the natural environment.

Figure 1: The introduced SEED-X, a unified and versatile foundation model, can serve as multimodal
AI assistants in the real world after instruction tuning, capable of responding to a variety of user
needs through unifying multi-granularity comprehension and generation.
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ABSTRACT

The rapid evolution of multimodal foundation models has showcased remarkable
capabilities in vision-language understanding and generation, yielding impressive
results on academic benchmarks. However, there remains a gap in their progress
toward real-world applicability, primarily due to the models’ limited capacity to
effectively respond to various user instructions and interact with diverse visual
data. This limitation can be attributed to the fundamental challenge of modeling
multi-granularity visual semantics for comprehension and generation tasks. In
this paper, we take a pioneering step towards applying multimodal foundation
models in an open-world context and present a unified and versatile foundation
model, namely, SEED-X. As the first of its kind, SEED-X seamlessly integrates
two essential features: (1) comprehending images of arbitrary sizes and ratios, and
(2) enabling multi-granularity image generation. Besides the competitive results on
public benchmarks, SEED-X demonstrates its effectiveness in handling real-world
applications across various domains. We hope that our work will inspire future
research into what can be achieved by versatile multimodal foundation models in
real-world applications. All models, training, and inference codes are available at
https://anonymous.4open.science/r/SEED-X/.

1 INTRODUCTION

In recent years, Multimodal Large Language Models (MLLMs) (Li et al., 2023e; Zhu et al., 2023a;
Liu et al., 2023b; Peng et al., 2023; Bai et al., 2023; Liu et al., 2023a; Zhang et al., 2023b; Lin
et al., 2023) have demonstrated exceptional capabilities in comprehending multimodal data through
leveraging the strong generality of LLMs (Touvron et al., 2023; Brown et al., 2020; Chowdhery
et al., 2022). Some pioneering work (Sun et al., 2023b; Yu et al., 2023a; Ge et al., 2023a;b; Wu
et al., 2023; Dong et al., 2023; Sun et al., 2023c; Zhu et al., 2023b) further empower LLMs with
the ability to generate images beyond texts. While these models can handle a variety of tasks and
excel in academic benchmarks, the accuracy and diversity of their generated content still fall short of
real-world needs. We argue that further research on versatile multimodal foundation models should
focus more on bridging this gap.

What characteristics should a multimodal foundation model possess to be applicable in real-
world scenarios? We posit that it should tackle the inherent challenge of capturing multi-granularity
visual semantics for both comprehension and generation tasks, given that a multimodal foundation
model has to accommodate various downstream tasks requiring different levels of visual semantics.
As a result, two essential features should be incorporated into the model design: (1) understanding
images of arbitrary sizes and ratios, and (2) multi-granularity image generation, encompassing both
high-level instructional image generation and low-level image manipulation tasks. These attributes
form the basis for a multimodal foundation model’s effective application in an open-world context.

In this paper, we introduce SEED-X, a unified and versatile multimodal foundation model that
seamlessly integrates the essential features mentioned above. Specifically, SEED-X supports object
detection and dynamic resolution image encoding for multi-granularity comprehension, as well as
high-level instructional image generation and low-level image manipulation for multi-granularity
image generation. It is important to emphasize that integrating all these characteristics into a single
foundation model is by no means trivial, as highlighted in Table 1, since none of the previous works
fully support all of these features.

After instruction tuning, SEED-X can function as multimodal AI assistants in the real world, capable
of addressing various user needs through generating proper texts and images as shown in Fig. 1.
Specifically, our instruction-tuned models can act as an interactive designer, generating images while
illustrating creative intent, offering modification suggestions and showcasing visualizations based on
user’s input images. Additionally, they can act as knowledgeable personal assistants, comprehending
images of various sizes and providing relevant suggestions. Moreover, they can generate more diverse
outputs, such as slide layouts for slide creation, and interleaved image-text content for storytelling.
SEED-X signifies a notable advancement in developing a versatile agent for users in the real world.
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original image SEED SEED-X SEED-X w/ condition image conditional image

Figure 2: The reconstruction results of our visual de-tokenizer. It can decode realistic images that
are semantically aligned with the original images by taking the ViT features as inputs, and further
recover fine-grained details by incorporating the conditional images as inputs.

To endow SEED-X with the aforementioned characteristics, our approach incorporates (1) a visual
tokenizer to unify image comprehension and generation, where its multi-granularity de-tokenization
phase facilitates image generation and high-precision image manipulation, and (2) an MLLM with
dynamic resolution image encoding to enable the comprehension of images with arbitrary sizes and
aspect ratios. Specifically, we utilize a pre-trained ViT as the visual tokenizer and train a visual
de-tokenizer to decode realistic images by taking the ViT features as input. To realize the retention
of fine-grained details of the input image to satisfy image manipulation, we further fine-tune the
visual de-tokenizer to take an extra condition image as input in the latent space (See Fig. 2). The ViT
features serve as a bridge to decouple the training of the visual (de-)tokenizer and the MLLM. The
dynamic resolution image encoding divides an input image into sub-images and adds extrapolatable
2D positional embeddings to the ViT features of each sub-image, allowing the MLLM to scale to any
image resolution. For image generation, a fixed number of learnable queries are fed into the MLLM,
where the output hidden states are trained to reconstruct the ViT features of the target images.

We pre-train SEED-X on massive multimodal data, including image-caption pairs, grounded image-
text data, interleaved image-text data, OCR data, and pure texts. We further apply multimodal
instruction tuning to align SEED-X with human instructions across various domains, utilizing both
existing datasets and newly collected datasets that cover image editing, text-rich, grounded and
referencing QA, and slide generation tasks. The extensive evaluations on MLLM benchmarks demon-
strate that our instruction-tuned model not only achieves competitive performance in multimodal
comprehension, but also achieves state-of-the-art results in image generation compared to existing
MLLMs on SEED-Bench-2 (Li et al., 2023c).

All models, training and inference codes are available at https://anonymous.4open.
science/r/SEED-X/. We hope our work can bring insights about the potential of multimodal
models in real-world scenarios through unifying multi-granularity comprehension and generation.

2 RELATED WORK

With the rapid development of Multimodal Large Language Models (MLLM), recent studies have
been working on unified MLLMs that are capable of multimodal comprehension and generation

3
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Table 1: MLLMs that unify comprehension and generation listed by publication date and whether they
support the significant characteristics essential for real-world applications. “Decoder Input” denotes
the inputs for image generation, where “Features” means continuous features, “Token” represents
discrete tokens, “Text” implies text prompts, and “Latent” denotes VAE latent. “-” indicates that we
are unsure whether the model supports this characteristic.

Date Decoder
Input

Detec-
tion

Dynamic
-Res Img

Input

Image
Gen

High-
precision
Editing

Open-
source

Emu 07/2023 Feature × × ✓ × ✓
CM3Leon 07/ 2023 Token × × ✓ × ×

SEED-OPT 07/ 2023 Token × × ✓ × ×
LaVIT 09/2023 Token × × ✓ × ✓

NExT-GPT 09/2023 Feature × × ✓ × ✓
DreamLLM 09/2023 Feature × × ✓ × ×

SEED-LLaMA 10/2023 Token × × ✓ × ✓
VL-GPT 12/2023 Feature × × ✓ × ×
Gemini 12/2023 Token × - ✓ × ×
Emu2 12/2023 Feature × × ✓ × ✓

Unified-IO 2 12/2023 Token ✓ × ✓ × ✓
Mini-Gemini 03/2024 Text × × ✓ × ✓
Chameleon 05/ 2023 Token × × ✓ × ✓
Transfusion 08/2024 Latent × × ✓ ✓ ×

Show-o 08/2024 Token × × ✓ × ✓
VILA-U 09/2024 Token × × ✓ × ×
SEED-X 09/2024 Feature ✓ ✓ ✓ ✓ ✓

as shown in Tab. 1. Some work (Ge et al., 2023b;a; Yu et al., 2023a; Jin et al., 2023; Lu et al., 2023;
Team, 2024; Xie et al., 2024; Wu et al., 2024) utilize a discrete visual tokenizer to perform multimodal
autoregression with a unified next-word-prediction objective or masked visual token prediction. Some
research efforts (Sun et al., 2023b;a; Zhu et al., 2023b) have delved into multimodal autoregression
with continuous representations, where each image in the multimodal sequence is tokenized into
embeddings via a visual encoder, and then interleaved with text tokens for autoregressive modeling.
During inference, the regressed visual embeddings will be decoded into an image by a visual decoder.
Additionally, some studies (Dong et al., 2023; Wu et al., 2023) enable image generation in a non-
autoregressive manner through utilizing learnable queries to obtain visual representations from
MLLMs, which are further fed into a image decoder to generate images. Mini-Gemini, generates text
prompts using MLLMs and then leverages the existing SDXL (Podell et al., 2023) to output images.
Recent work Transfusion Zhou et al. (2024) adopts diffusion objectives, where the noised image
latents are de-noised for image generation through a VAE decoder.

Although these work have achieved competitive results on various academic benchmarks, such as
VQA and text-to-image generation, the accuracy and diversity of their generated content still fall
short of real-world needs, since they do not meet the requirements of modeling multi-granularity
visual semantics for comprehension and generation task. As shown in Tab. 1, we identify several
significant characteristics essential for real-world applications including object detection and dynamic
resolution image encoding for multi-granularity comprehension, as well as high-level instructional
image generation and low-level image manipulation for multi-granularity image generation. Notably,
none of the previous works fully support all of these characteristics. In this work, we present
SEED-X, a unified and versatile foundation model, which effectively incorporate the aforementioned
characteristics for real-world applications.

3 METHOD

3.1 VISUAL TOKENIZATION AND DE-TOKENIZATION

In SEED-X, we adopt a visual tokenizer to unify image comprehension and generation, and pre-train
a multi-granularity de-tokenizer to facilitate image generation and high-precision image manipulation

4
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Figure 3: Overview of visual tokenization and de-tokenization in SEED-X. In the first stage (left),
we pre-train a visual de-tokenizer, which can decode semantically consistent images by taking the
features of a pre-trained ViT as inputs. In the second stage (right), we fine-tune the visual de-tokenizer
through concatenating the latent features of a conditional image with the noise to recover the fine-
grained details of the original image.

in a two-stage manner. In the first stage, as shown in Fig. 3 (left), we utilize a pre-trained ViT as the
visual tokenizer and pre-train a visual de-tokenizer to decode realistic images by taking the features
of the ViT as inputs in the first stage. Specifically, N visual embeddings from the ViT tokenizer
(N = 64 after average pooling) are fed into a learnable module as the inputs of the U-Net of the
pre-trained SD-XL (Podell et al., 2023) (replacing the original text features). The learnable module
consists of four cross-attention layers to connect the visual tokenizer and the U-Net. We optimize
the parameters of the learnable module and keys and values within the U-Net on the images from
JourneyDB (Sun et al., 2024), LAION-Aesthetics (Schuhmann & Beaumont, 2022), Unsplash (Ali
et al., 2023), and LAION-COCO (Schuhmann et al., 2023). As shown in Fig. 2, compared with
SEED (Ge et al., 2023b), our visual de-tokenizer can decode images that are more semantically
aligned with the original images by taking the ViT features as inputs.

In the second stage, as shown in Fig. 3 (right), we further fine-tune the visual de-tokenizer to take
an extra condition image as inputs for the retention of low-level details. Specifically, we follow
InstructPix2Pix (Brooks et al., 2023) to encode the condition image into the latent space via the VAE
encoder, and concatenate them with the noisy latent as the input of U-Net. The channel number of
the U-Net convolutional layer is expanded from 4 to 8, and all parameters of U-Net are optimized.
We fine-tune the visual de-tokenizer on MagicBrush (Zhang et al., 2023a) and in-house image editing
data, as well as the pure images in the first stage, where the conditional inputs are set to zeros. As
shown in Fig. 2, by incorporating the condition image as an additional input besides the high-level
image features, our visual de-tokenizer can recover the fine-grained details of the original image.

3.2 DYNAMIC RESOLUTION IMAGE ENCODING

Current MLLMs require to resize the input images to a pre-defined resolution (typically a square
size), which corresponds to the training resolution of the vision encoder, which can result in the loss
of fine-grained information. In this work, we propose dynamic resolution image encoding to enable
the processing of images with arbitrary sizes and aspect ratios by dividing the image into a grid
comprising of sub-images. Specifically, for the visual encoder with the training resolution Ht ×Wt,
we first up-sample the input image with the size H ×W to the size of {Nh ∗Ht}× {Nw ∗Wt}. The
grid size Nh ×Nw, are determined by

min Nh ∗Nw,

s.t. H ≤ Nh ∗Ht and W ≤ Nw ∗Wt.
(1)

We also resize the original image to the size of Ht × Wt to provide global visual context. All
sub-images and the resized global image are fed into the visual encoder to obtain the features, which
are concatenated as the input of the LLM.

To enable the LLM to be aware of the positional information of each sub-image within the original
image, we add extrapolatable 2D positional embeddings to the visual features of each sub-image.
Specifically, for a sub-image with a normalized center location (xc, yc) in the grid, where 0.0 <
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Figure 4: Overview of SEED-X for multimodal pre-training. Each image is divided into sub-images
to support arbitrary sizes and aspect ratios, and their ViT features along with text tokens are fed into
an LLM to perform next-word prediction and image feature regression between the output hidden
states of the learnable queries and ViT features. During inference, the regressed image features are
fed into the visual de-tokenizer to decode images.

xc, yc < 1.0, its learnable positional embedding p is computed:

p =xc ∗ l + (1− xc) ∗ r + yc ∗ t+ (1− yc) ∗ b. (2)

l, r, t, and b represent four learnable position embeddings indicating left, right, top and bottom
respectively. Consequently, our visual encoder can handle inputs with any arbitrary sizes and aspect
ratios, even if the image resolution was not encountered during training.

3.3 MULTIMODAL PRE-TRAINING AND INSTRUCTION TUNING

3.3.1 TRAINING STAGE I: MULTIMODAL PRE-TRAINING

As shown in Fig. 4, SEED-X adopts next-word prediction and image feature regression training
objectives on interleaved visual and textual data. Specifically, we perform dynamic resolution
encoding of each image in the multimodal sequence, and their features along with text tokens are fed
into the pretrained LLM. In order to equip the model with detection and referencing abilities, we add
224 bbox tokens, designated for representing bounding box coordinates, represented by <box_start>
<loc-x_center> <loc-y_center> <loc-width> <loc-height> <box_end> with special tokens at the
beginning and end of the bounding box. The text and added bbox tokens are trained through
predicting the next token with cross-entropy loss.

We employ N learnable queries (N = 64 to align with the visual de-tokenizer) to obtain the output
visual representations from the LLM, which are trained to reconstruct the features of the pre-trained
ViT tokenizer with a Mean Squared Error (MSE) loss. We add two special tokens ‘<IMG>’ and
‘</IMG>’ to represent the beginning and the end of the query embeddings, and the ‘<IMG>’ is
trained to predict where an image emerges. In doing so, we utilize the pre-trained ViT tokenizer as a
bridge to decouple the training of a visual de-tokenizer and the MLLM for image generation. During
inference, the regressed visual representations from SEED-X are fed into the visual de-tokenizer to
decode realistic images.

We pre-train SEED-X initialized from Llama2-chat-13B using LoRA on massive multimodal data,
including image-captions pairs, grounded image-texts, interleaved image-text data, OCR data and
pure texts. We perform pre-training with 128 A100-40G GPUs (4 days) on a total of 120M samples.
See Appendix. A.1 and Appendix. A.2 for more details.
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Table 2: Comparison for multimodal comprehension and generation on MLLM benchmarks. “Im-
age Gen” denotes whether the model can generate images besides texts. “Single”, “Multi” and
“Interleaved” denote evaluating the comprehension of single-image, multi-image, and interleaved
image-text. “Gen” denotes evaluating the generation of images, and “/” denotes the model’s inability
to perform such evaluation. The best results are bold and the second best results are underlined.

Size Image
Gen

MMB SEED-Bench-2 MME

Single
P1 P2 P3 Perce-

ption
Cog-
nition

Single Multi Inter-
leaved Gen Single Single

GPT-4v - × 77.0 69.8 73.1 37.9 / 1409 517
Gemini Pro - ✓ 73.6 62.5 - - - 1609 540

Qwen-VL-Chat 10B × 61.8 50.3 37.4 38.5 / 1488 361
Next-GPT 13B ✓ - 31.0 27.8 40.3 42.8 - -

Emu 14B ✓ - 46.4 31.2 45.6 45.7 - -
SEED-LLaMA-I 14B ✓ - 49.9 32.4 48.0 50.6 - -

LLaVA-1.5 8B × 66.5 58.3 39.2 34.4 / 1506 302
XComposer-VL 8B × 74.4 66.5 50.0 29.0 / 1528 391

SPHINX-1k - × 67.1 68.5 37.7 32.5 / 1560 310
Emu2-Chat 37B × 63.6 - - - / 1345 333

SEED-X 17B ✓ 65.8 48.2 53.8 24.3 57.8 1250 236
SEED-X-I 17B ✓ 70.1 64.2 57.3 39.8 62.8 1457 321

3.3.2 TRAINING STAGE II: MULTIMODAL INSTRUCTION TUNING

We perform multimodal instruction tuning through fine-tuning SEED-X using a LoRA module with
both public datasets and in-house data covering image editing, text-rich, grounded and referencing
QA, and slide generation tasks. The details of datasets can be found in Appendix. A.1. We fine-
tune SEED-X with conversational and image generation data to yield a general instruction-tuned
model SEED-X-I, which can follow multimodal instructions and make responses with images, texts
and bounding boxes in multi-turn conversation. We further fine-tune the foundation model SEED-
X on specialized datasets, resulting in a series of instruction-tuned models tailored for specific
tasks, including SEED-X-Edit, SEED-X-PPT, SEED-X-Story and SEED-X-Try-on. The proficient
capabilities of these instruction-tuned model across various domains demonstrate the versatility of
our pre-trained foundation model SEED-X.

4 EXPERIMENTS

4.1 QUANTITATIVE EVALUATION

We evaluate SEED-X-I on benchmarks specifically designed for evaluating MLLMs, since recent
work (Liu et al., 2023c; Li et al., 2023c) point out that traditional VQA benchmarks are not tailored
for evaluating MLLMs with open-form output. As shown in Tab. 2, SEED-X-I achieves competitive
performance in both the image comprehension and generation tasks. For example, it achieves an
accuracy rate of over 70% on MMBench (Liu et al., 2023c) for evaluating single-image understanding.
SEED-X-I also shows promising results for comprehending multi-image and interleaved image-text
content in SEED-Bench-2 (Li et al., 2023b). Compared with previous work (Sun et al., 2023c; Ge
et al., 2023b; Wu et al., 2023) that unify comprehension and generation within an LLM, SEED-X-I
achieves the state-of-the-art performance in P3 level of SEED-Bench-2 including the evaluation of
text-to-image generation, next image prediction and text-image creation.

4.2 QUALITATIVE EVALUATION

4.2.1 APPLICATIONS IN THE REAL WORLD.

Since SEED-X seamlessly integrates two essential features including the comprehension of images
of arbitrary sizes and ratios, and multi-granularity image generation, encompassing both high-
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Why is it said that GPT-4 is 
safter than GPT-3.5?

I want to build a two-story 
cabin in the woods, with many 
commanding windows. Can 
you help me draw a picture to 
show a visualization of it?

I love reading books. Can you add a 
bookshelf in the bedroom?

Show me a picture of a 
bedroom inside the cabin.

Absolutely, I’d be happy to help 
you visualize your two-story cabin 
in the woods. Here’s a picture.

Please explain your design.

My design is a two-story cabin nestled in 
the heart of a dense forest. The cabin is 
constructed from rustic wood, giving it a 
warm and inviting appearance. It 
features a wrap-around porch on the 
ground floor, perfect for enjoying the 
fresh air and the sounds of nature. The 
upper floor is adorned with multiple 
windows, offering breathtaking views of 
the surrounding trees and wildlife. The 
roof is covered in shingles, providing a 
sturdy and durable protection against 
the elements. The overall design of the 
cabin is simple yet elegant, blending 
seamlessly with its natural surroundings.

Here’s a picture.

Absolutely, here is a picture.

Show me the location of the bookshelf.

I want to know tomorrow’s weather, 
which app should I use?

You should use the ‘Weather’ app.

What’s the weather like tomorrow?

Tomorrow’s weather is predicted to be 
sunny with a high of 25°C and a low of 17°C.

The text states that GPT-4 is safer 
than GPT-3.5 because it is 82% less 
likely to respond to requests for 
disallowed content and 40% more 
likely to produce factual responses 
than GPT-3.5 on their internal 
evaluations. This suggests that GPT-
4 is designed with safety and 
factuality in mind, making it a safer 
and more reliable tool for users.

Can you draw a colorful anime character based on the sketch?

Yes, I can definitely create a colorful anime 
character using the sketch as a reference.

Generate a slide with a title discussing the importance of 
physical exercise. A vivid picture of someone running a 
beautiful sunrise is displayed.

{‘slide_height’: 6858000, ‘slide_width’: 9144000, ‘elements’: [{‘type’: ‘image’, 
‘image_path‘: , 'x': ' <loc-0> ', 'y': ' <loc-0> ', 'width': '<loc-224>', 'height': 
'<loc-224>'}, {'type': 'text', 'x': ' <loc-38> ', 'y': ' <loc-25> ', 'width': ' <loc-138> ', 
'height': ' <loc-143> ', 'paragraphs': [{'texts': 'A healthy body is the key to a 
healthy mind.', 'font_size': 32.0}]}, {'type': 'text', 'x': ' <loc-29> ', 'y': ' <loc-90> ', 
'width': ' <loc-185> ', 'height': ' <loc-71> ', 'paragraphs': [{'texts': 'The idea of 
physical exercise is to maintain a balanced life.', 'font_size': 28.0}]}]}

What should my 4-year-old daughter wear on next 
Tuesday for an outing? Recommend an outfit.

A cute and comfortable outfit could be a 
blue dress with a white polka dot pattern.

Do you know this novel? Yes, “The Three-Body Problem” is a science 
fiction novel by Chinese author Liu Cixin. It is 
the first book in the “Three-Body Trilogy” 
and is known for its unique blend of science 
fiction and Chinese culture. The novel 
explores the first contact between humans 
and an alien civilization from a distant star 
system, and delves into complex themes 
such as the nature of intelligence, the limits 
of scientific knowledge, and the 
consequences of advanced technology. 

Absolutely, please enjoy 
this illustration.Can you 

create an 
illustration 
for this 
novel that 
depicts its 
innovative 
story?

Do you know where this photo was taken?

This photo was taken in Neuschwanstein Castle, which is 
located on the Schwanen mountain in Germany.

The composition of the photo is quite striking. The 
Neuschwanstein Castle, a large, white, fairy-tale-like castle, is 
perched on top of a hill. It’s surrounded by lush green trees 
and overlooks a beautiful landscape. The castle’s towers and 
turrets add a sense of grandeur and majesty to the scene. 
The sky is a clear blue, and the overall mood of the photo is 
serene and picturesque. The composition of the photo, with 
the castle as the focal point, creates a sense of depth and 
perspective, drawing the viewer’s eye towards the castle and 
the breathtaking view beyond.

I love this photo. Can you explain its composition?

Here is a picture.

Can you turn this photo into a watercolor painting?

Figure 5: Examples of what SEED-X can do in real-world scenarios after instruction tuning through
unifying multi-granularity comprehension and generation. Our instruction tuned models can function
as an interactive designer, generating images without descriptive captions while illustrating creative
intent, and showcasing visualizations of modified images. They can act as knowledgeable personal
assistants, comprehending images of arbitrary sizes and offering relevant suggestions in multi-turn
conversations.
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original image 256 tokens 64 tokens 64 tokens fully fine-tune 32 tokens

Figure 6: Ablation study on the number of visual tokens and trainable parameters for training visual
de-tokenizer.

level instructional image generation and low-level image manipulation tasks, it can be effectively
instruction tuned to function as multimodal AI assistants in the real world across various domains.
As shown in Fig. 1 and Fig. 5, our instruction tuned models can serve as an interactive designer,
which can generate images without descriptive captions while illustrate creative intent, and showcase
visualizations of modified images. For example, it can explain the design idea of concept image
for AGI and a two-story cabin. It can create an imaginative illustration for the novel without the
need of describing the scene with languages. It can further offer modification suggestions of the
user’s room and showcase the visualization. Additionally, the instruction tuned models can act as an
knowledgeable personal assistant, comprehending images of arbitrary sizes and providing relevant
suggestions. For example, it can identify foods suitable for fat reduction in the refrigerator, display
appropriate clothing based on the screenshot of weather forecasts.

4.2.2 IMAGE GENERATION AND MANIPULATION.

We compare previous MLLMs that are capable of generating images for text-to-image generation in
Fig. 8 of Appendix. Our instruction tuned model can generate images that are more aligned with the
elements in the caption and possess artistic qualities. Through utilizing a pre-trained ViT Tokenizer
as the bridge to decouple the training of visual de-tokenizer and the MLLM, our pre-trained model
SEED-X can effectively realize high-quality image generation, which is a fundamental capability to
be applied in real-world scenarios.

We further compare image manipulation with previous MLLMs (See Appendix. A.3). As shown in
Fig. 9, we can observe that SEED-X-Edit can more effectively adhere to editing instructions while
maintaining the low-level details of the input image. Our MLLM accurately predicts visual semantic
representations based on an input image and a language instruction, which serve as input for the
U-Net. The visual de-tokenizer can further condition on the input image, ensuring the preservation of
fine-grained details in the decoded images.

4.2.3 MULTIMODAL COMPREHENSION.

We provide qualitative examples of multimodal comprehension by SEED-X-I in Fig. 10 and Fig. 11
of Appendix. SEED-X-I can realize fine-grained object detection and perception, text-rich compre-
hension, fundamental mathematical computation, world-knowledge and commonsense reasoning,
diagram understanding, etc.

4.3 ABLATION STUDY

In this section, we perform ablation studies on the training of our visual de-tokenizer and the
pre-training of SEED-X to enable a MLLM for image generation.
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256 tokens 64 tokens Multi-layer Resampler Fine-tune de-tokenizer

An astronaut riding a 
horse in the forest.

A dog flying in the sky.

Figure 7: Ablation study on the number of visual tokens, model architecture and optimization targets
during pre-training SEED-X for image generation.

For visual de-tokenization, N visual embeddings (after average pooling) from the ViT tokenizer are
fed into a learnable module as the inputs of the U-Net of the pre-trained SD-XL. We perform an
ablation study on the number of visual tokens and the learnable parameters of the SD-XL U-Net,
where keys and values within the U-Net are optimized if not specified with “fully fine-tune”. As
shown in Fig. 6, we can observe that more visual tokens can result in better reconstruction of the
original images. For example, the decoded images from 256 visual embeddings can recover the
characters’ postures of the original images, while decoded images from 32 visual embeddings have
already lost the original structure of the scene. We further observe that fully fine-tuning the parameters
of the SD-XL U-Net can lead to distortions in image details, such as the woman’s feet, compared to
only training the keys and values within the U-Net. In SEED-X, we use N = 64 visual embeddings to
train the visual de-tokenizer and only optimize the keys and values within the U-Net (See below for
an explanation of why we do not choose N = 256).

To enable MLLM for image generation, we employ N learnable queries to obtain the output visual
representations from the LLM, which are trained to reconstruct N visual embeddings from the ViT
tokenizer with a learnable module. We first perform an ablation study on the number of learnable
queries. The images generated by the MLLM based on the input caption are shown in Fig. 7. We can
observe that using 256 learnable queries to reconstruct 256 visual embeddings can lead to distortion
in the generated images compared with N = 64. This occurs because regressing more visual features
is more challenging for the model, even though 256 visual embeddings from the de-tokenizer can
better reconstruct images, as demonstrated in the previous ablation study. We also observe that,
compared to learning a one-layer cross-attention for reconstructing image features, a multi-layer
resampler (multi-layer cross-attention) yields less satisfactory performance, which can happen due
to the lack of more direct regularizations on the hidden states of the LLM. We further optimize the
visual de-tokenizer by using the reconstructed visual embeddings from the MLLM as input instead
of ViT features, but the generated images exhibit a more monotonous appearance. It demonstrates
the effectiveness of utilizing the ViT Tokenizer as the bridge to decouple the training of visual
de-tokenizer and the MLLM for image generation.

5 CONCLUSION

In this paper, we present SEED-X, a versatile foundation model, which can function as multimodal
AI assistants in the real world after instruction tuning. SEED-X seamlessly integrates two essential
features including image comprehension of arbitrary sizes and ratios, and multi-granularity image
generation, which encompasses both high-level instructional image generation and low-level image
manipulation tasks. These fundamental features form the basis for a multimodal foundation model to
be effectively applied in an open-world context. We hope that SEED-X can inspire future research
into the potential of multimodal large language models (MLLMs) in the real-world scenarios through
unifying multi-granularity comprehension and generation.
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A APPENDIX

A.1 PRE-TRAINING AND INSTRUCTION TUNING DATASETS

As listed in Tab. 3, we pre-train SEED-X and conduct instruction tuning on a large variety of both
public datasets and in-house data. For multimodal pre-training, we utilize image-caption pairs,
grounded image-caption pairs, interleaved image and text content, OCR data and pure text data. The
images of LAION-COCO (Christoph et al., 2022) and SAM (Kirillov et al., 2023) are re-captioned
with Qwen-VL-Chat (Bai et al., 2023) for a more detailed descriptive caption to improve both image
comprehension and generation.

For instruction tuning, we utilize various public VQA datasets, and further curate text-rich QA,
grounded and referencing QA to enhance the model’s capability of comprehending text-rich images
and detecting objects that requires reasoning. We use multiple conversational datasets, which are
specifically collected for MLLMs with open-form text output. We use the same image-caption
pairs as in the pre-training phase to maintain the model’s ability to generate images. For the image
manipulation, since the high-precision editing dataset MagicBrush (Zhang et al., 2023a) is only at the
level of thousands, we employ a series of models to collect a dataset of millions of image editing
examples, which are used for both training the visual de-tokenizer and SEED-X-Edit. We further
collected data on slides, obtaining images, captions, and layouts for training slide generation.

A.2 IMPLEMENTATION DETAILS

Visual Tokenization and De-tokenization. We use the visual encoder from Qwen-vl (Bai et al.,
2023) as the ViT Tokenizer and adopt 1D average pooling to obtain N = 64 visual embeddings.
These visual embeddings are fed into four layers of cross-attention as the input of the U-Net initialized
from SDXL (Podell et al., 2023). In the first stage, we optimize the parameters of the cross-attention
layers and the keys and values within the U-Net on the images from JourneyDB (Sun et al., 2024),
LAION-Aesthetics (Schuhmann & Beaumont, 2022), Unsplash (Ali et al., 2023), and LAION-COCO
(Schuhmann et al., 2023). We train the visual de-tokenizer on 32 A100-40G GPUs with 42K training
steps, where the learning rate is set to 1e-4 with cosine decay.

In the second stage, we encode the condition image into the latent space via the VAE encoder, and
concatenate them with the noisy latent as the input of U-Net. The channel number of the U-Net
convolutional layer is expanded from 4 to 8, and all parameters of U-Net are optimized. We pre-train
the visual conditioner on MagicBrush (Zhang et al., 2023a) and in-house image editing data, as well
as the image-caption pairs in the first stage, where the conditional inputs are set to zeros. We fine-tune
the visual de-tokenizer on 32 A100-40G GPUs with 30K training steps, where the learning rate is set
to 1e-4 with cosine decay.

Multimodal Pre-training and Instruction Tuning. We utilize the visual encoder from Qwen-vl (Bai
et al., 2023) as the ViT Tokenizer and initialize a cross-attention layer to obtain N = 64 visual
embedding as the input of the LLM initialized from Llama2-chat-13B. We initialize N = 64 learnable
queries and the output hidden states from them are fed into a cross-attention layer to reconstruct
N = 64 visual embeddings from the ViT Tokenizer. We optimize the LLM using LoRA and optimize
the parameters of the input cross-attention layer, output cross-attention layer, extrapolatable 2D
positional embeddings, and LoRA on image-captions pairs, grounded image-texts, interleaved image-
text data, OCR data and pure texts. We perform pre-training with 128 A100-40G GPUs (4 days) on a
total of 120M samples, where the learning rate is set to 1e-4 with cosine decay.

For the instruction tuning, we fine-tune a LoRA module on the pre-trained model, and optimize
the parameters of the input cross-attention layer, output cross-attention layer, extrapolatable 2D
positional embeddings, and LoRA. We further fine-tune SEED-X on specialized datasets, resulting in
a series of instruction-tuned models tailored for specific tasks, including SEED-X-Edit, SEED-X-PPT,
SEED-X-Story and SEED-X-Try-on.

A.3 QUALITATIVE EXAMPLES

Text-to-image Generation, Fig. 8 visualizes the comparison between MLLMs for text-to-image
generation including Next-GPT (Wu et al., 2023), SEED-LLaMA-I(Ge et al., 2023b), Emu2-Gen (Sun
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Table 3: Overview of the pre-training and instruction tuning datasets.

Type Dataset

Pre-training

Image-Caption

LAION-COCO (Christoph et al., 2022) (Re-caption),

SAM (Kirillov et al., 2023) (Re-caption),

LAION-Aesthetics(Schuhmann & Beaumont, 2022),

Unsplash (Ali et al., 2023), JourneyDB (Pan et al., 2023),

CapFusion (Yu et al., 2023b),

Grounded Image-Caption GRIT (Peng et al., 2023)

Interleaved Image-Text
MMC4 (Zhu et al., 2023c), OBELICS (Laurençon et al., 2023),

OpenFlamingo (Awadalla et al., 2023)

OCR LLaVAR (Zhang et al., 2023c), Slides (In-house)

Pure Text Wikipedi

Instruction Tuning

VQA

LLaVAR (Zhang et al., 2023c), Text-rich QA (In-house),

MIMIC-IT (Li et al., 2023a), MathQA (Amini et al., 2019),

ChartQA (Masry et al., 2022), AI2D (Kembhavi et al., 2016),

ScienceQA (Lu et al., 2022), KVQA (Shah et al., 2019),

DVQA (Kafle et al., 2018), Grounded QA (In-house)

Referencing QA (In-house)

Conversation
LLaVA-150k (Liu et al., 2024), ShareGPT (Chen et al., 2023),

VLIT (Li et al., 2023d), LVIS-Instruct4V (Wang et al., 2023),

Vision-Flan (Xu et al., 2024), ALLaVA-4V (Chen et al., 2024)

Image Generation

LAION-COCO (Christoph et al., 2022) (Re-caption),

SAM (Kirillov et al., 2023) (Re-caption),

LAION-Aesthetics(Schuhmann & Beaumont, 2022),

Unsplash (Ali et al., 2023), JourneyDB (Pan et al., 2023)

Image Editing

Instructpix2pix (Brooks et al., 2023),

MagicBrush (Zhang et al., 2023a),

Openimages (Kuznetsova et al., 2020)-editing (In-house),

Unsplash (Ali et al., 2023)-editing (In-house)

Slides Generation In-house data

Story Telling VIST (Huang et al., 2016)

Virtual Try-on VITON-HD (Choi et al., 2021)

et al., 2023a) and Gemini (Team et al., 2023). Compared with previous MLLMs, our instruction
tuned model can generate images that are more aligned with the elements in the descriptive caption
and possess artistic qualities. For example, images generated by SEED-X-I vividly and accurately
depicts “person standing in a small boat”, “a gleaming sword on its back”, “an oriental landscape
painting”, “tiger with vivid colors” in the captions. Through utilizing a pre-trained ViT Tokenizer
as the bridge to decouple the training of visual de-tokenizer and the MLLM, our pre-trained model
SEED-X can effectively realize high-quality image generation, which is a fundamental capability for
applying multimodal models in real-world scenarios.
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A lonely person standing in a small boat, floating in the vast ocean, surrounded 
by thick fog in the sky, giving a sense of confusion and helplessness.

A fearless cat, with a gleaming sword on its back.

The golden moment of sunrise, Huangshan, China, towering Qishi Peak, a 
large area of clouds, a small welcome pine, an oriental landscape painting.

A fierce cartoon tiger, with furrowed brows and bared teeth, 
displays its anger through vivid colors and exaggerated features.

Emu2-Gen Gemini SEED-X-ISEED-LLaMA-INext-GPT

Figure 8: Qualitative comparison between MLLMs for text-to-image generation. SEED-X-I is
capable of generating images that are more closely aligned with the elements in the descriptive
caption and exhibit artistic qualities.

Image manipulation. We compare image manipulation with previous MLLMs including Emu2-
Gen (Sun et al., 2023a), Gemini (Team et al., 2023), MGIE (Team et al., 2023) and Mini-Gemini (Team
et al., 2023). Language-guided image manipulation presents a significant challenge as the model
must be capable of comprehending free-form instructions and generating images with the low-level
details of the input image preserved. As shown in Fig. 9, we can observe that SEED-X-Edit can
more effectively adhere to editing instructions while maintaining the low-level details of the input
image. For instance, SEED-X-Edit can accurately add sunglasses to the dog on the right, while both
Emu2-Gen and MGIE fail to follow the instruction, resulting in sunglasses being added to both dogs.
Additionally, SEED-X-Edit successfully eliminates the dog in the baby image while preserving the
low-level background details and the baby’s features. In contrast, Emu2-Gen fails to retain the fine
details of the input image, and MGIE is unsuccessful in removing the dog. Note that Gemini lacks
the ability to edit images as it retrieves images on the Internet. Here the presence of black images is
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Adorn the dog 
in the right with 
sunglasses.

Make it under
a beautiful
sunset.

Turn them
into cartoon
characters.

Remove the
dog from
the image.

Emu2-Gen Gemini SEED-X-EditMGIEInput Image Mini-Gemini

Figure 9: Qualitative comparison between MLLMs for image manipulation. SEED-X-Edit shows
enhanced ability in adhering to instructions while preserving low-level details of input images. The
black images result from Gemini’s inability to display human images.

due to its failure to display images related to human portraits. Mini-Gemini generates text prompts
as the input of a pre-trained SDXL model, which can not preserve the visual details of the input
image. The examples demonstrate the effectiveness of our instruction model for high-precision image
manipulation. Our MLLM accurately predicts visual semantic representations based on an input
image and a language instruction, which serve as input for the U-Net. The visual de-tokenizer can
further condition on the input image, ensuring the preservation of fine-grained details in the decoded
images.

Multimodal Comprehension We provide qualitative examples of multimodal comprehension by
SEED-X-I in Fig. 10 and Fig. 11. SEED-X-I can realize fine-grained object detection and perception,
text-rich comprehension, fundamental mathematical computation, world-knowledge and common-
sense reasoning, diagram understanding, which are crucial capabilities for its application in real-world
scenarios.
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Detect the boat in the image. Count the number of the people.

There are 11 people in the image.

What is the size of the second bedroom?

The second bedroom is 10’10" x 14’7".

What are all the scene text 
in the image?

Here are the order details for my taxi 
ride. Should I actually pay $29.42? 

The scene text is “THE EARTH 
WITHOUT ART IS JUST ‘EH’”.

Based on the image, the total amount 
due is $32.42, which is the sum of the 
base fare, mileage fee, duration fee. 
The discount is $3, which is subtracted 
from the total, resulting in the actual 
paid amount of $29.42. Therefore, you 
should pay $29.42 for the taxi ride.

What historical event is shown 
in the picture?

The picture shows the famous 1927 
Solvay Conference, which was a 
landmark meeting in the history of 
physics. It was attended by many of the 
most prominent physicists of the 20th 
century, including Albert Einstein, Niels 
Bohr, Werner Heisenberg, Erwin 
Schrödinger, and Marie Curie. The 
conference was held in Brussels, 
Belgium, and focused on the 
development of quantum mechanics.

Figure 10: Qualitative examples of multimodal comprehension by SEED-X-I.
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Can this be true in the real world?

The meme is comparing the quality of 
handwriting in the first two pages of 
an exam and the last two pages. It 
suggests that the quality of 
handwriting often deteriorates as the 
exam progresses. This is a humorous 
way to express the common 
experience of writing neatly at the 
beginning of an exam and becoming 
less neat as the time progresses.

Is there anything in the image that can protect 
me from catching the flu virus when I go out?

Yes, the black face mask located at green
bbox can help protect you from catching 
the flu virus when you go out.

No, this is not possible in the real 
world. The image shows a stack of 
dice that are not physically 
connected, yet they are arranged in a 
way that suggests they are connected. 
This is an optical illusion, and the dice 
are not actually connected.

What is the meaning of the meme?

Please explain the method in details.

The method in the image is a 
Convolutional Neural Network (CNN) 
used for image classification. The process 
starts with the input image on the left, 
which is a green snake. This input goes 
through a convolutional layer, indicated 
by the green arrow pointing downwards. 
This convolutional layer is followed by a 
max pooling layer. The output of the max 
pooling layer feeds into a fully connected 
layer. This fully connected layer leads to 
the output of the network, which is the 
classification of the input image. The 
final output of the classification step is 
the classification of the input image, 
which is a green snake.

Figure 11: Qualitative examples of multimodal comprehension by SEED-X-I.
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