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Abstract

With the development of new sensors and monitoring devices, more sources of data be-
come available to be used as inputs for machine learning models. These can on the one
hand help to improve the accuracy of a model. On the other hand, combining these new
inputs with historical data remains a challenge that has not yet been studied in enough
detail. In this work, we propose a transfer learning algorithm that combines the new and
historical data with different input dimensions, which is especially beneficial when the new
data is scarce. We focus the approach on the linear regression case, which allows us to
conduct a rigorous theoretical study on the benefits of the approach. Our approach achieves
state-of-the-art performance on several real-life datasets, outperforming other linear transfer
learning algorithms and performing comparably to non-linear ones. In addition, we prove
that our approach is robust against negative transfer learning assuming that the new inputs
are normally distributed, and confirm its robustness empirically also on real-world data
distributions.

1 Introduction

The constant evolution of sensor technology and measuring equipment brings ever more data sources that
can be employed by machine learning practitioners to build better predictive models. In the healthcare
domain, for example, new ICT equipment is installed and starts generating new sensory data that helps
doctors to make better diagnostics (Sheng & Ling, 2006). Similarly, in the predictive maintenance domain,
new sensors are developed and installed to help monitoring the state of industrial equipment. In both cases,
it is desirable to update the predictive model or to train a new one so that it can make use of the new inputs.
However, the data collection can be expensive and time-consuming, taking a long time before it is feasible
to train a new model. This can be seen as a transfer learning problem where there are two datasets: the
historical data with plenty of samples but without the new input features and the newly collected data with
fewer samples, but with all available input features (Figure 1). The goal then is to use the historical data as
the source dataset to improve the prediction accuracy using all inputs, which are observed only in the target
dataset. We refer to this setup as "incremental input transfer learning".

Research in transfer learning and domain adaptation has put forward methods for learning a target task with
limited data available by using data from other similar tasks referred to as source tasks. For example, recent
transfer learning works (WEI et al., 2018) yield state-of-the-art accuracy on classifying images from a target
domain given only a small portion of target data. These works have considered mainly two variations of
this setting: transfer across different tasks and transfer across different input domains (Pan & Yang, 2010).
For the latter case, most research works assume that the inputs have the same dimension and come from
different distributions, exploiting some semantic similarity between the domains (Chen et al., 2021; 2015;
Obst et al., 2021; Mousavi Kalan et al., 2020; Zhuang et al., 2021). Although these works assume arbitrary
distributions for source and target domains, it is non-trivial to show that their results generalize when the
input dimensions are different. Other works use mapping functions (Yang et al., 2016; Moon & Carbonell,
2017; He et al., 2020; Yan et al., 2018; Wei et al., 2019) to cast the data into a new domain where the
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Figure 1: The historical and the new datasets represented as a transfer learning problem where the target
differs by the amount of inputs.

source and target data are compatible, but we argue that for this kind of approach to work it requires some
exploitable relationship between historical and new features, whereas our approach also works when there is
no such relationship or when it is weak.

In this paper, we study the incremental input problem theoretically in its linear regression version. We
summarize our contributions in the following items:

• We provide an efficient and easy to implement transfer learning approach for this problem which is
especially helpful when the new input data is scarce;

• We show through rigorous theoretical study that the approach is robust against negative transfer
learning1 and we prove an upper bound for its generalization error;

• We confirm empirically the robustness of our approach using real-life data and show that it out-
performs other linear mapping based transfer learning approaches, and performs on par with more
complex state-of-the-art non-linear approaches.

2 Related Work

Transfer Learning: Studies in transfer learning seek to learn a target task with limited data by using
large amounts of data from source datasets with similar labels or input features (Pan & Yang, 2010). In
the linear regression case, Obst et al. (2021) propose the notion of transfer gain and a statistical test to tell
when using a source dataset to pre-train a model is better than training a model from scratch. They assume
that the model should be fine-tuned by using gradient descent on the target data, but often this approach is
less efficient than the least-squares method since it requires carefully selecting the step size and number of
iterations, and can lead to sub-optimal solutions. Chen et al. (2015) present a linear regression method that
combines two datasets: one is small and unbiased, and the other is large and biased. They study in detail the
conditions when their approach is beneficial as a function of the amount of bias in the large dataset. Other
works focus on the theoretical properties of transfer learning: Mousavi Kalan et al. (2020) show the minimax
bounds for transfer learning based on a notion of true distributions where the source and target datasets are
sampled from; and Hanneke & Kpotufe (2019) propose a new discrepancy metric between source and target
data and prove the minimax bounds for learning a classifier according to their metric. Their setting differs
from ours mainly because we assume that one or more variables are not observed in the large dataset, while
they assume that all variables are present in both datasets.

1According to the transfer gain definition from Obst et al. (2021).

2



Under review as submission to TMLR

Heterogeneous Transfer Learning: This branch of transfer learning concerns the problem where the
inputs in the source and the target domains differ in feature dimensionality (Zhuang et al., 2021). Here,
the main focus of existing approaches is on learning a feature mapping from the source and target datasets
into a homogeneous feature space where all data can be combined to train the final model. They split in
supervised (Yan et al., 2018; Moon & Carbonell, 2017) and unsupervised (Yang et al., 2016; He et al., 2020;
Wei et al., 2019).

In the supervised case, Yan et al. (2018) uses class labels to improve the distribution alignment of the source
and target data in the new feature space. On top of learning the feature mapping, Moon & Carbonell
(2017) also uses an attention mechanism to weight the source instances based based on their corresponding
classification accuracy in a joint label space. We do not compare to these methods since they require
classification labels, and we focus on regression tasks.

In the unsupervised case, some heterogeneous transfer learning approaches rely on instance-correspondence
(IC) between pairs of source and target data to learn the feature mapping (Yang et al., 2016; He et al., 2020).
For example, for text sentiment classification tasks where source and target data are in different languages,
a document in the target language corresponds to its translation in the source language (Yang et al., 2016).
However, this kind of data pairs do not exist in many domains (i.e. medical records or predictive maintenance
data), rending IC approaches unfeasible in those cases.

Another unsupervised approach by Wei et al. (2019) assumes a common subset of features among source
and target data and uses it to estimate the value of the missing target-specific features through a feature
mapping function. The mapping is obtained by minimizing the following objective:

minW ‖f(xhist
T ,W )− xnew

T ‖2 + αMMD(f(xS ,W ), xnew
T ) + β‖W‖2

where xhist
T and xnew

T are the historical features and the new features, respectively, which are observed in the
target dataset, while xS is the source dataset where only the historical features are observed and W are the
DSFT parameters. The first term corresponds to a least-squares regression from the historical features to
the new ones, the second term is the maximum mean discrepancy (MMD) between the features predicted for
the source dataset and the ones observed in the target dataset. The last term is a simple L2 regularization
of the parameters. They propose two versions to apply their method: one where f is just a linear mapping
(DSFTl) and a kernelized variation of it (DSFTnl), and they present closed-form solutions for each version.
In the incremental input learning case, our final goal is to learn a predictor of the labels using all the target
features. This approach works as a preprocessing step to fill up the source dataset, but if the mapping
between historical and new features is not significantly represented in the data or too difficult to learn (i.e.
when the target data is limited and/or the source data is very large), DSFT can introduce extra noise and
hurt the performance of the predictor. Nevertheless, we compare DSFT with our approach in our experiments
in the later sections.

Incremental attribute learning: The problem of learning a model when the number of inputs is changing
has been studied previously by Guan & Li (2001). They propose an algorithm to automatically update a
neural network when new inputs are discovered. However, as their work’s main focus is to propose a new
algorithm and evaluate it empirically, there is no study about its theoretical properties. In addition, they
assume sufficient data to train a neural network from scratch using the new features, which may, in many
cases, mean that the historical data is no longer necessary.

Also similar to incremental learning, Hou et al. (2017); Zhang et al. (2020) study the problem of online
learning where the data comes in streams and features are added and removed over time. Their setting
assumes that only one data point is observed at each time and while the previously streamed data are lost,
making their approach significantly less applicable to our transfer learning problem.

Missing data: Another way of approaching the incremental learning problem is by treating the new features
as missing in the source dataset and solving it by using missing data techniques, widely documented by Little
& Rubin (2019). The most commonly used approaches in this domain, however, are designed for when the
proportion of missing data is small, while in this paper we focus on the case where the vast majority of data
points have the same missing features.
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3 Defining a linear model for the source and the target datasets

We are concerned with the problem of learning a model based on two datasets: the historical data and the
newly collected data containing extra features. We will refer to the first one as the source dataset and to the
second one as the target dataset since we want to tackle this problem using a transfer learning approach.
We choose linear regression for this study because it allows us to derive closed-form solutions that are easier
to inspect and gain insights into the nature of the problem. The labels in both datasets represent the same
linear regression task and follow the same prior distribution. In this section, we want to give a formal
definition of these datasets and their conditional distributions assuming the context of linear regression.
These definitions will be used throughout the remainder of the paper.

We define the target dataset as (xT ,YT ), where xT ∈ RnT×dT is a full rank design matrix containing nT
independent observations of dT input features and YT ∈ RnT is a random vector containing the respective
labels. They are related by the linear model YT = xT θ + wT , where θ is the dT -dimensional parameter
vector describing the linear relationship between inputs and labels, and wT ∼ N (0nT , σ2InT ) is additive
Gaussian noise. Our goal is to learn the parameter vector θ. In addition, we define the source dataset as
(xS ,YS), where xS ∈ RnS×dS is a full rank matrix containing nS observations of dS input features (dS < dT )
and YS ∈ RnS represents the random vector of the labels. For this dataset, we assume that the relationship
between the labels and inputs is YS = xSθ

′ + X′′θ′′ + wS , where θ′ and θ′′ correspond respectively to the
first dS and last dT −dS components of θ and X′′ is a nS×(dT −dS) random matrix with independent entries
such that X′′

ij ∼ N (0, 1). Again we assume additive Gaussian noise wS ∼ N(0, σ2InS ), independent of wT .
We choose these assumptions to emulate the idea that in the source dataset we can observe only part of the
features available in the target dataset (dS out of dT ), and these features should have the same influence on
the label for both datasets, represented by θ′. The unobserved features are then replaced by random values
so their influence on the label can also be taken into account by the model. In the later sections, we show
empirically that the assumption about X′′ can be relaxed to other distributions. By simple probability
manipulations we can derive the distribution of the source labels YS as:

YS ∼ N (xSθ′, (σ2 + ‖θ′′‖2)InS ) (1)

A first insight that we can gain from this formalization is that, for the source dataset, the unobserved features
X′′ add up with the noise wS of the source label, increasing its variance by ‖θ′′‖2. Based on this insight,
we will refer to the noise variance of the source labels as σ2

S = σ2 + ‖θ′′‖2.

Basic estimator: As we want to measure the performance improvement from using the source dataset, we
select a model which uses only the target data as a baseline. We select the ordinary least-squares (OLS)
estimator, which is computed by minimizing the residual sum of squares of the target data: RT (θ) =
‖YT −xT θ‖2; therefore, it is defined as θ̂T = (x>T xT )−1x>T YT . We will also refer to it as the basic estimator.
We choose the OLS as a baseline because it is the maximum likelihood estimator of θ using (xT ,YT ) and is
widely used to solve linear regression problems. Two known characteristics of the OLS estimator are that
it is unbiased: E[θ̂T ] = θ; and its variance has a simple analytical form: Var(θ̂T ) = σ2(x>T xT )−1. These are
important because they permit us to make a variance comparison with the transfer learning approach that
we introduce in the following section.

At this point, we have formally defined the source and target datasets and their distributions, as well as a
baseline model. With these definitions, we can now introduce a transfer learning approach for the incremental
input problem.

4 Data-pooling estimator

Based on the previously defined source and target datasets, we want to define a transfer learning approach
that combines both to produce a better model than the basic estimator. We do so by defining a loss that
is a function of both datasets and deriving its solution which leads to our data-pooling estimator. We also
study some properties of this solution and link it to the maximum likelihood approach, which leads to an
efficient way of estimating the necessary hyperparameters. In the end, we put all these findings together into
a transfer learning algorithm for the incremental input setting.
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4.1 The data-pooling loss

A common transfer learning approach is to learn by minimizing the convex sum of errors in both datasets
(Ben-David et al., 2010). In the linear regression case, this approach has been referred to as data-pooling
(Chen et al., 2015; Obst et al., 2021). We define our data-pooling loss Rα(θ) as the weighted sum of the
losses over the source and the target datasets (respectively RS and RT ), where α = (αS , αT ) is the vector
of positive weights:

Rα(θ) = αSRS(θ) + αTRT (θ) (2)

Intuitively, when αT � αS , the error in the target dataset is scaled by a factor larger than the error in the
source dataset and the solution obtained by optimizing Rα will be closer to the basic estimator. On the
other hand, when αT � αS , then RS will dominate the loss, and the optimal solution will distantiate from
the basic estimator.

In the incremental input case, we need to make sure that the parameters related to the new inputs will not
influence the error calculated on the source dataset. To achieve that, we define RS(θ) = ‖YS − xSI>θ‖2,
where I describes a dT × dS matrix such that Iii = 1 and Iij = 0 when i 6= j. In practice, xSI> can be
interpreted as filling up the missing dimensions of xS with zeros. By replacing the definitions of RS and RT
in Equation 2 we obtain:

Rα(θ) = αS‖YS − xSI>θ‖2 + αT ‖YT − xT θ‖2 (3)

Proposition 4.1 Given a source and a target dataset as defined in Section 3, the data-pooling loss Rα(θ)
is convex for any choice of αS , αT ∈ R+. Therefore it has a unique minimizing solution which is defined by:

θ̂α = (αSIx>S xSI> + αTx
>
T xT )−1(αSIx>SYS + αTx

>
T YT ) (4)

The result of proposition 4.1 (proved in the supplemental material) gives a direct form of computing the
data-pooling estimator θ̂α and an analytical formula which can also be used for further analysis of the
method. Based on it, and what is known about the distributions of YT and YS , we are able to derive closed
forms of the expected value and the variance of θ̂α.

Proposition 4.2 The data-pooling estimator is an unbiased estimator of θ (proof in the supplemental ma-
terial). Its expectation and variance are:

E[θ̂α] = θ (5)
Var(θ̂α) = M−1(α2

Sσ
2
SIΣSI> + α2

Tσ
2ΣT )M−1 (6)

where ΣS = x>S xS, ΣT = x>T xT and M = αSIΣSI> + αTΣT .

The fact that θ̂α is unbiased guarantees that it converges to the real parameters θ, regardless of the choice
of α. Its variance, however, is influenced by α, so we are interested in selecting the hyperparameter α in a
way that the variance is minimal. The relationship between α and Var(θ̂α) is complex, as Equation 6 shows,
so choosing it is not trivial.

4.2 The relationship of data-pooling and maximum likelihood

A natural way of estimating θ is by maximizing the likelihood of the source and target labels and observations
given that we know their probability distributions and also the distribution of the unobserved features X′′.
By looking at the negative log-likelihood function of the labels YS and YT given the observations xT and
xS , we arrive at the following equation:

L = 1
2σ2

S

‖YS − xSθ′‖2 + 1
2σ2 ‖YT − xT θ‖2 + nS

2 log(σ2
S) + nS + nT

2 log(2π) + nT
2 log(σ2) (7)

Finding the maximum likelihood estimator (MLE) of θ by minimizing the equation above is a complex non-
linear problem. We observe that if we take the data-pooling loss Rα with αT = 1

σ2 and αS = 1
σ2
S

, then we
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Algorithm 1 Data-pooling estimator
Input: source dataset (xS , yS), target dataset (xT , yT )
Initialization: x̄T = 0dT

x̄jT ← 1
nT

∑nT
i=1 xijT for j > dS .

xiT ← xiT − x̄T , for i ∈ [1, ..., nT ].
θ̂T ← (x>T xT )−1x>T yT .
θ̂S ← (x>S xS)−1x>S yS .
αS ← (nS − dS)/‖yS − xS θ̂S‖2.
αT ← (nT − dT )/‖yT − xT θ̂T ‖2.
Compute θ̂α with Equation 4.

can rewrite Equation 7 as:

L = 1
2Rα(θ) + nS

2 log(σ2
S) + nS + nT

2 log(2π) + nT
2 log(σ2) (8)

This means that, in this case, the data-pooling approach is a reasonable way to approximate the MLE of θ
by minimizing a simpler criterion. It suggests that αT = 1

σ2 and αS = 1
σ2
S

might be an optimal choice for
the hyperparameter α.

4.3 The data-pooling algorithm

From a practical point of view, the data-pooling estimator cannot be computed directly since it depends on
variables that in reality are unknown, namely σ2

S and σ2. Nevertheless, in order to apply it in practice, these
variables can be estimated separately as σ̂2

S = ‖yS − xS θ̂S‖2/(nS − dS) and σ̂2 = ‖yT − xT θ̂T ‖2/(nT − dT ).
Another practical impairment for the result above is that it relies on the assumption that the new features
follow a normal distribution with zero mean (E[X ′′] = 0). This is especially important for the data-pooling
loss in Equation 3, where we fill up the lacking observations in the source dataset with zeros (xSI>). We
approach this issue by shifting the observations of the new features in the target data by their estimated
mean. It is important to notice that by using this trick, we are also changing the resulting estimate of the
bias θ0. It means that, after computing the data-pooling estimator, to use it for predictions on new data, it
is necessary to apply the same shift to that data. To sum up all these steps, we describe the algorithm to
compute θ̂α from the observations of source and target data in Algorithm 1.

In short, the data-pooling approach is a simple and computationally cheap way of approximating the maxi-
mum likelihood estimator of θ by combining historical data and new observations. In the following section,
we want to study the benefit of using the source dataset by comparing our approach to the basic estimator.

5 Transfer gain of data-pooling

The transfer gain is a measure defined in (Obst et al., 2021) to assess whether a transfer learning model
which uses both the target and the source datasets performs better than the basic estimator which uses only
the target dataset. It is measured as the difference between the generalization error of the basic estimator
and that of the transfer learning approach based on a new unseen data point from the target distribution.

Suppose we get a new row vector x containing dT features. According to the definition of the target data,
the corresponding label Y is distributed as Y = xθ+w, where w ∼ N (0, σ2) is independent from everything
else. If we have an estimator θ̂ for θ then we can predict the new label as xθ̂. The generalization error is
then given by E[(Y − xθ̂)2]. In this work, we define the transfer gain in terms of the data-pooling estimator
with weight α as:

G(x) = E[(Y − xθ̂T )2]− E[(Y − xθ̂α)2] (9)
Intuitively, a positive transfer gain indicates that using the source dataset improves the predictions in new
unseen data from the target distribution. If it is negative, then it means that either the source data is not
helpful or that the transfer learning approach is sub-optimal.
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Proposition 5.1 Since both θ̂T and θ̂α are unbiased estimators of θ, then the transfer gain can be rewritten
in terms of the difference of their variances (proof in supplemental material):

G(x) = x(Var(θ̂T )−Var(θ̂α))x> (10)

Furthermore, by replacing the variances of θ̂T and θ̂α in equation equation 10, it becomes:

G(x) = x[σ2Σ−1
T −M

−1(σ2
Sα

2
SIΣSI> + σ2α2

TΣT )M−1]x> (11)

The transfer gain formula in Equation 10 ties together the variances of θ̂α and θ̂T in a way that if the
variance of θ̂α is smaller than that of θ̂T , then the gain is strictly positive for any non-zero input vector x.
It refers back to the problem of selecting α by adding a new objective: maximizing the transfer gain or at
least making it positive. On top of that, Equation 11 expresses analytically this objective and can be used
to study the signal of the gain.

We observe that by selecting αS = 1
σ2
S

and αT = 1
σ2 as mentioned in Section 4.2, the expression for the

variance of θ̂α simplifies greatly, becoming an updated version of Var(θ̂T ). Based on this insight, we use
the Woodbury’s identity (Hager, 1989) to show that Var(θ̂T ) − Var(θ̂α) is a positive semi-definite matrix
(complete proof in the supplementary material). This results in the following theorem:

Theorem 5.2 Given any target dataset (xT ,YT ) and source dataset (xS ,YS) as defined in Section 3, if we
choose αS = 1

σ2
S

and αT = 1
σ2 then the transfer gain G(x) is non-negative for any given x ∈ RdT . Therefore

the generalization error of θ̂α is upper-bounded by that of θ̂T :

E[(Y − xθ̂α)2] ≤ E[(Y − xθ̂T )2] (12)

Theorem 5.2 leads to theoretical implications about the linear version of the incremental input learning
problem and the data-pooling estimator. It says that by selecting the weights αS = 1

σ2
S

and αT = 1
σ2 the

data-pooling estimator will be at least as good as the basic estimator. In other words, negative transfer
is unlikely if we use data-pooling, so θ̂α is a robust approach to combine the source and target datasets.
Furthermore, this is true regardless of the amount of source and target samples, the number of extra features,
or the value of their parameter θ′′.

It is even likely that using the source dataset via the data-pooling approach should give a positive gain. If
we assume, for simplicity, the hypothetical case where the design matrices are orthogonal, so ΣS = IdS and
ΣT = IdT , then the variance of the data-pooling estimator becomes a diagonal matrix:

Var(θ̂α)ii =
{

σ2σ2
S

σ2+σ2
S

, i ≤ dS
σ2, i > dS

then it is straightforward to see that Var(θ̂α)ii ≤ Var(θ̂T )ii and therefore G(x) ≥ 0. On top of that, if we
assume that our new observation x is such that xi 6= 0, i ≤ dS , then the transfer gain is strictly positive.
This means that if any of the features observable in the historical data are never zero, then the generalization
error of θ̂α is strictly lower than that of θ̂T .

Theorem 5.2 could even generalize to a more complex setting where there is an arbitrary number of features
that are irregularly observed. It can be done by defining multiple source datasets (xSi ,YSi) where each one
contains complete observations of a subset of these features, and extending the loss in Equation 3 by adding
an extra term αSiRSi for each dataset. Again, all the features with missing observations would have to be
mean-shifted and the weights would be computed as αSi = 1

σ2
Si

.

At this point, we know the theoretical upper bound of the error of the data-pooling estimator assuming that
we have the values of σ2

S and σ2. In the next section, we verify the result of Theorem 5.2 empirically and
also try our transfer learning algorithm using real and simulated data.
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6 Experimental Setup

We want to show how the data-pooling approach compares to other more complex SOTA transfer learning
methods on multiple real-world datasets. In the following section, we explain in detail how we set up the
experiments for this comparison. Additionally, in section 6.2 we present the setup of an ablation study using
simulated data that we conduct to evaluate the impact of the theoretical assumptions about the data-pooling
approach.

6.1 Real-life data experiment and SOTA comparison

In this experiment, we use multivariate real-life regression tasks to evaluate whether our theoretical results
stand when the new inputs come from non-Gaussian distributions, and we compare the data-pooling method
against other state-of-the-art heterogeneous transfer learning algorithms. The comparing methods are the
Domain Specific Feature Transfer (DSFT) and its non-linear version (Wei et al., 2019), which are unsuper-
vised and do not require any instance-correspondence, so they fit our incremental input learning setting as
a pre-processing step. Both of them are based on learning a mapping from the historical features, which
are present in both the source and the target datasets, to the new features. This mapping is used to fill
up the values of the new feature in the source data, which is then combined with the target data to train
a least-squares predictor. For the non-linear version of DSFT, a kernel is applied on the historical features
before learning the mapping parameters. The hyperparameters are α = 105 and β = 1 as recommended
in the original paper and the kernel used is the radial basis function kernel (RBF), which has overall the
best reported results according to the authors. As a baseline, we use the ordinary least-squares estimator
computed using only the target dataset.

We use 9 multivariate regression datasets from the UCI repository (Dua & Graff, 2017), which are widely
used in the literature for validating regression models. Each dataset contains a different amount of inputs
in the source and target dataset and a wide variety of data distributions to showcase how the data-pooling
estimator can work in more realistic settings. We separate each dataset into source, target, and test sets and
remove a number of features from the source to emulate newly added features. The new features are selected
by the largest Pearson correlation coefficient with respect to the regression label to ensure that the OLS
baseline always uses the most relevant inputs for the task. We run the experiments with 3 and 5 features
removed. All the details about the datasets are available in Table 1. The root-mean-squared error (RMSE)
of each approach is computed using a separate test set. We follow two different data sampling strategies
to evaluate our model using different amounts of source and target data samples, one for small data and
another one for large data:

Small data setup: We fix the source and test datasets (nS and ntest in Table 1) and sample multiple
disjoint target datasets, one for each run, and use them to compute the transfer learning approaches and the
OLS basic estimator. The number of runs is listed in Table 1.

Large data setup: For each dataset, we randomly sample 10% of the data for the test set, we fix nT at
100 or 300, and the remaining data goes to the source training set. This way, depending on the dataset, we
can have very large source datasets (i.e. ∼ 40.000 for protein dataset) or relatively larger target datasets
(i.e. concrete and energy). We repeat the experiments 30 times, and each time we sample new source, target
and test sets.

6.2 Ablation experiments

In this section, we define the setup to study the impact of the assumptions about our transfer learning
approach in a practical setting and evaluate how it is influenced by the size of the target dataset nT . We
do so by computing the transfer gain empirically following the procedure explained in the next section. The
subsequent sections describe the experiments where we analyze the effect of the choices for estimating the
noise variance and shifting the new input by its sample mean.
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Table 1: Dataset statistics.

Dataset ntotal nS nT ntest dT #runs

concrete 1030 114 38 103 8 21
energy 768 114 38 76 8 15
kin40k 40000 114 38 4000 8 50
parkinsons 5875 150 50 587 20 50
pol 15000 168 56 1500 26 50
protein 45730 117 39 4573 9 50
pumadyn32nm 8192 186 62 819 32 50
skillcraft 3338 147 49 333 19 50
sml 4137 156 52 413 22 50

Algorithm 2 Empirical Transfer Gain
Input: number of iterations N , test dataset Dtest
for i = 1 to N do

Randomly sample DS and DT .
Compute θ̂α and θ̂T .
Compute the empirical transfer gain with Equation 13 (or Equation 14).

end for
Return the average over all Gi.

6.2.1 Empirical transfer gain

Since the transfer gain depends on multiple sources of randomness, we have to estimate it empirically using
multiple samples of source and target datasets. It is computed as the difference of the squared residuals of
the prediction given by the basic estimator and the prediction given by the data-pooling estimator using a
held-out test dataset Dtest where all features are present. Each iteration i corresponds to a different sample
of training data that is used to compute θ̂α and θ̂T , which are then used to compute the difference of residuals
as described in Equation 13. In the end, the empirical transfer gain is the result of the average over all the
iterations. The complete procedure is detailed in Algorithm 2.

Gi = 1
ntest

∑
(x,y)∈Dtest

[
(y − xθ̂T )2 − (y − xθ̂α)2

]
(13)

The way that θ̂α is computed differs per experiment and is explained next.

6.2.2 Estimating the noise variance

In the first simulation experiment, we want to test how accurately we can calculate θ̂α if we estimate σ2

and σ2
S (or α) using the training data samples. For that, we simulate our data using the linear relationship

Y = 2 + 2X1− 2X2 +w, where w,X1, X2 ∼ N (0, 1), so the data fits our assumptions and all the parameters
necessary to compute α and to accurately approximate the gain are known. In each iteration, we sample
nS = 100 source data points where X2 is omitted. We vary nT from 5 to 30 samples to assess how the
transfer gain changes with the size of the target data. We repeat the procedure in Algorithm 2 for each value
of nT . Finally, we use 1000 held-out samples for the test set and N = 200 iterations.

6.2.3 Estimating the new input expectation

The goal of this experiment is to study the effect of shifting the target data by the sample mean when the
assumption that it is zero-centered is not met. To achieve that, we compare the transfer gain of θ̂α computed
using the target data shifted by the real mean E[X ′′] versus θ̂α computed using the target data shifted by

9
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the sample mean x̄T as described in Algorithm 1. Since we want to study this effect in isolation, we control
for any other possible interfering factors by simulating the data as described in Experiment 1, except that
the distribution of X2 is changed to N (1, 1). Again we follow the procedure described by Algorithm 2 to
compute the transfer gain, only that at each iteration we also have to shift the test inputs by the mean
computed from the target data, so Equation 13 becomes:

Gi = 1
ntest

∑
(x,y)∈Dtest

[
(y − xθ̂T )2 − (y − (x− x̄T )θ̂α)2

]
(14)

In addition, we also look at how the variance of the sample mean affects the transfer gain by repeating the
simulation with different target sample sizes nT . Again, we use 1000 samples for the test set and N = 200
iterations.

7 Results

Here we analyze the results obtained from the experiments described in the previous section.

7.1 Real-life data experiment and SOTA comparison

The results of the experiments with multivariate datasets following the small and large data setups with 5
new features are shown in Table 7 and Table 2 respectively. Extra results with different numbers of new
features and dataset sizes are shown in Appendix B.5. We use the Wilcoxon signed-rank test to determine
when the difference between the models is statistically significant with a corrected p-value lower than 0.05.
Underlined results signal whether data-pooling (DP) or non-linear DSFT has significantly lower error than
the other. Similarly, italic is used to highlight the significance given by the test between DP and linear
DSFT.

In the small data setup, our method outperforms the baseline in all cases except concrete and energy, where
there was no significant difference between both. For 4 datasets, the data-pooling estimator has a significantly
lower error than the linear DSFT and is outperformed in 1. In the remaining 4, there was no significant
difference. In the comparison against the non-linear DSFT, data-pooling outperforms it in 2 datasets and
is outperformed by it in 1 other. For the remaining 6 datasets, there is no statistically significant difference
between both methods.

In the large data regime, DP outperforms OLS in 6 datasets. Only in the concrete dataset OLS outperforms
DP, but also DSFT. Our approach also outperforms both variants of DSFT in the majority of the datasets.
In the energy dataset, both versions of DSFT perform worse than the baseline, showing that the mapping
used to impute the source dataset introduced substantial bias into the final predictor.

The results show that the transfer gain of our approach is mostly positive since it significantly outperforms
the OLS estimator in most tasks, even though the new features follow arbitrary distributions and are not
zero-centered. Only in 4 cases out of 36 cases (9 datasets × 4 experimental setups) it is outperformed by
OLS. It shows that our theoretical upper bound on the generalization error can generalize to many real-life
data distributions and that DP is robust against negative transfer learning. In addition, it shows that the
data-pooling estimator outperforms the linear DSFT, and can perform on par with the more complex non-
linear DSFT in the small data regime. In the large data regime, our approach outperforms both versions
of DSFT largely, suggesting that imputing a very large source dataset is more difficult than computing the
estimator directly through DP.

7.2 Estimating the noise variance

Figure 2a compares the empirical transfer gain when it is computed using the true values of σ2
S and σ2

(the "real α" line) and using their estimations from the data (the "estim. α" line). We do so for different
target dataset sizes shown in the x-axis. The result shows that the "real α" curve does not go below zero, in
accordance to Theorem 5.2, which means that the error of the data-pooling estimator computed on the test
set is lower than that of the basic estimator. The transfer gain starts higher for small sizes of target data nT

10
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Table 2: RMSE of each approach following the small data setup. The 5 features with highest correlation
with the label are removed from the source dataset. An asterisk (*) marks the datasets where there is no
significant difference between DP and OLS.

Dataset ols dsft dsft-nl dp

concrete* 14.7 ± 2.5 14.5 ± 2.68 13.3 ± 1.03 14.3 ± 2.81
energy* 3.33 ± 0.247 3.91 ± 0.434 4.24 ± 0.461 3.32 ± 0.257
kin40k 1.12 ± 0.062 1.08 ± 0.055 1.06 ± 0.0378 1.07 ± 0.0409
parkinsons 16.8 ± 5.32 10.6 ± 0.415 10.8 ± 0.414 10.9 ± 0.532
pol 4.77e+09 ± 3.38e+10 120 ± 108 35.1 ± 4.76 36.1 ± 5.86
protein 0.825 ± 0.11 0.775 ± 0.0975 0.716 ± 0.0233 0.723 ± 0.0321
pumadyn32nm 1.49 ± 0.142 1.17 ± 0.0788 1.12 ± 0.0446 1.11 ± 0.0393
skillcraft 0.338 ± 0.0439 0.299 ± 0.0215 0.288 ± 0.011 0.29 ± 0.0134
sml 3.55 ± 1.04 3.1 ± 0.949 2.77 ± 0.517 2.81 ± 0.521

Table 3: RMSE of each approach following the large data setup. The 5 features with the highest correlation
with the label are removed from the source dataset and the target dataset size is fixed at 100 samples. An
asterisk (*) marks the datasets where there is no significant difference between DP and OLS and † marks
when OLS is significantly better than DP.

Dataset ols dsft dsft-nl dp

concrete† 11 ± 1 11 ± 0.986 12.3 ± 0.929 11.1 ± 0.93
energy* 2.95 ± 0.358 3.31 ± 0.423 4.07 ± 0.451 2.94 ± 0.336
kin40k 1.04 ± 0.0258 1.02 ± 0.022 1.22 ± 0.113 1.02 ± 0.0207
parkinsons 11.1 ± 1.16 9.61 ± 0.228 10.1 ± 0.293 9.66 ± 0.213
pol 54.2 ± 20.3 49.5 ± 46 43.6 ± 6.54 31.8 ± 0.763
protein 0.729 ± 0.0689 0.728 ± 0.0686 0.68 ± 0.0144 0.679 ± 0.0127
pumadyn32nm 1.21 ± 0.0732 1.06 ± 0.0672 1.03 ± 0.0359 1.03 ± 0.036
skillcraft* 0.317 ± 0.136 0.658 ± 1.3 0.41 ± 0.375 0.409 ± 0.373
sml 2.87 ± 0.919 2.55 ± 0.854 2.34 ± 0.229 2.24 ± 0.247

and decreases fast as nT increases, to the point that the transfer gain gets closer to zero. We see that the
gain is highest when nT is small, so the variance of θ̂T is larger and the use of the source dataset helps to
reduce it for θ̂α. Finally, we see that the "estimated α" curve overlaps almost perfectly with the real values,
confirming our first hypothesis.

7.3 Estimating the new input expectation

Figure 2b shows the result of the simulation where the new feature is not zero-centered, so the data-pooling
estimator has to be computed by shifting the observations of that feature by its estimated mean following
Algorithm 1. For the comparison, we also plot the transfer gain for θ̂α computed using the real mean. Again,
we have the transfer gain in the y-axis and the target dataset size on the x-axis. We observe a difference
between the gain curves of the true and the estimated mean, and the difference diminishes as nT increases.
It represents the variance of the sample mean x̄T that adds up to that of θ̂α and makes the gain smaller.
The variance of x̄T is inversely proportional to nT , so it also explains why the difference is larger for small
nT and diminishes as nT grows. Nevertheless, the transfer gain is predominantly positive when nT is small.
This shows that using the data-pooling approach can still be beneficial even in the case that the new features
are not zero-centered.
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(a) (b)

Figure 2: Comparison of the transfer gain of the data-pooling estimator when: (a) using the real value of α
vs using the estimated value of α; and (b) using the sample mean to shift the data vs using the true mean.

8 Conclusion

In this paper, we look at the problem of learning a predictive model after new input features are discovered,
but there are only a few observations of them, while there are plenty of observations of historical data.
We present a transfer learning approach to the linear regression version of this problem that is able to
bridge the difference in the input dimensions of the source and the target datasets. We provide an in-depth
theoretical study of our approach, proving an upper bound for its generalization error and its robustness
against negative transfer learning. Through extensive empirical experiments using real-life datasets, we
show that our approach performs consistently better than the baseline approach. The results hold for a wide
variety of real-life distributions of new inputs, showing that the data-pooling approach still works when our
theoretical assumptions are violated.

With respect to the state-of-the-art, our approach outperforms other linear transfer learning algorithms and
performs on par with more complex non-linear ones, with the advantage of holding theoretical guarantees.
It is also simple to implement and efficient, having the same computational complexity as the ordinary
least-squares method. In addition, it does not have any hyperparameters to tune, so it is easy to apply to
incremental input problems where the target data is limited.

Nevertheless, our theoretical bound on the generalization error of DP can still be improved by taking into
account the estimations used for E[X′′], σS and σ, which could help understand the effect of the dataset
sizes nS and nT in the final predictor. Another future challenge is to study this problem in the non-linear
case, such as classification with logistic regression or neural networks.

Limitations: Despite the positive results shown in the previous section, there are some clear limitations to
the data-pooling approach and our theoretical results. The non-negative transfer gain proof relies on some
assumptions which might not hold in practice:

1. independence between the new and the historical features (X′′ and xS);

2. identical distribution of the new features and labels for both source and target data;

3. zero-centered Gaussian distribution of X′′;

4. linear model.

Assumption 1 can be violated, for example, if the data was generated by a non-additive model. We simulate
this case in Appendix B.4 and indeed our approach leads to negative transfer more often than what we observe
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in the results of Section 7.1, so important improvements can still be done in this direction. Assumption 2
means that we cannot guarantee non-negative transfer if there is a significant distribution shift between
the source and the target datasets. Although data-pooling is resilient to distribution shifts in the historical
features, it is sensitive to shifts in the distribution of the new features or if the parameter θ changes across
the source and target data. We show empirically in Appendix B.3 that our approach can work with small
shifts, but its transfer gain decreases as the shift grows. We find a workaround for Assumption 3 by centering
the new features using the sample mean, but it introduces bias into DP which could lead to negative transfer
when the target dataset is large enough (see Section 6.2.3). DP also relies on estimations of σ2

S and σ2

might also introduce bias in the model. Finally, our proof is limited to linear models since it is based on a
closed-form solution of the data-pooling loss. Therefore it is not trivial to translate it to non-linear cases
such as neural networks and logistic regression.

References
Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. A theory of learning from different domains. Machine Learning, 79(1):151–175, May 2010. ISSN
1573-0565. doi: 10.1007/s10994-009-5152-4. URL https://doi.org/10.1007/s10994-009-5152-4.

Aiyou Chen, Art B. Owen, and Minghui Shi. Data enriched linear regression. Electronic Journal of Statistics,
9(1):1078 – 1112, 2015. doi: 10.1214/15-EJS1027. URL https://doi.org/10.1214/15-EJS1027.

Xinyang Chen, Sinan Wang, Jianmin Wang, and Mingsheng Long. Representation subspace distance for
domain adaptation regression. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th Interna-
tional Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.
1749–1759. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/chen21u.html.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/
ml.

Sheng-Uei Guan and Shanchun Li. Incremental learning with respect to new incoming input attributes.
Neural Processing Letters, 14(3):241–260, Dec 2001. ISSN 1573-773X. doi: 10.1023/A:1012799113953.
URL https://doi.org/10.1023/A:1012799113953.

William W. Hager. Updating the inverse of a matrix. SIAM Review, 31(2):221–239, 1989. doi: 10.1137/
1031049. URL https://doi.org/10.1137/1031049.

Steve Hanneke and Samory Kpotufe. On the value of target data in transfer learning. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural In-
formation Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/b91f4f4d36fa98a94ac5584af95594a0-Paper.pdf.

Yuwei He, Xiaoming Jin, Guiguang Ding, Yuchen Guo, Jungong Han, Jiyong Zhang, and Sicheng Zhao.
Heterogeneous transfer learning with weighted instance-correspondence data. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(04):4099–4106, Apr. 2020. doi: 10.1609/aaai.v34i04.5829. URL
https://ojs.aaai.org/index.php/AAAI/article/view/5829.

Bo-Jian Hou, Lijun Zhang, and Zhi-Hua Zhou. Learning with feature evolvable streams. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/7634ea65a4e6d9041cfd3f7de18e334a-Paper.pdf.

R.J.A. Little and D.B. Rubin. Statistical Analysis with Missing Data. Wiley Series in Probability and Statis-
tics. Wiley, 2019. ISBN 9780470526798. URL https://books.google.com.br/books?id=BemMDwAAQBAJ.

Seungwhan Moon and Jaime Carbonell. Completely heterogeneous transfer learning with attention - what
and what not to transfer. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI-17, pp. 2508–2514, 2017. doi: 10.24963/ijcai.2017/349. URL https://doi.org/10.
24963/ijcai.2017/349.

13

https://doi.org/10.1007/s10994-009-5152-4
https://doi.org/10.1214/15-EJS1027
https://proceedings.mlr.press/v139/chen21u.html
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1023/A:1012799113953
https://doi.org/10.1137/1031049
https://proceedings.neurips.cc/paper/2019/file/b91f4f4d36fa98a94ac5584af95594a0-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/b91f4f4d36fa98a94ac5584af95594a0-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/5829
https://proceedings.neurips.cc/paper/2017/file/7634ea65a4e6d9041cfd3f7de18e334a-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/7634ea65a4e6d9041cfd3f7de18e334a-Paper.pdf
https://books.google.com.br/books?id=BemMDwAAQBAJ
https://doi.org/10.24963/ijcai.2017/349
https://doi.org/10.24963/ijcai.2017/349


Under review as submission to TMLR

Mohammadreza Mousavi Kalan, Zalan Fabian, Salman Avestimehr, and Mahdi Soltanolkotabi. Minimax
lower bounds for transfer learning with linear and one-hidden layer neural networks. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing
Systems, volume 33, pp. 1959–1969. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/151d21647527d1079781ba6ae6571ffd-Paper.pdf.

David Obst, Badih Ghattas, Jairo Cugliari, Georges Oppenheim, Sandra Claudel, and Yannig Goude. Trans-
fer learning for linear regression: a statistical test of gain, 2021.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on Knowledge and
Data Engineering, 22(10):1345–1359, 2010. doi: 10.1109/TKDE.2009.191.

Victor S. Sheng and Charles X. Ling. Feature value acquisition in testing: A sequential batch test algorithm.
In Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, pp. 809–816, New
York, NY, USA, 2006. Association for Computing Machinery. ISBN 1595933832. doi: 10.1145/1143844.
1143946. URL https://doi.org/10.1145/1143844.1143946.

Pengfei Wei, Yiping Ke, and Chi Keong Goh. A general domain specific feature transfer framework for
hybrid domain adaptation. IEEE Transactions on Knowledge and Data Engineering, 31(8):1440–1451,
2019. doi: 10.1109/TKDE.2018.2864732.

Ying WEI, Yu Zhang, Junzhou Huang, and Qiang Yang. Transfer learning via learning to transfer. In
Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pp. 5085–5094. PMLR, 10–15 Jul 2018.
URL https://proceedings.mlr.press/v80/wei18a.html.

Yuguang Yan, Wen Li, Hanrui Wu, Huaqing Min, Mingkui Tan, and Qingyao Wu. Semi-supervised optimal
transport for heterogeneous domain adaptation. In Proceedings of the 27th International Joint Conference
on Artificial Intelligence, IJCAI’18, pp. 2969–2975. AAAI Press, 2018. ISBN 9780999241127.

Liu Yang, Liping Jing, Jian Yu, and Michael K. Ng. Learning transferred weights from co-occurrence data
for heterogeneous transfer learning. IEEE Transactions on Neural Networks and Learning Systems, 27
(11):2187–2200, 2016. doi: 10.1109/TNNLS.2015.2472457.

Zhen-Yu Zhang, Peng Zhao, Yuan Jiang, and Zhi-Hua Zhou. Learning with feature and distribution evolvable
streams. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 11317–11327. PMLR,
13–18 Jul 2020. URL https://proceedings.mlr.press/v119/zhang20ad.html.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing
He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):43–76, 2021. doi:
10.1109/JPROC.2020.3004555.

A Proofs and derivations

A.1 Proof of proposition 4.1

We want to find θ̂α = argθmin Rα(θ), or θ̂α such that ∇Rα(θ̂α) = 0.

By applying simple calculus rules we have ∇RT (θ) = −2x>T (YT −xT θ) and ∇RS(θ) = −2Ix>S (YS −xSI>θ),
so we can write:

∇Rα(θ) = −2αSIx>S (YS − xSI>θ)− 2αTx>T (YT − xT θ)

By equalling it to zero and solving for θ we obtain:

θ̂α = (αSIx>S xSI> + αTx
>
T xT )−1(αSIx>SYS + αTx

>
T YT )
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Let HRα = 2(αSIx>S xSI> + αTx
>
T xT ) be the Hessian matrix of Rα. We assume that xT is obtained from

observations of dT independent features, then the columns of xT must be linearly independent and thus,
for any vector v ∈ RdT such that v 6= 0, xT v 6= 0nS . This means that v>x>T xT v > 0 and so x>T xT is
positive definite. The same holds for x>S xS . Finally, αS and αT are both positive, so HRα is positive
definite and therefore Rα is strictly convex and θ̂α is its global minimum. It also follows that the matrix
M = αSIx>S xSI> + αTx

>
T xT is positive definite since M = 1

2 HRα , so the inverse M−1 required to compute
θ̂α exists. �

A.2 Proof of proposition 4.2

Let M = αSIx>S xSI> + αTx
>
T xT and knowing that θ′ = I>θ:

E[θ̂α] = E[M−1(αSIx>SYS + αTx
>
T YT )]

= E[M−1(αSIx>SYS) +M−1(αTx>T YT )]
= M−1(αSIx>SE[YS ]) +M−1(αTx>T E[YT ])
= M−1(αSIx>S xSθ′) +M−1(αTx>T xT θ)
= M−1(αSIx>S xSθ′ + αTx

>
T xT θ)

= M−1(αSIx>S xSI>θ + αTx
>
T xT θ)

= M−1(αSIx>S xSI> + αTx
>
T xT )θ

= M−1Mθ

= θ

Var(θ̂α) = Var(M−1(αSIx>SYS + αTx
>
T YT ))

= Var(αSM−1Ix>SYS + αTM
−1x>T YT )

= Var(αSM−1Ix>SYS) + Var(αTM−1x>T YT )
= α2

SM
−1Ix>SVar(YS)xSI>M−1 + α2

TM
−1x>TVar(YT )xTM−1

= α2
S(σ2 + ‖θ′′‖2)M−1Ix>S xSI>M−1 + α2

Tσ
2M−1x>T xTM

−1

= M−1(α2
S(σ2 + ‖θ′′‖2)Ix>S xSI> + α2

Tσ
2x>T xT )M−1

A.3 Proof of proposition 5.1

G(x) = E[(Y − xθ̂T )2]− E[(Y − xθ̂α)2]
= Var(Y − xθ̂T ) + E[Y − xθ̂T ]2

− (Var(Y − xθ̂α) + E[Y − xθ̂α]2)
= Var(Y − xθ̂T ) + (E[Y ]− xE[θ̂T ])2

− (Var(Y − xθ̂α) + (E[Y ]− xE[θ̂α])2)
= Var(Y − xθ̂T ) + (xθ − xθ)2

− (Var(Y − xθ̂α) + (xθ − xθ)2)
= Var(Y − xθ̂T )−Var(Y − xθ̂α)
= Var(Y ) + Var(−xθ̂T )− (Var(Y ) + Var(−xθ̂α))
= Var(Y )−Var(Y ) + Var(−xθ̂T )−Var(−xθ̂α)
= Var(−xθ̂T )−Var(−xθ̂α)
= x(Var(θ̂T )−Var(θ̂α))x>
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A.4 Proof of Theorem 5.2

Let H = Var(θ̂T )−Var(θ̂α) describe the difference between variances of θ̂T and θ̂α such that G(x) = xHx>.
We want to show that G(x) ≥ 0 for any x ∈ RdT , so it suffice to prove that H is positive semi-definite. By
selecting αS = 1

σ2
S

and αT = 1
σ2 we obtain M = 1

σ2
S

IΣSI> + 1
σ2 ΣT and:

H = σ2Σ−1
T −M

−1(σ2
Sα

2
SIΣSI> + σ2α2

TΣT )M−1

= σ2Σ−1
T −M

−1
(

1
σ2
S

IΣSI> + 1
σ2 ΣT

)
M−1

= σ2Σ−1
T −M

−1MM−1

= σ2Σ−1
T −M

−1

= σ2Σ−1
T −

(
1
σ2
S

IΣSI> + 1
σ2 ΣT

)−1

Let A = 1
σ2 ΣT , C = 1

σ2
S

ΣS , U = I and V = I>. M can be seen as an updated version of A, so we can
derive its inverse using the Woodbury identity (section 3 of (Hager, 1989)) which states that given A, C and
A+ UCV invertible matrices then M−1 = (A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1:

H = A−1 − (A+ UCV )−1

= A−1 − (A−1 −A−1U(C−1 + V A−1U)−1V A−1)
= A−1U(C−1 + V A−1U)−1V A−1

= A−1I(C−1 + I>A−1I)−1I>A−1

We know that A, A−1, C, C−1 are positive definite. We also know that I has full column rank and therefore
I>A−1I is positive definite and so is C−1 + I>A−1I and its inverse. Finally, I(C−1 + I>A−1I)−1I> is positive
semi-definite and thus, since A−1 is symmetric, H is positive semi-definite. �

B Additional ablation studies

B.1 Correlation experiment

An important difference between our approach and other state-of-the-art heterogeneous transfer learning
algorithms, such as DSFT, is that we avoid learning a mapping from the old features to the new ones. So
when there is little or no learnable relationship between the new and the old features our method should be
able to perform better than DSFT. To investigate this hypothesis, we set up an experiment where we can
control the relationship between the features so we can compare both methods in different settings.

In this experiment, we simulate data with a linear correlation between the input features to emulate a
learnable relationship. The input variables are sampled from a joint Gaussian distribution with mean µ =
(0, 1)> and covariance matrix Σ such that Σii = 1 for i ∈ 1, 2 and Σij = c for i 6= j and i, j ∈ 1, 2. When
c = 0, X1 and X2 are completely uncorrelated and when c increases, so does the correlation between the two
inputs, allowing us to control the strength of the correlation. The prediction label Y is then computed as a
linear combination of the inputs using the same parameters used in Section 6.2.3.

We fix the sizes of the source, target, and test datasets as nS = 100, nT = 8 and ntest = 1000, respectively.
We vary c between 0 and 0.9. For each value of c, we repeat the experiment 200 times resampling the source
and target datasets while the test dataset remains fixed. The OLS computed on the target dataset is used
as a baseline comparison.

Figure 3 shows the MSE computed on the test dataset with each approach for different values of the cor-
relation coefficient c. As expected, the error for both linear and non-linear versions of DSFT is the highest
when the input correlation is low, so it cannot learn an accurate mapping from X1 to X2. Their performance
improves as c increases, but is mostly larger than the OLS baseline, which means that the bias added by
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using the inputted values of X2 is still larger than the variance reduction expected from using the source
data. Overall, this experiment shows that DSFT can only outperform DP on linear regression incremental
input tasks when there is some significant (non-)linear relationship between the new and historical features.

We can also see in Figure 3 that the MSE of DP increases as c increases. That happens because our approach
expects the new inputs to be uncorrelated with the old inputs. This results in an increase of the bias of
DP proportional to c, up to the point that it becomes larger than the variance reduction obtained from the
source data when c > 0.2. At higher correlation values (c > 0.7), X1 and X2 are so similar that Y can be
predicted mainly by using X1, so the source data becomes more and more useful. This explains the decrease
in the MSE of the DP estimator at that point. Nevertheless, DP remains better than all other approaches
for relatively small values of c, showing that there can be a positive trade-off between the variance reduction
from the extra source data and the bias introduced by correlated inputs.
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Figure 3: Correlation experiment: The MSE of both the data-pooling (dp) and the DSFT approaches for
datasets generated with different correlation coefficients between the inputs.

B.2 Detailed experiments with real-life data

For a detailed analysis, we selected three regression datasets from the UCI public repository: Wine, Airfare
and Concrete; each one with different Pearson correlation coefficients measured between the input variables.
Wine is the task of predicting the quality of red wines, Concrete is the task of predicting the resulting
compressive strength measured in megapascal (MPa) of different concrete mixes and Airfare is the task of
predicting the price of plane tickets based on the travel distance and the largest market share among all
carriers. Table 4 gives further information about the variables chosen for the source and target datasets
and Table 5 shows the Pearson correlation coefficients of each pair of variables. For each dataset, we fixed
the source and the test datasets, and then sampled target datasets with different sizes (nT ), starting with 8
data points up to 30. For each value of nT , we repeat the experiment multiple times, each time with a new
independent target dataset. All the details about the settings selected for each dataset are stated in Table
5.

The results obtained using the Wine, Concrete and Airfare datasets are shown in figures 4, 5 and 6 respec-
tively. On Figure 6, the non-linear DSFT gives the best results, suggesting that there is some exploitable
non-linear relationship between the inputs nsmiles and large_ms. However, it does not confirm its superior-
ity on the other two datasets (figures 4 and 5), where it displays similar performance to both DP and linear
DSFT.
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Table 4: Variables used for source and target data per dataset. X1 appears in both source and target
datasets, and X2 only on the target dataset.

Dataset X1 X2 Y

Wine alcohol volatile acidity quality
Airfare nsmiles large_ms fare
Concrete Cement Superplasticizer Mpa

Table 5: The Pearson correlation coefficients, the test and source dataset sizes and the number of repetitions
for each dataset.

Dataset cor(X1, X2) cor(X1, Y ) cor(X2, Y ) ntest nS #runs

Wine -0.20 0.48 -0.39 700 100 25
Airfare -0.48 0.53 -0.20 5000 100 50
Concrete 0.09 0.50 0.36 180 100 25

On the Concrete prediction task, DP outperforms both variants of DSFT in some moments, such as when
the target dataset has 25 or more data points. The DP performance is comparable to that of the linear
DSFT in all datasets, even Wine and Airfare where the correlation between inputs is higher.

These results show a pattern consistent with the simulations: the transfer gain is the largest when nT is
small. In these cases, the size of the target dataset is too small and the variance of the basic estimator is the
highest, so combining the source dataset using our transfer learning approach is more beneficial, resulting
in a larger gain.
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Figure 4: Comparison between the data-pooling (DP) and the DSFT approaches using the Wine dataset.

B.3 Distribution shifts between source and target datasets
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Figure 5: Comparison between the data-pooling (DP) and the DSFT approaches using the Concrete dataset.
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Figure 6: Comparison between the data-pooling (DP) and the DSFT approaches using the Airfare dataset.

An important assumption of our theoretical work is that the distribution of the new inputs remains the
same for both the source and the target datasets, and we cannot guarantee the non-negative transfer gain
bound if that does not hold. To demonstrate this problem, we simulate datasets following the same setup
as Section 6.2.3, but we vary the mean of the new input in the target dataset µ1T while it is fixed in the
source dataset µ1S . We also fix the size of the source and target datasets at nS = 200 and nT = 15 to keep
a similar proportion as the other experiments. The result in Figure 7 shows that the error of our estimator
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increases quickly with the size of the shift, showing that the source dataset becomes less relevant for the
linear regression task. Still, data-pooling copes with minor shifts in the distribution, and overall outperforms
DSFT.
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Figure 7: Result of simulation of increasing the difference of the mean of the new features between source
and target datasets.

B.4 Non-additive models

In our theoretical study, we assume that the new features are independent of the historical ones. One practical
way this assumption could be violated is in the case of a non-additive model where the label depends on
the product of a historical feature and a new feature. Since DP is a linear model, it is possible to compute
this product and add it as a new feature, but then our independence assumption is broken. We can simulate
this scenario by creating one such feature and adding it to the final label. We sort the features by their
correlation with the label and we select the best one from the source set and from the target sets to create
the product feature. For (non-linear) DSFT, we first compute the normal (additive) features for the source
dataset and then use them to compute the product feature. We use the UCI benchmark datasets to keep
the simulation as close as possible to reality. All the models are run following the large data setup described
in Section 6.1.

The results presented in Table 6 show that DP performs consistently better than both versions of DSFT. In
some cases such as concrete, protein, skillcraft and sml, DSFT’s error is orders of magnitude higher than the
OLS baseline, indicating that the values predicted by it to fill up the source dataset ended up biasing the
final predictor heavily. As expected, the error of our approach increases w.r.t OLS’s error, but still, it only
gets outperformed in 3 out of 9 cases.

B.5 Extra real-life data results

Here we present the extra results from Section 7.1. Table 7 shows the results following the small data setup
with 3 new features, and Table 8 shows the results following the large data setup with nT = 300. In Table
7, our approach performs consistently better than OLS and the linear DSFT with significantly lower error
in 7 and 5 out of 9 datasets, respectively. The non-linear DSFT beats DP in 3 datasets, and there was no
significant difference in the other 6.
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Table 6: RMSE of each approach on the non-additive version of the UCI datasets. The target dataset size
is fixed at 100 samples. An asterisk (*) marks the datasets where there is no significant difference between
DP and OLS and † marks when OLS is significantly better than DP.

Dataset ols dsft dsft-nl dp

concrete* 11 ± 0.996 2.88e+03 ± 1.09e+03 4.9e+03 ± 2.84e+03 11 ± 0.997
energy* 2.87 ± 0.388 3.27 ± 0.398 4.04 ± 0.457 2.86 ± 0.348
kin40k 1.05 ± 0.0266 1.36 ± 0.188 1.58 ± 0.149 1.03 ± 0.0246
parkinsons 11.4 ± 1.21 10.5 ± 0.837 10.1 ± 0.3 9.72 ± 0.258
pol† 53.5 ± 18 133 ± 84.4 240 ± 47.1 180 ± 46.7
protein† 0.735 ± 0.0679 162 ± 63 52.6 ± 8.7 0.99 ± 0.353
pumadyn32nm 1.23 ± 0.0793 1.45 ± 0.0583 1.32 ± 0.0626 1.04 ± 0.0406
skillcraft* 0.344 ± 0.245 25.9 ± 60.1 9.18 ± 2.57 0.405 ± 0.431
sml† 3.05 ± 0.965 14.2 ± 7.32 31.5 ± 14.3 4.26 ± 1.4

Table 7: RMSE of each approach following the small data setup. The 3 features with highest correlation
with the label are removed from the source dataset. An asterisk (*) marks the datasets where there is no
significant difference between DP and OLS and † marks when OLS is significantly better than DP.

Dataset ols dsft dsft-nl dp

concrete* 14.7 ± 2.5 14.4 ± 3.04 13.1 ± 0.7 14.4 ± 3.02
energy† 3.33 ± 0.247 3.61 ± 0.22 3.59 ± 0.22 3.54 ± 0.194
kin40k 1.12 ± 0.062 1.06 ± 0.0351 1.06 ± 0.036 1.06 ± 0.0294
parkinsons 16.8 ± 5.32 10.7 ± 0.357 10.7 ± 0.386 10.7 ± 0.441
pol 4.77e+09 ± 3.38e+10 108 ± 98.6 36.3 ± 6.26 36.6 ± 6.65
protein 0.825 ± 0.11 0.767 ± 0.117 0.7 ± 0.0186 0.706 ± 0.025
pumadyn32nm 1.49 ± 0.142 1.13 ± 0.0653 1.09 ± 0.0305 1.09 ± 0.0287
skillcraft 0.338 ± 0.0439 0.27 ± 0.0135 0.257 ± 0.0104 0.26 ± 0.0114
sml 3.55 ± 1.04 2.98 ± 0.852 2.71 ± 0.457 2.78 ± 0.493

For the results with a larger target dataset in Table 8, we see that the OLS baseline benefits from the extra
samples and so it outperforms DP in two cases, but DP is still superior in 6 others. In comparison with
DSFT, DP was again better showing that it can make better use of the additional data.
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Table 8: RMSE of each approach following the large data setup. The 5 features with the highest correlation
with the label are removed from the source dataset and the target dataset size is fixed at 300 samples. An
asterisk (*) marks the datasets where there is no significant difference between DP and OLS and † marks
when OLS is significantly better than DP.

Dataset ols dsft dsft-nl dp

concrete† 10.5 ± 0.782 10.5 ± 0.793 11 ± 0.554 10.7 ± 0.745
energy 2.85 ± 0.321 2.92 ± 0.3 2.94 ± 0.286 2.84 ± 0.318
kin40k 1.01 ± 0.0168 1.01 ± 0.015 1.14 ± 0.0631 1.01 ± 0.0146
parkinsons* 9.59 ± 0.248 9.42 ± 0.231 9.79 ± 0.267 9.55 ± 0.219
pol 32.6 ± 1.09 31.2 ± 0.594 39.8 ± 3.58 31.1 ± 0.419
protein 0.683 ± 0.0241 0.681 ± 0.0213 0.668 ± 0.00648 0.668 ± 0.00612
pumadyn32nm 1.05 ± 0.0384 1.01 ± 0.0321 1.01 ± 0.0301 1.01 ± 0.0309
skillcraft† 0.354 ± 0.351 0.644 ± 1.18 0.399 ± 0.358 0.4 ± 0.368
sml 2.34 ± 0.329 2.22 ± 0.277 2.19 ± 0.116 2.14 ± 0.11

22


	Introduction
	Related Work
	Defining a linear model for the source and the target datasets
	Data-pooling estimator
	The data-pooling loss
	The relationship of data-pooling and maximum likelihood
	The data-pooling algorithm

	Transfer gain of data-pooling
	Experimental Setup
	Real-life data experiment and SOTA comparison
	Ablation experiments
	Empirical transfer gain
	Estimating the noise variance
	Estimating the new input expectation


	Results
	Real-life data experiment and SOTA comparison
	Estimating the noise variance
	Estimating the new input expectation

	Conclusion
	Proofs and derivations
	Proof of proposition 4.1
	Proof of proposition 4.2
	Proof of proposition 5.1
	Proof of Theorem 5.2

	Additional ablation studies
	Correlation experiment
	Detailed experiments with real-life data
	Distribution shifts between source and target datasets
	Non-additive models
	Extra real-life data results


