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Figure 1: Bowtie—flow generates high-resolution and high-quality videos efficiently. It acts
as a simple plug-in and brings more than 12x speed-up. At the same time, it preserves the prior (i.e.,
layout, semantic, motion, efc.) of the baseline model (as the first two rows).

ABSTRACT

The demand for high-resolution video generation is growing rapidly. However,
the generation resolution is severely constrained by slow inference speeds. For
instance, Wan 2.1 require over 50 minutes to generate a single 720p video. While
previous works explore accelerating video generation from various aspects, most
of them compromise the distinctive priors (e.g., layout, semantic, motion) of
the original model. In this work, we propose Bowt ie—f1low, an efficient frame-
work for generating high-resolution videos, while maximally keeping the pre-
trained priors. Specifically, Bowt ie—f1low divides video generation into two
stages: First, we leverage the pretrained model to generate a low-resolution pre-
view in fast speed; then we deisign a Refiner to upscale the preview. In the preview
stage, we identify that directly inferring a model (trained with higher resolution)
on lower resolution causes severe prior losses. So we introduce noise reshifting,
a training-free technique that mitigates this issue by conducting initial denoising
steps on the original resolution and switching to low resolution in later steps. In
the refine stage, we establish a mapping relationship between the preview and the
high-resolution target, which significantly reduces the denoising steps. We fur-
ther integrate shifting windows and carefull design the training paradim to get a
powerful and effcicient Refiner. In this way, Bowt ie—flow enables generating
high-resolution videos efficiently while maximally closer to the priors of the
given pretrained model. Bowt ie—flow is conceptually simple and could serve
as a plug-in that is compatible with various basemodel and acceleration meth-
ods. For example, it achieves 12.5x speedup for generating 5-second, 16fps, 720p
videos.
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A bearded man lifts a frosty pint glass filled with amber. He takes a

slow, appreciative sip, his eyes closing momentarily.

A high-speed video of a splash created by a stone thrown into a pond.

Figure 2: Demonstrations for prior preservation. The distilled model loses the prior of the base-
model, which could bring performance t, our method maintains the layout, semantics, and motion,
thus achieving acceleration with no loss of fidelity.

1 INTRODUCTION

Video generation (Yang et al., 2024; Kuaishou, 2024; Wang et al., 2025a) has witnessed remark-
able advancements in recent years, with sophisticated models continually pushing the boundaries
of quality and capability. However, the computational cost remains a critical bottleneck, signifi-
cantly hindering further advances towards higher resolution and richer details. For example, it costs
roughly 50 min to generate a 5s 720p video for the current SOTA video generation models (Wang
et al., 2025a; Kong et al., 2024) and still 6 min for distillation model (Zhang et al., 2025a).

Facing this challenge, existing researches explored various strategies to make the generation pro-
cess more efficient. Specifically, methods (Luo et al., 2023; Starodubcev et al., 2025) leverage step
distillation to reduce the total denoising steps. Studies like (Zhang et al., 2025b; Ding et al., 2025)
primarily focuse on attention sparsity to improve efficiency. Furthermore, cascade multi-scale gener-
ation techniques (Ren et al., 2024a; Chen et al., 2025) have been proposed to enhance the efficiency
of high-resolution image generation.

Although these methods could improve the generation efficiency, most of them inevitably compro-
mise the intrinsic priors of the original model as shown in Fig. 2. The model’s prior is reflected in
its preferences for aesthetic style, semantically aligned layout and motion dynamics, efc. Preserving
these priors is significant when accelerating a given model, as they act as a signature of the model
and could directly reflect the generation quality.

To achieve this goal, we propose an efficient framework for high-resolution video generation, called
Bowtie-flow. This framework divides the whole process into two stages based on their natural
features. In Preview stage, we leverage a powerful pretrained model to generate low-resolution
previews. The pre-k steps focus on high noise period which determines the main content of the
entire video and the post-k steps uses the low resolution latent to gain speed. We analyze that each
pretrained model has its own optimal resolution (usually the training resolution). While distilling
the model could increase speed in a large, it often can not access the large batch of pretraining data
and would compromise the original priors. Inspired by the observation that the early denoising steps
determine the overall content, and the later steps refine the details, we introduce noise reshift method
to address this problem. Specifically, we start from the pretrained model’s optimal resolution in the
early denoising steps, then switch to a lower resolution for the remaining steps. In this way, the low-
resolution preview could be efficiently generated and preserve the priors (layout, semantic, motion,
etc.) of the pretrained model. In Refine stage, we train a powerful and efficient Refiner through
establishing a mapping relationship between the low-resolution preview and the high-resolution
target. It significantly reduces the NFE(number-of-evaluations) to 10 while enriching details and
correcting unreasonable artifacts. In addition, we also integrate the shift window method into the
upscaling model to further reduce the computation.

As shown in Fig. 1, our method generates high-detailed and high-quality videos with priors closer
to the base model (Wan 2.1) and achieves a huge speedup. Besides, our Bowt ie—f1low paradigm
allows users to generate multiple previews efficiently at the same time and pick the satisfied content
for further refinement to arbitrary size. Experiments show that Bowtie-flow achieves 12.5x
speedup compared with Wan 2.1 14B for generating 5-second, 16fps, 720p videos and 8.7x speed
up in HunyuanVideo 13B with 24fps.



Under review as a conference paper at ICLR 2026

NFE=10 NFE=30 NFE=10

Optimal Res Flow t.o.secure Low Res Flow to gain speed ngh‘Res quw to
overall composition refine details

O- D

o~

w

Pretrained Model % Refiner

0 T

noise reshift

— JSatste :"}
% IR "-f" resize (\;‘)(1'

A1 8 s a3

480p 1080p

P

Figure 3: An overview of the Bowtie—flow. Our framework employs a powerful pretrained
model (e.g., Wan 2.1) and a lightweight model which we call Refiner. Together, they execute the
denoising process through an OptimRes-LowRes-HighRes latent flow (Bowt ie—flow), ensuring
a comprehensive generation from coarse semantics to fine details.

2 RELATED WORK

High-resolution image and video generation approaches can be broadly categorized into training-
based and training-free. Training-based methods combine architectural innovations and model
fine-tuning strategies. Turbo2K (Ren et al., 2025) accelerates 2K video synthesis by leveraging
a compressed latent space and knowledge distillation within a hierarchical two-stage framework,
ensuring structural coherence. UltraPixel (Ren et al., 2024b) generates 4K-resolution images using
cascade diffusion models that feature shared parameters and scale-aware layers, minimizing addi-
tional parameters for high-resolution outputs. PixArt-Y (Chen et al., 2024) and ResAdapter (Cheng
et al., 2025) enhance base models through fine-tuning but remain resolution-constrained. Other ap-
proaches like ResMaster (Shi et al., 2024) and HiPrompt (Liu et al., 2024) introduce multi-modal
prompting mechanisms at the expense of computational efficiency. Training-free methods adapt
inference strategies or architectures without training. MultiDiffusion (Bar-Tal et al., 2023) and its
variants (e.g., SyncDiffusion (Lee et al., 2023), Demofusion (Du et al., 2024)) use sliding-window
denoising but suffer from repetition or computational redundancy. ScaleCrafter (He et al., 2024),
FouriScale (Huang et al., 2024a), and HiDiffusion (Zhang et al., 2025¢) modify network structures
but risk suboptimal performance. SVG (Xi et al., 2025) investigate sparsity in the attention module
but get limited acceleration. Jenga (Zhang et al., 2025g) combines multiple acceleration strategies
but suffers from degradation in the original quality.

Efficient video generation is challenged by the quadratic complexity of attention mechanisms, es-
pecially at high resolutions. Several works (Cai et al., 2023; Xie et al., 2024; Wang et al., 2020;
Choromanski et al., 2020; Yu et al., 2022; Katharopoulos et al., 2020) transform attention into lin-
ear operations to reduce complexity, while others use hybrid strategies combining local and global
attention to focus only on important token pairs (Xi et al., 2025; Zhang et al., 2025b;c; Xia et al.,
2025). FlashAttention Dao et al. (2022) introduces a patch-divided acceleration method . More re-
cently, Wang et al. (2025b) proposes variable-sized window near spatiotemporal boundaries to better
support long video sequences. For faster generation, rectified flow models with straight ODE trajec-
tories (Esser et al., 2024) have been proposed in text-to-image (T2I) tasks. However, applications in
text-to-video (T2V) remain limited due to the added complexity of the temporal dimension. While
some methods (Ding et al., 2024; Zhang et al., 2025f) reduce the number of denoising steps, they
remain limited to long-frame, high-resolution videos and overlook the domain gap between different
resolutions.

3 METHOD

In this work, we propose Bowt ie—f1low, a framework that significantly improves the efficiency of
pretrained video generation models while maximally preserving their generative priors.
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3.1 OVERALL PIPELINE.

The overall framework of Bowt ie—f1low is shown in Fig. 3. Current video acceleration methods
often operate at a fixed latent scale. While strategies(Zhang et al., 2025b; Xi et al., 2025; Yang et al.,
2025) that exploit the sparsity of video tokens within attention modules can reduce computational
costs, their acceleration potential remains limited. Moreover, adopting an aggressive token dropping
policy—even retaining specifically selected important tokens—inevitably degrades the learned gen-
erative priors. Therefore, we analyze that the key factors that influence the generation speed are the
resolution and the number of denoising steps.

Under this principle, we design a bowtie-like pipeline: we first generate low-resolution previews;
then we add more details to the preview with fewer denoising steps. Bowt ie—f1low introduces a
dynamic scaling mechanism that allocates a variable number of tokens according to the denoising
timestep. Instead of permanently discarding tokens, we resize the latent scale to modulate the token
count, thereby ensuring that the global information from the entire token set is preserved.

Specifically, in the preview stage, we retain the full capacity of a powerful pretrained model to
establish the global structure with content and accelerate the whole process by dynamic scaling
mechanism ; In the refine stage, we switch to a lightweight model to both accelerate the process and
enrich the details.

3.2 PREVIEW STAGE

In this stage, we aim to leverage the strong generative capabilities of a given pretrained model for
generating a low-resolution preview. We expect the low-resolution preview to preserve the pri-
ors (layout, semantic, motion) of the given pretrained model. A straightforward solution is to let the
pretrained model infer on the lower resolution. However, we find that each model has its own opti-
mal resolution; inferring on mismatched resolution causes severe prior losses. Inspired by the fact
that the overall structure is determined by the initial denoising steps, we introduce a progressively
downsampling method.

Noise reshifting. During the denoising phase, we begin with the initial gaussian noise z; €
Rb*exfxhxw and progressively downsample the clean latent representation z, with reduced spa-
tial dimensions i’ x w’. Here b, ¢, f and h,w denote the batch size, number of channels, number
of frames, and resolution of the model’s optimal generation, respectively. Our strategy is fundamen-
tally structured around a turning point step k along the denoising trajectory and divides into pre-k
steps and post-k steps.

Before reaching k(pre-k steps), the latent representation is denoised through an ODE-based flow
matching approach, described by the following iterative update:

0
Zo = 71 +/ uy(z, t) dt (D
1

where uy(z, i) represents the model-predicted direction function. Upon reaching step k, we estimate
the clean latent representation as zg = zx — o - up(2g, k), where oy, denotes the noise standard

deviation at step k. Subsequently, we apply a spatial downscaling operation to the estimated latent,

28 = Downscale(z). where the simple linear downscale operation is implemented in the latent

space. This choice is crucial as it effectively reduces spatial resolution while vigilantly preserving
essential spatiotemporal coherence. Afterwards, we reinject noise which is shifted to timestep k,
into the reduced-resolution latent space, allowing the stochastic denoising process to seamlessly
resume. The reshifting process is represented by:

Zp 1 =25+ 0 €E~N(O,T). 2)
In post-k steps, latents denoises in lower-resolution to gain speed. This multi-scale denoising frame-

work enables the model to first gain global semantics at coarser scales, and then get the preview at
finer scales.

3.3 REFINE STAGE

To alleviate the computational overhead, we employ a lightweight model with 1B parameters, which
reduces the time cost per step (detailed architecture can be seen in Appendix. B.1).
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be found in Appendix B.2.

Training paradigm. We first obtain large Figure 4: Shift window across adjacent blocks.
amounts of high-quality videos and apply both

pixel- and latent-level degradations to simulate low-quality video values. Pixel-level degradation
simulates blur, while latent-level degradation prevents the task from becoming a trivial super-
resolution problem, encouraging the model to exploit its inherent generative ability. These low-
quality latents are then paired with the original high-quality latents to form the training data. How-
ever, with large resolution and long frame numbers, it presents a computational challenge and results
in considerable time consumption per denoising step.

Model structure. Given a video feature X € RT*H*W qur transformer design addresses this
challenge by balancing efficiency and temporal connectivity. The first transformer block applies
regular window attention with a t x H x W window. Specifically, X is divided into (% + 1) x HxW
windows, where each window spans ¢ consecutive frames along the temporal dimension while fully
covering the spatial dimensions. This windowed partition allows local temporal interactions to be
captured before expanding to broader temporal receptive fields in deeper blocks.

Our solution further integrates a cyclic shift-window strategy into the 3D self-attention modules
shown in Fig. 4. This strategy, embedded within Transformer blocks, establishes full temporal
connectivity through a two-phase cycle across layers. Each consecutive layer pair collaboratively
connects all frames while maintaining computational efficiency.

In detail, Transformer block 2L applies 3D self-attention to non-overlapping temporal windows of
size Wy, adjusting position embeddings for local awareness. The subsequent Transformer block
2L + 1 applies a temporal shift of S} = % to the input feature, then partitions it into windows of
size W, for attention computation. The cyclic-shifted attention mechanism can be expressed as:

X5 = Attention3D(Partition(X, W;)),
Xihited = CyclicShift (X(QL)7 %) 7 &
X (2L+1) _ Attention3D (Partition(Xpifeeq, Wt ), Mask) .

When we shift the window by half the window size forward, one boundary window (e.g., the first
window) contains temporally unrelated halves. Therefore, we apply an attention mask to separate
them. We also employ position-frequency embeddings with 3D RoPE (Su et al., 2024) within each
window to avoid the resolution bias introduced by fixed positional embeddings. This two-block cy-
cle (unshifted/shifted layers) guarantees global temporal connectivity, significantly reducing mem-
ory and accelerating attention calculation for large latent tensors.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Settings. The Refiner of Bowt ie—f1low is trained on 24 NVIDIA A800 GPUs (80GB each) with
a total batch size of 24. We finetune the transformer using the AdamW optimizer with a learning rate
of 5e-5. We create a synthetic dataset of 100k LR-HR video frame pairs following the methodology
in (Wang et al.). To optimize training efficiency and stabilize convergence, we employ a progressive
training strategy where the model is trained at incrementally increasing frame num. We first train
Bowtie-flow on 21-frame inputs for 1k iterations, and then extend the input length to 81 frames
and finetune the model for 4k iterations.
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Motion Dynamic 26.43% 32.43% 20.85%  27.03% 25.00% 30.61%
Video Fidelity 29.73% 24.02% 23.94% 31.66% 13.76% 11.74%
Text Alignment 34.83% 30.03% 25.48% 30.12% 20.61% 15.20%
Overall Quality 18.32% 35.44% 15.06%  29.73% 13.85% 13.51%
Better | Same | Worse Ours vs Wan2.1 Ours vs SVG Ours vs DMD
14.05x Faster 10.89x Faster 1.13x Faster

Figure 5: User study. We report pair-wise preference rates. Bowt ie—flow achieves comparable
quality to Wan 2.1 with a significant speedup, and outperforms SVG and DMD.

Evaluation and metrics. For speed assessment, we report the DiT forward pass time on NVIDIA
A800, as the VAE decoding component remains constant across all configurations. We also report
FLOPs to provide an intuitive comparison of computational complexity. For qualitative evaluation,
we construct a video dataset of 381 low-resolution videos with prompts from VBench (Huang et al.,
2024b), Videophy (Bansal et al., 2024) and PhyGenBench (Meng et al., 2024); We evaluate each
prompt with a fixed seed to ensure reproducibility. Additionally, we conducted a user study to assess
human preference rates between Bowt ie—flow and various efficient generation methods. As for
1080p video generation, most existing acceleration methods are not capable of handling this setting.
Therefore, for a fair comparison, we benchmark our approach against super-resolution(SR) methods
and adopt several widely used video SR assessment metrics. Specifically, we employ DINO (Caron
et al., 2021) and CLIP (Radford et al., 2021) to evaluate frame quality via feature similarity across
frames; LAION aesthetic predictor (Schuhmann et al., 2022) to assess artistic and beauty value
perceived by humans towards each video frame, and DOVER (Wu et al., 2023) to measure overall
video quality.

4.2 COMPARISONS

We evaluate our method from both efficiency and quality perspectives. Specifically, We compare
it with the Wan 2.1 baseline, which employs the FlowMatch scheduler with 50 NFE (number-of-
evaluations), as well as accelerated Wan 2.1 variants utilizing 30% and 50% of the original steps.
Additionally, we compare our approach with two commonly adopted acceleration techniques: the
sparse attention mechanism used in SVG (Xi et al., 2025) and the bidirectional video distribution
matching distillation (DMD) method (implemented following Zhang et al. (2025d)).

Efficiency analysis. We observe that, due to the quadratic complexity of attention, the core chal-
lenge to gain efficiency lies in reducing the number of tokens. With our proposed Bowt ie—flow,
the first stage consumes FLOPs equivalent to 480p, the second stage to 240p, and the third stage
leverages a smaller-parameter model with approximately 5x fewer hidden dimensions and 2.5x
fewer num heads, achieving trivial FLOPs relative to the original model. Detailed configuration
is listed in Tab. R6. As shown in Tab. 1, our method achieves performance comparable to Wan 2.1 at
720p resolution while reducing inference time by 12x. Furthermore, when generating 1080p videos,
our approach attains a 51x acceleration compared with directly applying Wan 2.1 at 1080p.

SVG still operates on latents of the same scale and explains acceleration from the perspective of
hardware-efficient tensor layout which has limited reduction in redundant tokens. DMD focuses
on reducing the number of inference step. Bowtie-flow leverages the intrinsic properties of
the denoising process by adapting latent representations at different scales to different stages of
denoising, thereby achieving substantial acceleration while preserving prior information. Although
the total runtime of the distillation-based method is similar to ours, we observe that DMD often fails
to preserve prior information and tends to introduce unnatural color artifacts in the generated videos.

Quality analysis. We evaluated our model’s generative performance from two perspectives: gen-
eral video metrics and physics-focused assessments (as original Wan 2.1 achieves best in physical
plausibility so we want to prove Bowt ie—flow has preserved this characteristics).

As illustrated in Tab. 1, our generated video exhibits a comparable visual quality to Wan 2.1, while
slightly surpassing SVG and outperforming the DMD method. We also conducted a perceptual
evaluation employing a standard win-rate methodology. We have designed questionnaire with 24
randomly selected videos from the above test datasets. A total of 37 researchers in the field of video
generation were asked to evaluate the results along four dimensions: Motion, Fidelity, Semantics,
and Overall Quality, with the outcomes summarized in Fig. 5.
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Table 1: Quantitative comparison on Wan 2.1. We report evaluations of the baseline (row 1), step
and attention optimization methods (row 2-5) and Bowt ie—flow (row 6). NFE=50. The highest
score is in bold and the second highest is underlined. Abbreviations: QS (Quality Score), AQ
(Aesthetic Quality), DD (Dynamic Degree), MS (Motion Smoothness), OC (Overall Consistency),
SA (Semantic Adherence), PC (Physics Commonsense).

Method General Scene Physical Scene Computation Loads
QSy AQ; DD; MS; OC; | SA; PC; Time, Speed;  PFLOPs;

Wan 2.1(Wang et al., 2025a) | 83.31 669 63.89 97.65 27.08 | 41.82 4545 | 3497 (58min) 1x 658.46
30%step(Wang et al., 2025a) | 77.92 5843 56.94 9695 24.56 | 18.18 16.36 1049 3.34x 197.54
50%step(Wang et al., 2025a) | 81.51 63.52 66.67 96.99 2590 | 2545 23.64 1748 2x 329.23
SVG(Xi et al., 2025) 83.36 656 68.06 97.69 27.32 | 2545 20.00 2712 1.29x 429.86
DMD(Zhang et al., 2025d) 8331 66.11 5278 98.96 26.77 | 34.55 3091 282 12.40x 39.51
Ours 8326 66.86 7222 9795 27.38 | 41.82 38.18 278 12.58 % 34.3

The findings demonstrate that our method Table 2: Plug-in integration with other accelera-
achieves performance comparable to the orig- tion methods and different model architectures.
inal model while surpassing many existing ac-

celeration approaches from human perspective.  Method | SA; PC, NFE/Time, Speed,
From extensive examples, we observe that SVG g0 vanvideo 2909 2727 50/3081 Ix
suffers from limited robustness, as the main  +SparseAttn 3091 23.64  50/2775 1.1x
subjects often remain static and adds unrea- _t+Bowtie-flow | 43.64 4545  50/356 8.7x
sonable details; while DMD tends to introduce ~ AccVideo 3273 23.64 5/340 1x
unnatural color artifacts and produces grainy _tZovtieflow | 36.36 3818  5/265 13x
videos with reduced fidelity. We provide visu-

alization cases in Fig. 6.

Moreover, our method can be naturally extended to support 1080p video generation. Since most
baseline models do not natively support this resolution, we evaluate 1080p results from the per-
spective of video super-resolution (SR). Specifically, we randomly select 100 samples from the
aforementioned test datasets and conduct comparisons with existing SR approaches, aiming to as-
sess the effectiveness of our method in generating high-resolution videos with enhanced detail and
fidelity. We use DINO (Caron et al., 2021), CLIP (Radford et al., 2021) to assess temporal quality
and LAION aesthetic predictor (Schuhmann et al., 2022), DOVER (Wu et al., 2023) to evaluate
visual quality of videos. Detailed results as shown in Tab. 3. Notably, although GAN-based Re-
alBasicVSR achieves competitive scores on some metrics, its outputs frequently exhibit excessive
smoothing, do not satisfy human perceptual preferences; Diffusion-based VEnhancer also demon-
strates strong generative capabilities, however, its outputs often undergo significant deviations from
the input, contradicting the principle of enhancing visual quality while preserving fidelity. As shown
in Fig. S13, our method demonstrates significant success in rendering details such as the paw of cat
and drone shape.

Compatiability analysis. Furthermore, Bowt ie—f1ow can function as a plug-in compatible with
various diffusion model architectures and acceleration techniques. When combined with sparse at-
tention Zhang et al. (2025g), it achieves a 7.6x speedup on HunyuanVideo (Kong et al., 2024). Ad-
ditionally, it can be adapted to step-distillation models AccVideo (Zhang et al., 2025a) and achieves
a 1.3x speedup. Detailed results are presented in Tab. 2.

4.3  VISUALIZATION RESULTS

This section presents visualizations of our Bowt ie—-f1low, providing an intuitive comparison be-
tween the preview and the final results in terms of overall layout similarity as well as refinement
capability. As shown in top row of Fig. 7, our design first prioritizes an efficient retention of the
powerful model’s inherent priors to ensure robust structural layout, semantic alignment, and motion
dynamics. For instance, the ballet dancer’s movements are demonstrably smooth and natural. Fur-
thermore, our method is adept at style-aware video synthesis, exemplified by results such as a Van
Gogh-style tower and a watercolor panda. Then the well-trained Refiner refines intricated details and
mitigates generation artifacts. In second row, Bowt ie—f1ow further enhances visual fidelity of ex-
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A lone astronaut clad' in a pristine white A skilled artisan hands covered in clay, sits
spacesuit, flying in space. The background is at a potter's wheel in a studio. The camera
a mesmerizing blend of deep blues, purples captures details of his fingers expertly

and blacks, dotted with distant galaxies. shaping a spinning lump of clay into a vase.

Figure 6: Qualitative comparisons. Our method achieves up to 12x speedup while maintaining
priors of base model. Unreasonable contents are marked in orange. Rather than aimless camera
panning, Bowt ie—f1low generates high fidelity videos with semantically aligned motion.

leaie | calte e it |

Preview
Preview

c) A boat sailing along the Seine River with the Eiffel
ower in background Van Gogh style

=3 ~ Full Method

Preview

Full Method

(b) A corgi is playing drum kit.

(d) A panda drinking coffee in a café watercolor painting

Figure 7: Generation results for each stage. We mark regions with artifacts and lacking detail in

the preview videos using boxes, while improvements from the Refiner are highlighted in red.
Zoom in for a better view.

isted videos, including clearer facial and hand structures in (a), refined fur rendering on the corgi in
(b), enhanced texture and structural details in (c), and more semantically consistent structural and
color corrections in (d).

More examples in Fig. | and Appendix G further demonstrate the visual aesthetics and realism of
the generated videos.

4.4  ABLATION

Step division. In this part we look into how to balance efficiency and quality of generating a useful
preview. We have found that the division of step range (i.e., the choice of k) is very important.

Since the efficiency of our method is directly proportional to the number of denoising steps per-
formed at the initial resolution, identifying the optimal step range for the transition is crucial for
balancing quality and speed. With the results presented in Tab. 4, it reveals a distinct trade-off. Em-
ploying an early transition (e.g., after step 5) accelerates the process but leads to a degradation in
both layout integrity and motion quality. Conversely, delaying the transition (e.g., after step 35) not
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Table 3: Quantitative comparison with video
super-resolution method (1080p).

Table 4: Ablation study of step division in pre-
view stage. Recommend setting is in gray .

Method DINO; CLIP; LAION; DOVER; | NFEfTime, Setting QS; AQ; DD; MS; OC; |Time,
RealBasicVSR 9340 9483 61.07 80.25 1/162.1s 535 8221 6345 66.67 9823 27.12| 201s
Upscale-a-Video  93.47  95.71 60.93 71.40 30/2517.7s  10-30  82.01 62.87 70.83 98.16 27.51 | 252s
VEnhancer 9355 9602 6346 7978 | 15/2467.6s 2020 81.19 6254 69.44 98.05 27.57 | 369s
STAR 93.68 9659  60.81 63.64 | 14/9127s  30-10 8078 61.37 70.83 98.05 27.52 | 48ls
Ours 9375 9630  63.50 81.20 10/76.5s  40-0  82.89 66.57 68.06 97.70 27.35| 610s

Table 5: Ablation study of denoising steps in refine stage. We report Bowt ie—flow in 720p (left
block) and 1080p (right block).

Step \ 720p \ 1080p

| QS; AQ; DD; MS; OC; Time, | DINO; CLIP; | LAION; DOVER;
8 | 8324 6690 7222 97.94 27.34 2445 | 9370 96.28 | 63.48 80.52
9 |83.17 6690 70.83 97.95 27.38 247 | 93.75 9631 | 63.48 80.89
10 | 8326 66.86 72.22 97.95 27.38 249 | 9375 9630 | 63.54 81.20
11 8322 67.03 70.83 97.95 2738 251.8 | 93.71 9632 | 63.60 81.57
12 8331 66.69 7222 97.97 2737 2542 | 93.73 9627 | 63.49 81.43

only increases the inference time but can also compromise the final layout, as the late-stage resolu-
tion shift may disrupt an already well-defined structure. Besides, We observe from Fig. S11 that the
overall compositional layout of the generated content stabilizes after approximately step 10. Based
on this analysis, we identify the 10-30 step range as the optimal configuration. This range effectively
preserves the structural and motion quality of the generated video while maximizing computational
efficiency.

Shift window attention. We further investigate
the impact of incorporating shift window atten-
tion in Refiner on video generation quality. As
shown in Fig. 8, we observe that previously un-
clear and distorted hands now exhibit clear finger-
nail contours and appropriate wrinkles, regard-
less of whether the shift-window mechanism is
applied. Additionally, the clarity of distant trees
is noticeably enhanced. our findings suggest that
a full receptive field from global attention is not
critical for the refinement stage. The visual differ-
ences are negligible, indicating that local context
modeling is sufficient for enhancing details at this
stage.

Low-res Frames Bowtie-flow w/o SW Bowtie-flow
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Inference hyperparameters. We further investi- ~

gate the influence of common inference-time hy-
perparameters on video generation performance.
The performance trends across different steps in
Refiner are visualized, with corresponding quan-
titative results summarized in Tab. 5. We ana-
lyze the effects of varying the number of diffusion
steps and highlight the best-performing configu-
rations in gray .

Figure 8: Qualitative results for ablation. SW
denotes shift-window attention. The Refiner
runtime on 1080p video is shown in the bottom-
right corner. Our method achieves shorter run-
time while preserving finer details.

5 CONCLUSION

We present Bowtie—-flow, a simple yet effective framework that efficiently generates high-
resolution videos while preserving the strong priors (e.g., layout, semantics, motion) of a given
pretrained model. Bowtie—-flow achieves significant improvements in both human perceptual
preferences and quantitative metrics, delivering a 12x speedup for generating 5-second, 16fps, 720p
videos and 51x speed up for 1080p videos in high-quality.
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ETHICS STATEMENT

Bowt ie-flow adheres to high ethical standards in machine learning and computer vision, ensuring
responsible use of generative models in video and image synthesis.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide comprehensive implementation details, including models,
datasets, and training setups. All codes on the open-source models will be released.
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APPENDIX

The supplementary material is organized as follows:

1. Low-res VideoProject Website
2. Low-res VideoImplementation Details

(a) Base Models Configuration
(b) Training Details

(c) Dataset Construction

(d) Evaluation Metrics

(e) Details of User Study

3. Low-res VideoAdditional Experimental Results

(a) Comparisons
(b) Ablation Studies

. Low-res VideoTeaser Prompt List
. Low-res VideoLimitations and Future Work
. Low-res VideoLLM Usage

. Low-res VideoAdditional Visualization Results

~N N

A  PROJECT WEBSITE

We have provided a local demo in the supplementary file. You can directly click on the index.html
to view the videos.

Feel free to visit and explore!

B IMPLEMENTATION DETAILS

B.1 BASE MODELS CONFIGURATION

In this section, we describe the configures of our baseline models. We adopt the original model
implementations whenever possible.

Wan2.1 (Wang et al., 2025a): A 14-billion-parameter open-source video generation model. Wan2.1
ranks high in Physical Plausibility, ID Consistency, Scene Generation Quality etc. However with
high-parameter and quadratic attention calculations for high-resolution (720p or 1080p), it suffers
from large computation consume. It roughly uses over 50min to generate one 81frame 720p video
on A800 80G with FA2 (Dao, 2023).

HunyuanVideo (Kong et al., 2024): A 13-billion-parameter open-source video generation model.
HunyuanVideo is recognized for its smooth motion synthesis, precise semantic alignment, and high-
quality aesthetics It roughly uses over 50min to generate one 129frame 720p video on A800 80G
with FA2 (Dao, 2023).

AccVideo (Zhang et al., 2025a) introduces an efficient distillation method to accelerate video diffu-
sion models using synthetic datasets. This method is adaptable to both Wan2.1 and HunyuanVideo
models. In this work, we utilize the model based on HunyuanT2V. It takes approximately 6 minutes
to generate a 129-frame, 720p video on an A800 80G GPU using FA2(Dao, 2023).

Upscaler: We use an internal 1-billion-parameter transformer-based latent diffusion model (Peebles
& Xie, 2023) as the base T2V generation model, as illustrated in Fig. S9. We employ a 3D-VAE
to transform videos from the pixel space to a latent space, upon which we construct a transformer-
based video diffusion model. Unlike previous models that rely on UNets or transformers, which typ-
ically incorporate an additional 1D temporal attention module for video generation, such spatially-
temporally separated designs do not yield optimal results. We replace the 1D temporal attention

14



Under review as a conference paper at ICLR 2026

Table R6: Configurations for different stages. A dash (—) indicates that the stage is training-free.

Configuration Preview Stage Refine Stage
Pre-k Steps  Post-k Steps
Model Para 14B 14B 14B
Dimension 5120 5120 1152
num_heads 40 40 16
Optimizer - - AdamW
Learning rate - - 5e5
Numerical precision bfloat16 bfloat16 bfloat16
Resolution 480p 240p 720p
timestep_shift 3 3 1
CFG 7.5 5 6

with 3D self-attention, enabling the model to effectively perceive and process spatiotemporal to-
kens, thereby achieving a high-quality and coherent video generation model. Specifically, before
each attention or feed-forward network (FFN) module, we map the timestep to a scale, thereby ap-
plying RMSNorm to the spatiotemporal tokens. It is worth noting that the origin model does not

support video generation at 720p resolution.
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Figure S9: Overview of the base text-to-video generation model.

B.2 TRAINING DETAILS

We train the upscaler to transform a blurred video into a clear one while simultaneously refining
unreasonable details. Specifically, we adopt flow matching (Esser et al., 2024) to map the low-
resolution latent representation 2y, i to the high-resolution latent representation Z .

Intermediate points are obtained via linear interpolation between Zr i and Zg . The training loss
is defined with the target Zrr — Zy . We randomly sample ¢ ~ LogitNorm[0, 1] with a timestep
shift of 5, and compute:

Zy=(1—t)-Zyr+t-Zrr.
Using the t-independent target Z1 r — Z g g results in a straighter ODE trajectory, thereby enabling
few-step generation.

Since we divide Bowt ie—-flow into a preview stage and a refine stage, we also provide the corre-
sponding configurations for different stages, as summarized in Tab. R6.
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Table R7: Resolution settings across different aspect ratios. We report the spatial dimensions
(height, width) for 1080p, 720p, 480p, and 240p under square (1:1) and portrait (9:16) aspect ratios.

AspectRatio |  1080p | 720p | 480 | 240p
1:1 (1440, 1440) | (960,960) | (576,576) | (336,336)
9:16 (1080, 1920) | (720,1280) | (480,832) | (240,416)

B.3 DATASET CONSTRUCTION

We collect approximately 100K high-quality video clips from the Internet to construct our training
dataset. Given the highly variable quality of online videos, we follow the automated filtering pipeline
proposed in (Xie et al., 2025) to retain visually high-quality content.

Specifically, we first discard videos that are overly bright or overly dark. For each remaining video,
we uniformly sample 10 frames and compute two metrics: the average MUSIQ score (Ke et al.,
2021) and the Laplacian variance, which reflects the level of spatial detail and sharpness. Videos
with an average MUSIQ score below 40 or a Laplacian variance below 30 are discarded.

To simulate degradations, we apply both pixel-level and latent-level operations. At the pixel level,
we follow (Wang et al.) to synthesize corresponding LR—HR video pairs. At the latent level, we
inject noise sampled from the range [0.6,0.9].

We train Bowtie-flow on resolutions 720p and 1080p, while fixing the target FPS to 16 via
frame skipping. For this multi-resolution training, we adopt aspect-ratio bucketing with a minimum
unit size of 32 pixels. Since Bowt ie—f1low focuses on dynamically selecting suitable resolutions,
frequent scale changes occur during inference and training. For clarity, we list the resolution buckets
in Tab. R7.

B.4 EVALUATION METRICS

For text-to-video evaluation, we randomly select 381 prompts, consisting of 326 prompts from the
benchmark VBench (Huang et al., 2024b), 20 prompts from Videophy (Bansal et al., 2024), and 35
prompts from PhyGenBench (Meng et al., 2024). Our evaluation protocol measures video quality
from both global and local perspectives. To this end, we employ a comprehensive suite of automated
metrics: Quality Score (QS), Aesthetic Quality (AQ), Dynamic Degree (DD), Motion Smoothness
(MS), Overall Consistency (OC) for general video evaluation, and Semantic Adherence (SA) and
Physics Commonsense (PC) for physical plausibility.

Quality Score (QS). The weighted average of multiple dimensions, including subject consistency,
background consistency, temporal flickering, motion smoothness, aesthetic quality, imaging quality,
and dynamic degree.

Aesthetic Quality (AQ). Assesses the artistic and aesthetic value of each frame using the LAION
aesthetic predictor (Schuhmann et al., 2022). It reflects high-level properties such as composition,
color harmony, and photorealism.

Dynamic Degree (DD). Quantifies the magnitude of motion using optical flow fields estimated by
RAFT (Teed & Deng, 2020). This metric discourages static or near-static generations and promotes
natural motion in dynamic scenes.

Motion Smoothness (MS). Measures the temporal smoothness of motion using a video frame in-
terpolation model (Li et al., 2023).

Overall Consistency (OC). Computed by ViCLIP (Wang et al., 2023) on general text prompts,
reflecting both semantic and stylistic consistency.

Semantic Adherence (SA). Measures the alignment between the generated video and the input text
prompt (Bansal et al., 2024). SA = 1 indicates that the caption is well grounded in the generated
video.
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User Study on Efficient Video Generation

For each pair of videos, please choose one of the options A. Left Video B. Same C. Right Video for each question. We
evaluate Motion Dynamic, Video Fidelity and Text Alignment (prompt consistency) of the generated video. Finally,
please provide your Overall Quality choice based on your preference.

* Allama sits in a cozy reading nook, surrounded by plush pillows and soft blankets.

Left Video Same Right Video

Motion Dynamic
Video Fidelity
Semantic Quality

Overall Quality

Figure S10: User study questionnaire form example.

Physics Commonsense (PC). Assesses whether the generated video intuitively follows real-world
physical laws. PC = 1 indicates that object dynamics, interactions, and motions align with human
commonsense physics. For evaluation, we consider PC and SA return values greater than or equal
to 0.5 as PC =1 and SA =1, and values less than 0.5 as PC =0 and SA =0.

Evaluation of 1080p Videos. We further evaluate 1080p videos from the perspective of super-
resolution quality. Specifically, we calculate the DINO (Caron et al., 2021) feature similarity across
frames, evaluate the temporal consistency of the background scenes by calculating CLIP (Radford
et al., 2021) feature similarity across frames, use the LAION aesthetic predictor (Schuhmann et al.,
2022) to measure aesthetic quality, and DOVER (Wu et al., 2023) to assess overall video quality.

B.5 DETAILS OF USER STUDY

Fig. S10 shows the Google Form questionnaire used in our user study to present video assets. We
randomly sampled 24 prompts and constructed different comparison pairs with randomized orders
to avoid positional bias. To ensure data reliability, we filtered out invalid responses in which par-
ticipants consistently selected the same option across all four questions (e.g., always choosing “left
video” or “same”). After this filtering, a total of 37 valid questionnaires remained, and the corre-
sponding results are reported in Fig. 5.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 COMPARISONS

In this section, we first compare the preview (240p) generated by Bowt i e—f1ow with the same res-
olution generated by Wan2.1. We conducted the user study using a standard win-rate methodology.
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Table R8: User preference comparison be- Table R9: User preference comparison be-
tween Bowtie-flow’s preview and Wan2.1  tween Bowtie—flow and FlashVideo.
240p.

Metrics Better Same Worse
Metrics Better Same Worse Motion Dynamics  67.72 2491  7.37
Motion Dynamics 76.17  19.5 4.33 Video Fidelity 80.43 16.02 3.55
Text Alignment 83.37 1396 2.67 Text Alignment 69.03 2435 6.61
Overall Quality 82.5 8.28 9.22 Overall Quality 89.24 527 5.49

Table R10: Comparison between Bowt ie-f1low and FlashVideo. Highest value in bold.

Method QST AQt DDt MSt OCt

Flashvideo 8299 6255 6347 96.84 27.65
Bowtie-flow 83.24 66.86 7222 9795 27.38

We randomly selected 30 pairs of videos between Bowtie—flow’s preview and Wan2.1. Partici-
pants indicated their preferences across three key dimensions: Motion Dynamics, Text Alignment,
and Overall Quality. A total of 60 completed feedback forms were collected. We report the percent-
age of each option. The results presented in Tab. R8 demonstrate that our method is significantly
preferred over the competing method. This outcome aligns with our experimental design, confirm-
ing that OptimRes-LowRes flow preserves superior spatial layout and maintains greater semantic
alignment.

We also compare Bowt ie-flow with cascaded
video generation, using FlashVideo (Zhang et al.,
2025f) as an example. As shown in Fig. S12,
our method generates more complex motions,
achieves better text alignment, and offers en-
hanced visual refinement, resulting in higher
overall visual quality. Quantitative results are
shown in Tab. R10.

Additionally, we conducted a user study with ex-
panded evaluation criteria. We introduced ’Video i " '
Fidelity” dimension, specifically focusing on vi- . .
sual noise and artifacts in the generated videos. Figure S11: Visualization of the denoising
As shown in Tab. R9, Bowtie-flow outper- Process. The overall structure emerges rapidly

forms FlashVideo in terms of user preference. within the first few denoising steps (around 10),
with subsequent steps focusing on refining fine-
As for the Refine stage, we provide more Vi- grained details.

sual results. As shown in Fig. S13, our method

demonstrates significant success in rendering de-

tails such as the cat’s paw and the drone’s shape. We also present a sequence of four frames in
Fig. S14 to further compare VEnhancer with our method. While both methods generate clear videos,
Bowtie-flow handles dynamic details more effectively.

C.2 ABLATION STUDIES

Shift window attention. We provide quantitative results in Tab. R11 to further analyze the effect
of shift-window attention on video generation. Our method achieves a shorter runtime while pre-
serving finer details, demonstrating that when handling high-resolution video, we can focus on a
local receptive field to refine details.

Step division. Furthermore, we visualize the changes in video content during the denoising pro-
cess, as shown in Fig. S11. We observe that the overall structure emerges rapidly within the first
few denoising steps (around 10), with the remaining steps dedicated to progressively refining fine-
grained details. Thus, we choose the denoising step to be around 10 and visualize the results of
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FlashVideo

e | .

In coffee cup,tiny pirate ships battle on swirling with steamy waves.

Figure S12: Visual Comparisons between Bowt ie—flow and FlashVideo. Our results exhibit a
notably more imaginative and aesthetically pleasing scene of pirate ships in a coffee cup, compared
to FlashVideo. The texture in our results is rendered with greater delicacy, vividly capturing the
“steamy waves.”

Input Ours VEnhancer Upscale-A-Video RealBasicVSR STAR

more perceptually realistic and detail-rich refinement based on the initial low-resolution previews,
outperforming other approaches in consistency and visual fidelity. Specific observations for each
row are annotated beneath the corresponding frames.

the refiner under different inference hyperparameters in Fig. S15. Quantitative results are shown in
Tab. 4.

D TEASER PROMPT LIST

We provide our prompt list for the generated videos presented in Teaser 1.
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Input

VEnhancer

Ours

Grandma smiles, blows out candles-warm light and joy fill the cozy room.

Figure S14: Comparison of fine-grained facial expressions and intricate details. Example from
a video clip with significant changes in a grandmother’s facial expressions. VEnhancer strug-
gles with facial identity, inaccurate lip articulation, and ambiguous candle flickering. In contrast,
Bowt ie-flow (Ours) intelligently refines these details, realistically augmenting them while main-
taining consistency.

Table R11: Ablation study of key components. Highest value in bold.

Method QST AQt DDt MStT OC?T Time|
Bowtie-flow _woShiftWindow 82.94 66.82 69.44 98.12 2741 107s
Bowtie-flow 83.24 66.86 7222 9795 27.38 textbf76s

1. A charming panda, dressed in a chef’s hat and red apron, chops vegetables in a rustic kitchen. It
stirs a pot, tastes the soup, and plates a beautifully arranged dish, exuding delight.

2. A girl spins in the starry night sky, her shimmering pastel costume and floating feathers captured
in a dreamy anime illustration.

3.A playful corgi with golden fur trots along a tropical beach, wearing blue sunglasses. The camera
follows it as it walks along the shoreline, pauses, and enjoys the sun and waves.

E LIMITATIONS AND FUTURE WORK

Although our method is theoretically capable of generating videos at arbitrarily high resolutions, in
practice it is constrained by computational resources. Specifically, our experiments show that the
current implementation can stably support resolutions up to 2048 x 2048, while higher resolutions
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STEP=9 STEP=10 STEP=11 STEP=12

Key Frame Input }

Figure S15: Results of the refiner under different inference hyperparameters.

will lead to out-of-memory (OOM) errors on A800(80G). As part of future work, we plan to integrate
patch-based spatial division strategies or memory-efficient attention mechanisms to further extend
the scalability of our approach, enabling efficient training and inference at ultra-high resolutions.

F LLM USAGE

Scope of use. We used a large language model (LLM) only for writing polish, including gram-
mar correction, phrasing refinement, and improvements to clarity and readability. The LLM did
not contribute to research ideation, problem formulation, method design, experimental setup, re-
sult selection, interpretation, or drafting of technical content (theorems, algorithms, proofs, metrics,
or analyses). All technical claims, experiments, figures, tables, and conclusions were conceived,
implemented, and verified by the authors.

G MORE QUALITY RESULTS

We have provided additional comparison cases, as shown in Fig.S16 and Fig.S17.
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MD SVG Wan2.1

D

Ours

A serene individual, dressed in a flowing white blouse and light blue jeans, stands at a
rustic wooden table in a sunlit room filled with greenery. She carefully select vibrant

blooms from a wicker basket, including roses, lilies, and daisies, and begin arranging them
in a crystal vase. The sunlight filters through the window, casting a warm glow.

Wan2.1

SVG

DMD

Ours

A paint roller applies a coat of beige paint to a textured wall, showing the
in the textures.

paint filling

A towering Bigfoot trudges through a fierce snowstorm, its massive, fur-covered form barely
visible against the swirling white. Snow clings to its thick, matted fur, and its eyes,
glowing faintly, peer through the blizzard with an almost human-like intensity.

Figure S16: Comparisons. From top to bottom, each three videos is from the same setting.
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A cute furry monster is blowing on hot cocoa to cool it down.

A focused artist, wearing a cozy gray sweater, sits at a wooden desk in a warmly lit room,
surrounded by art supplies. The camera zooms in on their hands, skillfully sketching
intricate details on a large canvas with a fine-tipped pen.

Figure S17: Comparisons. From top to bottom, each three videos is from the same setting.
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