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Abstract

Automating radiology report generation poses a dual challenge: building clinically1

reliable systems and designing rigorous evaluation protocols. We introduce a2

multi-agent reinforcement learning framework that serves as both a benchmark and3

evaluation environment for multimodal clinical reasoning in the radiology ecosys-4

tem. The proposed framework integrates large language models (LLMs) and large5

vision models (LVMs) within a modular architecture composed of ten specialized6

agents responsible for image analysis, feature extraction, report generation, review,7

and evaluation. This design enables fine-grained assessment at both the agent8

level (e.g., detection and segmentation accuracy) and the consensus level (e.g.,9

report quality and clinical relevance). We demonstrate an implementation using10

chatGPT-4o on public radiology datasets, where LLMs act as evaluators alongside11

medical radiologist feedback. By aligning evaluation protocols with the LLM de-12

velopment lifecycle, including pretraining, finetuning, alignment, and deployment,13

the proposed benchmark establishes a path toward trustworthy deviance-based14

radiology report generation.15

1 Introduction and Motivation16

The integration of Large Language Models (LLMs) and Large Vision Models (LVMs) presents17

significant opportunities for advancing real-time medical report generation and evaluation [3, 9, 11].18

However, their deployment at scale requires structured coordination, which can be effectively achieved19

through robust Multi-Agent System (MAS) architectures [7]. While qualitative discussions of MAS20

in medical imaging are available [6], systematic quantitative benchmarks remain scarce, limiting21

rigorous evaluation across the LLM lifecycle [2]. To address this gap, we propose a multi-agent22

benchmarking framework designed to evaluate LLMs and LVMs throughout an end-to-end pipeline of23

radiology report generation. The proposed approach introduces a generative AI agentic architecture24

in which specialized agents collaborate under a central orchestrator. Each agent is assessed through25

task-specific metrics, while overall framework performance is evaluated via composite measures of26

report accuracy, clinical completeness, and human-in-the-loop review.27

As a case study, we curated a benchmark dataset of multisequence brain MRI scans from cancer28

patients, annotated under the supervision of board-certified radiologists. This dataset supports both the29

training and validation of agentic evaluation strategies. By systematically quantifying performance at30

both the agent and framework levels, our benchmark advances the evolving LLM lifecycle-spanning31

fine-tuning, alignment, and clinical deployment. The proposed framework not only streamlines32

radiological workflows but also strengthens trust in generative AI systems by enabling transparent,33

reproducible, and clinically relevant evaluation of LLM-LVM integration.34
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Figure 1: The proposed Medical AI Consensus: A Multi-Agent Framework. Ten specialized agents
collaborate to generate radiology reports: (1) Anatomical Region Detection Agent, (2) Modality Clas-
sifier (determines imaging type), (3) Modality Interpreters (extract findings per modality), (4) Clinical
Context Processor (analyzes patient metadata), (5) Quantitative Segmentation (measures/segment
abnormalities), (6) Diagnostic Classifier (provides diagnostic analysis), (7) Clinical Report Composer
(generate structured reports), (8) Quality Assurance Agent, (9) Evaluation Judge (automated LLM
scoring), and (10) Orchestrator (manages workflow and validation).

2 Proposed Framework35

Figure 1 illustrates the architecture of the proposed multi-agent framework. The pipeline is composed36

of ten specialized agents, each dedicated to a specific stage in real-time radiology image interpretation37

and report generation. These agents interacts in an iterative and cooperative manner, coordinated by a38

central orchestrator agent that ensures consistency and efficiency across the workflow. The framework39

is designed to be model-agnostic, allowing researchers to seamlessly integrate novel models and40

systematically evaluate their contributions within a standardized environment designed to simulate41

the real-life radiology ecosystem. The following provide a detailed description of the core agents and42

their respective roles within the framework.43

Anatomical Region Detection Agent: This agent processes the input medical images, potentially44

spanning multiple sequences or modalities, to identify the anatomical region(s) and their spatial45

orientation. Its performance can be quantitatively assessed by comparing predicted regions against46

established anatomical labels.47

Modality Classifier: The modality classifier determines the imaging modality (e.g., X-ray, CT,48

MRI, US) and, when applicable, its specific subtype. Accurate modality recognition is essential,49

as reporting conventions and clinically relevant findings vary significantly across modalities. The50

evaluation of this component is conducted using standard classification accuracy metrics.51
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Modality Interpreters: This category encompasses a pool of specialized agents, each tailored to a52

specific organ-modality combination (e.g., Chest X-ray Interpreter, Brain MRI Interpreter). Each53

agent, implemented as either an LLM or VLM, is optimized to extract modality-specific clinical54

features, including salient observations, abnormalities, quantitative measurements, and descriptive55

attributes. Performance is evaluated using task-specific metrics aligned with the clinical relevance56

and expected findings.57

Clinical Context Processor: Radiological studies are typically accompanied by rich metadata,58

including patient demographics, treatment history, clinical indications for the examination, earlier59

findings. The Clinical Context Processor is responsible for parsing, interpreting, and synthesizing the60

information to provide contextual input for the report generation process. Its performance can be61

evaluated by assessing the precision of structured field extraction, as well as, the accuracy and fidelity62

summarizing prior reports.63

Quantitative Segmentation Agent: Upon detection of a clinically relevant abnormality by the64

modality interpreter agents, the orchestrator may invoke the quantitative segmentation agent to65

perform detailed delineation and quantification. Implemented as an LVM, this agent generates66

segmentation masks, bounding boxes, or quantitative measurements such as tumor diameters or fluid67

collection volumes. Its primary role is to supply precise, structured data that can be integrated into68

the radiology report, thereby enhancing its accuracy and clinical utility.69

Diagnostic Classifier: The diagnostic classifier agent synthesizes imaging-derived features into70

diagnostic assessments and preliminary recommendations. Functioning as an AI-driven “second71

opinion,” it provides interpretive insights that complement radiologist expertise. Its performance72

is evaluated using standard classification metrics as well as concordance with the final impression73

documented in radiologists’ reports.74

Clinical Report Composer: The clinical report composer serves as the central LLM agent responsible75

for composing the radiology report in natural language. It integrates inputs from across the pipeline,76

include structured findings from feature extractors, quantitative measurements from the segmentation77

agent, diagnostic insights, patient metadata, and other contextual information. Guided through78

structured prompting, this agent produces a coherent and clinical formatted report, typically organized79

into standardized sections such as "findings" and "impression".80

Quality Assurance Agent (with Human-in-the-Loop): To ensure reliability and trustwothiness,81

the framework incorporates a quality assurance agent as a dedicated quality-control stage. This82

agent re-examines the generated report, cross-validating its contents against the source images and83

intermediate outputs produced by other agents. Its primary role is to detect inconsistencies, such as84

unsupported findings or omissions of clinically relivant information. The human-in-the-loop design85

ensures that the quality assurance agent can either consult an expert radiologist during the review86

process or incorporate feedback from radiologist annoutations, thereby aligning automated reporting87

with expert clinical judgment.88

Evaluation Agent (Judge): In addition to the internal quality assurance review, the framework89

incorporates an evaluation agent designed specifically for benchmarking purposes. Unlike agents90

involved in report generation, this component operates independently, assessing the final report and91

assigning scores across multiple quality dimensions. Beyond benchmarking, the evaluation agent92

can also serve as a reward model within reinforcement learning setups, guiding system optimization.93

Validation of this agent is performed by correlating its scoring outputs with expert radiologist94

evaluations on a subset of reports, leveraging recent evidence that LLM-based evaluators can achieve95

inter-rater reliability comparable to human reviewers. Within the benchmark, the evaluation agent96

thus provides an automated, scalable, and robust mechanism for comparing different models and97

configurations.98

Orchestrator: At the core of the framework lies the orchestrator agent, responsible for managing the99

sequence of operations, coordinating information flow, and ensuring overall coherence of the pipeline.100

It determines which specialized agents to invoke and in what order, adapting dynamically to the101

requirements of each case. In addition to coordination, the orchestrator performs critical validation102

checks to verify that outputs from individual agents are logically consistent, clinically plausible, and103

aligned with the intended reporting structure.104
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Figure 2: Performance results of the proposed agentic pipeline on the RHUH-GBM dataset.

3 Evaluation Protocols and Results105

We evaluate the proposed framework at both the agent and overall global levels, combining LLM-106

based evaluation methods with conventional classification and segmentation metrics. At the agent107

level, organ detection and modality classification are measured by accuracy and confusion matri-108

ces; content extraction by precision, recall, and F1-score. Segmentaion by Dice, IoU, and sen-109

sitivity/precision. Metadata processing by accuracy against ground truth text via LLM-as-judge.110

Diagnostic classification by accuracy, ROC AUC, free-text parsing, and concordance with radiologist111

impression. Report generation by ROUGE, clinical accuracy (CheXpert-based accuracy [1]), readabil-112

ity/coherence (LLM-based or Flesch-Kincaid Reading Grade [10]), and radiologist-labeled clinically113

significant error rates. The reviewer by before/after improvement and planted-error precision/recall.114

Evaluation agent by calibration with expert scores (Spearman’s ρ) [5]. The orchestrator by pipeline115

success and efficiency. At the global level, performance is assessed through a composite Report116

Quality Score (emphasizing clinical accuracy over BLEU), a 0-100 benchmark score from the evalua-117

tion agent following VHELM [8], human preference rates from reader studies, clinician alignment118

metrics (factual correctness, uncertainty representation, and adherence to guidelines), and robustness119

in difficult or rephrased cases. We further simulate an RLHF loop, where pipeline adjustments are120

iteratively re-evaluated, yielding expected gains in factual accuracy and human preference. To ensure121

fairness, all systems are tested on the same standardized, held-out dataset with a shared scoring script122

for reproducible benchmarking.123

In this study, we developed an adaptable pipeline designed for cross-dataset evaluation and applied it124

to the RHUH-GBM dataset [4], with an LLM serving as an automated judge. To establish reliable125

ground truth, reference radiology reports were created in collaboration with senior radiologists,126

ensuring clinically accurate annotations. The LLM evaluated system outputs along four dimensions:127

correctness (absence of medical errors), conciseness (clarity and brevity of expression), completeness128

(coverage of all key clinical findings), and image descriptions (quality of imaging-based descrip-129

tions) [12]. As shown in Figure 2, the pipeline achieved an overall accuracy of 68.6%. This also130

shows the limitation of traditional metrics like ROGUE in such complex tasks. Importantly, this131

evaluation was conducted without incorporating patient metadata such as tumor size or type, thereby132

testing the pipeline’s ability to independently infer these attributes. The results indicate that the133

system was largely successful in this regard, demonstrating robust performance in tumor detection134

and characterization, while also generating radiology reports that were comprehensive, clinically135

sound, and of high quality.136

4 Conclusion137

We presented Medical AI Consensus, a modular multi-agent framework that unifies radiology report138

generation and evaluation across LLMs and LVMs within a standardized, model-agnostic benchmark.139

Grounded in expert-authored reference reports and an LLM-as-judge, our evaluation spans correctness,140

conciseness, completeness, and image description. On the RHUH-GBM dataset, the system achieved141

an overall accuracy of 68.6% without using patient metadata, highlighting the pipeline’s capacity142

to recover clinically salient information directly from images. The orchestrated, human-in-the-loop143

design promotes transparency, safety, and iterative refinement.144
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