
FASTTREE: OPTIMIZING ATTENTION KERNEL AND RUNTIME FOR
TREE-STRUCTURED LLM INFERENCE

Zaifeng Pan 1 Yitong Ding 1 Yue Guan 1 Zheng Wang 1 Zhongkai Yu 1 Xulong Tang 2 Yida Wang 3

Yufei Ding 1

ABSTRACT
Tree-structured prefix sharing is prevalent in recent large language model (LLM) applications. Existing LLM
serving systems use a radix tree to organize the global key-value (KV) cache, facilitating cache reuse across
different queries and thus reducing unnecessary memory use. Despite this, these systems still rely on conven-
tional computation patterns for attention operations, resulting in redundant memory loads and GPU tensor core
underutilization. To address these limitations, we present FastTree, which introduces GPU kernels tailored for
efficiently processing queries that share contexts through the radix tree. To effectively employ the FastTree
kernels, a significant challenge arises in finding optimal context-queries groups with a given KV cache tree,
as the varying shared prefixes between queries create a giant decision space. To tackle this, we propose tree
structure-adaptive runtime optimization within FastTree, applying a greedy heuristic to partition the tree to
minimize overhead and splitting lengthy contexts to mitigate the tail effect. FastTree is built upon SGLang, and
extensive experiments demonstrate that it improves the throughput of SGLang by up to 2.2×. FastTree’s code is
available at https://github.com/PanZaifeng/FastTree-Artifact.

1 INTRODUCTION

Large language models (LLMs) (OpenAI et al., 2023; Tou-
vron et al., 2023; Jiang et al., 2023; Bai et al., 2023) have
been increasingly deployed across various domains, achiev-
ing remarkable performance in applications like text gen-
eration (Li et al., 2024), program synthesis and optimiza-
tion (Gur et al., 2023; Cummins et al., 2024), and informa-
tion retrieval (Zhu et al., 2023; Gao et al., 2023). Recently,
to solve more complicated tasks, the usage of tree-structured
LLM programs has increased rapidly, including few-shot
learning (Brown, 2020), document QA (Ye et al., 2024b),
tree of thoughts (Yao et al., 2024b), etc. Due to this, it has
become typical for different queries within a program to
share common token prefixes. Besides, different program
instances can also share common parts, such as a long sys-
tem prompt (TheBigPromptLibrary, 2024). In this paper, we
refer to the LLM inference procedure under tree-structured
prefix sharing as tree-structured LLM inference.

In conventional LLM serving systems (NVIDIA, 2024; Hug-
gingFace, 2024; Microsoft, 2024), each query holds its
own key-value (KV) caches, as Figure 1(a) shows, over-

1University of California, San Diego, CA, USA 2University
of Pittsburgh, PA, USA 3AWS, CA, USA. Correspondence to:
Zaifeng Pan <zapan@ucsd.edu>.

Proceedings of the 8 th MLSys Conference, Santa Clara, CA, USA,
2025. Copyright 2025 by the author(s).

looking the opportunity to reuse the shared KV cache be-
tween queries. To address this problem, radix tree optimiza-
tion (Zheng et al., 2023a) has been proposed to organize
the entire system-level KV caches as a tree illustrated in
Figure 1(b). In this way, the systems can reduce the GPU
memory usage significantly, leading to higher throughput
by serving more concurrent requests.

However, although optimizing the memory layouts with a
radix tree, existing systems (Zheng et al., 2023a) still utilize
the conventional attention kernels (Dao et al., 2023; Flash-
Infer, 2024) shown in Figure 1(c), which concatenate the
KV cache for each query and dispatch its computation into
an individual GPU thread block. Such a naively separated
computation pattern suffers from the inefficient usage of
shared memory and tensor cores on the GPU. It requires
redundantly loading the shared KV cache from slow global
memory for every query and cannot meet the minimum
shape requirements for tensor cores without padding.

To bridge this gap, we propose FastTree, an LLM serv-
ing system that leverages the tree-structured KV cache at
the memory level to guide the computation optimization
of attention operations. It comprises efficient GPU ker-
nels to process aggregated queries and their shared context
together, leading to reduced memory transactions and in-
creased FLOPS due to the utilization of fast shared memory
and high-performance tensor cores on the GPU.

https://github.com/PanZaifeng/FastTree-Artifact

FastTree: Optimizing Attention Kernel and Runtime for Tree-Structured LLM Inference

A1 B1 C1 Q1

A1 B1 C2 Q2

A1 B2 Q3

(a) Queries with their own KV caches

A1
B1

B2

C1

C2

Q1

Q2

Q3

(b) KV cache sharing through Radix Tree (c) Computation pattern of existing system

H
BM

A1 B1 C1 Q1
SM1

SRAM

A1 B1 C2 Q2
SM2

SRAM

A1 B2 Q3
SM3

SRAM

Redundant KV load!

Q
K^T
×

Q
len=1

Tensor core-inefficient!

TC

Figure 1. Existing systems optimize the memory layouts by organizing KV caches as a radix tree, but they still rely on the conventional
computation patterns to perform the attention operations, causing significant performance issues.

The key challenge in effectively utilizing the FastTree ker-
nels is identifying the optimal context-queries groups, which
defines how to partition the shared contexts and aggregate
queries accordingly. With a given radix tree of the KV cache
at runtime, we can generate enormous grouping plans by
changing the shared contexts used for query aggregation,
as the different queries can share varied prefixes. More-
over, the plan selection can significantly affect the execution
performance of the attention kernel, as different plans can
introduce distinct overheads, including wasted shared mem-
ory and computation due to tile padding and IO cost due to
increased intermediate results (detailed in Section 4).

To tackle this challenge, we propose the tree structure-
adaptive runtime optimization within FastTree. We for-
mulate the optimal context-queries grouping problem as a
binary edge assignment task, and the runtime then applies
an overhead-aware greedy heuristic to search the results out
of the giant decision space efficiently by choosing the as-
signment with minimal overhead at each step. Besides, we
observe the GPU unsaturation problem due to insufficient
block parallelism or long tail effect, and the runtime solves
this problem by splitting lengthy contexts.

We build FastTree as a plugin for SGLang (Zheng et al.,
2023a), which is an LLM serving framework with radix tree
optimization. We evaluate the attention kernel performance
of FastTree across various configurations on an NVIDIA
H100 GPU, and experimental results demonstrate that Fast-
Tree delivers on average 5.1×, 4.2×, 10.6×, and 2.1×
speedups over FlashAttention (Dao et al., 2022; Dao, 2023;
Dao et al., 2023), FlashInfer (FlashInfer, 2024), DeFT (Yao
et al., 2024a), and Multi-Level Cascade Attention (Ye et al.,
2024b). We also evaluate the end-to-end performance of
FastTree on models including Llama (Touvron et al., 2023)
and Mistral (Jiang et al., 2023), showing up to a 2.2× im-
provement over SGLang across four benchmarks. In sum-
mary, we have the following contributions:

• We reveal the limitations of existing LLM serving sys-
tems with radix tree optimizations, whose computation
ignores the multi-level shareable memory patterns.

• We propose FastTree to accelerate the tree-structured
LLM inference with efficient kernels and runtime op-
timizations. FastTree effectively searches the context-
queries groups with a greedy heuristic and improves
GPU utilization when performing attention operations.

• We implement FastTree based on SGLang, and ex-
tensive experiments show that FastTree achieves up
to 2.2× throughput improvement over the highly-
optimized FlashInfer backend.

2 BACKGROUND

2.1 LLM Inference

The core of LLMs lies in the transformer architecture, which
leverages self-attention (Vaswani et al., 2017) mechanisms
to capture the dependencies between different tokens, en-
abling powerful contextual understanding capabilities. Self-
attention mechanisms project each token into three vectors:
query (Q), key (K), and value (V), and the output is calcu-
lated by the equation:

Attention(Q,K, V) = softmax(
QKT

√
d

)V (1)

where d is the head dimension.

LLM inference is typically performed in an auto-regressive
manner, where each token is generated based on the hidden
state of the last token. The inference process is divided
into two main phases: prefill and decoding. In the prefill
phase, the initial input sequence is processed in a single
forward pass, generating the attention outputs for all tokens
simultaneously. During the decoding phase, tokens are gen-
erated one by one, so at each step, the model only calculates
the attention between the last token’s query vector and all
previous tokens’ key vectors.

Attention operations can account for a substantial portion
of the time during LLM inference, especially when the se-
quence length is long. Figure 2 shows the Llama-2-7B (Tou-
vron et al., 2023) execution time breakdown during decoding
with batch size 32 and different sequence lengths. When the

FastTree: Optimizing Attention Kernel and Runtime for Tree-Structured LLM Inference

128 256 512 1024 2048
Sequence Length

0
20
40
60
80

100

Pe
rc

en
ta

ge
 (%

) GEMM Attention Others

Figure 2. Llama-2-7B execution time breakdown during decoding
on the H100 GPU. The batch size is 32.

sequence length becomes 2048, the attention computations
can account for 65% of the model forward time on the GPU.
Therefore, it is crucial to optimize the attention GPU kernels
to reduce the LLM inference latency.

2.2 Radix Tree-Based KV Cache Sharing

KV cache is an important optimization technique widely
used in LLM serving systems. In the decoding phase, the
KV caches store the KV vectors from previous tokens, thus
eliminating the need to recompute the KV matrices for each
new token and improving the inference efficiency.

Existing systems adopt the memory paging optimiza-
tion (Kwon et al., 2023), which stores KV cache in non-
contiguous blocks to reduce memory fragments. Based
on this, they explore the KV cache sharing in specific
scenarios like beam search (Sutskever et al., 2014) and
single-level prefix sharing. Observing the opportunities
of multi-level prefix sharing in recent complicated tasks,
later works (Zheng et al., 2023a) further propose to manage
the system-level KV cache as a radix tree, thus enabling the
cache reuse across queries and reducing memory usage.

We use Figure 1 (b) as an example to illustrate how the radix
tree works. The context associated with the root node A1
can be “You are a helpful assistant”, a system prompt used
to set the model’s role. We can then provide two different
few-shot learning examples in formats like “Q1:· · · ; A1:· · · ;
Q2:· · · ; A2:· · · ;” to the model, storing the corresponding
KV cache in B1 and B2 respectively. With this in-context
learning pattern, a single model can be deployed as different
applications to address multiple kinds of tasks. Each appli-
cation can serve many requests, resulting in its own sub-tree
of the KV cache, as shown in the figure.

However, we notice a significant gap between the tree-
structured memory layout and the query-separated com-
putation pattern of existing systems. As Figure 1(c) depicts,
they compute the attention of each query by separate blocks,
failing to take advantage of the KV cache sharing based on
the radix tree. Such a computation pattern leads to severe
performance issues. First, the fast on-chip shared memory
on the GPU is used insufficiently as the thread blocks for
different queries cannot directly access the shared memory

FastTree
KV Cache Radix Tree

A1
B1

B2

Tree Structure-Adaptive
Runtime Optimization (§4)

Overhead-Guided
Greedy Heuristic (§4.2)

GPU-Efficient Long
Context Splitting (§4.3)

Efficient Tree-Structured
Attention Kernel (§5)

Context-Queries
Grouping Plan

A1
Q1 Q2 Q3

B1 A1
Q4 Q5

B2

GPU
Tensor core and shared
memory utilization

LLM Serving System

Client Client Client

Q1 Q2 Q3 Q4 Q5

Figure 3. Overview of FastTree.

of each other for data reuse. As shown in Figure 1(c), the
KV cache, even shared across multiple queries, has to be
loaded from the slow global memory redundantly for each
query, with bandwidth ten times lower than shared mem-
ory. Besides, during decoding, the Q matrix involved in
the computation of each query is a vector because we only
have one query token. Therefore, the basic computation
within the attention transforms from the matrix-matrix mul-
tiplication (GEMM) to the GPU-inefficient matrix-vector
multiplication (GEMV). For GEMV operations, it is hard
for the kernels to effectively utilize the high-performance
tensor cores on the GPU, which have specific input matrix
shapes. The kernels have to resort to the CUDA cores with
much lower FLOPS (FlashInfer, 2024) or pad the Q vector
with wasted computation (Dao et al., 2023). According
to our experiments, FlashAttention (Dao et al., 2022; Dao,
2023; Dao et al., 2023) only have less than 1% effective com-
putation after padding the Q matrix. Note that batching (Yu
et al., 2022) queries can only help increase the computation
intensity of projection and MLP layers (Microsoft, 2024;
Agrawal et al., 2024) during decoding but cannot benefit the
attention directly due to the separate computation of queries.

In this paper, we explore how to leverage the tree-structured
KV cache sharing at the memory level to guide the compu-
tation optimization for attention operations.

3 OVERVIEW

We present the overview of FastTree in Figure 3, which
serves as a plugin for the existing LLM serving system.
During processing the queries sent from clients, the LLM
serving system organizes the global KV cache as a radix tree
and inputs it to FastTree. FastTree’s tree structure-adaptive
runtime (Section 4) will then generate the context-queries
grouping plan to aggregate queries on the fly, thus enabling

FastTree: Optimizing Attention Kernel and Runtime for Tree-Structured LLM Inference

the memory layout-guided computation optimizations and
balancing different overheads. It leverages the overhead-
guided greedy heuristic (Section 4.2) to search the optimal
plan out of a giant search space effectively and the long
context splitting (Section 4.3) to avoid GPU underutilization.
With the grouping plan, FastTree then replaces the original
attention kernel of the serving system with its efficient tree-
structured attention kernels (Section 5). FastTree processes
each context-queries group in FlashAttention style, reducing
the redundant memory loads and improving tensor core
utilization significantly.

4 TREE STRUCTURE-ADAPTIVE RUNTIME
OPTIMIZATION

At runtime, the structure of the KV cache tree varies across
time, requiring adaptive optimization on the fly to maximize
the underlying GPU kernel performance. In this section, we
detail the design of FastTree’s runtime optimization.

4.1 Problem Formulation

Context-queries grouping. To enable the tensor core uti-
lization and reduce context memory reloading, we need
to aggregate queries that share the same context prefix
and process them together. However, the shared prefixes
can vary significantly between different queries, so there
can be many different grouping plans with a given con-
text tree at runtime. For example, in Figure 4, queries Q1

to QM share the same prefix A1 and B1, while queries
QM+1 to QM+N share A1 and B2. By directly aggre-
gating all associated queries for each node in the tree,
we can get the grouping plan 1 shown in Figure 4(b),
which is (A1, {Q1, · · ·, QM+N}), (B1, {Q1, · · ·,
QM}), and (B2, {QM+1, · · ·, QM+N}). Then, by
concatenating A1+B1 and A1+B2 respectively, we can ob-
tain another grouping plan (A1+B1, {Q1, · · ·, QM})
and (A1+B2, {QM+1, · · ·, QM+N}), as shown in
Figure 4(c).

Different grouping plans change the computation-batching
and memory-sharing patterns, which affects the perfor-
mance of the final attention kernel significantly. Moreover,
even with the same tree topology, the performance of the
same plan can vary in different cases. For example, in the
case shown in Figure 4(d), the queries associated with B1
and B2 are both 8, while the kernel requires a tile size of 16
to utilize the memory and computing resources fully. Hence,
for plan 2, the GPU kernel has to rely on input padding to
meet the hardware requirements for all groups, while plan
1 can avoid this for the long-context A1 group. As a result,
plan 2 introduces much more wasted computation, making
its performance worse than plan 1.

In contrast, in another case shown in Figure 4(e), where

M=N=128, both plans can fully utilize the shared memory
and tensor cores. However, as plan 1 separates A1 from B1
and B2, there will be more intermediate results stored on the
slow global memory and requires more sequential reduction
steps in the subsequent GPU kernel (Dao et al., 2023). Sup-
pose that both plans have enough block parallelism, i.e., the
launched GPU blocks can fully occupy all the SMs. Then,
this memory transaction and reduction overhead introduced
by plan 1 can cause a higher execution latency than plan 2.

Decision space formulation. It is crucial to effectively find
the optimal context-queries grouping plan for a given tree
to balance different overheads at runtime. Directly formu-
lating the problem as a searching process of a (context,
{queries}) list is not easy, because we have to add com-
plicated constraints to ensure that the results meet the im-
plicit tree-structure requirements. Instead, we formulate the
problem as a binary edge-assignment task. We assign a bi-
nary value to each edge in a tree, where a value of 1 indicates
that the two connected nodes are “concatenated”. Each time
a node is concatenated to a leaf node, we “replicate” that
node, such that each replica is individually concatenated to
a different leaf node. This process produces a new virtual
tree structure based on the assigned values. Note that this
virtual tree does not alter the actual storage, such as memory
replication, but serves as a guide for the grouping strategy.
With this virtual tree, we can determine the shared contexts
by directly using the tree nodes. Then, we can maximize the
aggregated queries of each context by using the node-centric
query aggregating to generate the grouping plan. That is,
we generate the context-queries grouping plan by traversing
each node and aggregating all queries that share the context
associated with that node.

For example, as shown in Figure 5(a), we assign the red
values to the edges of the tree, concatenating A1+B1 and
A1+B2. This assignment generates a virtual tree shown in
Figure 5(b). Based on this virtual tree, we then group a
node’s context with all its associated queries like plan 1 in
Figure 4(b) does.

Formally, given a KV cache tree T = (V,E) at runtime,
where V represents the set of vertices and E the set of
edges, the objective is to determine an assignment function
f : E → {0, 1} that minimizes the latency of GPU kernel
execution. Specifically, we aim to solve:

min
f

Latency(Groups(VT(T, f(E))))

s.t. f(e) ∈ {0, 1}, ∀e ∈ E,
(2)

where:

• VT(T, f(E)) transforms the original tree T into a vir-
tual tree based on the binary edge assignment f(E).

• Groups(·) maps the virtual tree to a grouping plan.
• Latency(·) evaluates the GPU kernel latency based on

FastTree: Optimizing Attention Kernel and Runtime for Tree-Structured LLM Inference

A1

B1

B2

Q1

QM

…

QM+1

…
QM+N

128
128

128
A1

B1

B2
Q1 … QM+N

QM+1 … QM+N

Q1 … QM A1

B1

B2

Q1 … QM

QM+1 … QM+N

w/o FastTree

Grouping Plan 1

Attention
Computation

Time

Grouping Plan 2

Q

K^T

Padding to meet tile size requirement

Wasted shared memory
& computation!

Case 1: M=N=8

w/o FastTree

Grouping Plan 1

Attention
Computation

Time

Grouping Plan 2
More intermediate results on HBM
& more sequential reduction steps!

Q1Q1-A1 Q1-B1

QM+1QM+1-A1 QM+1-B2

(a) An example radix tree with M+N queries (b) Grouping plan 1 (c) Grouping plan 2

(d) In case 1, the wasted memory and computation due to padding
cause the performance of pairing plan 2 worse than plan 1.

(e) In case 2, the more memory transactions and reduction steps
introduced by plan 1 makes it slower than plan 2.

Case 2: M=N=128

Figure 4. Illustration of two context-queries grouping plans. In different cases, the two plans each have their performance problems.

1
A1

B1

B2

C1

C2

Q1

Q2

Q3
1

0

0
A1 B1

B2

C1

C2

Q1

Q2

Q3A1

virtual nodes

(a) Binary edge assignment (b) Virtual tree based on the assignment

Figure 5. Example of edge assignment and virtual tree generation.

the given grouping plan.

4.2 Overhead-Guided Greedy Heuristic

In practice, the structure of the radix tree is dynamic (Zheng
et al., 2023a) across time, so we need to update the grouping
plan accordingly on the fly. Therefore, the runtime search
for the optimal edge assignment should be lightweight, oth-
erwise the overall inference performance can be affected.
Enumerating all possible candidates thus becomes infea-
sible as we have 2|E| plans, and it is difficult to quickly
predict the latency of the GPU kernels whose blocks are
heterogeneous without actual evaluation.

We resort to a greedy heuristic to solve the search problem
in linear time. We traverse the tree in a breadth-first search
(BFS) order and determine the value of each edge by com-
paring the estimated costs of the two different assignments.

We illustrate the detailed assignment process with the greedy
heuristic in Algorithm 1. We first initialize arrays A and
L in Lines 1-2 to represent the current aggregated query
number and context length of each node by assuming all
nodes are separated. Their values can be updated if two
nodes are concatenated. We then traverse the entire tree in a

BFS order (Line 3) and enumerate the leaf nodes for each
node v (Line 6). For each leaf node l, we estimate the costs
of assigning different values to the edge v → l in Lines 8-9
based on the query numbers and context lengths of v and l,
i.e., nQcurr, nQl, lenv , and lenl. The detailed cost analysis
is discussed in the next paragraph. Finally, we assign the
value to the edge by comparing the costs in Lines 10-16. If v
and l are concatenated by assigning value 1 to the edge, we
should also update the nQcurr and L[l] accordingly. This
is because after concatenating, the nQl queries should be
grouped with the concatenated node rather than the original
node v, so nQcurr should be decreased. Meanwhile, for
node l, we should increase its context length by the length
of v. We use Figure 6 to illustrate what the variables used
above represent and how the concatenation between v and l
affects their aggregated query numbers and context lengths.

In the next part, we introduce how we construct the cost
models based on the overhead analysis. Our insight is that
although it is difficult to predict the accurate cost, leveraging
a lightweight overhead estimation is yet effective in guiding
the greedy search.

Cost due to padding. After grouping, the GPU kernel
will process each group tile-by-tile, looping over query and
context dimensions. Tile shapes are specified based on
the hardware features to take full advantage of the on-chip
shared memory and high-performance tensor cores, which
are fixed across thread blocks. However, the dimensions
may not always be perfectly divisible by the tile size. In
such cases, padding is required to fill the last several tiles,
wasting the shared memory resources. The padding area in
a given dimension can be computed based on the tile size

FastTree: Optimizing Attention Kernel and Runtime for Tree-Structured LLM Inference

Algorithm 1 Greedy Binary Edge Assignment
Input: Radix tree T = (V,E)

1: Initialize A as the number of all associated queries of
each node in V

2: Initialize L as the context length of each node
3: for node v in BFS(V) do
4: nQcurr = A[v] ▷ current #aggregated queries
5: lenv = L[v] ▷ accumulated context length
6: for l in leaves(v) do
7: nQl = A[l], lenl = L[l]
8: C0 = SplitKVCost(nQcurr, nQl, lenl, lenv)
9: C1 = SplitQCost(nQcurr, nQl, lenl, lenv)

10: if C0 ≥ C1 then
11: Assign 1 to edge v → l
12: nQcurr = nQcurr − nQl

13: L[l] = lenl + lenv

14: else
15: Assign 0 to edge v → l
16: end if
17: end for
18: end for

TS and the dimension size N through the function:

Pad(TS,N) = TS − ((N − 1)%TS + 1) (3)

Concatenating v and l requires splitting the Q matrix of
v in the query dimension, as nQl queries associated with
l should be separated from the nQcurr queries associated
with v. Such splitting will either keep the padding area
unchanged or exacerbate the problem because we always
have the following inequality:

Pad(TS,M +N) ≤ Pad(TS,M) + Pad(TS,N) (4)

Padding introduces two primary sources of performance
overhead. First, it leads to inefficient utilization of shared
memory, which could otherwise be used to cache additional
aggregated queries for improved data reuse and reduced
global memory access. Second, padding results in redun-
dant computations that do not contribute to the final output.
To estimate the overhead due to padding at the query dimen-
sion, we define its cost function by combining the increased
memory loading and floating-point operations:

CP,q(nQ, len) = Pad(TSq, nQ) · len · d (5)

where nQ represents the query number, len is the context
length, TSq is the tile size, and d is the head dimension.
Similarly, we have the cost function for padding at the con-
text dimension:

CP,c(nQ, len) = nQ · Pad(TSc,min (len, TSc)) · d (6)

A1

Q1 Q2 Q3

B1

Q1 Q2

0

𝑙𝑒𝑛! 𝑙𝑒𝑛"

𝑛𝑄#$%% 𝑛𝑄"

A1 B11

Q1 Q2

𝑛𝑄"

𝑙𝑒𝑛! + 𝑙𝑒𝑛"

Q1 Q2 Q3
A1

𝑙𝑒𝑛!

𝑛𝑄#$%% − 𝑛𝑄"

(a) Illustration of used variables (b) Variable updates after concatenating

Figure 6. Illustrating example for the variables used in Algo-
rithm 1.

where TSc is the tile size for the context dimension and β is
another empirical coefficient. The difference from the cost
for query dimension is that we only consider the overhead
when the current context length is smaller than the tile size.
This is because, unlike the number of aggregated queries,
the context length can grow during tree traversal through
concatenation. Once it exceeds the tile size, the overhead
due to padding becomes difficult to estimate at each traversal
step. Then, we define the overall padding cost of a virtual
node as:

CP (nQ, len) = α · CP,q(nQ, len)

+ β · CP,kv(nQ, len) (7)

where α and β are two empirical coefficients.

Then, according to the computation patterns shown in Fig-
ure 6, we construct the costs for the two assignments as:

SplitKVCostP = CP (nQcurr, lenv)

+ CP (nQl, lenl) (8)
SplitQCost = CP (nQcurr − nQl, lenv)

+ CP (nQl, lenv + lenl) (9)

Cost due to intermediate results. Besides padding, split-
ting the KV matrices at the context dimension (i.e., assign
0 to the edge) can introduce more intermediate results and
cause additional overhead. This is because the attention
computation requires reducing all elements across the con-
text dimension. After context splitting, different groups
are processed by separate thread blocks, so the intermedi-
ate partial reduction results should be stored in the global
memory (Dao et al., 2023), which causes extra memory
transaction overhead and brings more sequential reduction
steps in the next stage to compute the final results. These
overheads can accumulate and become significant when the
plan contains lots of dependent groups with short contexts.
We use the number of the increased intermediate elements
along with an empirical coefficient γ to model this cost:

SplitKVCostR = γ · nQl · d (10)

Then, the total cost of assigning a value of 0 is:

SplitKVCost = SplitKVCostP + SplitKVCostR (11)

FastTree: Optimizing Attention Kernel and Runtime for Tree-Structured LLM Inference

By adjusting the empirical coefficients based on profiling the
underlying hardware, we can reconcile the two overheads
to leverage the greedy heuristic shown in Algorithm 1 to
generate the context-queries groups effectively at runtime.

4.3 GPU-Efficient Long Context Splitting

Our greedy heuristics consider the overhead introduced by
different grouping plans, but the GPU can still be under-
utilized in certain cases. We propose runtime long context
splitting to enhance GPU utilization, overcoming two prob-
lems that affect the attention kernel performance.

The first problem is that sometimes the group-level paral-
lelisms can be insufficient to fully occupy the GPU, i.e., the
total launched thread block numbers are smaller than the
GPU capacity. The maximum block number that can reside
on the GPU simultaneously is the product of the GPU SM
number and the maximum block number per SM, where
the latter is determined by the shared memory and register
usage. With a small number of blocks, the GPU can fail to
hide the instruction latency through warp scheduling and
even have SMs idle, as shown in the left part of Figure 7.

The second problem is that partial tree nodes can have ex-
tremely long contexts, causing a significant tail effect like
the right part of the figure shows. In this case, some blocks
can consume much more execution time than others, so
in the last waves, the active block number is very small,
causing the same issue as in the first case.

For both of the above problems, we find that splitting the
nodes with context lengths larger than a certain threshold
at runtime can solve them effectively. Although context-
splitting introduces the intermediate result reduction over-
head, experiments (detailed in Section 6.1) demonstrate that
the performance improvement it brings can totally hide the
overhead when GPU SMs are underutilized.

5 EFFICIENT TREE-STRUCTURED
ATTENTION KERNEL DESIGN

Existing GPU kernels designed for LLM inference (Dao
et al., 2023; FlashInfer, 2024) do not consider the radix tree-
based KV cache sharing. They separate the computation
of different queries into individual thread blocks, ignoring
the opportunity to enable the tensor core usage and reuse
the KV tiles in shared memory through query aggregation.
By generating the context-queries groups based on the tree
structures and hardware features, we can then utilize more
efficient GPU kernels to address the above issues.

In detail, we use a single GPU kernel to process different
groups in the tree in parallel, with each context-queries
group dispatched to an individual block set, as Figure 8
shows. Such a one-kernel-accommodating-all design not

GPU Block

SM1

Timeline

SM2
SM3
SM4

Unused SMs
due to small #blocks

SM1

Timeline

SM2
SM3
SM4

GPU underutilization
due to long tail block

Figure 7. Two performance issues that can be solved by splitting
long contexts.

A1
B1

B2
Q1 … QM+N

QM+1 … QM+N

Q1 … QM

Tree-Structured Attention Kernel

Parallelize with different
sets of thread blocks

GPU
SM SM

SM SM

Global memory (3TB/s)

…

SM

Shared memory
(30TB/s)

Sub-core Sub-core

Sub-core Sub-core

Registers

FP32Tensor
core

FP64

INT32 …

×

O L

Loop within a block

=

Online softmax
in shared memory

K^T

Q

Pa
ra

lle
liz

e
w

ith
 d

iff
er

en
t b

lo
ck

s

V

× Loop w
ithin a block

Figure 8. The design of the attention kernel in FastTree. The colors
of tiles in the dotted rectangle indicate their memory location,
according to the simplified GPU architecture figure at the bottom.

only increases the block parallelism but also eliminates the
kernel launch overhead (Zhuang et al., 2024; Zheng et al.,
2022; Pan et al., 2023).

Flash-Attn style group processing. Within the kernel, we
perform the attention operation tile-by-tile. For each group,
we divide the QKV matrices associated with it into multiple
tiles and parallelize the tiles across the query dimension
by dispatching the Q matrix tiles into different blocks. In
contrast, we sequentially iterate the K and V tiles within a
block due to the inter-tile dependency of the outputs across
the context dimension. We first copy the QKV tiles from
the GPU global memory to the fast on-chip shared mem-
ory, as Figure 8 depicts, and then utilize the online softmax
technology (Rabe & Staats, 2021; Milakov & Gimelshein,
2018; Dao et al., 2022; Dao, 2023) to store all partial soft-
max results in the shared memory. Compared with existing
approaches (Dao et al., 2023; FlashInfer, 2024) that sep-
arate each query, we are able to reduce the slow global
memory transactions significantly, as for all queries within
a Q tile, we only need to load the K matrix once and reuse
them through the shared memory. Moreover, by aggregat-
ing queries, we can transform the GEMV operation into
the GEMM operation, thus enabling the effective usage of

FastTree: Optimizing Attention Kernel and Runtime for Tree-Structured LLM Inference

tensor cores on the GPU, as shown in the figure.

After executing the attention kernel, we will obtain an in-
termediate output matrix O and a LogSumExp vector L
for every group, stored in the GPU global memory, as
shown in the right of Figure 8. We then launch another
lightweight GPU kernel to reduce the intermediate outputs
for each query to get the final results, while leveraging the
LogSumExp vectors for re-scaling (Dao et al., 2023).

Multi-phase tiling. We adaptively select the tile size for
the query dimension to efficiently handle different parts in
the tree. This optimization is based on the fact that nodes
closer to the root in the tree tend to aggregate more queries,
requiring larger tile sizes to maximize KV reuse and reduce
redundant memory loads. On the other hand, nodes near
the leaves often have fewer queries, so we choose smaller
tile sizes to avoid shared memory wastage and improve SM
occupancy (NVIDIA, 2025; Pan et al., 2024) to hide instruc-
tion latency. Our current implementation simply partitions
the tree into multiple phases and utilizes separate kernels
with distinct tile sizes to process them. We apply this op-
timization only when the block-level parallelism is large
enough for each phase, ensuring that all the SMs on the
GPU can be utilized.

6 EVALUATION

We build FastTree as a plugin of SGLang (Zheng et al.,
2023a) and implement the attention kernels with Tri-
ton (Tillet et al., 2019) for quick prototyping and verification.
We optimize the attention operations during decoding while
using the kernels in FlashInfer (FlashInfer, 2024) during pre-
fill. There are no fundamental reasons preventing FastTree
from optimizing the batched prefills or the mixed prefill
and decoding except the engineering efforts. However, the
benefit will be limited as the prefill stages often do not
suffer from the redundant KV cache loads and tensor core
underutilization.

We evaluate FastTree on an NVIDIA H100 GPU (80GB)
with the support of CUDA 12.2. Our current implementation
does not utilize Hopper-specific features (e.g., TMA), and
we leave this as future work for further optimization.

6.1 Kernel Benchmark

Workloads and settings. We benchmark the GPU kernel
performance for the attention operations with various con-
figurations. We utilize two arrays to generate benchmarks
with different tree shapes of the KV cache, which are the
tree node number of each level (N) and the per-node context
length of each level (C), respectively. The size of these
arrays is equal to the number of levels in the tree, that is,
the tree depth. For example, a three-level tree with N=1,2,4
and C=128,32,32 contains 1 + 2 + 4 = 7 total nodes. The

context length of the root node is 128 while the context
lengths of all other nodes are 32. Each node in the second
level has 4/2 = 2 child nodes. Besides, we benchmark the
trees with grouped-query attention (GQA) (Ainslie et al.,
2023) ratios 1, 4, and 16, respectively. The head dimension
we use is 128.

Baselines. We compare the kernel execution time of
FastTree against various state-of-the-art baselines, includ-
ing FlashAttention (Dao et al., 2022; Dao, 2023; Dao
et al., 2023) v2.6.3, FlashInfer (FlashInfer, 2024) v0.1.6,
and Triton-implemented (Tillet et al., 2019) kernels from
SGLang (Zheng et al., 2023a) v0.2.13. SGLang adapts
the Triton kernels from the token attention implementa-
tion in LightLLM (ModelTC, 2024). We use Triton ver-
sion 3.0.0 during evaluation. We also evaluate the perfor-
mance of FlashInfer’s Multi-level Cascade Attention (Cas-
cadeAttn) (Ye et al., 2024b) and DeFT (Yao et al., 2024a),
which are two concurrent works optimizing attention opera-
tions under tree-structured KV cache sharing.

Results. Figure 9 presents the GPU kernel performance
of FastTree and the baselines across different tree shapes
and GQA ratios. We normalize the performance to the best-
performing one for each configuration. Experimental results
show that on average, FastTree achieves 5.1×, 9.2×, 4.2×,
10.6×, and 2.1× speedups over FlashAttention, SGLang’s
Triton kernels, FlashInfer, DeFT, and CascadeAttn, respec-
tively. The performance improvement of FastTree comes
from the tree-structured attention kernel designs that reduce
HBM accesses and improve tensor core utilization as well
as the runtime optimization that effectively identifies the
efficient grouping plan.

We observe that when the GQA ratio is low, FastTree
achieves significantly higher speedups over FlashAttention
and FlashInfer compared to configurations with a high GQA
ratio. This is because GQA can explicitly aggregate multi-
ple query heads into a single KV head, alleviating the issues
of shared memory waste and low tensor core utilization.
However, even at a GQA ratio of 16, where FlashAttention
and FlashInfer can effectively leverage tensor cores, Fast-
Tree still outperforms these query-separate kernels across
different tree shapes. This advantage arises from FastTree’s
ability to use larger tile sizes that aggregate more queries
for KV reuse, thereby reducing redundant memory accesses
effectively. SGLang’s Triton kernel has not yet integrated
GQA-specific optimizations, resulting in poor performance
even when GQA is enabled.

Even without greedy search, FastTree outperforms DeFT
and CascadeAttn, both of which also leverage tree-
structured optimizations. This performance gap is attributed
to a series of kernel and runtime-level optimizations em-
ployed by FastTree. For instance, by adaptively partitioning
the tree into phases with distinct tile sizes and selectively

FastTree: Optimizing Attention Kernel and Runtime for Tree-Structured LLM Inference

0.0

0.5

1.0 Query Heads=32 KV Heads=32

0.0

0.5

1.0 Query Heads=32 KV Heads=8

N: 1,10

C: 4000,400 N: 1,256

C: 256,32
N: 1,1024

C: 2048,32
N: 1,2,64

C: 8,256,32
N: 1,4,256

C: 8,256,32
N: 1,16,64

C: 1024,256,32
N: 1,4,8,256

C: 8,256,256,32
N: 1,4,16,512

C: 1024,256,128,32

N: 1,4,16,64,256,1024

C: 256,8,256,64,32,256

N: 1,16,32,64,128,1024

C: 256,128,64,16,16,16

N: 1,16,32,64,256,1024

C: 256,128,64,16,16,16

N: 1,8,16,32,64,128,1024

C: 256,128,64,16,16,16,16

N: 1,8,16,32,64,256,1024

C: 256,128,64,16,16,16,16

N: 1,2,4,8,16,32,64,128,1024

C: 16,16,16,16,16,16,16,16,16

N: 1,2,4,8,16,32,64,128,1024

C: 256,128,64,16,16,16,16,16,16
0.0

0.5

1.0 Query Heads=16 KV Heads=1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ke

rn
el

 P
er

fo
rm

an
ce

FlashAttn SGLang FlashInfer DeFT CascadeAttn FastTree w/o Greedy FastTree

Figure 9. Normalized GPU kernel performance of FastTree and the baselines for the attention operation across various configurations. N:
node number of each level. C: per-node context length of each level.

splitting the context, FastTree strikes a balance between
parallelism and data reuse, leading to improved GPU utiliza-
tion. In contrast, DeFT uses a fixed tile size, which results
in substantial shared memory waste in many configurations,
particularly with a high GQA ratio. Furthermore, DeFT
introduces additional masking operations, which incur re-
dundant computation and further degrade performance.

Optimization ablation. In the figure, we also include the
performance of FastTree without greedy optimization (Sec-
tion 4.2), where context-query groups are aggregated di-
rectly based on the original tree structure. Unlike the full
version of FastTree, this variant does not employ a greedy
heuristic to construct a virtual tree before aggregation. The
figure shows that when the tree structure is relatively sim-
ple and shallow, the greedy heuristic in FastTree tends to
produce a grouping plan similar to direct aggregation. In
such cases, it prefers to separate different levels to aggre-
gate more queries and maximize data reuse. On the other
hand, as the tree becomes deeper and structurally more
complex, the greedy heuristic can effectively identify more
efficient grouping plans, achieving up to a 2.2× speedup.
For instance, regarding the configuration in the bottom-right
corner of the figure, FastTree tends to concatenate nodes for

the final few levels of the tree and use a small tile size of
16. In contrast, direct aggregation may increase data reuse
with larger tile sizes but also introduces excessive padding
and lowers occupancy, ultimately leading to performance
degradation.

Additionally, we study the impact of GPU-efficient long
context splitting (Section 4.3) on performance. In specific
configurations such as N=1,10 and C=4000,400, this split-
ting optimization can yield up to a 1.9× speedup. This
is because, in these settings, the number of context-query
groups that can be parallelized is limited and there exist
nodes with very long contexts, leading to severe GPU SM
under-utilization issues.

6.2 End-to-end Performance

We benchmark the end-to-end performance of FastTree by
integrating it into SGLang v0.2.13. For comparison, we
evaluate SGLang using both Triton and FlashInfer as atten-
tion operation backends. We measure the inference time for
a batch of requests that share common prefixes to report the
system throughput.

Workloads. We test FastTree on models Llama-2-7B (Tou-

FastTree: Optimizing Attention Kernel and Runtime for Tree-Structured LLM Inference

vron et al., 2023) and Mistral-7B (Jiang et al., 2023), whose
GQA ratios are 1 and 4, respectively. We adopt the Meta
AI system prompt from The Big Prompt Library (TheBig-
PromptLibrary, 2024) to imitate the LLM applications used
in production, which contains 3193 tokens (with Llama
tokenizer). We then combine it with the following bench-
marks, where questions are collected from the GSM8K
dataset (Cobbe et al., 2021):

(A) Multi-level system prompt: a system prompt sets the ini-
tial guidelines for how an LLM model should respond, defin-
ing its tone, role, and focus, while some aspects can vary
between users based on individual needs or session settings.
In this benchmark, we randomly replace the user country
and response language in the Meta AI system prompt with
different values, splitting into four levels with 459, 38, 584,
and 2112 tokens, respectively.

(B) Multiple few-shot learning: few-shot learning (Brown,
2020) is an extensively used in-context learning method that
lets LLMs learn from the few-shot examples provided in the
prompt. We create the benchmark by constructing a three-
level tree structure consisting of a system prompt, multiple
(8 in our experiments) few-shot example combinations, and
corresponding question-answer (QA) pairs. We let each
combination contain 20-shot examples, with subsequent 16
individual questions.

(C) Multi-chain reasoning: Multi-chain reasoning (Yoran
et al., 2023) invokes multiple distinct chains of logic and
then combines them to solve complex problems. In this
benchmark, we construct four chains for each question.

(D) Multi-document QA: In multi-document QA, questions
can be input into the LLM with multiple documents in the
prompt as the information sources (Jin et al., 2024). The
used documents across questions can then form a radix tree
with multi-level sharing. We split the Llama-2 report (Tou-
vron et al., 2023) into different parts and use these parts to
form the multi-document prompts. In this benchmark, we
do not add the Meta AI system prompt at the beginning.

For all benchmarks, we keep the total number of parallel
requests within a batch as 128 and set the generated token
number of each request as 256.

Results. We present the normalized performance of Fast-
Tree and the baselines in Figure 10. Experimental re-
sults demonstrate that FastTree consistently outperforms
the baselines across the benchmarks. Compared to SGLang
with Triton-implemented kernels, FastTree achieves average
speedups of 2.4× and 3.1× on Llama and Mistral, respec-
tively. As for SGLang with FlashInfer backend, the average
speedups are 1.6× and 1.9×, respectively. Overall, Fast-
Tree improves the throughput of SGLang by up to 2.2×
compared to FlashInfer backend. The improvement comes
from accelerating the time-consuming attention operation,

A B C D0.0

0.5

1.0

Llama-7B
A B C D

Mistral-7B
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Pe

rfo
rm

an
ce SGLang w/ Triton

SGLang w/ FlashInfer
FastTree (Ours)

Figure 10. End-to-end performance comparison across bench-
marks. A: multi-level system prompt. B: multiple few-shot learn-
ing. C: multi-chain reasoning. D: multi-document QA.

0.00 0.25 0.50 0.75 1.00
SGLang

FlashInfer
FastTree

Multi-Level System Prompt
0.00 0.25 0.50 0.75 1.00

Multiple Few-Shot Learning

0.00 0.25 0.50 0.75 1.00
SGLang

FlashInfer
FastTree

Multi-Chain Reasoning
0.00 0.25 0.50 0.75 1.00

Multi-Document QA
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Prefill Decoding Preprocess Other

Figure 11. End-to-end execution time breakdown comparison on
Llama. For abbreviation, we use “SGLang” to represent SGLang
with Triton-implemented kernels and “FlashInfer” to represent
SGLang with FlashInfer backend. The horizontal axis is the nor-
malized execution time.

and we provide a detailed analysis in the following parts.

We find that the Triton-implemented attention kernels in
SGLang are generally slower than FlashInfer. This is be-
cause FlashInfer is a more comprehensive CUDA kernel
library optimized for various conditions.

Breakdown analysis. We report the latency breakdown on
Llama in Figure 11 for performance analysis. We find that
with FastTree, the decoding latency shrinks substantially for
all benchmarks due to more efficient attention operations,
with average speedups of 2.3× and 1.9× over SGLang-
Triton and SGLang-FlashInfer. Besides, the preprocessing
overhead on the CPU introduced by generating context-
query groups in FastTree is negligible in these benchmarks.
This is due to two main reasons. First, when the batch size
and context length are sufficiently large, the GPU kernel exe-
cution time dominates the overall inference process, making
the CPU preprocessing overhead relatively small. Second,
SGLang performs multiple consecutive decoding steps after
scheduling a batch to amortize the scheduling overhead. As
a result, the preprocessing overhead introduced by FastTree
is also effectively amortized. Furthermore, it is possible

FastTree: Optimizing Attention Kernel and Runtime for Tree-Structured LLM Inference

0.00 0.25 0.50 0.75 1.00
SGLang

FlashInfer

FastTree

Multi-Level System Prompt
0.00 0.25 0.50 0.75 1.00

Multiple Few-Shot Learning

0.00 0.25 0.50 0.75 1.00
SGLang

FlashInfer

FastTree

Multi-Chain Reasoning
0.00 0.25 0.50 0.75 1.00

Multi-Document QA
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Attention (Prefill)
Attention (Decode)

GEMM
Mem-Intensive

Memcpy

Figure 12. Execution time breakdown of GPU kernels on Llama.
The CPU operations and overhead are not reported here. The
horizontal axis is the normalized execution time.

to overlap the CPU-side preprocessing with GPU computa-
tion (Team, 2024b), which can further reduce overhead and
deliver more robust performance gains.

GPU kernel execution time breakdown. Moreover, we
show the breakdown of GPU kernels in Figure 12. We find
that compared to GEMM operations in QKV projections and
MLP layers, the unoptimized attention operations occupy
substantial portions of the total kernel execution time across
the tree-structured benchmarks. In contrast, with FastTree,
the attention computation time can be reduced significantly.
According to the figure, other kernels, which are mainly
invoked by the element-wise and reduction operations in
the model, only contribute to a small portion of the entire
execution time.

7 RELATED WORK

LLM serving systems. LLM serving systems are responsi-
ble for efficiently deploying models and managing inference
requests, which have gained increasing attention in recent re-
search. Many works optimize the request scheduling strate-
gies of LLM serving systems. For example, Orca (Yu et al.,
2022) proposes iteration-level scheduling (or continuous
batching), which continuously schedules new requests to
form a batch rather than waiting for the completion of pre-
vious requests. Another line of work focuses on efficient
memory management during serving. vLLM (Kwon et al.,
2023) adopts the paged KV cache mechanism to reduce
memory fragments. CachedAttention (Gao et al., 2024) and
Pensieve (Yu et al., 2023) maintain the multi-turn chat his-
tory to eliminate redundant computation. SGLang (Zheng
et al., 2023a) organizes the KV cache as a radix tree to
enable multi-level prefix sharing, but it overlooks the tree
structure-unaware computation problem. In contrast, Fast-
Tree optimizes the attention kernel performance guided by
the tree-structured KV cache.

Attention kernel optimization. Many works study the
GPU kernel optimization to accelerate attention computa-
tion. FlashAttention (Dao et al., 2022; Dao, 2023; Dao
et al., 2023) fuses attention computation into one single
GPU kernel by leveraging online softmax (Rabe & Staats,
2021; Milakov & Gimelshein, 2018), storing all interme-
diate results on the shared memory and reducing IO cost
significantly. Several works (Ye et al., 2024a; Zhu et al.,
2024; Lin et al., 2024; Zheng et al., 2024) improve the at-
tention computation under single-level prefix sharing. Con-
current works (Ye et al., 2024b; Yao et al., 2024a; Juravsky
et al., 2024) also optimize the attention kernel under tree-
structured KV cache sharing, but they do not identify and
handle the context-queries grouping challenge as FastTree.
Meanwhile, machine learning compilers (Chen et al., 2018;
Zheng et al., 2020; Lattner et al., 2021; Zheng et al., 2023b;
Tillet et al., 2019; Huang et al., 2023) are extensively used
to generate efficient GPU kernel codes. We implement Fast-
Tree with Triton (Tillet et al., 2019), which allows users to
write fast GPU kernels with Python conveniently.

CUDAGraph (Gray, 2019) is often used during decoding
to reduce CPU overhead by capturing and replaying GPU
workloads, but it requires static inputs and fixed launch
configurations to enable graph construction. To be compat-
ible with CUDAGraph optimization, we can integrate the
persistent threads (Aila & Laine, 2009; Boyer et al., 2009)
technique to fix the launched blocks with FastTree, or we
can leverage the PyTorch CUDAGraph Trees (Team, 2024a)
to only capture the non-attention parts during decoding.

8 CONCLUSION

In this paper, we identify the inefficient computation lim-
itations of existing serving systems with tree-structured
KV cache sharing. To address these, we introduce Fast-
Tree, which improves the inference performance with tree
structure-tailored attention kernel and runtime optimization.
FastTree applies a greedy heuristic to effectively search
for the efficient context-queries groups at runtime and then
performs the attention operations with shared memory and
tensor core-friendly kernels. Our experiments show that
FastTree significantly improves the attention computation
performance under the tree-structured KV cache.

9 ACKNOWLEDGMENT

We sincerely thank the anonymous MLSys reviewers for
their valuable feedback and insightful suggestions. We also
appreciate the UCSD MLSys Group for their helpful com-
ments. This work was supported in part by NSF Award
2124039 and the Amazon Research Awards. We use Chat-
GPT to polish the paper writing and help write some scripts.

FastTree: Optimizing Attention Kernel and Runtime for Tree-Structured LLM Inference

REFERENCES

Agrawal, A., Kedia, N., Panwar, A., Mohan, J., Kwatra,
N., Gulavani, B., Tumanov, A., and Ramjee, R. Taming
{Throughput-Latency} tradeoff in {LLM} inference with
{Sarathi-Serve}. In 18th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 24), pp.
117–134, 2024.

Aila, T. and Laine, S. Understanding the efficiency of ray
traversal on gpus. In Proceedings of the conference on
high performance graphics 2009, pp. 145–149, 2009.

Ainslie, J., Lee-Thorp, J., De Jong, M., Zemlyanskiy, Y.,
Lebrón, F., and Sanghai, S. Gqa: Training generalized
multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., Fan,
Y., Ge, W., Han, Y., Huang, F., Hui, B., Ji, L., Li, M.,
Lin, J., Lin, R., Liu, D., Liu, G., Lu, C., Lu, K., Ma, J.,
Men, R., Ren, X., Ren, X., Tan, C., Tan, S., Tu, J., Wang,
P., Wang, S., Wang, W., Wu, S., Xu, B., Xu, J., Yang,
A., Yang, H., Yang, J., Yang, S., Yao, Y., Yu, B., Yuan,
H., Yuan, Z., Zhang, J., Zhang, X., Zhang, Y., Zhang, Z.,
Zhou, C., Zhou, J., Zhou, X., and Zhu, T. Qwen technical
report. arXiv preprint arXiv:2309.16609, 2023.

Boyer, M., Tarjan, D., Acton, S. T., and Skadron, K. Ac-
celerating leukocyte tracking using cuda: A case study in
leveraging manycore coprocessors. In 2009 IEEE inter-
national symposium on parallel & distributed processing,
pp. 1–12. IEEE, 2009.

Brown, T. B. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen,
H., Cowan, M., Wang, L., Hu, Y., Ceze, L., Guestrin, C.,
and Krishnamurthy, A. TVM: An automated End-to-End
optimizing compiler for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI 18), pp. 578–594, Carlsbad, CA, October
2018. USENIX Association. ISBN 978-1-939133-08-3.
URL https://www.usenix.org/conference/
osdi18/presentation/chen.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168,
2021.

Cummins, C., Seeker, V., Grubisic, D., Roziere, B., Gehring,
J., Synnaeve, G., and Leather, H. Meta large language
model compiler: Foundation models of compiler opti-
mization. arXiv preprint arXiv:2407.02524, 2024.

Dao, T. Flashattention-2: Faster attention with bet-
ter parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, 2023.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Process-
ing Systems, 35:16344–16359, 2022.

Dao, T., Haziza, D., Massa, F., and Sizov, G.
Flash-Decoding for long-context inference.
https://crfm.stanford.edu/2023/10/
12/flashdecoding.html, 2023.

FlashInfer. FlashInfer. https://github.com/
flashinfer-ai/flashinfer, 2024.

Gao, B., He, Z., Sharma, P., Kang, Q., Jevdjic, D., Deng,
J., Yang, X., Yu, Z., and Zuo, P. {Cost-Efficient} large
language model serving for multi-turn conversations with
{CachedAttention}. In 2024 USENIX Annual Technical
Conference (USENIX ATC 24), pp. 111–126, 2024.

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y.,
Sun, J., and Wang, H. Retrieval-augmented generation
for large language models: A survey. arXiv preprint
arXiv:2312.10997, 2023.

Gray, A. Getting Started with CUDA Graphs.
https://developer.nvidia.com/blog/
cuda-graphs/, September 2019.

Gur, I., Furuta, H., Huang, A., Safdari, M., Matsuo, Y., Eck,
D., and Faust, A. A real-world webagent with planning,
long context understanding, and program synthesis. arXiv
preprint arXiv:2307.12856, 2023.

Huang, G., Bai, Y., Liu, L., Wang, Y., Yu, B., Ding, Y.,
and Xie, Y. Alcop: Automatic load-compute pipelining
in deep learning compiler for ai-gpus. Proceedings of
Machine Learning and Systems, 5:680–694, 2023.

HuggingFace. Text Generation Inference.
https://github.com/huggingface/
text-generation-inference, 2024.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux,
M.-A., Stock, P., Scao, T. L., Lavril, T., Wang, T.,
Lacroix, T., and Sayed, W. E. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Jin, C., Zhang, Z., Jiang, X., Liu, F., Liu, X., Liu, X., and Jin,
X. Ragcache: Efficient knowledge caching for retrieval-
augmented generation. arXiv preprint arXiv:2404.12457,
2024.

https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://github.com/flashinfer-ai/flashinfer
https://github.com/flashinfer-ai/flashinfer
https://developer.nvidia.com/blog/cuda-graphs/
https://developer.nvidia.com/blog/cuda-graphs/
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference

FastTree: Optimizing Attention Kernel and Runtime for Tree-Structured LLM Inference

Juravsky, J., Brown, B., Ehrlich, R., Fu, D. Y., Ré, C., and
Mirhoseini, A. Hydragen: High-throughput llm inference
with shared prefixes. arXiv preprint arXiv:2402.05099,
2024.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles, 2023.

Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis,
A., Pienaar, J., Riddle, R., Shpeisman, T., Vasilache, N.,
and Zinenko, O. Mlir: Scaling compiler infrastructure
for domain specific computation. In 2021 IEEE/ACM
International Symposium on Code Generation and Opti-
mization (CGO), pp. 2–14. IEEE, 2021.

Li, J., Tang, T., Zhao, W. X., Nie, J.-Y., and Wen, J.-R. Pre-
trained language models for text generation: A survey.
ACM Computing Surveys, 56(9):1–39, 2024.

Lin, C., Han, Z., Zhang, C., Yang, Y., Yang, F., Chen, C.,
and Qiu, L. Parrot: Efficient serving of {LLM-based}
applications with semantic variable. In 18th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI 24), pp. 929–945, 2024.

Microsoft. DeepSpeed-MII. https://github.com/
microsoft/DeepSpeed-MII, 2024.

Milakov, M. and Gimelshein, N. Online normalizer cal-
culation for softmax. arXiv preprint arXiv:1805.02867,
2018.

ModelTC. LightLLM: A Light and Fast Inference Ser-
vice for LLM. https://github.com/ModelTC/
lightllm, 2024.

NVIDIA. TensorRT-LLM. https://github.com/
NVIDIA/TensorRT-LLM, 2024.

NVIDIA. Programming Guide :: CUDA Toolkit Docu-
mentation. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html,
2025.

OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L.,
Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J.,
Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Bal-
aji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian, M.,
Belgum, J., Bello, I., Berdine, J., Bernadett-Shapiro, G.,
Berner, C., Bogdonoff, L., Boiko, O., Boyd, M., Brakman,
A.-L., Brockman, G., Brooks, T., Brundage, M., Button,
K., Cai, T., Campbell, R., Cann, A., Carey, B., Carlson,
C., Carmichael, R., Chan, B., Chang, C., Chantzis, F.,
Chen, D., Chen, S., Chen, R., Chen, J., Chen, M., Chess,

B., Cho, C., Chu, C., Chung, H. W., Cummings, D., Cur-
rier, J., Dai, Y., Decareaux, C., Degry, T., Deutsch, N.,
Deville, D., Dhar, A., Dohan, D., Dowling, S., Dunning,
S., Ecoffet, A., Eleti, A., Eloundou, T., Farhi, D., Fedus,
L., Felix, N., Fishman, S. P., Forte, J., Fulford, I., Gao, L.,
Georges, E., Gibson, C., Goel, V., Gogineni, T., Goh, G.,
Gontijo-Lopes, R., Gordon, J., Grafstein, M., Gray, S.,
Greene, R., Gross, J., Gu, S. S., Guo, Y., Hallacy, C., Han,
J., Harris, J., He, Y., Heaton, M., Heidecke, J., Hesse,
C., Hickey, A., Hickey, W., Hoeschele, P., Houghton, B.,
Hsu, K., Hu, S., Hu, X., Huizinga, J., Jain, S., Jain, S.,
Jang, J., Jiang, A., Jiang, R., Jin, H., Jin, D., Jomoto, S.,
Jonn, B., Jun, H., Kaftan, T., Łukasz Kaiser, Kamali, A.,
Kanitscheider, I., Keskar, N. S., Khan, T., Kilpatrick, L.,
Kim, J. W., Kim, C., Kim, Y., Kirchner, J. H., Kiros, J.,
Knight, M., Kokotajlo, D., Łukasz Kondraciuk, Kondrich,
A., Konstantinidis, A., Kosic, K., Krueger, G., Kuo, V.,
Lampe, M., Lan, I., Lee, T., Leike, J., Leung, J., Levy, D.,
Li, C. M., Lim, R., Lin, M., Lin, S., Litwin, M., Lopez, T.,
Lowe, R., Lue, P., Makanju, A., Malfacini, K., Manning,
S., Markov, T., Markovski, Y., Martin, B., Mayer, K.,
Mayne, A., McGrew, B., McKinney, S. M., McLeavey, C.,
McMillan, P., McNeil, J., Medina, D., Mehta, A., Menick,
J., Metz, L., Mishchenko, A., Mishkin, P., Monaco, V.,
Morikawa, E., Mossing, D., Mu, T., Murati, M., Murk, O.,
Mély, D., Nair, A., Nakano, R., Nayak, R., Neelakantan,
A., Ngo, R., Noh, H., Ouyang, L., O’Keefe, C., Pachocki,
J., Paino, A., Palermo, J., Pantuliano, A., Parascandolo,
G., Parish, J., Parparita, E., Passos, A., Pavlov, M., Peng,
A., Perelman, A., de Avila Belbute Peres, F., Petrov, M.,
de Oliveira Pinto, H. P., Michael, Pokorny, Pokrass, M.,
Pong, V. H., Powell, T., Power, A., Power, B., Proehl, E.,
Puri, R., Radford, A., Rae, J., Ramesh, A., Raymond, C.,
Real, F., Rimbach, K., Ross, C., Rotsted, B., Roussez,
H., Ryder, N., Saltarelli, M., Sanders, T., Santurkar, S.,
Sastry, G., Schmidt, H., Schnurr, D., Schulman, J., Sel-
sam, D., Sheppard, K., Sherbakov, T., Shieh, J., Shoker,
S., Shyam, P., Sidor, S., Sigler, E., Simens, M., Sitkin,
J., Slama, K., Sohl, I., Sokolowsky, B., Song, Y., Stau-
dacher, N., Such, F. P., Summers, N., Sutskever, I., Tang,
J., Tezak, N., Thompson, M. B., Tillet, P., Tootoonchian,
A., Tseng, E., Tuggle, P., Turley, N., Tworek, J., Uribe, J.
F. C., Vallone, A., Vijayvergiya, A., Voss, C., Wainwright,
C., Wang, J. J., Wang, A., Wang, B., Ward, J., Wei, J.,
Weinmann, C., Welihinda, A., Welinder, P., Weng, J.,
Weng, L., Wiethoff, M., Willner, D., Winter, C., Wolrich,
S., Wong, H., Workman, L., Wu, S., Wu, J., Wu, M.,
Xiao, K., Xu, T., Yoo, S., Yu, K., Yuan, Q., Zaremba,
W., Zellers, R., Zhang, C., Zhang, M., Zhao, S., Zheng,
T., Zhuang, J., Zhuk, W., and Zoph, B. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Pan, Z., Zheng, Z., Zhang, F., Wu, R., Liang, H., Wang, D.,
Qiu, X., Bai, J., Lin, W., and Du, X. Recom: A compiler

https://github.com/microsoft/DeepSpeed-MII
https://github.com/microsoft/DeepSpeed-MII
https://github.com/ModelTC/lightllm
https://github.com/ModelTC/lightllm
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-LLM
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

FastTree: Optimizing Attention Kernel and Runtime for Tree-Structured LLM Inference

approach to accelerating recommendation model infer-
ence with massive embedding columns. In Proceedings of
the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, Volume 4, pp. 268–286, 2023.

Pan, Z., Zheng, Z., Zhang, F., Xie, B., Wu, R., Smith, S.,
Liu, C., Ruwase, O., Du, X., and Ding, Y. Recflex:
Enabling feature heterogeneity-aware optimization for
deep recommendation models with flexible schedules. In
SC24: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–15.
IEEE, 2024.

Rabe, M. N. and Staats, C. Self-attention does not need
o(n2) memory. arXiv preprint arXiv:2112.05682, 2021.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to se-
quence learning with neural networks. In Proceedings of
the 27th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’14, pp. 3104–3112,
Cambridge, MA, USA, 2014. MIT Press.

Team, T. P. CUDAGraph Trees. https:
//pytorch.org/docs/stable/torch.
compiler_cudagraph_trees.html, 2024a.

Team, T. S. SGLang v0.4: Zero-Overhead Batch
Scheduler, Cache-Aware Load Balancer, Faster Struc-
tured Outputs. https://lmsys.org/blog/
2024-12-04-sglang-v0-4/, December 2024b.

TheBigPromptLibrary. The Big Prompt Library. https:
//github.com/0xeb/TheBigPromptLibrary,
2024.

Tillet, P., Kung, H.-T., and Cox, D. Triton: an intermediate
language and compiler for tiled neural network computa-
tions. In Proceedings of the 3rd ACM SIGPLAN Interna-
tional Workshop on Machine Learning and Programming
Languages, pp. 10–19, 2019.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,
Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,
Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. Advances in Neural Information
Processing Systems, 2017.

Yao, J., Chen, K., Zhang, K., You, J., Yuan, B., Wang, Z.,
and Lin, T. Deft: Decoding with flash tree-attention for
efficient tree-structured llm inference. arXiv preprint
arXiv:2404.00242, 2024a.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate problem
solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024b.

Ye, L., Tao, Z., Huang, Y., and Li, Y. Chunkattention:
Efficient self-attention with prefix-aware kv cache and
two-phase partition. arXiv preprint arXiv:2402.15220,
2024a.

Ye, Z., Lai, R., Lu, B.-R., Lin, C.-Y., Zheng, S., Chen,
L., Chen, T., and Ceze, L. Cascade Inference: Mem-
ory Bandwidth Efficient Shared Prefix Batch Decod-
ing. https://flashinfer.ai/2024/02/02/
cascade-inference.html, 2024b.

Yoran, O., Wolfson, T., Bogin, B., Katz, U., Deutch,
D., and Berant, J. Answering questions by meta-
reasoning over multiple chains of thought. arXiv preprint
arXiv:2304.13007, 2023.

Yu, G.-I., Jeong, J. S., Kim, G.-W., Kim, S., and Chun, B.-
G. Orca: A distributed serving system for {Transformer-
Based} generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
22), pp. 521–538, 2022.

Yu, L., Lin, J., and Li, J. Stateful large language model
serving with pensieve. arXiv preprint arXiv:2312.05516,
2023.

Zheng, L., Jia, C., Sun, M., Wu, Z., Yu, C. H., Haj-Ali, A.,
Wang, Y., Yang, J., Zhuo, D., Sen, K., Gonzalez, J. E., and
Stoica, I. Ansor: Generating {High-Performance} tensor
programs for deep learning. In 14th USENIX symposium
on operating systems design and implementation (OSDI
20), pp. 863–879, 2020.

Zheng, L., Yin, L., Xie, Z., Huang, J., Sun, C., Yu, C. H.,
Cao, S., Kozyrakis, C., Stoica, I., Gonzalez, J. E., Barrett,
C. W., and Sheng, Y. Efficiently Programming Large
Language Models using SGLang. CoRR, abs/2312.07104,
2023a. doi: 10.48550/ARXIV.2312.07104. URL https:
//doi.org/10.48550/arXiv.2312.07104.

Zheng, Z., Yang, X., Zhao, P., Long, G., Zhu, K., Zhu, F.,
Zhao, W., Liu, X., Yang, J., Zhai, J., Song, S. L., and

https://pytorch.org/docs/stable/torch.compiler_cudagraph_trees.html
https://pytorch.org/docs/stable/torch.compiler_cudagraph_trees.html
https://pytorch.org/docs/stable/torch.compiler_cudagraph_trees.html
https://lmsys.org/blog/2024-12-04-sglang-v0-4/
https://lmsys.org/blog/2024-12-04-sglang-v0-4/
https://github.com/0xeb/TheBigPromptLibrary
https://github.com/0xeb/TheBigPromptLibrary
https://flashinfer.ai/2024/02/02/cascade-inference.html
https://flashinfer.ai/2024/02/02/cascade-inference.html
https://doi.org/10.48550/arXiv.2312.07104
https://doi.org/10.48550/arXiv.2312.07104

FastTree: Optimizing Attention Kernel and Runtime for Tree-Structured LLM Inference

Lin, W. Astitch: Enabling a new multi-dimensional op-
timization space for memory-intensive ML training and
inference on modern SIMT architectures. In Falsafi, B.,
Ferdman, M., Lu, S., and Wenisch, T. F. (eds.), ASPLOS

’22: 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, Lausanne, Switzerland, 28 February 2022 - 4 March
2022, pp. 359–373. ACM, 2022.

Zheng, Z., Pan, Z., Wang, D., Zhu, K., Zhao, W., Guo, T.,
Qiu, X., Sun, M., Bai, J., Zhang, F., Du, X., Zhai, J., and
Lin, W. Bladedisc: Optimizing dynamic shape machine
learning workloads via compiler approach. Proceedings
of the ACM on Management of Data, 1(3):1–29, 2023b.

Zheng, Z., Ji, X., Fang, T., Zhou, F., Liu, C., and Peng,
G. Batchllm: Optimizing large batched llm inference
with global prefix sharing and throughput-oriented token
batching. arXiv preprint arXiv:2412.03594, 2024.

Zhu, L., Wang, X., Zhang, W., and Lau, R. W. Relayatten-
tion for efficient large language model serving with long
system prompts. arXiv preprint arXiv:2402.14808, 2024.

Zhu, Y., Yuan, H., Wang, S., Liu, J., Liu, W., Deng, C.,
Chen, H., Dou, Z., and Wen, J.-R. Large language mod-
els for information retrieval: A survey. arXiv preprint
arXiv:2308.07107, 2023.

Zhuang, D., Zheng, Z., Xia, H., Qiu, X., Bai, J., Lin, W.,
and Song, S. L. MonoNN: Enabling a new monolithic
optimization space for neural network inference tasks
on modern GPU-Centric architectures. In 18th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI 24), pp. 989–1005, Santa Clara, CA, July
2024. USENIX Association. ISBN 978-1-939133-40-3.
URL https://www.usenix.org/conference/
osdi24/presentation/zhuang.

A ARTIFACT APPENDIX

A.1 Abstract

This artifact provides the kernel benchmark code for Fast-
Tree, a system designed to optimize attention computation
with a tree-structured KV cache. The artifact enables the
reproduction of kernel performance results presented in the
paper across various tree configurations and different GQA
ratios. The evaluation compares FastTree against conven-
tional attention kernels from FlashAttention, SGLang Triton,
and FlashInfer. It also compares against DeFT and Flash-
Infer’s Multi-Level Cascade Attention, which are two con-
current works that target optimizations for tree-structured
attention as well.

A.2 Artifact check-list (meta-information)
• Run-time environment: Docker and NVIDIA container

toolkit.

• Hardware: An NVIDIA H100 GPU.

• Experiments: The attention computation latency of Fast-
Tree and baselines across different configurations.

• How much time is needed to complete experiments (ap-
proximately)?: 20 minutes.

• Publicly available?: Yes, at https://github.com/
PanZaifeng/FastTree-Artifact.

• Code licenses (if publicly available)?: Apache-2.0.

A.3 Description

A.3.1 How delivered

The artifact is provided as a public GitHub repository at https:
//github.com/PanZaifeng/FastTree-Artifact.

A.3.2 Hardware dependencies

We use an NVIDIA H100 GPU for evaluation in the paper. Since
FastTree is implemented with Triton and does not leverage Hopper-
specific features, it should work on other GPUs. However, the
provided hyperparameters are only tuned for H100.

A.3.3 Software dependencies

We provide a Dockerfile to streamline the setup of the experi-
mental environment, eliminating concerns about software depen-
dencies. Inside the Docker container, we include the following
specific software:

• CUDA 12.2.
• SGLang 0.2.13 (including PyTorch 2.4.0 and Triton 3.0.0).
• Flash Attention 2.6.3.
• FlashInfer 0.1.6.

A.4 Installation

Users can effortlessly set up the environment and conduct eval-
uations by running the script kernel bench/run.sh.
Alternatively, they can manually build the Docker
image using the provided Dockerfile located at
kernel bench/Dockerfile.

A.5 Evaluation and expected result

Running the provided script will measure the attention compu-
tation latency of FastTree and baseline methods across various
configurations. Upon completion, it will generate a normalized
performance plot at kernel bench/norm perf.pdf. Users
can expect to observe that FastTree outperforms the baselines and
achieves significant speedups across different configurations.

https://www.usenix.org/conference/osdi24/presentation/zhuang
https://www.usenix.org/conference/osdi24/presentation/zhuang
https://github.com/PanZaifeng/FastTree-Artifact
https://github.com/PanZaifeng/FastTree-Artifact
https://github.com/PanZaifeng/FastTree-Artifact
https://github.com/PanZaifeng/FastTree-Artifact

