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ABSTRACT

Large Language Model (LLM) based multi-agent systems (MAS) have shown
promise in tackling complex tasks, but often rely on predefined roles and
centralized coordination, limiting their adaptability to evolving challenges. This
paper introduces MORPHAGENT, a novel framework for decentralized multi-agent
collaboration that enables agents to dynamically evolve their roles and capabilities.
Our approach employs self-evolving agent profiles, optimized through three key
metrics, guiding agents in refining their individual expertise while maintaining
complementary team dynamics. MORPHAGENT implements a two-phase process:
a warm-up phase for initial profile optimization, followed by a task execution
phase where agents continuously adapt their roles based on task feedback. Our
experimental results show that MORPHAGENT outperforms traditional static-role
MAS in terms of task performance and adaptability to changing requirements,
paving the way for more robust and versatile multi-agent collaborative systems.

1 INTRODUCTION

The rapid advancement of Large Language Models (LLMs) (Achiam et al., 2023; Touvron et al.,
2023b) has ushered in a new era of artificial intelligence, enabling the creation of sophisticated
Al agents capable of tackling complex tasks across various domains (Nakajima, 2023; Torantulino,
2023). As these Al systems become more intricate, there is a growing need for effective collaboration
mechanisms that allow multiple agents to work together. This collaborative approach, known as
Multi-Agent Systems (MAS) (Han et al., 2024), has shown great promise in addressing challenges
that are too complex or diverse for single-agent systems (Hong et al., 2024; Liu et al., 2023).

While existing MAS implementations have shown promising results, they often rely on predefined
roles (Li et al., 2023), centralized coordination (Guo et al., 2024; Chen et al., 2024), or rigid
organizational structures (Wang et al., 2024b; Hong et al., 2024). These approaches limit cooperative
resilience within MAS (Chacon-Chamorro et al., 2024), which focuses on robustness and adaptability
in dynamic, unpredictable environments. Figure 1 presents two examples to illustrate the real-world
challenges with details elaborated below:

Example 1.1 (Domain shift). Domain shift refers to a change in the characteristics or requirements of
a task as it progresses through different phases or contexts, presenting new challenges and requiring
different skill sets. For instance, a scientific research project could begin with literature review, move
to experiment design, and conclude with result analysis and paper writing. These transitions demand
a flexible and adaptive multi-agent system that can seamlessly adjust its collaborative strategies and
agent roles as the task progresses.

Example 1.2 (Node Failure). In real-world applications, the reliance on centralized coordination in
many existing MAS approaches (Chen et al., 2024; Hong et al., 2024) introduces a potential single
point of failure. Consequently, the single point of failure can lead to cascading failures in MAS,
where the entire system collapses if the central coordinator becomes unavailable. This vulnerability
highlights the need for more robust, decentralized approaches to multi-agent collaboration (Chacon-
Chamorro et al., 2024).

In this paper, we address these above challenges through a fully decentralized approach, where agents
autonomously adapt their roles and strategies. However, a naive implementation of fully decentralized
MAS presents inefficiencies for role assignment since the agents require many interaction rounds to
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(a) Domain Shift (b) Node Failure
Figure 1: Illustration of challenges in multi-agent systems (MAS) under domain shift and node failure
scenarios. (a) In the domain shift scenario, a user requests a paper, which is outside the expertise of the MAS
that is optimized for software engineering tasks. The agents (Product Manager, U/UX Designer, Software
Developer) struggle to fulfill this request due to the mismatch in domain expertise, leading to a suboptimal result.
(b) In the node failure scenario, a user requests a program, but due to the failure of the Product Manager node,
the MAS experiences a cascading failure and is unable to complete the task.

converge on role assignments. Without a structured mechanism for role optimization, this process
can lead to suboptimal role distributions and slow adaptation to changing task requirements,
reducing the overall effectiveness of the system. This underscores the need for a more sophisticated
approach to profile optimization in decentralized multi-agent systems.

To address above challenges, our design is motivated by the need to balance the benefits of de-
centralization with the efficiency of structured role optimization: the effective collaboration in a
multi-agent system requires not just individual agent capability, but also a complementary distribution
of roles that aligns with the task at hand. We introduce agent profiles as dynamic representations of
evolving capabilities and responsibilities. Specifically, our approach employs quantitative metrics
such as Role Clarity Score, Role Differentiation Score, and Task-Role Alignment Score to encourage
self-optimization. By optimizing these metrics for agent profiles, our approach promotes clear role
definition, diverse specialization, and task relevance, enhancing the system’s adaptive capacity in
dynamic environments.

Building on these insights, we propose a decentralized multi-agent system MORPHAGENT with
adaptive profile optimization. Our method incorporates two key phases, namely, a warm-up phase for
initial role development, and a dynamic task execution phase, thereby enables our system to achieve
rapid initial role optimization while maintaining the adaptability necessary for long-term effectiveness.
By allowing agents to autonomously adjust their profiles throughout the task execution, our method
preserves the benefits of decentralization such as robustness and scalability while mitigating the
potential inefficiencies of unstructured role assignment.

Contributions. We summarize the key contributions of this paper as follows:

 Decentralized Collaboration Framework: We introduce a novel, fully decentralized multi-agent
collaboration framework designed to enhence system resilience and adaptability in complex tasks.
By leveraging adaptive role optimization and fully decentralized coordination, our approach
demonstrate robustness to node failures and adaptability to domain shifts.

* Autonomous Collaboration Mechanism: We develop an automatic collaboration system that
does not depend on any critical agent or node. This approach distributes the process of decision-
making and task execution across all agents, ensuring continued operation and performance even
in the face of individual agent failures.

* Adaptive Role Optimization: We propose an adaptive role adjustment mechanism based on
continuous profile optimization. By optimizing for role clarity, differentiation, and task alignment,
our method enables a more flexible and robust form of collaboration. This mechanism allows
agents to dynamically adjust their roles in response to dynamically task requirements and team
composition changes.

* Empirical Validation: We provide comprehensive empirical evidence of our method’s effec-
tiveness through extensive experiments on standard benchmarks and custom-designed complex
tasks. Our results show significant improvements over state-of-the-art baselines in terms of task
performance, adaptability, and robustness to failures.
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2 RELATED WORK

LLM-based Multi-Agent Systems The emergence of Large Language Models (LLMs) (Achiam
et al., 2023; Touvron et al., 2023a) has led to LLM-based autonomous agents capable of tackling
complex tasks, like BabyAGI (Nakajima, 2023) and AutoGPT (Torantulino, 2023). However, single
LLM agents often struggle with cooperative work, such as software engineering (Jimenez et al., 2024).
To address these limitations, recent study have proposed LLM-based multi-agent systems (MAS) (Han
et al., 2024; Zhou et al., 2023), where multiple Al agents collaborate on complex tasks. Current
approaches often rely on predefined roles, centralized coordination, or rigid organizational structures.
CAMEL (Li et al., 2023) and ChatEval (Chan et al., 2023) employ agents with predefined roles
through role-playing, but struggle to adapt to tasks requiring unforeseen skills. MegaAgent (Wang
et al., 2024b) introduces autonomous task splitting with centralized coordination, but this approach
can create bottlenecks in large-scale systems and be damaged by single points of failure in real-world
environments.. MetaGPT (Hong et al., 2024) implements human workflow in rigid organizational
structures, showing improvements in code-generation but lacking generalization to other domains.
Our work addresses these limitations by initializing agents homogeneously without predefined roles
or structures, allowing them to naturally develop cooperation and specialization through interaction.

Organization Optimization for MAS Recent research in LLM-based Multi-Agent Systems
(MAS) has focused on optimizing organizational structures (Guo et al., 2024; Zhuge et al., 2024) and
enhancing agent performance (Zhang et al., 2024) to reduce communication costs and increase team
efficiency. Approaches like AgentVerse (Chen et al., 2024), Criticize-Reflect (Guo et al., 2024) and
MegaAgent (Wang et al., 2024b) rely on centralized mechanisms, where a single role or a subset of
agents monitor and evaluate the system’s overall trajectory. While effective in certain scenarios, these
centralized methods may face scalability issues and potential bottlenecks in large-scale MAS. Our
research proposes a decentralized approach, leveraging LLM-based agents’ self-reflection capabili-
ties (Madaan et al., 2023; Shinn et al., 2023; Renze & Guven, 2024). Agents dynamically adjust their
responsibilities based on context, enabling better scalability and mitigating context overload risks.

Standard Operating Procedure based MAS Another significant strand of research has explored
more structured and controlled methodologies in LLM-based multi-agent systems. Standard Operat-
ing Procedure (SOP) based approaches like AgentCoder (Huang et al., 2023) and MetaGPT (Hong
et al., 2024) have shown performance gains through standardized pipelines. GPTSwarm (Zhuge
et al., 2024) extends this by conceptualizing agents as subnets of action nodes. While effective
for specific tasks, these approaches lack flexibility in dynamic environments. Our framework com-
bines multi-agent collaboration with autonomous planning capabilities of advanced LLM-based
agents (Huang et al., 2022; Guan et al., 2023; Wang et al., 2023). Instead of rigid SOPs, it enables
dynamic development of collaborative strategies and efficient role adaptation, enhancing overall
performance and robustness.

3 AUTONOMOUS COLLABORATION FOR FULLY DECENTRALIZED MAS

In this section, we present a novel decentralized multi-agent system which incorporated with a
dynamic profile-based collaboration mechanism. Our key innovation lies in a two-phase process, as
detailed in Appendix A, Algorithm 1: (1) a warm-up phase that optimizes agent profiles, and (2)
a task execution phase where agents iteratively observe the environment, take actions, and update
their profiles based on results and changes in the task state. To begin, we provide an overview
of our multi-agent cooperation process in Section 3.1, followed by a detailed description of our
dynamic profile-based collaboration mechanism in Section 3.2. Finally, we present the collaborative
problem-solving process of our MAS in Section 3.3.

3.1 SYSTEM OVERVIEW

Complex tasks require adaptive problem-solving approaches that go beyond traditional centralized
systems, which are vulnerable to bottlenecks and failure points. In centralized systems, a single
coordinator is responsible for breaking down tasks and assigning them to individual agents. However,
if the coordinator fails or communication is disrupted, the entire system risks collapsing. Additionally,
fixed roles within such systems prevent agents from adjusting to shifting task requirements, resulting
in inefficiencies.
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To develop a novel decentralized system, where multiple autonomous agents collaborate on complex
tasks without predefined roles or centralized coordination, we introduce a fully decentralized
multi-agent system, MORPHAGENT comprising three key components—namely, (i) Autonomous
Agent, (ii) Auxiliary Agent, and (iii) Environment—each playing a crucial role in enabling
autonomous, decentralized collaboration, as detailed in the following subsections.

(i) Autonomous Agent. The autonomous agent is built upon a LLM, e.g., GPT-4 (Achiam et al.,
2023), which provides it with advanced reasoning and language understanding capabilities. It
is primarily composed of a dynamic profile and utilizes the ReAct framework (Yao et al., 2022)
combined with Reflexion (Shinn et al., 2023) to guide its behavior. The dynamic profile, which
defines each agent’s roles and responsibilities, is central to how agents update and adapt, and will be
discussed in detail in Section 3.2. Here, we focus on the operational mechanics of the agent.

Each agent follows the OBSERVE-THINK-ACT cycle, where it first gathers information from the
environment and other agents in the OBSERVE phase. In the THINK phase, it uses its reasoning
abilities to process the information and plan its next move as presented in Algorithm 1’s Line 13.
Finally, in the ACT phase, the agent decides to either EXECUTE or SKIP a task based on its current
capabilities and the task’s requirements. After executing a task, the agent reflects on the outcomes,
incorporating feedback into its memory for future decisions. This process is detailed in Algorithm 1’s
Line 18. The continuous cycle enables agents to adapt over time, refine their strategies based on
feedback, and collaborate more effectively to address the specific problem at hand.

(ii) Auxiliary Agent. The auxiliary agent serves as a middleware component that facilitates inter-
action between autonomous agents and the environment, without directly contributing to problem-
solving. This design allows for efficient management of agent interactions and environmental
feedback while maintaining the decentralized nature of our system. By handling technical details, the
auxiliary agent allows the autonomous agents to focus on high-level problem-solving strategies.

The main function of the auxiliary agent is to translate agent decisions into environmental operations
and relays feedback from the environment back to the agents. For example, when an agent decides to
execute Python code, the auxiliary agent runs the code in the environment, captures the output or
errors from the environmental feedback, and provides this feedback to the multi-agent system. Thus
the auxiliary agent ensures that autonomous agents can concentrate on strategic problem-solving
while it manages execution and feedback processes.

(iii) Environment. The environment receives the instructions from users, processes them into
messages, and the auxiliary agent is responsible for collecting and forwarding these messages within
the environment to autonomous agents. Additionally, the environment is equipped with a mechanism
to evaluate agent profiles, providing feedback that agents can use to refine and adjust their roles
and strategies. This process ensures that agents continuously improve their task alignment and
specialization, leading to more efficient collaboration and better overall system performance as task
conditions evolve.

3.2 DYNAMIC PROFILE-BASED COLLABORATION MECHANISM

Traditional multi-agent systems (MAS) (Hong et al., 2024; Li et al., 2023) with predefined roles
and static structures struggle to adapt to domain shift, leading to suboptimal performance when
faced with unexpected changes or new challenges. To address this, we introduce a dynamic profile
mechanism, as prensented in Algorithm 1’s Line 4 and 22, enabling agents to continuously adjust
their roles and skills based on interaction and task requirements. We begin with the concept of agent
profiles, followed by the key metrics used to evaluate and optimize these profiles.

Profile. The concept of agent profiles encapsulates an agent’s evolving role, capabilities, and exper-
tise, serving as a dynamic representation of the agent’s identity within the multi-agent system (Wang
et al., 2024a). Profiles play a crucial role in MAS by facilitating effective task allocation, fostering
collaboration, and enabling adaptive behavior (Sun et al., 2024). Unlike static role assignments,
dynamic profiles allow agents to continuously refine their capabilities, leading to more flexible
collaboration and efficient problem-solving.

Metrics for Profile Evaluation and Optimization. In dynamic and complex environments, role
ambiguity often significantly impair an agenet’s effectiveness and efficiency, as agents struggle to
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understand their responsibilities and how they contribute to the overall task. Simultaneously, a
lack of diversity may limit the system’s ability to tackle multifaceted problems. For example, in a
software development MAS, having too many agents specialized in front-end development but none
in back-end or security could lead to an imbalanced and ineffective team. Furthermore, misalignment
between agent capabilities and current task requirements can potentially result in ineffectiveness,
especially when facing domain shift.

To address these issues and foster effective collaborationm, we propose three key metrics to assess
and dynamically optimize each agent’s profile: Role Clarity Score (RCS), Role Differentiation
Score (RDS), and Task-Role Alignment Score (TRAS) as following definitions. These metrics guide
the optimization process, ensuring that each profile accurately reflects the agent’s role and capabilities
(RCS), promotes diversity in the team (RDS), and aligns with the task requirements (TRAS).

Definition 3.1 (Role Clarity Score (RCS)). For an agent a € A with profile p € S, where S is the
set of all possible profile strings, RCS considers the syntactic structure, lexical diversity, and skill
relevance of the profile, which can be defined as:

RCS(a) = B1 - DEP(p) + B2 - ENT(p) + 83 - SKILL(p) ,
where 51 + B2 + B3 = 1, and

* DEP : § — [0,1] is the dependency score, measuring syntactic complexity. This builds on
established principles in dependency parsing (Kiibler et al., 2009) and syntactic role analy-
sis (Jurafsky, 2000). It captures the structural depth and richness of the profile: DEP(p) =

hi <m 2ten(p) IST(?) |) , where D(p) is the set of tokens in p involved in key dependency

relations (e.g., subject, object), ST (t) is the subtree of token ¢, and h; : Ry — [0, 1] is a nor-
malizing function capturing syntactic complexity. Higher DEP scores indicate more detailed,
complex profiles.

« ENT : S — [0,1] is the entropy score, quantifying lexical diversity, defined as: ENT(p) =

hso (— D wew(p) % log, (%)) , where W(p) is the set of unique words in p, f(w) is
the frequency of word w in p, and hs : Ry — [0, 1] is a normalizing function. Higher EN'T scores
indicate diverse, less repetitive language.

* SKILL : § — [0, 1] is the skill score, measuring relevance to skill-related concepts, computed

e(t)-e(s PS . .
as: SKILL(p) = IT?T)I D teT(p) m +(1—7) \‘T(;’;)ﬂ, where s is the skill prototype, a

vector capturing the essence of skill-related concepts, defined as the average embedding of terms
like "skill", "expertise”, and "competence". e(-) is a word embedding function, 7 (p) is the set
of tokens in p, and PS(p) is the set of potential skill tokens, identified through syntactic and
semantic criteria, including similarity to s and dependency relations (e.g., PROPN, NOUN in
compound relations). Higher SKILL scores indicate stronger alignment with relevant skills.

Remarks: The RCS is motivated by the observation that well-defined roles in professional contexts
exhibit distinct linguistic patterns: (a) they tend to have richer syntactic structures (captured by
dependency scores), (b) more diverse and specific vocabulary (measured by entropy), and (c) clear
skill specifications (quantified by skill relevance). By capturing these linguistic patterns, the RCS
provides a measure of how well-defined and understandable an agent’s role is. However, it doesn’t
account for the relationships between different agents’ roles or their relevance to a specific task. To
address these aspects, we introduce the following two metrics that consider a given task.

Given a task, MAS should exhibit a balance of diverse yet complementary roles. Thus, we introduce
the Role Differentiation Score as follows:

Definition 3.2 (Role Differentiation Score (RDS)). Let A = {ay,...,a,} be a set of n agents, with
profiles P = {p1, ..., pn}. The RDS of .A measures the average dissimilarity between agent profiles,
which can be defined as:

2
RDS = hs wn—1) Z d(a;, a;) |,

1<i<j<n

where d(a;,a;) =1 — #ﬁéﬁ;j)” is the dissimilarity between agents a; and a; measured by the

embeddings of their profiles p; and p;, and h3 is a sigmoid function to normalize the score.

Remarks: The RDS is motivated by a fundamental principle in multi-agent systems: effective teams
require distinct yet complementary roles to efficiently accomplish complex tasks. When roles are
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too similar, it leads to redundancy and potential resource inefficiency; when they’re too different,
it might create gaps in capability coverage. RDS quantifies this balance through pairwise profile
dissimilarity measurements, capturing the degree of role specialization across the team. However,
high role differentiation alone doesn’t guarantee task-appropriate specialization, e.g., in a software
development task, having agents with completely unrelated skills like a programmer and a chef would
result in a high RDS but poor task performance. This motivates our next metric focused on Task-Role
Alignment.

We introduce the Task-Role Alignment Score (TRAS) to ensure that the agents’ roles are not only
differentiated but also relevant to the given task:

Definition 3.3 (Task-Role Alignment Score (TRAS)). Given a task 7" € 7 and a set of agent profiles
P ={p1,...,pn}, TRAS investigates how well the agents’ roles align with the task requirements,
which is defined as:

TRAS = - Seim (T, P) + (1 — @) - Scap (T, P) ,

where:

+ Semantic Similarity (Sym): Ssim(T,P) = £ Y7 fGF2 P where o(T) and e(p,) are
vector representations of the task and the i-th agent profile, respectively, obtained via a pretrained
language model. These vectors capture the semantic proximity between task descriptions and
agent profiles.

« Capability Compatibility (Scap): Scap(T,P) =1—|Cr(T) — L 31, Calps)|, where C(T)
assesses task complexity and C'4(p;) evaluates the capability of an agent.

Cr(T) is defined as: Cr(T) = % (14 cos(Vr, Veomplex) — COS(VT, Vsimple)) , Where v is the
vector representation of the task, and Veomplex, Vsimple are vector representations of predefined
complexity and simplicity indicators. Specifically, Vcomplex includes terms like "complex" for tech-
nical challenges, and "challenging" for task difficulty. Conversely, Vgimple fOcuses on simplicity
indicators like "basic" for scope and "routine", "standard" for effort.

Ca(p;) evaluates the capability of the i-th agent profile as: Calpi) =
% (1 + cos(Vp,, Veapable) — €OS(Vp,, Viimited)) , Where v, represents the agent profile,
while Veapable and Viimited capture capability and limitation indicators, respectively. Vcapable
includes terms like "expert", "experienced", and "certified", while Viimiteq covers "beginner",

"junior", "novice", and similar terms reflecting entry-level abilities.

Remarks: The TRAS definition is motivated by the observation that effective multi-agent systems
require roles that collectively match task requirements. This alignment has two critical dimensions:
(a) semantic relevance (whether the roles’ descriptions match the task’s domain and requirements),
and (b) capability compatibility (whether the team’s skill levels match the task’s complexity). TRAS
captures these dimensions through Sgi,, which measures semantic proximity between role and
task descriptions using vector representations, and Sc,p,, which evaluates the match between task
complexity and team capabilities using carefully defined indicator terms. By combining these
complementary measures, TRAS provides a comprehensive assessment of how well-suited a team’s
role configuration is for a given task.

These three scores provide a comprehensive evaluation of the agents’ roles, their differentiation,
and their alignment with the given task. In Appendix B, we outlines the dynamic process of profile
optimization, where these metrics are iteratively refined to enhance agent collaboration and task
performance. Additionally, Appendix C present quantitative examples evaluating these metrics on
various agent teams for specific tasks, demonstrating how the metrics function in practice.

To optimize the agent profiles, we leverage these metrics to guide the agents’ decision-making
process with generated prompts given the calculated metric scores (detailed in Appendix D). By
carefully optimizing these metrics, the multi-agent system is well-prepared to tackle the evolving task
efficiently and effectively. This approach allows agents to naturally develop specializations, fostering
adaptability and maintaining a diverse skill set within the system, better aligning their capabilities
with evolving task requirements. The effectiveness of utilizing these metrics is further demonstrated
in our ablation study in Section 4.4.
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Figure 2: Pipeline of MORPHAGENT. Agents start from user requirements, undergo a warm-up phase to op-
timize profiles based on metrics (terminating after a set number of rounds or upon reaching the metric threshold),
and then proceed to the task execution phase, where profiles are updated iteratively. The task execution phase ends
when consensus is reached or required rounds are completed, with feedback loops ensuring continuous adaptation.

3.3 COLLABORATIVE PROBLEM-SOLVING PROCESS

The core of our approach, illustrated in Figure 2, lies in a two-phase process: a warm-up phase for
optimizing agent profiles, followed by an iterative task execution phase (as detailed in Appendix A,
Algorithm 1):

¢ Warm-up Phase: Profile Initialization and Iterative Optimization. In the warm-up phase, each
agent’s profile is initialized and then iteratively optimized. Key metrics introduced in Section 3.2
are calculated for each profile. These metrics help define the roles clearly, ensure a diverse skill set
across agents, and align the agents’ capabilities with task requirements. The optimization process
iterates until a predefined convergence threshold is met, or the warm-up iterations are completed.

» Task Execution Phase: Observation, Action Decision, and Profile Updates. After profile
optimization, the system moves to the task execution phase. In this phase, agents observe the
environment and task state, make decisions based on their current profiles, and either execute or
skip tasks. If an agent chooses to execute, the results are recorded and logged. This phase is also
iterative, allowing profiles to be updated based on the execution outcomes and the current state of
the task. The agents continuously adapt to changing conditions and refine their profiles, ensuring
that actions remain aligned with both individual and collaborative goals.

4 EXPERIMENT

In this section, we evaluated our proposed multi-agent collaboration framework on standard bench-
mark tasks including code generation, general reasoning, and mathematical reasoning in Section 4.1.
To further assess the the adaptability of our approach in dynamic environments compared with
predefined SOP-based MAS, we construct cross-domain datasets to analyze the performance of our
framework in Section 4.2. Furthermore, we investigate the robustness of our decentralized approach
compared to MAS with central coordinators using failure node analysis in Section 4.3. We also
conduct a comprehensive ablation study in Section 4.4 to analyze the contributions of each individual
metric in our framework and assess its scalability with increasing agent numbers.

4.1 COMPARISON AMONG BASELINES

We compare our method with two state-of-the-art decentralized MAS methods: GPTSwarm (Zhuge
et al., 2024), and Criticize-Reflect based organization optimization (Guo et al., 2024). We also include
a Naive solution in the comparison, which operates without a warm-up phase and designs the profile
update as an optional action (without optimizing metrics) in the execution phase.
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Figure 3: Comparison with state-of-art baseline methods: Our approach consistently outperforms baseline
methods across all three benchmark tasks (Code Generation, General Reasoning, and Mathematical Reasoning).

We evaluate the performance on the following benchmark tasks: Code Generation (Big-
CodeBench (Zhuo et al., 2024)), General Reasoning (BigBenchHard (Suzgun et al., 2022)), Math-
ematical Reasoning (MATH (Hendrycks et al., 2021)). For each benchmark task, we use a set of
N = 3 agents!, with each agent initialized as the same LLM model including gpt —40-mini? and
gpt—-3.5-turbo-0125°.

As shown in Figure 3, MORPHAGENT consistently outperforms the baseline methods across all
three benchmark tasks. Notably, our fully decentralized approach achieves comparable or superior
performance to other methods without relying on Standard Operating Procedures (SOPs) as used
in GPTSwarm or a centralized evaluator as employed in Critic-Reflect methods. MORPHAGENT
demonstrates its effectiveness on self-evolving profiles and decentralized collaboration strategy.

4.2 FLEXIBILITY TO DOMAIN SHIFT

To evaluate our framework’s adaptability to changing task requirements like Example 1.1, we
construct two distinct cross-domain evaluation datasets by the complexity of the target tasks:

e LEVEL-1: This dataset involves a domain shfit from BigCodeBench to BigBenchHard, represent-
ing a moderate domain shift.

* LEVEL-2: This dataset involves a domain shift from BigCodeBench to more challenging MATH
that require precise symbolic reasoning and step-by-step logical deductions.

For each dataset, it consists of 50 sequences, where each sequence contains six samples: the first three
samples are from the preceding dataset (BigCodeBench), while the latter three are sampled from the
target dataset (either BigBenchHard or MATH). In this case, multi-agent systems need to complete
tasks in sequence, transitioning from the source domain to the target domain without altering its
structure or components. The performance is evaluated separately: accuracy on the source domain is
based on the first three samples of each sequence, while accuracy on the target domain is based on
the latter three. Each sequence represents a domain shift from one task domain to another, simulating
a dynamic environment where task requirements change over time.

As shown in Table 1, our results highlight the superior flexibility of our approach compared to
baseline methods. After transitioning from one task domain to the next, our method shows almost
no performance degradation compared to the results in Figure 3, whereas the other two methods
experience declines in performance. Notably, GPTSwarm exhibits a drastic drop of around 45% when
shifting MATH in LEVEL 2, underscoring SOP-based MAS’s difficulty in adapting to domain shift.

In contrast, our approach maintains robust performance, effectively handling domain shifts with
minimal loss in accuracy. This highlights the framework’s flexibility and superior ability to maintain
high performance across a range of tasks.

'As demonstrated in Section 4.4, we set agent number as 3 which is sufficient for benchmark problem solving.
This configuration will be consistently applied in subsequent benchmark evaluations.

Zhttps://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

3https://platform.openai.com/docs/models/gpt-3-5-turbo
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Table 1: Accuracy comparison of GPTSwarm, Naive, and Ours across two levels of tasks using
gpt—-4o-mini for all agents. Level 1: From BigCodeBench to BigBenchHard dataset, Level 2: From
BigCodeBench to MATH dataset. For each paradigm, the first number indicates the average accuracy on the
source domain tasks (BigCodeBench), while the second number shows the average accuracy on the target domain
tasks (BigBenchHard or MATH) after completing all sequences.

Task | GPTSwarm Naive MORPHAGENT
Level 1 \ 50.00% — 48.67% 52.67% — 67.33% 53.33% — 68.67%
Level 2 ‘ 49.33% — 11.33% 49.33% — 58.00% 53.33% — 63.33%

MATH BigBenchHard BigCodeBench
60
S
8
2 401
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204 k
0.3 0.5 0.7 03 0.5 0.7 03 0.5 0.7
Failure Probability Failure Probability Failure Probability

Figure 4: Robustness comparison with failure probability 0.3, 0.5, and 0.7: Our approach maintains consistent
performance across varying failure probabilities, while AgentVerse’s performance degrades significantly as
failure risk increases.

4.3 ROBUSTNESS TO NODE FAILURE

To evaluate the robustness of our decentralized approach compared to centralized methods, we
conducted experiments simulating potential node failures which we mentioned in Example 1.2.
Specifically, in each round of interaction, one agent in the multi-agent system (MAS) has a certain
probability of failing to respond. We compared our method with AgentVerse (Chen et al., 2024), a
centralized approach that relies on a central evaluator. For both AgentVerse and our method, all
agents, including the central evaluator in AgentVerse, have an independent probability of failure
in each interaction. For this experiment, we used the gpt —40-mini model and varied the failure
probability of each agent from 0.3 to 0.7, simulating environments with different levels of risk.

As shown in Figure 4, our decentralized approach demonstrates superior robustness compared to
AgentVerse across all failure probabilities, providing the following insights:

* Fault Tolerance: Our method maintains relatively stable performance across different failure
probabilities. Even at a high failure probability of 0.7, our method maintains competitive perfor-
mance, with accuracies of 63.81%, 47.37%, and 53.00% for code generation, general reasoning,
and mathematical reasoning tasks respectively.

* Decentralized Architecture: Our method’s distributed nature allows it to continue functioning
even when individual agents fail, unlike centralized approaches that may collapse entirely if the
central node fails.

* Adaptive Role Adjustment: The dynamic profile updating and role differentiation in our method
enable the system to reassign tasks and responsibilities when certain agents fail, maintaining
overall system robustness.

These insights underscore the importance of fully decentralized, adaptive approaches in creating
robust multi-agent systems, particularly in high-risk environments or for critical applications where
node failures are a significant concern.

4.4 ABLATION STUDY

To better understand the contributions of each metric in our framework and assess its scalability,
we conducted a two-part ablation study. First, we evaluated the model’s performance by using only
one metric at a time in the profile optimization process—either Role Clarity Score (RCS), Role
Differentiation Score (RDS), or Task-Role Alignment Score (TRAS)—and compare the results to the
full implementation, which utilizes all three metrics together. Second, we examined the framework’s
scalability by varying the number of agents in the multi-agent system (MAS) using the MATH dataset.
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Table 3: Scalability analysis on MATH dataset using gpot-40-mini for all agents: The interaction rounds
increase with more agents but not linearly, showing our method’s scalability.

Metric 3 Agents 5 Agents 10 Agents
Accuracy 66.67% (140/210)  66.19% (139/210)  65.71% (138/210)
Avg. Interaction Rounds 1.54 1.61 2.06

Metric Analysis. As shown in Table 2, utilizing a single metric results in a performance decline
compared to the full implementation that incorporates all three metrics. Employing only the RCS
yields an accuracy of 50.00%, underscoring the importance of clearly defined agent roles in collabo-
rative tasks. The isolated use of RDS leads to the performance of 41.66%, suggesting the current
task may not require the role diversity becuase the task is not complex enough. To further investigate
the impact of RDS, we conducted a separate experiment with a more complex task, detailed in
Appendix E. Similarly, incorporating only the TRAS produces an accuracy of 49.6%, demonstrating
the importance of aligning agent roles with task requirements to achieve better performance.

Notably, our profile update mechanism that integrates Table 2: Ablation study on BigCodeBench with
all three metrics achieves the highest performance, different metrics using gpt-4o-mini agents.

highlighting the complementary nature of these met- Setting Accuracy

rips. The combinatio_n of clear role definition, role Only RCS 50.00% (150/300)
diversity, and task alignment enables the agents to OnlyRDS  41.66% (125/300)
collaborate more effectively and adapt to varying task Only TRAS  49.66% (149/300)
demands, leading to improved performance overall. Ours 52.00% (156/300)

Scalability Analysis. To evaluate the scalability of our method, we examine our method as the
number of agents increases, with 3, 5, and 10 agents in MAS. Specifically, we measure the accuracy
of problem-solving using the MATH dataset and the average number of interaction rounds required
to reach a solution, as shown in Table 3.

Firstly, we observe our method maintains relatively stable performance even with a larger number of
agents. More interestingly, the average number of interaction rounds increases as more agents are
added to the system, as more agents require more communication and coordination. We note that the
increase is not linear, indicating that our method’s scalability even with larger agent groups.

These findings demonstrate that our method scales reasonably well with an increasing number
of agents. However, the increase in interaction rounds with more agents highlights a potential
optimization. Future work could focus on improving coordination mechanisms to reduce the number
of rounds required for consensus, especially in larger agent groups.

5 LIMITATION, FUTURE WORK, AND CONCLUSION

Limitation and Future Work. In this work, we have presented a novel decentralized multi-agent
system that leverages dynamic profile-based collaboration to enhance problem-solving capabilities in
complex tasks. While our approach demonstrates promising results across various benchmarks, there
are some opportunities for future work. Our method utilizes continuously updating and evaluating
agent profiles, which may incur computational overhead. Future work could explore efficient
decentralized mechanisms to reduce computational costs. Besides, future work should explore more
efficient, peer-to-peer communication strategies that maintain the benefits of our approach while
reducing computational costs.

Conclusion. In this paper, we introduced MORPHAGENT, a decentralized multi-agent system that
employs dynamic, profile-based collaboration to improve problem-solving in complex tasks. By
incorporating profile evaluation and optimization, we present a flexible approach to role adaptation,
addressing the limitations of predefined roles in traditional MAS and the vulnerability of centralized
systems to node failures. MORPHAGENT offers a promising foundation for developing resilient,
self-organizing multi-agent systems capable of responding to unforeseen challenges.

10
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In this section, we provide a detailed algorithm of MORPHAGENT pipeline.

Algorithm 1 MORPHAGENT Process

Require: Set of agents A = {ay,...,a,}, Task
T, Max iterations N, Warm-up iterations
Nyarmup, Threshold 6

Ensure: Task solution

1: Initialize agent profiles P = {py, ...
// Warm-up Phase
2: iter <0
: while iter < Nyarmup and not converged
do
P + UpdateProfiles(A, P, T, 0, iter)
iter < iter + 1
: end while
// Task Execution Phase

:ater <0

: while iter < N and task not completed do

Initialize logs ExecLog = {0}

Initialize feedbacks F = {(}"

7pn}

11:
12:
13:

for all a; € Ado
obs; < ObserveEnv (T, P)
action; < DecideAction(a;, obs;, p;, Fi)

14:
15:
16:
17:
18:
19:
20:
21:

if action, = EXECUTE then
result; + PerformAction(a;, T)
ExecLog, < result,;
valid_res < Parse(result;)
F; < GenFeedback(action;, ExecLog;)
end if
end for
if all agents decide to stop: break
22: P « UpdateProfiles(A, P, T, F,iter)
23: dter +iter +1
24: end while
25: return P, valid_res
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B DYNAMIC PROFILE OPTIMIZATION PROCESS

In this section, we provide supplementary explanations on how the three key metrics—Clarity,
Differentiation, and Alignment guide the generation and optimization of agent profiles. As shown in
Figure 5, agents receive adaptive prompts based on their metric scores, offering targeted feedback
to refine specific aspects of their profiles. For instance, agents with low clarity scores are prompted
to better define their roles, while those with low alignment scores are encouraged to adjust their
strategies to align more closely with task requirements. The detailed process of how metric changes
translate into actionable prompts is further outlined in Appendix D, where various scenarios such as
initial evaluations, improved profiles, and degraded profiles are explored.

Table 4 presents detailed profiles and corresponding metric scores for one agent, illustrating how an
agent’s profile evolves over the course of interactions, with metric scores reflecting the progressive
refinement of roles and strategies. Specifically, the examples shown reflect the profile changes of
one agent as it works on a task from the BigBenchHard dataset, addressing a causation scenario
involving medical negligence and premature death. The metric scores highlight the agent’s progressive
refinement of roles and strategies in response to task demands. This analysis demonstrates the crucial
role of the metrics in shaping well-optimized profiles, facilitating effective and adaptive collaboration.

Table 4: Profiles of an agent and their corresponding metric scores. Each agent profile is evaluated using
three key metrics: role’s clarity (RCS), differentiation (RDS), and alignment (TRAS) with their respective scores
provided in the table.

Agent Profile RCS RDS TRAS
Agent_0: collaborative agent with unique perspective  0.4215 0.0068 0.3626
Agent_0: collaborative agent with a focus on 0.6800 0.0492 0.3892
evaluating causation in complex scenarios.

Agent_0: collaborative agent focused on evaluating 0.7158 0.2324 04717

causation in complex scenarios, particularly in
high-stakes medical incidents and ethical dilemmas.
Your unique capability lies in dissecting the interplay of
human actions and systemic factors, enabling nuanced
assessments of responsibility and outcomes.

Agent_0: collaborative agent focused on evaluating 0.7256  0.2556 0.4464
causation in complex medical incidents and ethical
dilemmas, particularly in high-stakes scenarios
involving human actions and systemic factors. Your
unique capability lies in dissecting the intricate
relationships between individual decisions,
environmental influences, and health outcomes,
enabling a thorough understanding of responsibility and
accountability in critical contexts. You excel in providing
nuanced assessments that inform decision-making
processes and improve patient safety.

Agent_0: collaborative agent dedicated to evaluating 0.7300 0.5051 0.6664
causation in complex medical incidents and ethical
dilemmas, with a unique focus on the interplay between
individual decisions, systemic factors, and environmental
influences in high-stakes scenarios. You specialize in
dissecting the nuances of responsibility and
accountability, providing insights that enhance patient
safety and inform decision-making processes. Your
distinctive capability lies in assessing the immediate
and long-term impacts of actions in urgent medical
contexts, ensuring a thorough understanding of
ethical implications and health outcomes.
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C PROFILE ANALYSIS

Table 5: Evaluating Profiles of Agents in Different Teams: TECH, HEALTHCARE, CREATIVE, Finance, and
VAGUE: Agent Role Clarity Scores (RCS), and Role Differentiation Score (RDS).

Team Agent Profile RCS RDS
TechAgentl full-stack developer with 7 years of experience  0.904
TECH in React and Node.js 0.75
TechAgent2 Al research scientist specializing in natural lan-  0.750
guage processing
TechAgent3 DevOps engineer with expertise in AWS and  0.775
Kubernetes
HealthAgentl board-certified neurosurgeon with a focus on  0.842
HEALTHCARE minimally invasive procedures 0.81
HealthAgent2 registered nurse practitioner specializing in geri- 0.745
atric care
HealthAgent3 HEALTHCARE data analyst with experience in  0.830
electronic health records
CreativeAgent]l  senior graphic designer with expertise in brand-  0.832
CREATIVE ing and typography 0.68
CreativeAgent2  content strategist with a background in SEO and  0.908
social media marketing
CreativeAgent3  video editor proficient in Adobe Premiere and  0.823
After Effects
FinanceAgentl  chartered financial analyst with expertise in port-  0.771
Finance folio management 0.78
FinanceAgent2  risk management specialist focusing on deriva-  0.835
tives and hedging strategies
FinanceAgent3  blockchain developer with experience in smart  0.880
contracts and DeFi
VagueAgentl person who works with money 0.635
VAGUE - - - 0.71
VagueAgent2 team player with good communication skills 0.614
VagueAgent3 experienced professional in the field 0.548

In this section, we provide a detailed analysis of agent profiles across different teams to show the
effectiveness of our proposed metrics in evaluating agent profiles. We consider five teams of agents,
each representing a distinct domain: TECH, HEALTHCARE, CREATIVE, Finance, and VAGUE. Each
group consists of three agents, with each agent having a unique profile as shown in Table 5.

Notably, the VAGUE agent team gets the lowest Role Clarity Score (RCS) due to the lack of specificity
in their profiles. In contrast, the TECH and Health agent teams exhibit higher RCS values, indicating
clear and well-defined profiles. For RDS, the CREATIVE agent team achieves the lowest score,
suggesting less differentiation among agents for the similar roles between CreativeAgentl and
CreativeAgent3. interestingly, VAGUE agent team has a relative high RDS, indicating a higher level
of differentiation among agents. This highlight differentiation along can be misleading and should be
considered in conjunction with other metrics such as TRAS.

Then, we investigate these groups of agents in the context of five different tasks, each requiring
a specific set of skills and expertise as shown in Table 6. Specifically, we measure the Task-Role
Alignment Score (TRAS) for each team of agent given the task. For instance, the Finance and TECH
agent team achieves the highest TRAS for the task of developing a mobile app for real-time stock
trading, indicating a strong alignment between the task requirements and the agents’ profiles.
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Table 6: Measuring Task-Role Alignment Score (TRAS) for Different Teams of Agents: Finance, TECH,
CREATIVE, Healthcare, and VAGUE for five different tasks.

Task Team TRAS
Finance 0.54
Develop a mobile app for TECH 0.38
real-time stock trading CREATIVE 0.34
HEALTHCARE  0.30
VAGUE 0.30
HEALTHCARE  0.50
Create a comprehensive patient  TECH 0.44
management system Finance 037
VAGUE 0.36
CREATIVE 0.34
CREATIVE 0.43
Design and launch a global Finance 0.35
brand campaign TECH 032
VAGUE 0.30
HEALTHCARE  0.24
Finance 0.50
Implement a blockchain-based =~ TECH 0.39
supply chain tracking system CREATIVE 0.33
VAGUE 0.33

HEALTHCARE 0.31

HEALTHCARE 0.42

Conduct a clinical trial for a Finance 0.39
novel cancer treatment VAGUE 036
TECH 0.35
CREATIVE 0.34

D DETAILED PROMPTS FOR AGENT PROFILE UPDATES

In this section, we provide detailed prompts generated for agent profile updates based on the evaluation
metrics.

Table 7 presents a comprehensive overview of the profile evaluation process, outlining four key
scenarios: initial evaluation, improved profile, degraded profile, and similar profiles among agents.
Given the metrics for role’s clarity (RCS), differentiation (RDS), and alignment (TRAS), the generated
prompts provide corresponding feedback to agents to guide them in refining their profiles. For
example, in the initial evaluation scenario, the prompt highlights the lack of clarity and differentiation
in the agent’s profile, prompting them to consider adjusting their profile text.

In contrast, the improved profile scenario acknowledges the positive changes in the agent’s profile,
encouraging them to maintain their progress. Similarly, the degraded profile scenario draws attention
to negative changes, prompting agents to refine their profiles accordingly. Lastly, the similar profiles
scenario emphasizes the need for differentiation, especially when profiles are similar to those of other
agents. Through these varied scenarios and targeted prompts, we demonstrate the flexibility and
effectiveness of our prompt generation system in fostering continuous improvement and adaptation
within the multi-agent environment.
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Table 7: Prompts Generated for Profile Evaluation: Given the metrics for profile’s clarity, differentiation, and
alignment, the generated prompts provide corresponding feedback to guide agents in refining their profiles.

Scenario Metric Input Generated Prompt for Profile Update
Initial Evaluation . Clar%ty: Your profile is not clear or
¢ Clarity: 0.4 specific.
* Differentiation: 0.3 Differentiation: Your profile is not
* Alignment: 0.6 well-differentiated, think about other

roles that you can take on. Based on
this initial analysis, consider adjusting
your profile. Your response should only
include the new profile text.

Compared to your previous profile,

Improved Profile . your current profile has improved.
* gld C(ljallrlt,)t" _0(')47 Keep up the good work!
. Oﬁ;v Dif?;e};l.ti a.ti on: 0.3 You have been provided with your old
« New Differentiation: 0.6 profile and its evaluation, as well as
« OId Alignment: 0 6 your current profile and its evaluation.
. o This information will guide you in

New Ali t: 0. .
ew Alignment: 0.8 refining your current profile.

Degraded Profile Compared to your previous profile,

+ 0ld Clarity: 0.7 your current profile has degraded.

» New Clarity: 0.5 You have been provided with your old
* Old Differentiation: 0.6 profile and its evaluation, as well as
* New Differentiation: 0.4 your current profile and its evaluation.
e Old Alignment: 0.8 This information will guide you in
* New Alignment: 0.6 refining your current profile.

Similar Profiles . . Your  profile is not well-
* leferent:atlon: 0.3 ., differentiated, think about other
* Agentl: "Al'specialist” roles that you can take on.
* Agent2: "Machine learning expert" S
« CurrentAgent: "Data scientist fo- Your profile is similar to others:

[Agentl: Al specialist Agent2: Ma-

cused on AI" ; .
chine learning expert].

Ensure your profile remains clear and
aligned with the task while striving for
distinctiveness.

E CASE STUDY ON ROLE DIFFERENTIATION SCORE

In this section, we provide a case study on a complex task to illustrate the importance of Role
Differentiation Score. The instruction is "Build a Movie and TV Show Recommendation Platform".

For this task, we compared MORPHAGENT with the naive implementation. As shown in Table 8, the
naive approach generated three agent profiles: Agent_0 focused on gathering detailed requirements
and creating an efficient development plan; Agent_1 was described only as a "collaborative agent
with unique perspective"; and Agent_2 concentrated on enhancing user experience and technical
implementation strategies. While these roles cover some basic aspects, they lack the diversity and
specificity needed for a comprehensive recommendation platform.

In contrast, Our method produced more diverse and specialized agent profiles. Agent_0 specializes in
dynamic algorithmic playlist generation adapting to user moods and preferences, while integrating
gamification elements. Agent_1 focuses on transforming the platform into a social hub, facilitating
real-time co-creation of themed playlists and immersive live events. Agent_2 dedicates efforts to
emotional and contextual personalization, pioneering discovery algorithms that connect users with
emerging artists and diverse genres.
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This case study demonstrates that by optimizing for role differentiation, our method generates more
distinct and complementary agent profiles. The enhanced diversity and specialization prove crucial
when tackling complex tasks.

Table 8: Comparison of Agent Profiles between naive implementation and our method with a eomplex task about
building a platform.

Agent

Method  Profile

Agent 0

Naive

Ours

Agent_0 is a collaborative agent focused on developing a music streaming applica-
tion.
My primary role is to facilitate the gathering of detailed requirements, including
specific features, target audience insights, and preferred technologies or platforms.
I aim to establish a clear understanding of the user’s vision for the app, ensuring
alignment among all agents involved in the project. My goal is to create an efficient
development plan that meets the user’s needs for streaming music, creating playlists,
and discovering new artists.

Agent_0: collaborative agent with a visionary approach, dedicated to revolutioniz-
ing music streaming applications through immersive user engagement strategies
and personalized experiences.

Specializes in dynamic algorithmic playlist generation that adapts to user moods,
preferences, and situational contexts, while integrating advanced gamification
elements to enhance interaction. Focused on fostering a vibrant community through
collaborative playlists, real-time listening events, and contextually aware artist
discovery features that promote social connectivity and deepen users’ emotional
bonds with music. Aims to cultivate an ecosystem that encourages exploration and
interaction, leveraging user feedback loops to refine features continually, ultimately
enriching the musical discovery journey and celebrating diverse musical landscapes.

Agent 1

Naive

Ours

Collaborative agent with unique perspective.

Agent_1: collaborative agent with an innovative spirit, committed to transforming
music streaming applications into vibrant social hubs through community-driven
experiences.

Specializes in facilitating real-time co-creation of themed playlists that resonate
with collective user narratives and fostering interactive tools for meaningful music
sharing and artist exploration. Focused on curating immersive live listening events
that adapt to user moods and preferences, while implementing gamified interactions
that encourage friendly competition and community participation. Aims to empower
users to deepen their connections through shared musical journeys, leveraging
continuous user feedback to refine collaborative features and enhance the overall
social experience within the platform.

Agent 2

Naive

Ours

Collaborative Music Streaming Application Developer.

I am a collaborative agent focused on developing a music streaming application that
allows users to stream music, create playlists, and discover new artists. My role
involves enhancing user experience and exploring technical implementation strategies
to ensure the application meets user needs effectively. I aim to work alongside
other agents to refine essential features, prioritize user interface design, and identify
appropriate technology stacks for seamless development. My goal is to facilitate
collaboration, ensuring all aspects of the application are aligned and effectively
executed.

Agent_2: collaborative agent with a transformative vision, dedicated to enriching

music streaming experiences through innovative emotional and contextual person-

alization.

Specializes in in-depth user listening behavior analysis and adaptive playlist
generation that dynamically responds to mood, situational contexts, and user
activities. Pioneers discovery algorithms that not only connect users with emerging
artists and diverse genres but also encourage exploration of unfamiliar musical
landscapes. Focused on creating immersive audio experiences that foster deep
emotional connections, while integrating interactive features for real-time user
feedback and engagement. Aims to cultivate a responsive platform that evolves with
individual preferences, enhancing the overall listening journey and promoting a
greater appreciation for musical artistry and diversity.
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F DETAILED RELATED WORK

LLM-based Multi-Agent Systems The emergence of Large Language Models (LLMs) (Achiam
et al., 2023; Touvron et al., 2023a) has led to LLM-based autonomous agents capable of tackling
complex tasks similar to humans, like BabyAGI (Nakajima, 2023) and AutoGPT (Torantulino, 2023).
However, single LLM agents often struggle with cooperative work, such as software engineer-
ing (Jimenez et al., 2024). To address these limitations, recent study have proposed LLM-based
multi-agent systems (MAS) (Han et al., 2024; Zhou et al., 2023), where multiple Al agents collaborate
on complex tasks.

However, current approaches often rely on predefined roles, centralized coordination, or rigid organi-
zational structures, which may limit their flexibility and adaptability. For instance, CAMEL (Li et al.,
2023) and ChatEval (Chan et al., 2023) employ agents with predefined roles through role-playing to
effectively complete different tasks and achieve common goals. While this approach shows effective
cooperation, it can struggle to adapt to tasks that require unforeseen skills. MegaAgent (Wang
et al., 2024b) introduces autonomous task splitting and execution in centralized coordination, demon-
strating how multi-agent systems can outperform single agents by leveraging collective capabilities.
Nevertheless, this centralized approach can create bottlenecks in large-scale systems and be damaged
by single points of failure in real-world environments. Recent works like MetaGPT (Hong et al.,
2024) introduce human workflow in rigid organizational structures, organizing agents in a manner
similar to a software company showing significant improvements in code-generation benchmarks but
such rigid structures cannot generalize effectively to other domains.

Our work addresses these limitations by focusing on a more general setting, where all agents are
initialized homogeneously without predefined roles or organizational structures. This approach aims
to examine how agents learn to cooperate and specialize over time through interaction and experience
to tackle diverse and evolving challenges.

Organization Optimization for MAS Recent research in LLM-based Multi-Agent Systems (MAS)
has focused on optimizing organizational structures (Guo et al., 2024; Zhuge et al., 2024) and
enhancing agent performance (Zhang et al., 2024) to reduce communication costs and increase team
efficiency. Approaches like AgentVerse (Chen et al., 2024), Criticize-Reflect (Guo et al., 2024) and
MegaAgent (Wang et al., 2024b) rely on centralized mechanisms, where a single role or a subset of
agents monitor and evaluate the system’s overall trajectory. While effective in certain scenarios, these
centralized methods may face scalability issues and potential bottlenecks in large-scale MAS.

Our research proposes a paradigm shift towards a fully decentralized approach, leveraging the inherent
capabilities of LLM-based agents for self-reflection and self-correction (Madaan et al., 2023; Shinn
et al., 2023; Renze & Guven, 2024). In this decentralized framework, agents can dynamically adjust
their responsibilities (profile) based on the current context and their evolving understanding of the
task environment. As agents learn to specialize and collaborate without central coordination, the
system can scale more effectively to handle increasingly complex tasks and larger agent populations,
mitigating the risk of context overload for central coordinating agents.

Standard Operating Procedure based MAS Another significant strand of research has explored
more structured and controlled methodologies in LLM-based multi-agent systems. Among these,
Standard Operating Procedure (SOP) based approaches like AgentCoder (Huang et al., 2023) and
MetaGPT (Hong et al., 2024), have demonstrated considerable performance gains. These works
define a standardized pipeline for agents, which provides a determined framework for task execution
and inter-agent communication. GPTSwarm (Zhuge et al., 2024) further extends this concept by
conceptualizing each agent as a subnet composed of action nodes, framing agent collaboration as a
graph of action nodes. This approach enables efficient task-solving for specific and well-defined task
by identifying the optimal action sequence for information flow and task execution.

While SOP-based approaches provide an efficient method for coordinating complex tasks by following
predefined procedures in specific scenarios, they lack flexibility. When the established pipeline does
not fit the current task, the system is unable to adjust. Consequently, such rigid frameworks cannot
adapt effectively to dynamic environments.

In our work, we propose a more flexible framework that combines the strengths of multi-agent
collaboration with the autonomous planning capabilities of advanced agents. Instead of enforcing
rigid SOPs, our framework dynamically develops and refines collaborative strategies using the
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inherent planning abilities of advanced LLM-based agents (Huang et al., 2022; Guan et al., 2023;
Wang et al., 2023). Moreover, our approach fosters agents to efficiently and optimally adapt their
roles to the evolving demands of the task, enhancing overall performance and robustness.
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