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BOWTIE-FLOW: EFFICIENT HIGH-RESOLUTION VIDEO
GENERATION WITH PRIOR PRESERVATION
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Wan 480P / 960s  Wan 480P / 960s  

Figure 1: Bowtie-flow generates high-resolution and high-quality videos efficiently. It acts
as a simple plug-in and brings more than 12x speed-up. At the same time, it preserves the prior (i.e.,
layout, semantic, motion, etc.) of the baseline model (as the first two rows).

ABSTRACT

The demand for high-resolution video generation is growing rapidly. However,
the generation resolution is severely constrained by slow inference speeds. For
instance, Wan 2.1 require over 50 minutes to generate a single 720p video. While
previous works explore accelerating video generation from various aspects, most
of them compromise the distinctive priors (e.g., layout, semantic, motion) of
the original model. In this work, we propose Bowtie-flow, an efficient frame-
work for generating high-resolution videos, while maximally keeping the pre-
trained priors. Specifically, Bowtie-flow divides video generation into two
stages: First, we leverage the pretrained model to generate a low-resolution pre-
view in fast speed; then we deisign a Refiner to upscale the preview. In the preview
stage, we identify that directly inferring a model (trained with higher resolution)
on lower resolution causes severe prior losses. So we introduce noise reshifting,
a training-free technique that mitigates this issue by conducting initial denoising
steps on the original resolution and switching to low resolution in later steps. In
the refine stage, we establish a mapping relationship between the preview and the
high-resolution target, which significantly reduces the denoising steps. We fur-
ther integrate shifting windows and carefull design the training paradim to get a
powerful and effcicient Refiner. In this way, Bowtie-flow enables generating
high-resolution videos efficiently while maximally closer to the priors of the
given pretrained model. Bowtie-flow is conceptually simple and could serve
as a plug-in that is compatible with various basemodel and acceleration meth-
ods. For example, it achieves 12.5x speedup for generating 5-second, 16fps, 720p
videos.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

A bearded man lifts a frosty pint glass filled with amber. He takes a 
slow, appreciative sip, his eyes closing momentarily.

Arms dislocate

A high-speed video of a splash created by a stone thrown into a pond.
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Figure 2: Demonstrations for prior preservation. The distilled model loses the prior of the base-
model, which could bring performance t, our method maintains the layout, semantics, and motion,
thus achieving acceleration with no loss of fidelity.

1 INTRODUCTION

Video generation (Yang et al., 2024; Kuaishou, 2024; Wang et al., 2025a) has witnessed remark-
able advancements in recent years, with sophisticated models continually pushing the boundaries
of quality and capability. However, the computational cost remains a critical bottleneck, signifi-
cantly hindering further advances towards higher resolution and richer details. For example, it costs
roughly 50 min to generate a 5s 720p video for the current SoTA video generation models (Wang
et al., 2025a; Kong et al., 2024) and still 6 min for distillation model (Zhang et al., 2025a).

Facing this challenge, existing researches explored various strategies to make the generation pro-
cess more efficient. Specifically, methods (Luo et al., 2023; Starodubcev et al., 2025) leverage step
distillation to reduce the total denoising steps. Studies like (Zhang et al., 2025b; Ding et al., 2025)
primarily focuse on attention sparsity to improve efficiency. Furthermore, cascade multi-scale gener-
ation techniques (Ren et al., 2024a; Chen et al., 2025) have been proposed to enhance the efficiency
of high-resolution image generation.

Although these methods could improve the generation efficiency, most of them inevitably compro-
mise the intrinsic priors of the original model as shown in Fig. 2. The model’s prior is reflected in
its preferences for aesthetic style, semantically aligned layout and motion dynamics, etc. Preserving
these priors is significant when accelerating a given model, as they act as a signature of the model
and could directly reflect the generation quality.

To achieve this goal, we propose an efficient framework for high-resolution video generation, called
Bowtie-flow. This framework divides the whole process into two stages based on their natural
features. In Preview stage, we leverage a powerful pretrained model to generate low-resolution
previews. The pre-k steps focus on high noise period which determines the main content of the
entire video and the post-k steps uses the low resolution latent to gain speed. We analyze that each
pretrained model has its own optimal resolution (usually the training resolution). While distilling
the model could increase speed in a large, it often can not access the large batch of pretraining data
and would compromise the original priors. Inspired by the observation that the early denoising steps
determine the overall content, and the later steps refine the details, we introduce noise reshift method
to address this problem. Specifically, we start from the pretrained model’s optimal resolution in the
early denoising steps, then switch to a lower resolution for the remaining steps. In this way, the low-
resolution preview could be efficiently generated and preserve the priors (layout, semantic, motion,
etc.) of the pretrained model. In Refine stage, we train a powerful and efficient Refiner through
establishing a mapping relationship between the low-resolution preview and the high-resolution
target. It significantly reduces the NFE(number-of-evaluations) to 10 while enriching details and
correcting unreasonable artifacts. In addition, we also integrate the shift window method into the
upscaling model to further reduce the computation.

As shown in Fig. 1, our method generates high-detailed and high-quality videos with priors closer
to the base model (Wan 2.1) and achieves a huge speedup. Besides, our Bowtie-flow paradigm
allows users to generate multiple previews efficiently at the same time and pick the satisfied content
for further refinement to arbitrary size. Experiments show that Bowtie-flow achieves 12.5×
speedup compared with Wan 2.1 14B for generating 5-second, 16fps, 720p videos and 8.7× speed
up in HunyuanVideo 13B with 24fps.
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240p
1080p

resize resize

noise reshift
at step k

480p

Pretrained Model

High Res Flow to 
refine details

Optimal Res Flow to secure 
overall composition

Low Res Flow to gain speed

Refiner

NFE=10 NFE=30 NFE=10

Figure 3: An overview of the Bowtie-flow. Our framework employs a powerful pretrained
model (e.g., Wan 2.1) and a lightweight model which we call Refiner. Together, they execute the
denoising process through an OptimRes-LowRes-HighRes latent flow (Bowtie-flow), ensuring
a comprehensive generation from coarse semantics to fine details.

2 RELATED WORK

High-resolution image and video generation approaches can be broadly categorized into training-
based and training-free. Training-based methods combine architectural innovations and model
fine-tuning strategies. Turbo2K (Ren et al., 2025) accelerates 2K video synthesis by leveraging
a compressed latent space and knowledge distillation within a hierarchical two-stage framework,
ensuring structural coherence. UltraPixel (Ren et al., 2024b) generates 4K-resolution images using
cascade diffusion models that feature shared parameters and scale-aware layers, minimizing addi-
tional parameters for high-resolution outputs. PixArt-Σ (Chen et al., 2024) and ResAdapter (Cheng
et al., 2025) enhance base models through fine-tuning but remain resolution-constrained. Other ap-
proaches like ResMaster (Shi et al., 2024) and HiPrompt (Liu et al., 2024) introduce multi-modal
prompting mechanisms at the expense of computational efficiency. Training-free methods adapt
inference strategies or architectures without training. MultiDiffusion (Bar-Tal et al., 2023) and its
variants (e.g., SyncDiffusion (Lee et al., 2023), Demofusion (Du et al., 2024)) use sliding-window
denoising but suffer from repetition or computational redundancy. ScaleCrafter (He et al., 2024),
FouriScale (Huang et al., 2024a), and HiDiffusion (Zhang et al., 2025e) modify network structures
but risk suboptimal performance. SVG (Xi et al., 2025) investigate sparsity in the attention module
but get limited acceleration. Jenga (Zhang et al., 2025g) combines multiple acceleration strategies
but suffers from degradation in the original quality.

Efficient video generation is challenged by the quadratic complexity of attention mechanisms, es-
pecially at high resolutions. Several works (Cai et al., 2023; Xie et al., 2024; Wang et al., 2020;
Choromanski et al., 2020; Yu et al., 2022; Katharopoulos et al., 2020) transform attention into lin-
ear operations to reduce complexity, while others use hybrid strategies combining local and global
attention to focus only on important token pairs (Xi et al., 2025; Zhang et al., 2025b;c; Xia et al.,
2025). FlashAttention Dao et al. (2022) introduces a patch-divided acceleration method . More re-
cently, Wang et al. (2025b) proposes variable-sized window near spatiotemporal boundaries to better
support long video sequences. For faster generation, rectified flow models with straight ODE trajec-
tories (Esser et al., 2024) have been proposed in text-to-image (T2I) tasks. However, applications in
text-to-video (T2V) remain limited due to the added complexity of the temporal dimension. While
some methods (Ding et al., 2024; Zhang et al., 2025f) reduce the number of denoising steps, they
remain limited to long-frame, high-resolution videos and overlook the domain gap between different
resolutions.

3 METHOD

In this work, we propose Bowtie-flow, a framework that significantly improves the efficiency of
pretrained video generation models while maximally preserving their generative priors.

3
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3.1 OVERALL PIPELINE.

The overall framework of Bowtie-flow is shown in Fig. 3. Current video acceleration methods
often operate at a fixed latent scale. While strategies(Zhang et al., 2025b; Xi et al., 2025; Yang et al.,
2025) that exploit the sparsity of video tokens within attention modules can reduce computational
costs, their acceleration potential remains limited. Moreover, adopting an aggressive token dropping
policy—even retaining specifically selected important tokens—inevitably degrades the learned gen-
erative priors. Therefore, we analyze that the key factors that influence the generation speed are the
resolution and the number of denoising steps.

Under this principle, we design a bowtie-like pipeline: we first generate low-resolution previews;
then we add more details to the preview with fewer denoising steps. Bowtie-flow introduces a
dynamic scaling mechanism that allocates a variable number of tokens according to the denoising
timestep. Instead of permanently discarding tokens, we resize the latent scale to modulate the token
count, thereby ensuring that the global information from the entire token set is preserved.

Specifically, in the preview stage, we retain the full capacity of a powerful pretrained model to
establish the global structure with content and accelerate the whole process by dynamic scaling
mechanism ; In the refine stage, we switch to a lightweight model to both accelerate the process and
enrich the details.

3.2 PREVIEW STAGE

In this stage, we aim to leverage the strong generative capabilities of a given pretrained model for
generating a low-resolution preview. We expect the low-resolution preview to preserve the pri-
ors (layout, semantic, motion) of the given pretrained model. A straightforward solution is to let the
pretrained model infer on the lower resolution. However, we find that each model has its own opti-
mal resolution; inferring on mismatched resolution causes severe prior losses. Inspired by the fact
that the overall structure is determined by the initial denoising steps, we introduce a progressively
downsampling method.

Noise reshifting. During the denoising phase, we begin with the initial gaussian noise z1 ∈
Rb×c×f×h×w and progressively downsample the clean latent representation z0 with reduced spa-
tial dimensions h′ × w′. Here b, c, f and h,w denote the batch size, number of channels, number
of frames, and resolution of the model’s optimal generation, respectively. Our strategy is fundamen-
tally structured around a turning point step k along the denoising trajectory and divides into pre-k
steps and post-k steps.

Before reaching k(pre-k steps), the latent representation is denoised through an ODE-based flow
matching approach, described by the following iterative update:

z0 = z1 +

∫ 0

1

uθ(zt, t) dt (1)

where uθ(z, i) represents the model-predicted direction function. Upon reaching step k, we estimate
the clean latent representation as ẑ0 = zk − σk · uθ(zk, k), where σk denotes the noise standard
deviation at step k. Subsequently, we apply a spatial downscaling operation to the estimated latent,
ẑ↓0 = Downscale(ẑ0). where the simple linear downscale operation is implemented in the latent
space. This choice is crucial as it effectively reduces spatial resolution while vigilantly preserving
essential spatiotemporal coherence. Afterwards, we reinject noise which is shifted to timestep k,
into the reduced-resolution latent space, allowing the stochastic denoising process to seamlessly
resume. The reshifting process is represented by:

zk−1 = ẑ↓0 + σk · ϵ̃, ϵ̃ ∼ N (0, I). (2)
In post-k steps, latents denoises in lower-resolution to gain speed. This multi-scale denoising frame-
work enables the model to first gain global semantics at coarser scales, and then get the preview at
finer scales.

3.3 REFINE STAGE

To alleviate the computational overhead, we employ a lightweight model with 1B parameters, which
reduces the time cost per step (detailed architecture can be seen in Appendix. B.1).

4
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Figure 4: Shift window across adjacent blocks.

Flow mapping. We start from the preview and
linear upsample it to form blurred low-resolution
latents. Then we establish a mapping between
low-resolution latents zlr and high-resolution la-
tents zhr by modifying the flow-matching equa-
tion 1, substituting z1 with zlr and z0 with zhr.
Our light-weight Refiner learns zlr’s directional
information, facilitating high-quality video gen-
eration in a few denoising steps. More details can
be found in Appendix B.2.

Training paradigm. We first obtain large
amounts of high-quality videos and apply both
pixel- and latent-level degradations to simulate low-quality video values. Pixel-level degradation
simulates blur, while latent-level degradation prevents the task from becoming a trivial super-
resolution problem, encouraging the model to exploit its inherent generative ability. These low-
quality latents are then paired with the original high-quality latents to form the training data. How-
ever, with large resolution and long frame numbers, it presents a computational challenge and results
in considerable time consumption per denoising step.

Model structure. Given a video feature X ∈ RT×H×W , our transformer design addresses this
challenge by balancing efficiency and temporal connectivity. The first transformer block applies
regular window attention with a t×H×W window. Specifically, X is divided into

(
T
t + 1

)
×H×W

windows, where each window spans t consecutive frames along the temporal dimension while fully
covering the spatial dimensions. This windowed partition allows local temporal interactions to be
captured before expanding to broader temporal receptive fields in deeper blocks.

Our solution further integrates a cyclic shift-window strategy into the 3D self-attention modules
shown in Fig. 4. This strategy, embedded within Transformer blocks, establishes full temporal
connectivity through a two-phase cycle across layers. Each consecutive layer pair collaboratively
connects all frames while maintaining computational efficiency.

In detail, Transformer block 2L applies 3D self-attention to non-overlapping temporal windows of
size Wt, adjusting position embeddings for local awareness. The subsequent Transformer block
2L + 1 applies a temporal shift of St =

Wt

2 to the input feature, then partitions it into windows of
size Wt for attention computation. The cyclic-shifted attention mechanism can be expressed as:

X(2L) = Attention3D(Partition(X,Wt)),

Xshifted = CyclicShift
(
X(2L), Wt

2

)
,

X(2L+1) = Attention3D(Partition(Xshifted,Wt),Mask) .

(3)

When we shift the window by half the window size forward, one boundary window (e.g., the first
window) contains temporally unrelated halves. Therefore, we apply an attention mask to separate
them. We also employ position-frequency embeddings with 3D RoPE (Su et al., 2024) within each
window to avoid the resolution bias introduced by fixed positional embeddings. This two-block cy-
cle (unshifted/shifted layers) guarantees global temporal connectivity, significantly reducing mem-
ory and accelerating attention calculation for large latent tensors.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Settings. The Refiner of Bowtie-flow is trained on 24 NVIDIA A800 GPUs (80GB each) with
a total batch size of 24. We finetune the transformer using the AdamW optimizer with a learning rate
of 5e-5. We create a synthetic dataset of 100k LR-HR video frame pairs following the methodology
in (Wang et al.). To optimize training efficiency and stabilize convergence, we employ a progressive
training strategy where the model is trained at incrementally increasing frame num. We first train
Bowtie-flow on 21-frame inputs for 1k iterations, and then extend the input length to 81 frames
and finetune the model for 4k iterations.

5
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Motion Dynamic

Text Alignment

Overall Quality
Better Same Worse

Video Fidelity

Ours vs Wan2.1
46.24% 18.32% 35.44%

35.14% 34.83% 30.03%

46.24% 29.73% 24.02%

41.14% 26.43% 32.43%

Ours vs SVG
55.21% 15.06% 29.73%

44.40% 25.48% 30.12%

44.40% 23.94% 31.66%

52.13% 20.85% 27.03%

Ours vs DMD
72.64% 13.85% 13.51%

64.19% 20.61% 15.20%

74.50% 13.76% 11.74%

44.39% 25.00% 30.61%

14.05x Faster 10.89x Faster 1.13x Faster

Figure 5: User study. We report pair-wise preference rates. Bowtie-flow achieves comparable
quality to Wan 2.1 with a significant speedup, and outperforms SVG and DMD.

Evaluation and metrics. For speed assessment, we report the DiT forward pass time on NVIDIA
A800, as the VAE decoding component remains constant across all configurations. We also report
FLOPs to provide an intuitive comparison of computational complexity. For qualitative evaluation,
we construct a video dataset of 381 low-resolution videos with prompts from VBench (Huang et al.,
2024b), Videophy (Bansal et al., 2024) and PhyGenBench (Meng et al., 2024); We evaluate each
prompt with a fixed seed to ensure reproducibility. Additionally, we conducted a user study to assess
human preference rates between Bowtie-flow and various efficient generation methods. As for
1080p video generation, most existing acceleration methods are not capable of handling this setting.
Therefore, for a fair comparison, we benchmark our approach against super-resolution(SR) methods
and adopt several widely used video SR assessment metrics. Specifically, we employ DINO (Caron
et al., 2021) and CLIP (Radford et al., 2021) to evaluate frame quality via feature similarity across
frames; LAION aesthetic predictor (Schuhmann et al., 2022) to assess artistic and beauty value
perceived by humans towards each video frame, and DOVER (Wu et al., 2023) to measure overall
video quality.

4.2 COMPARISONS

We evaluate our method from both efficiency and quality perspectives. Specifically, We compare
it with the Wan 2.1 baseline, which employs the FlowMatch scheduler with 50 NFE (number-of-
evaluations), as well as accelerated Wan 2.1 variants utilizing 30% and 50% of the original steps.
Additionally, we compare our approach with two commonly adopted acceleration techniques: the
sparse attention mechanism used in SVG (Xi et al., 2025) and the bidirectional video distribution
matching distillation (DMD) method (implemented following Zhang et al. (2025d)).

Efficiency analysis. We observe that, due to the quadratic complexity of attention, the core chal-
lenge to gain efficiency lies in reducing the number of tokens. With our proposed Bowtie-flow,
the first stage consumes FLOPs equivalent to 480p, the second stage to 240p, and the third stage
leverages a smaller-parameter model with approximately 5× fewer hidden dimensions and 2.5x
fewer num heads, achieving trivial FLOPs relative to the original model. Detailed configuration
is listed in Tab. R6. As shown in Tab.1, our method achieves performance comparable to Wan 2.1 at
720p resolution while reducing inference time by 12×. Furthermore, when generating 1080p videos,
our approach attains a 51× acceleration compared with directly applying Wan 2.1 at 1080p.

SVG still operates on latents of the same scale and explains acceleration from the perspective of
hardware-efficient tensor layout which has limited reduction in redundant tokens. DMD focuses
on reducing the number of inference step. Bowtie-flow leverages the intrinsic properties of
the denoising process by adapting latent representations at different scales to different stages of
denoising, thereby achieving substantial acceleration while preserving prior information. Although
the total runtime of the distillation-based method is similar to ours, we observe that DMD often fails
to preserve prior information and tends to introduce unnatural color artifacts in the generated videos.

Quality analysis. We evaluated our model’s generative performance from two perspectives: gen-
eral video metrics and physics-focused assessments (as original Wan 2.1 achieves best in physical
plausibility so we want to prove Bowtie-flow has preserved this characteristics).

As illustrated in Tab. 1, our generated video exhibits a comparable visual quality to Wan 2.1, while
slightly surpassing SVG and outperforming the DMD method. We also conducted a perceptual
evaluation employing a standard win-rate methodology. We have designed questionnaire with 24
randomly selected videos from the above test datasets. A total of 37 researchers in the field of video
generation were asked to evaluate the results along four dimensions: Motion, Fidelity, Semantics,
and Overall Quality, with the outcomes summarized in Fig. 5.
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Table 1: Quantitative comparison on Wan 2.1. We report evaluations of the baseline (row 1), step
and attention optimization methods (row 2-5) and Bowtie-flow (row 6). NFE=50. The highest
score is in bold and the second highest is underlined. Abbreviations: QS (Quality Score), AQ
(Aesthetic Quality), DD (Dynamic Degree), MS (Motion Smoothness), OC (Overall Consistency),
SA (Semantic Adherence), PC (Physics Commonsense).

Method General Scene Physical Scene Computation Loads

QS↑ AQ↑ DD↑ MS↑ OC↑ SA↑ PC↑ Time↓ Speed↑ PFLOPs↓

Wan 2.1(Wang et al., 2025a) 83.31 66.9 63.89 97.65 27.08 41.82 45.45 3497 (58min) 1× 658.46

30%step(Wang et al., 2025a) 77.92 58.43 56.94 96.95 24.56 18.18 16.36 1049 3.34× 197.54

50%step(Wang et al., 2025a) 81.51 63.52 66.67 96.99 25.90 25.45 23.64 1748 2× 329.23

SVG(Xi et al., 2025) 83.36 65.6 68.06 97.69 27.32 25.45 20.00 2712 1.29× 429.86

DMD(Zhang et al., 2025d) 83.31 66.11 52.78 98.96 26.77 34.55 30.91 282 12.40× 39.51

Ours 83.26 66.86 72.22 97.95 27.38 41.82 38.18 278 12.58× 34.3

Table 2: Plug-in integration with other accelera-
tion methods and different model architectures.

Method SA↑ PC↑ NFE/Time↓ Speed↑
HunyuanVideo 29.09 27.27 50/3081 1×
+SparseAttn 30.91 23.64 50/2775 1.1×
+ Bowtie-flow 43.64 45.45 50/356 8.7×
AccVideo 32.73 23.64 5/340 1×
+ Bowtie-flow 36.36 38.18 5/265 1.3×

The findings demonstrate that our method
achieves performance comparable to the orig-
inal model while surpassing many existing ac-
celeration approaches from human perspective.
From extensive examples, we observe that SVG
suffers from limited robustness, as the main
subjects often remain static and adds unrea-
sonable details; while DMD tends to introduce
unnatural color artifacts and produces grainy
videos with reduced fidelity. We provide visu-
alization cases in Fig. 6.

Moreover, our method can be naturally extended to support 1080p video generation. Since most
baseline models do not natively support this resolution, we evaluate 1080p results from the per-
spective of video super-resolution (SR). Specifically, we randomly select 100 samples from the
aforementioned test datasets and conduct comparisons with existing SR approaches, aiming to as-
sess the effectiveness of our method in generating high-resolution videos with enhanced detail and
fidelity. We use DINO (Caron et al., 2021), CLIP (Radford et al., 2021) to assess temporal quality
and LAION aesthetic predictor (Schuhmann et al., 2022), DOVER (Wu et al., 2023) to evaluate
visual quality of videos. Detailed results as shown in Tab. 3. Notably, although GAN-based Re-
alBasicVSR achieves competitive scores on some metrics, its outputs frequently exhibit excessive
smoothing, do not satisfy human perceptual preferences; Diffusion-based VEnhancer also demon-
strates strong generative capabilities, however, its outputs often undergo significant deviations from
the input, contradicting the principle of enhancing visual quality while preserving fidelity. As shown
in Fig. S13, our method demonstrates significant success in rendering details such as the paw of cat
and drone shape.

Compatiability analysis. Furthermore, Bowtie-flow can function as a plug-in compatible with
various diffusion model architectures and acceleration techniques. When combined with sparse at-
tention Zhang et al. (2025g), it achieves a 7.6x speedup on HunyuanVideo (Kong et al., 2024). Ad-
ditionally, it can be adapted to step-distillation models AccVideo (Zhang et al., 2025a) and achieves
a 1.3x speedup. Detailed results are presented in Tab. 2.

4.3 VISUALIZATION RESULTS

This section presents visualizations of our Bowtie-flow, providing an intuitive comparison be-
tween the preview and the final results in terms of overall layout similarity as well as refinement
capability. As shown in top row of Fig. 7, our design first prioritizes an efficient retention of the
powerful model’s inherent priors to ensure robust structural layout, semantic alignment, and motion
dynamics. For instance, the ballet dancer’s movements are demonstrably smooth and natural. Fur-
thermore, our method is adept at style-aware video synthesis, exemplified by results such as a Van
Gogh-style tower and a watercolor panda. Then the well-trained Refiner refines intricated details and
mitigates generation artifacts. In second row, Bowtie-flow further enhances visual fidelity of ex-
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A skilled artisan hands covered in clay, sits 
at a potter's wheel in a studio. The camera 
captures details of his fingers expertly 
shaping a spinning lump of clay into a vase. 

A lone astronaut clad in a pristine white 
spacesuit, flying in space. The background is 
a mesmerizing blend of deep blues, purples
and blacks, dotted with distant galaxies.
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Figure 6: Qualitative comparisons. Our method achieves up to 12× speedup while maintaining
priors of base model. Unreasonable contents are marked in orange. Rather than aimless camera
panning, Bowtie-flow generates high fidelity videos with semantically aligned motion.

(d) A panda drinking coffee in a café watercolor painting

(c) A boat sailing along the Seine River with the Eiffel 
Tower in background Van Gogh style

(a) A person is dancing ballet

(b) A corgi is playing drum kit.
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Figure 7: Generation results for each stage. We mark regions with artifacts and lacking detail in
the preview videos using yellow boxes, while improvements from the Refiner are highlighted in red.
Zoom in for a better view.

isted videos, including clearer facial and hand structures in (a), refined fur rendering on the corgi in
(b), enhanced texture and structural details in (c), and more semantically consistent structural and
color corrections in (d).

More examples in Fig. 1 and Appendix G further demonstrate the visual aesthetics and realism of
the generated videos.

4.4 ABLATION

Step division. In this part we look into how to balance efficiency and quality of generating a useful
preview. We have found that the division of step range (i.e., the choice of k) is very important.

Since the efficiency of our method is directly proportional to the number of denoising steps per-
formed at the initial resolution, identifying the optimal step range for the transition is crucial for
balancing quality and speed. With the results presented in Tab. 4, it reveals a distinct trade-off. Em-
ploying an early transition (e.g., after step 5) accelerates the process but leads to a degradation in
both layout integrity and motion quality. Conversely, delaying the transition (e.g., after step 35) not

8
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Table 3: Quantitative comparison with video
super-resolution method (1080p).

Method DINO↑ CLIP↑ LAION↑ DOVER↑ NFE/Time↓

RealBasicVSR 93.40 94.83 61.07 80.25 1/162.1s
Upscale-a-Video 93.47 95.71 60.93 71.40 30/2517.7s
VEnhancer 93.55 96.02 63.46 79.78 15/2467.6s
STAR 93.68 96.59 60.81 63.64 14/912.7s
Ours 93.75 96.30 63.50 81.20 10/76.5s

Table 4: Ablation study of step division in pre-
view stage. Recommend setting is in gray .

Setting QS↑ AQ↑ DD↑ MS↑ OC↑ Time↓

5-35 82.21 63.45 66.67 98.23 27.12 201s
10-30 82.01 62.87 70.83 98.16 27.51 252s
20-20 81.19 62.54 69.44 98.05 27.57 369s
30-10 80.78 61.37 70.83 98.05 27.52 481s
40-0 82.89 66.57 68.06 97.70 27.35 610s

Table 5: Ablation study of denoising steps in refine stage. We report Bowtie-flow in 720p (left
block) and 1080p (right block).

Step
720p 1080p

QS↑ AQ↑ DD↑ MS↑ OC↑ Time↓ DINO↑ CLIP↑ LAION↑ DOVER↑

8 83.24 66.90 72.22 97.94 27.34 244.5 93.70 96.28 63.48 80.52
9 83.17 66.90 70.83 97.95 27.38 247 93.75 96.31 63.48 80.89

10 83.26 66.86 72.22 97.95 27.38 249 93.75 96.30 63.54 81.20
11 83.22 67.03 70.83 97.95 27.38 251.8 93.71 96.32 63.60 81.57
12 83.31 66.69 72.22 97.97 27.37 254.2 93.73 96.27 63.49 81.43

only increases the inference time but can also compromise the final layout, as the late-stage resolu-
tion shift may disrupt an already well-defined structure. Besides, We observe from Fig. S11 that the
overall compositional layout of the generated content stabilizes after approximately step 10. Based
on this analysis, we identify the 10-30 step range as the optimal configuration. This range effectively
preserves the structural and motion quality of the generated video while maximizing computational
efficiency.

Low-res Frames

76s 107s

Bowtie-flow w/o SW

107s76s

Bowtie-flow

Figure 8: Qualitative results for ablation. SW
denotes shift-window attention. The Refiner
runtime on 1080p video is shown in the bottom-
right corner. Our method achieves shorter run-
time while preserving finer details.

Shift window attention. We further investigate
the impact of incorporating shift window atten-
tion in Refiner on video generation quality. As
shown in Fig. 8, we observe that previously un-
clear and distorted hands now exhibit clear finger-
nail contours and appropriate wrinkles, regard-
less of whether the shift-window mechanism is
applied. Additionally, the clarity of distant trees
is noticeably enhanced. our findings suggest that
a full receptive field from global attention is not
critical for the refinement stage. The visual differ-
ences are negligible, indicating that local context
modeling is sufficient for enhancing details at this
stage.

Inference hyperparameters. We further investi-
gate the influence of common inference-time hy-
perparameters on video generation performance.
The performance trends across different steps in
Refiner are visualized, with corresponding quan-
titative results summarized in Tab. 5. We ana-
lyze the effects of varying the number of diffusion
steps and highlight the best-performing configu-
rations in gray .

5 CONCLUSION

We present Bowtie-flow, a simple yet effective framework that efficiently generates high-
resolution videos while preserving the strong priors (e.g., layout, semantics, motion) of a given
pretrained model. Bowtie-flow achieves significant improvements in both human perceptual
preferences and quantitative metrics, delivering a 12x speedup for generating 5-second, 16fps, 720p
videos and 51x speed up for 1080p videos in high-quality.

9
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ETHICS STATEMENT

Bowtie-flow adheres to high ethical standards in machine learning and computer vision, ensuring
responsible use of generative models in video and image synthesis.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide comprehensive implementation details, including models,
datasets, and training setups. All codes on the open-source models will be released.
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APPENDIX

The supplementary material is organized as follows:

1. Low-res VideoProject Website

2. Low-res VideoImplementation Details

(a) Base Models Configuration
(b) Training Details
(c) Dataset Construction
(d) Evaluation Metrics
(e) Details of User Study

3. Low-res VideoAdditional Experimental Results

(a) Comparisons
(b) Ablation Studies

4. Low-res VideoTeaser Prompt List

5. Low-res VideoLimitations and Future Work

6. Low-res VideoLLM Usage

7. Low-res VideoAdditional Visualization Results

A PROJECT WEBSITE

We have provided a local demo in the supplementary file. You can directly click on the index.html
to view the videos.

Feel free to visit and explore!

B IMPLEMENTATION DETAILS

B.1 BASE MODELS CONFIGURATION

In this section, we describe the configures of our baseline models. We adopt the original model
implementations whenever possible.

Wan2.1 (Wang et al., 2025a): A 14-billion-parameter open-source video generation model. Wan2.1
ranks high in Physical Plausibility, ID Consistency, Scene Generation Quality etc. However with
high-parameter and quadratic attention calculations for high-resolution (720p or 1080p), it suffers
from large computation consume. It roughly uses over 50min to generate one 81frame 720p video
on A800 80G with FA2 (Dao, 2023).

HunyuanVideo (Kong et al., 2024): A 13-billion-parameter open-source video generation model.
HunyuanVideo is recognized for its smooth motion synthesis, precise semantic alignment, and high-
quality aesthetics It roughly uses over 50min to generate one 129frame 720p video on A800 80G
with FA2 (Dao, 2023).

AccVideo (Zhang et al., 2025a) introduces an efficient distillation method to accelerate video diffu-
sion models using synthetic datasets. This method is adaptable to both Wan2.1 and HunyuanVideo
models. In this work, we utilize the model based on HunyuanT2V. It takes approximately 6 minutes
to generate a 129-frame, 720p video on an A800 80G GPU using FA2(Dao, 2023).

Upscaler: We use an internal 1-billion-parameter transformer-based latent diffusion model (Peebles
& Xie, 2023) as the base T2V generation model, as illustrated in Fig. S9. We employ a 3D-VAE
to transform videos from the pixel space to a latent space, upon which we construct a transformer-
based video diffusion model. Unlike previous models that rely on UNets or transformers, which typ-
ically incorporate an additional 1D temporal attention module for video generation, such spatially-
temporally separated designs do not yield optimal results. We replace the 1D temporal attention
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Table R6: Configurations for different stages. A dash (−) indicates that the stage is training-free.

Configuration Preview Stage Refine Stage
Pre-k Steps Post-k Steps

Model Para 14B 14B 14B
Dimension 5120 5120 1152
num heads 40 40 16
Optimizer - - AdamW

Learning rate - - 5e−5

Numerical precision bfloat16 bfloat16 bfloat16
Resolution 480p 240p 720p

timestep shift 3 3 1
CFG 7.5 5 6

with 3D self-attention, enabling the model to effectively perceive and process spatiotemporal to-
kens, thereby achieving a high-quality and coherent video generation model. Specifically, before
each attention or feed-forward network (FFN) module, we map the timestep to a scale, thereby ap-
plying RMSNorm to the spatiotemporal tokens. It is worth noting that the origin model does not
support video generation at 720p resolution.
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Figure S9: Overview of the base text-to-video generation model.

B.2 TRAINING DETAILS

We train the upscaler to transform a blurred video into a clear one while simultaneously refining
unreasonable details. Specifically, we adopt flow matching (Esser et al., 2024) to map the low-
resolution latent representation ZLR to the high-resolution latent representation ZHR.

Intermediate points are obtained via linear interpolation between ZLR and ZHR. The training loss
is defined with the target ZLR − ZHR. We randomly sample t ∼ LogitNorm[0, 1] with a timestep
shift of 5, and compute:

Zt = (1− t) · ZHR + t · ZLR.

Using the t-independent target ZLR − ZHR results in a straighter ODE trajectory, thereby enabling
few-step generation.

Since we divide Bowtie-flow into a preview stage and a refine stage, we also provide the corre-
sponding configurations for different stages, as summarized in Tab. R6.
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Table R7: Resolution settings across different aspect ratios. We report the spatial dimensions
(height, width) for 1080p, 720p, 480p, and 240p under square (1:1) and portrait (9:16) aspect ratios.

Aspect Ratio 1080p 720p 480 240p

1:1 (1440, 1440) (960, 960) (576, 576) (336, 336)
9:16 (1080, 1920) (720, 1280) (480, 832) (240, 416)

B.3 DATASET CONSTRUCTION

We collect approximately 100K high-quality video clips from the Internet to construct our training
dataset. Given the highly variable quality of online videos, we follow the automated filtering pipeline
proposed in (Xie et al., 2025) to retain visually high-quality content.

Specifically, we first discard videos that are overly bright or overly dark. For each remaining video,
we uniformly sample 10 frames and compute two metrics: the average MUSIQ score (Ke et al.,
2021) and the Laplacian variance, which reflects the level of spatial detail and sharpness. Videos
with an average MUSIQ score below 40 or a Laplacian variance below 30 are discarded.

To simulate degradations, we apply both pixel-level and latent-level operations. At the pixel level,
we follow (Wang et al.) to synthesize corresponding LR–HR video pairs. At the latent level, we
inject noise sampled from the range [0.6, 0.9].

We train Bowtie-flow on resolutions 720p and 1080p, while fixing the target FPS to 16 via
frame skipping. For this multi-resolution training, we adopt aspect-ratio bucketing with a minimum
unit size of 32 pixels. Since Bowtie-flow focuses on dynamically selecting suitable resolutions,
frequent scale changes occur during inference and training. For clarity, we list the resolution buckets
in Tab. R7.

B.4 EVALUATION METRICS

For text-to-video evaluation, we randomly select 381 prompts, consisting of 326 prompts from the
benchmark VBench (Huang et al., 2024b), 20 prompts from Videophy (Bansal et al., 2024), and 35
prompts from PhyGenBench (Meng et al., 2024). Our evaluation protocol measures video quality
from both global and local perspectives. To this end, we employ a comprehensive suite of automated
metrics: Quality Score (QS), Aesthetic Quality (AQ), Dynamic Degree (DD), Motion Smoothness
(MS), Overall Consistency (OC) for general video evaluation, and Semantic Adherence (SA) and
Physics Commonsense (PC) for physical plausibility.

Quality Score (QS). The weighted average of multiple dimensions, including subject consistency,
background consistency, temporal flickering, motion smoothness, aesthetic quality, imaging quality,
and dynamic degree.

Aesthetic Quality (AQ). Assesses the artistic and aesthetic value of each frame using the LAION
aesthetic predictor (Schuhmann et al., 2022). It reflects high-level properties such as composition,
color harmony, and photorealism.

Dynamic Degree (DD). Quantifies the magnitude of motion using optical flow fields estimated by
RAFT (Teed & Deng, 2020). This metric discourages static or near-static generations and promotes
natural motion in dynamic scenes.

Motion Smoothness (MS). Measures the temporal smoothness of motion using a video frame in-
terpolation model (Li et al., 2023).

Overall Consistency (OC). Computed by ViCLIP (Wang et al., 2023) on general text prompts,
reflecting both semantic and stylistic consistency.

Semantic Adherence (SA). Measures the alignment between the generated video and the input text
prompt (Bansal et al., 2024). SA = 1 indicates that the caption is well grounded in the generated
video.
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Figure S10: User study questionnaire form example.

Physics Commonsense (PC). Assesses whether the generated video intuitively follows real-world
physical laws. PC = 1 indicates that object dynamics, interactions, and motions align with human
commonsense physics. For evaluation, we consider PC and SA return values greater than or equal
to 0.5 as PC = 1 and SA = 1, and values less than 0.5 as PC = 0 and SA = 0.

Evaluation of 1080p Videos. We further evaluate 1080p videos from the perspective of super-
resolution quality. Specifically, we calculate the DINO (Caron et al., 2021) feature similarity across
frames, evaluate the temporal consistency of the background scenes by calculating CLIP (Radford
et al., 2021) feature similarity across frames, use the LAION aesthetic predictor (Schuhmann et al.,
2022) to measure aesthetic quality, and DOVER (Wu et al., 2023) to assess overall video quality.

B.5 DETAILS OF USER STUDY

Fig. S10 shows the Google Form questionnaire used in our user study to present video assets. We
randomly sampled 24 prompts and constructed different comparison pairs with randomized orders
to avoid positional bias. To ensure data reliability, we filtered out invalid responses in which par-
ticipants consistently selected the same option across all four questions (e.g., always choosing “left
video” or “same”). After this filtering, a total of 37 valid questionnaires remained, and the corre-
sponding results are reported in Fig. 5.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 COMPARISONS

In this section, we first compare the preview (240p) generated by Bowtie-flowwith the same res-
olution generated by Wan2.1. We conducted the user study using a standard win-rate methodology.
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Table R8: User preference comparison be-
tween Bowtie-flow’s preview and Wan2.1
240p.

Metrics Better Same Worse
Motion Dynamics 76.17 19.5 4.33
Text Alignment 83.37 13.96 2.67
Overall Quality 82.5 8.28 9.22

Table R9: User preference comparison be-
tween Bowtie-flow and FlashVideo.

Metrics Better Same Worse
Motion Dynamics 67.72 24.91 7.37
Video Fidelity 80.43 16.02 3.55
Text Alignment 69.03 24.35 6.61
Overall Quality 89.24 5.27 5.49

Table R10: Comparison between Bowtie-flow and FlashVideo. Highest value in bold.

Method QS ↑ AQ ↑ DD ↑ MS ↑ OC ↑

Flashvideo 82.99 62.55 63.47 96.84 27.65
Bowtie-flow 83.24 66.86 72.22 97.95 27.38

We randomly selected 30 pairs of videos between Bowtie-flow’s preview and Wan2.1. Partici-
pants indicated their preferences across three key dimensions: Motion Dynamics, Text Alignment,
and Overall Quality. A total of 60 completed feedback forms were collected. We report the percent-
age of each option. The results presented in Tab. R8 demonstrate that our method is significantly
preferred over the competing method. This outcome aligns with our experimental design, confirm-
ing that OptimRes-LowRes flow preserves superior spatial layout and maintains greater semantic
alignment.

0 10 50 T

Figure S11: Visualization of the denoising
process. The overall structure emerges rapidly
within the first few denoising steps (around 10),
with subsequent steps focusing on refining fine-
grained details.

We also compare Bowtie-flow with cascaded
video generation, using FlashVideo (Zhang et al.,
2025f) as an example. As shown in Fig. S12,
our method generates more complex motions,
achieves better text alignment, and offers en-
hanced visual refinement, resulting in higher
overall visual quality. Quantitative results are
shown in Tab. R10.

Additionally, we conducted a user study with ex-
panded evaluation criteria. We introduced ”Video
Fidelity” dimension, specifically focusing on vi-
sual noise and artifacts in the generated videos.
As shown in Tab. R9, Bowtie-flow outper-
forms FlashVideo in terms of user preference.

As for the Refine stage, we provide more vi-
sual results. As shown in Fig. S13, our method
demonstrates significant success in rendering de-
tails such as the cat’s paw and the drone’s shape. We also present a sequence of four frames in
Fig. S14 to further compare VEnhancer with our method. While both methods generate clear videos,
Bowtie-flow handles dynamic details more effectively.

C.2 ABLATION STUDIES

Shift window attention. We provide quantitative results in Tab. R11 to further analyze the effect
of shift-window attention on video generation. Our method achieves a shorter runtime while pre-
serving finer details, demonstrating that when handling high-resolution video, we can focus on a
local receptive field to refine details.

Step division. Furthermore, we visualize the changes in video content during the denoising pro-
cess, as shown in Fig. S11. We observe that the overall structure emerges rapidly within the first
few denoising steps (around 10), with the remaining steps dedicated to progressively refining fine-
grained details. Thus, we choose the denoising step to be around 10 and visualize the results of
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In coffee cup,tiny pirate ships battle on swirling with steamy waves.

FlashVideo

Ours

Figure S12: Visual Comparisons between Bowtie-flow and FlashVideo. Our results exhibit a
notably more imaginative and aesthetically pleasing scene of pirate ships in a coffee cup, compared
to FlashVideo. The texture in our results is rendered with greater delicacy, vividly capturing the
”steamy waves.”

Input Ours VEnhancer Upscale-A-Video RealBasicVSR STAR

Figure S13: Comparison with Various Video Enhancement Methods. Our method achieves
more perceptually realistic and detail-rich refinement based on the initial low-resolution previews,
outperforming other approaches in consistency and visual fidelity. Specific observations for each
row are annotated beneath the corresponding frames.

the refiner under different inference hyperparameters in Fig. S15. Quantitative results are shown in
Tab. 4.

D TEASER PROMPT LIST

We provide our prompt list for the generated videos presented in Teaser 1.
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Input

VEnhancer

Ours

Grandma smiles, blows out candles—warm light and joy fill the cozy room.
Figure S14: Comparison of fine-grained facial expressions and intricate details. Example from
a video clip with significant changes in a grandmother’s facial expressions. VEnhancer strug-
gles with facial identity, inaccurate lip articulation, and ambiguous candle flickering. In contrast,
Bowtie-flow (Ours) intelligently refines these details, realistically augmenting them while main-
taining consistency.

Table R11: Ablation study of key components. Highest value in bold.

Method QS ↑ AQ ↑ DD ↑ MS ↑ OC ↑ Time↓

Bowtie-flow woShiftWindow 82.94 66.82 69.44 98.12 27.41 107s
Bowtie-flow 83.24 66.86 72.22 97.95 27.38 textbf76s

1. A charming panda, dressed in a chef’s hat and red apron, chops vegetables in a rustic kitchen. It
stirs a pot, tastes the soup, and plates a beautifully arranged dish, exuding delight.

2. A girl spins in the starry night sky, her shimmering pastel costume and floating feathers captured
in a dreamy anime illustration.

3.A playful corgi with golden fur trots along a tropical beach, wearing blue sunglasses. The camera
follows it as it walks along the shoreline, pauses, and enjoys the sun and waves.

E LIMITATIONS AND FUTURE WORK

Although our method is theoretically capable of generating videos at arbitrarily high resolutions, in
practice it is constrained by computational resources. Specifically, our experiments show that the
current implementation can stably support resolutions up to 2048 × 2048, while higher resolutions
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STEP=8 STEP=9 STEP=10 STEP=11 STEP=12InputKey Frame

Figure S15: Results of the refiner under different inference hyperparameters.

will lead to out-of-memory (OOM) errors on A800(80G). As part of future work, we plan to integrate
patch-based spatial division strategies or memory-efficient attention mechanisms to further extend
the scalability of our approach, enabling efficient training and inference at ultra-high resolutions.

F LLM USAGE

Scope of use. We used a large language model (LLM) only for writing polish, including gram-
mar correction, phrasing refinement, and improvements to clarity and readability. The LLM did
not contribute to research ideation, problem formulation, method design, experimental setup, re-
sult selection, interpretation, or drafting of technical content (theorems, algorithms, proofs, metrics,
or analyses). All technical claims, experiments, figures, tables, and conclusions were conceived,
implemented, and verified by the authors.

G MORE QUALITY RESULTS

We have provided additional comparison cases, as shown in Fig.S16 and Fig.S17.
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A serene individual, dressed in a flowing white blouse and light blue jeans, stands at a 
rustic wooden table in a sunlit room filled with greenery. She carefully select vibrant 
blooms from a wicker basket, including roses, lilies, and daisies, and begin arranging them 
in a crystal vase. The sunlight filters through the window, casting a warm glow.
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A paint roller applies a coat of beige paint to a textured wall, showing the paint filling 
in the textures.
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A towering Bigfoot trudges through a fierce snowstorm, its massive, fur-covered form barely 
visible against the swirling white. Snow clings to its thick, matted fur, and its eyes, 
glowing faintly, peer through the blizzard with an almost human-like intensity. 

Figure S16: Comparisons. From top to bottom, each three videos is from the same setting.
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A focused artist, wearing a cozy gray sweater, sits at a wooden desk in a warmly lit room, 
surrounded by art supplies. The camera zooms in on their hands, skillfully sketching 
intricate details on a large canvas with a fine-tipped pen. 
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A cute furry monster is blowing on hot cocoa to cool it down.
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A tranquil Zen garden with a gently flowing stream and koi fish.

Figure S17: Comparisons. From top to bottom, each three videos is from the same setting.
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