
Provable Robust Watermarking for AI-Generated Text

Xuandong Zhao 1 Prabhanjan Ananth 1 Lei Li 1 Yu-Xiang Wang 1

Abstract
As AI-generated text increasingly resembles
human-written content, the ability to detect
machine-generated text becomes crucial. To ad-
dress this challenge, we present GPTWatermark,
a robust and high-quality solution designed to as-
certain whether a piece of text originates from a
specific model. Our approach extends existing wa-
termarking strategies and employs a fixed group
design to enhance robustness against editing and
paraphrasing attacks. We show that our water-
marked language model enjoys strong provable
guarantees on generation quality, correctness in
detection, and security against evasion attacks.
Experimental results on various large language
models (LLMs) and diverse datasets demonstrate
that our method achieves superior detection ac-
curacy and comparable generation quality in per-
plexity, thus promoting the responsible use of
LLMs. Code is available at https://github.
com/XuandongZhao/GPTWatermark.

1. Introduction
Generative Artificial Intelligence (AI) (Brown et al., 2020;
Ramesh et al., 2022; Saharia et al., 2022; OpenAI, 2023a)
has achieved significant progress in recent years, spanning
from computer vision (CV) to natural language processing
(NLP). Large language models (LLMs) such as ChatGPT
(OpenAI, 2022) can generate coherent and contextually rel-
evant long-form text in response to user-specified prompts.
However, the ease of using LLMs has raised concerns about
their potential misuse (Zellers et al., 2019; Weidinger et al.,
2021; Stokel-Walker, 2022). For example, LLMs could be
used to generate fake news, contaminate web content, or as-
sist in academic dishonesty. Additionally, the proliferation
of synthetic data from LLMs poses challenges for training

1UC Santa Barbara. Correspondence to: Xuandong Zhao
<xuandongzhao@cs.ucsb.edu>, Prabhanjan Ananth <prabhan-
jan@cs.ucsb.edu>, Lei Li <leili@cs.ucsb.edu>, Yu-Xiang Wang
<yuxiangw@cs.ucsb.edu>.

Workshop on Challenges in Deployable Generative AI at Inter-
national Conference on Machine Learning (ICML), Honolulu,
Hawaii, USA. 2023. Copyright 2023 by the author(s).

new models, as synthetic data needs to be detected and ex-
cluded before model training (Radford et al., 2022; Carlini
et al., 2023).

There are two main camps of existing attempts to address
these challenges. One camp, inspired by Turing (1950),
aims at generically distinguishing machine-generated text
from that of the humans (Gehrmann et al., 2019; Mitchell
et al., 2023; Hovy, 2016; Zellers et al., 2019; OpenAI,
2023b). These works primarily leverage hand-crafted or
learned “statistical patterns” of generated text, thus their
performance is not robust to distribution changes (e.g., by
prompting / conditioning), prone to biases (Liang et al.,
2023), and vulnerable to adversarial attacks. Moreover,
recent research (Sadasivan et al., 2023) presents an impos-
sibility result arguing that, as language models improve
over time, AI-generated text increasingly resembles human-
generated text, hence rendering any classifiers ineffective.

The other camp advocates active intervention by injecting
carefully-designed watermarks to machine-generated text
(Kirchenbauer et al., 2023; Zhao et al., 2023). The water-
marking approach does not search for statistical patterns
(which could be hit-or-miss), but rather deliberately plant
subtle but distinctive patterns within the content to enable
downstream detection. Compared to the passive detection
approaches, the watermarking methods aim at determining
whether the text is coming from a specific language model
rather than solving the Turing test generically. As a result,
watermarking approaches are robust to distribution-shift and
can essentially prove — rather than predict — the origin of
the suspect text.

The most notable challenge for the watermarking approach
is that the planted patterns could be post-processed away.
As an example, Kirchenbauer et al. (2023)’s soft watermark-
ing method divides the vocabulary into a “green list” and
a “red list” based on the prefix token, and subtly increases
the probability of choosing from the green list. If the wa-
termarked sentence is edited by changing every other token
into its synonym, then it is no longer possible to determine
the green/red lists for each candidate token, thus ruining the
detector. One could also simply paraphrase the sentence as
a whole using another off-the-shelf LLM.

In this paper, we take a first stab at formally defining robust-
ness in the context of watermarking LLMs. Our contribu-

1

https://github.com/XuandongZhao/GPTWatermark
https://github.com/XuandongZhao/GPTWatermark

tions are fourfold.

1. We devise a rigorous theoretical framework for quantify-
ing the performance drop, the correctness of detection,
and the security property against post-processing.

2. We propose to simplify the scheme of Kirchenbauer et al.
(2023) by using a fixed Green-Red split consistently and
show that the new watermark, named GPTWatermark, is
twice as robust to edits as the baseline, provably.

3. We prove that the watermarked LLM is close to the orig-
inal LLM (in all Renyi divergences) and show that the
Type I/Type II errors of the detection algorithm decay
exponentially as the suspect text length gets longer and
more diverse.

4. We conduct experiments utilizing various large language
models on diverse datasets. The results indicate that
our method achieves superior detection accuracy and
improved robustness against different attacks, thus pro-
moting the responsible use of LLMs.

To the best of our knowledge, we are the first to formulate
the LLM watermarking as a cryptographic problem and to
obtain provably robust guarantees for watermarks for LLMs
against arbitrary edits.

2. Problem definition
We start with an overview of the language model watermark-
ing problem. The definitions and notations introduced in
this section will be used throughout the paper.

Symbols and mathematical notations. We use P[·], E[·],
P[·|·] and E[·|·] to denote the probability, expectation op-
erator, conditional probability and conditional expectation
respectively. Whenever there is ambiguity on which distri-
bution the random variables are drawn from, we explicitly
state them, e.g., P(X,Y)∼D[X < 3|Y = y], or equivalently
P[X < 3|Y = y ; (X,Y) ∼ D]. To avoid clutter, we do
not distinguish between random variables and constants as
the distinctions are clear from the context. Boldface sym-
bols denote a vector, e.g., a probability mass function p or
a sequence of tokens y. ∥ · ∥2, ∥ · ∥∞ denotes the standard
ℓ2 and ℓ∞-norms of a vector. In addition, [n] is a shorthand
for {1, 2, ..., n}. Other symbols and their meanings will be
defined as we encounter them.

Language models. A language model (LM)M is a statis-
tical model that describes the probability of a sequence of
words occurring in a sentence. Common neural language
models (e.g., GPT-2/3 (Radford et al., 2019; Brown et al.,
2020)) are designed for next-word prediction which typ-
ically uses a transformer neural network (Vaswani et al.,
2017). The LM has a “vocabulary” V with N := |V| =

50, 000 tokens or more (Radford et al., 2019; Liu et al.,
2019). Let x be an input prompt. y := [y1, . . . , yn] are n
tokens generated byM. During inference,M receives the
input prompt x as the prefix of generation. It iteratively pro-
duces |V| logit scores for every next token. A soft-(arg)max
function converts these scores into a probability distribution
over V for the next token. The generic procedure for an LM
M̃ to generate text is described in Algorithm 1.

Algorithm 1 Text generation from a language model

1: Input: prompt x, language model M̃.
2: for t = 1, 2, · · · do
3: Apply M̃ to prior tokens [x,y1:t−1] to obtain the

logits ℓ̃t.
4: Sample yt ∼ p̃t where

p̃t[v] =
exp

(
ℓ̃t[v]

)
∑

i∈V exp
(
ℓ̃t[i]

) for all v ∈ V. (1)

5: end for
6: Output: Sequence y ← [y1, ..., yn].

2.1. Definition of language model watermarking

In the language model watermarking problem, the objective
for the model owner is to embed a secret message known
as “watermark” within the generated sequence y for a given
prompt x. There are two desired requirements for water-
marking. First, the quality of the watermarked model should
be comparable to the quality of the original, un-watermarked
model. Second, an adversary needs to modify sufficiently
many AI-generated text in order to evade detection.
Definition 2.1 (Edit distance). The edit distance, denoted
as ED(y, z), quantifies the number of basic operations re-
quired to transform a sequence y into another sequence
z. These operations include “insertion”, “deletion”, and
“replacement” of tokens.
Definition 2.2 (Language model watermarking). A lan-
guage model watermarking scheme consists of two prob-
abilistic polynomial-time algorithms (Watermark,Detect):

• Watermark(M): Let M be a language model and let
pt := PM(x)[yt = ·|y1:t−1] be the conditional proba-
bility distribution of t-th token on V generated by M.
This algorithm produces a new model M̂ with a new con-
ditional distribution p̂t := PM̂(x)[yt = ·|y1:t−1] on V .
Additionally, it outputs a detection key k associated with
M̂. The watermark could contain certain randomness.

• Detect(k,y): This algorithm takes input detection key
k and sequence y, then outputs 1 (indicating it was gen-
erated by M̂) or 0 (indicating it was not generated by
M̂).

2

We require the following three correctness properties to
hold:

• ω-Quality of watermarked output, for ω ∈ R: Assume the
original language modelM generates a probability vector
pt for the token at position t. The watermarked model M̂
predicts the token at position t using the modified proba-
bility vector p̂t. It is required that the distance between
the two probability distributions satisfies: D (p̂t∥pt) ≤ ω
for any fixed prompts and prefixes.

• α(x,M)-Type I error (“No false positives”): for any al-
gorithm A that takes x and certain auxiliary information
aux as input

P
[
Detect(k,y) = 1 ; (M̂,k)∼Watermark(M)

y∼A(x,aux)

]
≤ α(x,M).

• β(x,M)-Type II error (“No false negatives”):

P
[
Detect(k,y) = 0 ; (M̂,k)∼Watermark(M)

y∼M̂(x)

]
≤ β(x,M).

We also require the following security property (parame-
terized by ϵ ≥ 0 and η(y, k, ϵ)):

• For any adversary A that postprocesses y with auxiliary
information aux and any prompt x ∈ V∗

P
[
Detect(k,yA) = 1 or ED(y,yA) ≥ η(k,y, ϵ)

∣∣∣∣
y,k,

Detect(k,y)=0 ;
(M̂,k)∼Watermark(M)

y∼M̂(x)
yA∼A(y,aux)

]
≥ 1− ϵ.

Remark 2.3 (Discussion on Definition 2.2). Informally, our
definition allows us to formally quantify the essential proper-
ties of a language model watermarking scheme including its
generation quality relative to the input LM, the accuracy of
detection in terms of both false positives and false negatives,
as well as the robustness to attacks.

The security property, in particular, states the following:
suppose a malicious adversary intends to evade the detec-
tion algorithm, then the adversarial answer, to some input
prompt x, should be far away (in edit distance) from any
AI-generated answer. In other words, the optimal strategy to
evade the detection algorithm would necessitate executing a
minimum number of insert/delete/replacement operations,
captured by the function η(·) in Definition 2.2. This concep-
tually suggests that the adversary must exert considerable
effort to successfully elude detection.

On the other hand, our definition does not capture the fol-
lowing attacks:

• Adversary with embedded response: If the adversary pos-
sesses the response yA embedded within it as supplemen-
tary data, they are not exerting genuine effort to circum-
vent detection. Nevertheless, there are scenarios where it

is reasonable to assume that the adversary is not initially
aware of an answer to the prompt x, such as when x is
drawn from a distribution.

• Paraphrasing attacks: One potential approach the adver-
sary can undertake to evade detection is to paraphrase the
AI-generated answer using an un-watermarked LLM. But
it is plausible, at least in some scenarios, that the adver-
sary does not have access to an un-watermarked LLM. In
general, paraphrasing attacks can be problematic when
reliably detecting AI-generated text and further research
is needed to come up with formal definitions capturing
these attacks.

2.2. Threat models

Adversary’s capabilities. We consider an adversary with
black-box input-output access to the language model. This
adversary has the capacity to modify the sequence within a
bounded edit distance. Given an input prompt x, the water-
marked language model generates a text output y ← M̂(x).
The adversary, equipped with arbitrary side-information
and computational resources, can then produce a modi-
fied output yA such that the edit distance between the
original and modified output, ED(y,yA), is bounded, i.e.
ED(y,yA) < η.

Adversary’s objective. The primary objective of the ad-
versary is to render the watermark detection algorithm in-
effective. Specifically, the adversary aims to produce a yA
such that Detect(k,yA) = 0 while at the same time, yA is
a minor modification of an AI-generated text y.

3. Method

Algorithm 2 GPTWatermark: Watermark

1: Input: random number generator F , green list size
γ ∈ (0, 1), watermark strength δ.

2: Randomly generate a watermark key k using F .
3: Use watermark key to partition the vocabulary ofM

into a “green list” G ⊂ V of size γ|V|, and a “red list”
R = Gc.

4: Define a new language model M̂ where for t and any
prefix [x,y1:t−1], the resulting logits satisfy

ℓ̂t[v] := ℓt[v] + δ1(v ∈ G),

where 1(·) is the indicator function and the logit vector
ℓt ∈ R|V| is obtained by the passing the same prefix to
M.

5: Output: watermark key k, watermarked language
model M̂.

We present our watermarking scheme GPTWatermark based
on Definition 2.2. The outline of our watermarking scheme

3

Prompt Q: what is codependent and why is it bad? \n A:

Human
PPL: 7.87

z-score: 0.14

Had a psychology teacher explain it this way and it always stuck with me. this is a **codepen-
dent** relationship. Each line represents one person. Each relies on the other for support and
stability. If you take either person out, the other will fall. this is a **dependent** relationship.
One person is a self sufficient individual (represented by the vertical line). They can stand on
their own with or without the other person. The leaning line is dependent on the other person.
[continues...]

LLaMA-7B
(un-watermarked)

PPL: 12.19
z-score: 1.96

Imagine yourself in a relationship with a spouse, friend, family member, or co-worker who is
like a drug addict. They go through cycles of behavior that can make you crazy. You think
they are in the right, so you defend them. You feel so badly for them that you don’t really tell
them the truth about how their behaviors are hurting you, your kids, your family, or even other
people. [continues...]

LLaMA-7B
(watermarked)

PPL: 9.47
z-score: 9.58

To define codependency as it relates to mental health, one has to understand what it means to
be emotionally dependent. While a person can be dependent on another person for fulfillment,
as evidenced through feelings of low self-esteem and fear of loss, a codependent person will
often keep another person in their life despite their poor and sometimes abusive behavior.
[continues...]

Table 1: Comparison of human-written text and machine-generated text examples for a given prompt question. Our method,
utilizing the LLaMA-7B model, produces watermarked text of comparable quality to the un-watermarked text, without any
noticeable degradation. However, there exists a significant disparity in the z-scores for watermark detection.

Algorithm 3 GPTWatermark: Detect

1: Input: suspect text y, watermark detection key k,
threshold τ .

2: Output: 1 or 0 (whether the text is watermarked).
3: Use the watermark detection key k to find the “green

list” G.
4: Calculate the number of green list tokens |y|G =∑n

t=1 1(yt ∈ G) in [y1, . . . , yn].
5: Compute the z-statistic:

zy = (|y|G − γn) /
√
nγ(1− γ). (2)

6: if zy > τ then return 1, i.e., “The suspect text is
watermarked.”

7: else return 0, i.e., “The suspect text is not water-
marked.”

is provided in Algorithm 2 and 3. In Algorithm 2, we uti-
lize a randomly generated watermark key to partition the
vocabulary of the language model into two distinct sets: the
green list and the red list. The logits of the language model
for the green list tokens are increased by δ while the logits
remaining tokens in the red list remain unchanged. This is
the same procedure from (Kirchenbauer et al., 2023) with
the objective of adaptively increasing the probability of gen-
erating tokens from the green list relative to those from the
red list. Generation from the watermarked language model

follows simply by passing the returned M̂ to Algorithm 1.

The watermarking procedure is parameterized by two wa-
termark strength parameters γ, δ. γ determines the fraction
of the vocabulary included in the green list. We typically set
γ to be a constant, e.g., 1/3 or 0.5. δ specifies the increase
in the logits associated with the green list tokens. The larger
δ is, the lower the quality of the watermarked LM, but the
easier it is to detect.

The critical difference from (Kirchenbauer et al., 2023) is
that our algorithm employs a fixed partition, as opposed
to using the hash of previously generated tokens as a ran-
dom seed in their soft watermarking algorithm. As a result,
unlike (Kirchenbauer et al., 2023), our work guarantees
information-theoretic security in the so-called plain model
without relying upon cryptographic tools. In addition, we
provide a formal definition of watermarking as well as a
proof of the properties, which has not been done in (Kirchen-
bauer et al., 2023).

Our detection procedure is outlined in Algorithm 3. It calcu-
lates the total number of tokens from the suspect sequence
y that fall within the green list:

∑n
t=1 1(yt ∈ G). We start

by presuming the null hypothesis H0: The text sequence is
produced without regard to the green list rule, and then com-
pute a z-statistic using Equation 2. If the z-score exceeds
a predetermined threshold, we reject the null hypothesis
and identify the watermark. We show the examples of real
prompts and watermarked outputs in Table 1.

4

It is worth noting that the detection procedure can be com-
puted in linear time using the green list G and the suspect
sequence y alone. It does not require access to either the
prompt x or the language modelM. This feature makes
it widely applicable to common situations where users of
a language model often omit the prompt and may use only
one chunk of the generated text. No costly computation of
the logits is needed for the detection.

Overall, the proposed watermarking scheme requires almost
no overhead in its implementation, is extremely simple, and
is easy to maintain. The big question is:

How well does this watermark scheme
work?

We provide answers to this question with provable guar-
antees on the properties from Definition 2.2 and extensive
experiments. For a deeper understanding, we refer the reader
to the Appendix section which contains all detailed explana-
tions.

4. Limitations and conclusion
Conclusion. In this paper, we have addressed the con-
cerns surrounding the potential misuse of large language
models and proposed an effective watermarking approach,
GPTWatermark, for detecting machine-generated text from
a specific language model. Our contributions include the
development of a rigorous theoretical framework, design-
ing a provable effective and robust watermarking scheme
under this framework, as well as conducting extensive exper-
iments to demonstrate the effectiveness and robustness of
our method in practice. We anticipate that our work will in-
spire future research to develop more resilient watermarking
methods capable of withstanding a broader range of attacks.

Limitations. While our watermarking method, GPTWater-
mark, demonstrates improved robustness against edits, its
reliance on a fixed Green-Red split may not be universally
optimal. The performance and robustness of watermarking
methods can vary depending on the specific characteristics
of the LLM and the generated text. Additionally, although
our method enhances detection capabilities, it is not immune
to all possible attacks.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,

Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,

and Mark Chen. Hierarchical text-conditional image gen-
eration with clip latents. ArXiv, abs/2204.06125, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Sali-
mans, et al. Photorealistic text-to-image diffusion models
with deep language understanding. Advances in Neural
Information Processing Systems, 35:36479–36494, 2022.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774,
2023a.

OpenAI. Chatgpt: Optimizing language models for dialogue.
OpenAI blog, 2022.

Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan
Bisk, Ali Farhadi, Franziska Roesner, and Yejin Choi.
Defending against neural fake news. Advances in neural
information processing systems, 32, 2019.

Laura Weidinger, John F. J. Mellor, Maribeth Rauh, Conor
Griffin, Jonathan Uesato, Po-Sen Huang, Myra Cheng,
Mia Glaese, Borja Balle, Atoosa Kasirzadeh, Zachary
Kenton, Sande Minnich Brown, William T. Hawkins,
Tom Stepleton, Courtney Biles, Abeba Birhane, Julia
Haas, Laura Rimell, Lisa Anne Hendricks, William S.
Isaac, Sean Legassick, Geoffrey Irving, and Iason Gabriel.
Ethical and social risks of harm from language models.
ArXiv, abs/2112.04359, 2021.

Chris Stokel-Walker. Ai bot chatgpt writes smart essays -
should professors worry? Nature, 2022.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman,
Christine McLeavey, and Ilya Sutskever. Robust speech
recognition via large-scale weak supervision. ArXiv,
abs/2212.04356, 2022.

Nicholas Carlini, Matthew Jagielski, Christopher A.
Choquette-Choo, Daniel Paleka, Will Pearce, H. Ander-
son, A. Terzis, Kurt Thomas, and Florian Tramèr. Poi-
soning web-scale training datasets is practical. ArXiv,
abs/2302.10149, 2023.

Alan M Turing. Computing machinery and intelligence.
1950.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander M.
Rush. Gltr: Statistical detection and visualization of
generated text. In Annual Meeting of the Association for
Computational Linguistics, 2019.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christo-
pher D. Manning, and Chelsea Finn. Detectgpt: Zero-shot
machine-generated text detection using probability curva-
ture. ArXiv, abs/2301.11305, 2023.

5

Dirk Hovy. The enemy in your own camp: How well can
we detect statistically-generated fake reviews – an adver-
sarial study. In Annual Meeting of the Association for
Computational Linguistics, 2016.

OpenAI. New ai classifier for indicating ai-written text.
OpenAI blog, 2023b.

Weixin Liang, Mert Yuksekgonul, Yining Mao, Eric Wu,
and James Y. Zou. Gpt detectors are biased against non-
native english writers. ArXiv, abs/2304.02819, 2023.

Vinu Sankar Sadasivan, Aounon Kumar, S. Balasubrama-
nian, Wenxiao Wang, and Soheil Feizi. Can ai-generated
text be reliably detected? ArXiv, abs/2303.11156, 2023.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan
Katz, Ian Miers, and Tom Goldstein. A watermark for
large language models. International Conference on Ma-
chine Learning, 2023.

Xuandong Zhao, Yu xiang Wang, and Lei Li. Protecting
language generation models via invisible watermarking.
ArXiv, abs/2302.03162, 2023.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are unsu-
pervised multitask learners. OpenAI blog, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettle-
moyer, and Veselin Stoyanov. Roberta: A robustly opti-
mized bert pretraining approach. ArXiv, abs/1907.11692,
2019.

Katzenbeisser Stefan, AP Fabien, et al. Information hiding
techniques for steganography and digital watermarking,
2000.

Umut Topkara, Mercan Topkara, and Mikhail J. Atallah.
The hiding virtues of ambiguity: quantifiably resilient
watermarking of natural language text through synonym
substitutions. In Workshop on Multimedia & Security,
2006.

Mikhail J. Atallah, Victor Raskin, Michael Crogan, Chris-
tian F. Hempelmann, Florian Kerschbaum, Dina Mo-
hamed, and Sanket Naik. Natural language watermarking:
Design, analysis, and a proof-of-concept implementation.
In Information Hiding, 2001.

Mikhail J. Atallah, Victor Raskin, Christian F. Hempel-
mann, Mercan Topkara, Radu Sion, Umut Topkara, and

Katrina E. Triezenberg. Natural language watermarking
and tamperproofing. In Information Hiding, 2002.

Xi Yang, Jie Zhang, Kejiang Chen, Weiming Zhang, Zehua
Ma, Feng Wang, and Nenghai Yu. Tracing text prove-
nance via context-aware lexical substitution. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 11613–11621, 2022.

Honai Ueoka, Yugo Murawaki, and Sadao Kurohashi. Frus-
tratingly easy edit-based linguistic steganography with
a masked language model. In Proceedings of the 2021
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, 2021.

Margherita Gambini, Tiziano Fagni, F. Falchi, and Maurizio
Tesconi. On pushing deepfake tweet detection capabilities
to the limits. Proceedings of the 14th ACM Web Science
Conference 2022, 2022.

Max Wolff. Attacking neural text detectors. ArXiv,
abs/2002.11768, 2020.

Miranda Christ, Sam Gunn, and Or Zamir. Unde-
tectable watermarks for language models. arXiv preprint
arXiv:2306.09194, 2023.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam
Smith. Calibrating noise to sensitivity in private data
analysis. In Theory of cryptography, pages 265–284.
Springer, 2006.

Jinshuo Dong, David Durfee, and Ryan Rogers. Optimal
differential privacy composition for exponential mecha-
nisms. In International Conference on Machine Learning,
pages 2597–2606. PMLR, 2020.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John
Wieting, and Mohit Iyyer. Paraphrasing evades detectors
of ai-generated text, but retrieval is an effective defense.
ArXiv, abs/2303.13408, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer sentinel mixture models. In
International Conference on Learning Representations,
2017.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe,
Moya Chen, Shuohui Chen, Christopher Dewan, Mona
Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott,
Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh
Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettle-
moyer. Opt: Open pre-trained transformer language mod-
els. ArXiv, abs/2205.01068, 2022.

6

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
Aur’elien Rodriguez, Armand Joulin, Edouard Grave, and
Guillaume Lample. Llama: Open and efficient foundation
language models. ArXiv, abs/2302.13971, 2023.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin Choi.
The curious case of neural text degeneration. In Interna-
tional Conference on Learning Representations, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac,
Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie
Brew. Huggingface’s transformers: State-of-the-art natu-
ral language processing. ArXiv, abs/1910.03771, 2019.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L.
Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, John Schulman,
Jacob Hilton, Fraser Kelton, Luke E. Miller, Maddie
Simens, Amanda Askell, Peter Welinder, Paul Francis
Christiano, Jan Leike, and Ryan J. Lowe. Training lan-
guage models to follow instructions with human feedback.
ArXiv, abs/2203.02155, 2022.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvinine-
jad, Abdel rahman Mohamed, Omer Levy, Veselin Stoy-
anov, and Luke Zettlemoyer. Bart: Denoising sequence-
to-sequence pre-training for natural language generation,
translation, and comprehension. In Annual Meeting of
the Association for Computational Linguistics, 2019.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette,
Lasse Espeholt, Will Kay, Mustafa Suleyman, and Phil
Blunsom. Teaching machines to read and comprehend.
Advances in neural information processing systems, 28,
2015.

Frank McSherry and Kunal Talwar. Mechanism design
via differential privacy. In Symposium on Foundations
of Computer Science (FOCS’07), pages 94–103. IEEE,
2007.

Mark Cesar and Ryan Rogers. Bounding, concentrating,
and truncating: Unifying privacy loss composition for
data analytics. In Algorithmic Learning Theory, pages
421–457. PMLR, 2021.

Mélisande Albert. Concentration inequalities for randomly
permuted sums. In High Dimensional Probability VIII:
The Oaxaca Volume, pages 341–383. Springer, 2019.

7

A. Related work
Watermarking natural languages. The concept of watermarking, which involves hiding identifying information within
data, has a long history. However, watermarking digital text has been challenging due to its discrete nature (Stefan et al.,
2000). Early approaches relied on techniques such as synonym substitution (Topkara et al., 2006), syntactic structure
restructuring (Atallah et al., 2001), or paraphrasing (Atallah et al., 2002). Later, advancements in modern neural language
models led to improved methods that move away from rule-based approaches. Different approaches have been proposed,
such as encoding messages by context-aware lexical substitution (Yang et al., 2022) or using mask-infilling models for
editing text (Ueoka et al., 2021). Recent studies (Zhao et al., 2023; Kirchenbauer et al., 2023) explore modifying the logits
of language models during token generation and embedding invisible watermarks in the decoding process. Our objective is
to develop a robust watermarking technique for natural language models that maintains high text quality while effectively
concealing identifying information.

Post-hoc detection. Rather than watermarking, an alternative approach involves developing detection models for post-hoc
analysis of machine-generated text. Some detection methods use statistical outlier detection techniques without requiring
additional training. For example, GLTR (Gehrmann et al., 2019) assesses the expected probability of individual tokens
and applies thresholding to identify AI-generated content. DetectGPT (Mitchell et al., 2023) suggests that AI-generated
passages tend to reside in the negative curvature of the log probability of texts. Another set of methods relies on classifiers
that are fine-tuned to distinguish between human-written and machine-generated text. Initial efforts in this domain focus on
detecting fake reviews (Hovy, 2016) and fake news (Zellers et al., 2019). More recently, OpenAI releases a web interface
that uses a finetuned GPT model for this discrimination task (OpenAI, 2023b). However, as language models improve,
AI-generated text is becoming increasingly similar to human-generated text, making it more challenging to detect. (Gambini
et al., 2022) find that existing detection strategies designed for GPT-2 struggle with GPT-3. Moreover, known detectors are
found to be fragile to adversarial attacks (Wolff, 2020) and biased towards non-native English writers (Liang et al., 2023).

Impossibility results. Sadasivan et al. (2023) pose the question of whether detecting machine-generated text is possible
and argue that as the human distribution and LLM distribution of texts get closer, any classifier will have to either have
a large Type I error or a large Type II error. The authors also argue that (in Corollary 2) if the watermarking scheme can
be learned then paraphrasing attacks either evade the detector or also classify humans with a similar distribution as false
positives. This does not invalidate our results as we made no theoretical claim about paraphrasing. Also, the learnability
of the watermarking scheme is questionable too since the green-red lists are generated randomly — these can be seen as
injecting a very special “style” to an LLM. The style being randomly generated makes sure that it is extremely unlikely for
any human to develop the same style by chance.

Language model watermarks with provable guarantees. Concurrent to our work, Christ et al. (2023) consider the
problem of formally defining watermarking language models and propose a construction with provable guarantees. The
main differences between their work and ours are:

• In Christ et al. (2023), the watermarked distribution is computationally indistinguishable (i.e., indistinguishable against
probabilistic polynomial-time algorithms) from the un-watermarked distribution whereas in our case, we insist that the
watermarked distribution is statistically close to the un-watermarked distribution (of each token). The Type-I/Type-II error
guarantees and the security properties are qualitatively different in both works.

• We both use different approaches to achieve our definitions. The advantage of our construction is that it satisfies robustness
to edits property whereas they have no such guarantees. On the other hand, our construction uses a very different set of
assumptions (e.g., high entropy) on the language model and prompt that appears to be incompatible with theirs.

• Finally, we implement our construction and conduct a thorough empirical evaluation to demonstrate its practicality while
they don’t provide any implementation of their construction.

B. Theoretical guarantees
In this section, we present the quality, correctness, and security property of GPTWatermark as described in Definition 2.2.
We will start with the security property which ensures the resilience of the watermark to a wide family of evasion attacks.

8

B.1. Security property of GPTWatermark

We demonstrate the robustness of our watermarking scheme against editing attempts through Theorem B.1. As a baseline of
comparison, we also obtain new robustness guarantees for the soft watermarking method proposed in (Kirchenbauer et al.,
2023). The detailed proof is deferred to the Appendix.

Theorem B.1 (Robustness to editing). Let y = [y1, . . . , yn] represent the watermarked sequence. Suppose the adversary A
follows Definition 2.2 and outputs a modified text u = [u1, . . . , um]. Following Equation 2, we calculate z-score zy and zu.
Assume edit distance between y and u (denoted as η) satisfies η < n. Then we have

zu ≥ zy −max{ (1 + γ/2)η√
n

,
(1− γ/2)η√

n− η
}.

In particular, when η ≤ 2γn
(1+γ/2)2 , we can drop the second term in the max.

Remark B.2. This theorem highlights the relationship between the z-scores in the modified sequence and the watermarked
sequence, considering the maximum allowable edit distance η. It demonstrates the robustness of our algorithm against
editing attacks, illustrating that the z-score of the modified sequence remains bounded when compared to the z-score in the
watermarked sequence.
Remark B.3. Note that the green list can be completely revealed. This may initially seem counter-intuitive since, if the
green list is known, one could potentially post-process the text using synonym replacement to balance the occurrence of
words from the green and red lists. However, under the edit-distance metric (Definition 2.1), effective balancing cannot be
achieved unless the number of edits exceeds η.

Corollary B.4. Algorithm 3 with threshold τ satisfies the security property from Definition 2.2 with ϵ = 0 and

η(y, k, ϵ) =

√
n(zy − τ)

1 + γ/2
1

(
zy − τ <

γ
√
n

1 + γ/2

)
.

In comparison, the best bound on the security property parameter one can obtain for the scheme of Kirchenbauer et al.
(2023) is (a formal statement and proof are included in Appendix F.2)

η(y, k, ϵ) =

√
n(zy − τ)

2 + γ/2
1

(
zy − τ <

γ
√
n

2 + γ/2

)
.

To say it differently, our method, GPTWatermark, utilizing a fixed Green-Red split, achieves twice the robustness to edits
compared to Kirchenbauer et al. (2023)’s baseline approach.

B.2. Quality guarantee of GPTWatermark

The following theorems demonstrate that the distance between the original probability vector pt and the watermarked
probability vector p̂t are very close to each other in almost all popular metrics of probabilistic distances (and divergence).

Theorem B.5. Consider h as the input to the language model at step t, denoted as h = [x,y1:t−1]. Fix green list G. Let
δ represent the watermark strength. For any h, the α-th order Renyi-divergence between the watermarked probability
distribution p̂t = p̂t(·|h) at time step t and the original probability distribution pt = pt(·|h) satisfies:

∀h,max
(
Dα

(
p̂t∥pt

)
, Dα

(
pt∥p̂t

))
≤ min{δ, αδ2/8}.

The proof, deferred to the appendix, leverages a surprising connection to modern techniques in the differential privacy
literature (Dwork et al., 2006; Dong et al., 2020).
Remark B.6 (KL-divergence and other probability distance metrics). Renyi-divergence is very general. Kullback-Leibler-
divergence and chi-square divergence are directly implied by the α-Renyi divergence bound of min{δ, αδ2/8} by choosing
α = 1 and α = 2 respectively and swap p̂ and p. Hellinger distance can be obtained by choosing α = 0.5. By Pinsker’s
inequality, we get a Total Variation distance bound of min{

√
δ/2, δ/4}. Moreover, by choosing α → ∞, we obtain an

upper bound of δ for a very strong multiplicative guarantee known as max-divergence. The resulting two distributions p̂ and
p are referred to by cryptographers as (δ, 0)-indistinguishable, which says that for any measurable event S, the log-odds
ratio satisfies

−δ ≤ log
p̂t(yt ∈ S|h)
pt(yt ∈ S|h)

≤ δ.

9

To summarize, our result shows that Algorithm 2 produces M̂ that satisfies ω-quality of watermarked output with ω (as a
function of δ) for almost all commonly used probability distance D.

B.3. Type I error of GPTWatermark

Theorem B.7 (No false positives). Consider y = y1:n as any fixed suspect text. Let N =: |V| and G ⊂ |V| satisfying
|G| = γN . G is selected through Algorithm 2, using a uniform random choice. Let |y|G denote the number of tokens in G

and zy := |y|G−γn√
nγ(1−γ)

as in Algorithm 3. Then the following statements hold true:

1. Assume n ≥ 1, then
E[|y|G|y] = γn and E[zy|y] = 0.

2. Define Cmax(y) := maxi∈[N]

∑n
j=1 1(yj = i) and V (y) := 1

n

∑N
i=1(

∑n
j=1 1(yj = i))2, then with probability 1− α

(over only the randomness of G),

P
[
|y|G ≥ γn+

√
64γnV log(9/α) + Cmax log(9/α)

∣∣∣y] ≤ α

or equivalently (when n ≥ 1)

P

[
zy ≥

√
64V log(9/α)

c(1− γ)
+

Cmax log(9/α)√
nγ(1− γ)

∣∣∣∣∣y
]
≤ α.

Remark B.8 (Wide applicability). Note that the theorem does not impose assumptions on how y is generated. It covers any
procedure (including human generation) that produces y in a manner independently of the secret partition G. In cases where
y is generated by a language model, it could be the output of greedy search from p(yt|x,y1:t−1), nucleus sampling, beam
search, or any other decoding methods.
Remark B.9 (Diversity parameters). The V and Cmax parameters in Theorem B.7 measure the diversity of the suspect
text y and are necessary for the high-probability bound. As an example, if the prompt says “Repeat “Goal” for a
hundred thousand times like a soccer commentator.” Then the resulting generated sequence will be
“Goal goal goal ...”, and has either n green tokens or 0 green tokens. No meaningful Type I error bound can be
obtained.

Remark B.10 (Controlling false positive rate). The theorem implies that if we choose τ >
√

64V log(9/α)
c(1−γ) + Cmax log(9/α)√

nγ(1−γ)
,

then the false-positive rate is smaller than α. Note that V and Cmax can be computed directly from y, allowing us to choose
an input-dependent τ as a function of V,Cmax that achieves a α-Type I error guarantee with a fixed α for all inputs. In
particular, the Type I error α decreases exponentially as we increase the threshold τ .

Remark B.11 (Robustness to edits). When combined with Theorem B.1, it implies that if we choose τ >
√

64V log(9/α)
c(1−γ) +

Cmax log(9/α)√
nγ(1−γ)

+max{ (2+γ/2)η√
n

, (2−γ/2)η√
n−η

}, it guarantees that the false-positive rate is smaller than α for any adversary that

edits the sentence arbitrarily by at most η.

B.4. Type II error of GPTWatermark

To bound the Type II error, i.e., false negative rates, we need to make certain assumptions about p of the language model
and the prompt x. These assumptions include a “on-average high entropy” assumption and a “homophily” condition. We
will provide a detailed definition and discussion of these assumptions in Appendix E.4.1 and Appendix E.4.2, but let us first
explain them informally with examples.

On-average high entropy. The “on-average high entropy” assumption requires the probability of the roll-out to be
“sufficiently diverse” on average. Specifically, it requires a subset of

∑
t ∥pt∥22, ∥

∑
t pt∥2,

∑
t ∥pt∥2∞ or ∥

∑
t pt∥∞ to be

small either in expectation or with high probability. These bounds can be viewed as requiring a lower bound on the average
of certain Tsallis entropy — a generalization of the standard Shannon entropy. They are related but different from the “spike
entropy” assumption used by Kirchenbauer et al. (2023).

The high-entropy assumption is necessary to ensure that the increases in the logits have an effect on the generated outcome.
For example, if the prompt writes

10

“Generate the English alphabet in capital letters for 200 times please.”

Then the language model would generate

“ABC...XYZ, ABC...XYZ, ...”.

Despite that the generated sequence is very long, i.e., n is as large as 5, 200, the added watermark does not change
the distribution very much. To see this, if p(y3 = “C”|x,h) ≥ 1 − ϵ for a tiny ϵ, and then by our quality guarantee,
p̂(y3 = “C” |x,h) ≥ 1− ϵeδ .

Homophily. We also require a “homophily” assumption about the distribution induced by the state-transitions of the
language modelM which essentially implies that if we roll in with M̂ to step t instead ofM, then it will not make the
probabilities of seeing the green-list words less likely.

This “homophily” assumption is needed to rule out the unnatural situation where increasing the green list tokens initially
ends up reducing the number of green list tokens in the long run. To illustrate this, consider the following example utilizing
the prompt:

x = “Randomly select a color, state what it is. Then write a short poem about it
without naming this color at all.”

The generated text from a commercial language model is

“Color choice: green
Emerald whispers in the meadow’s sway, Life’s verdant rhythm in ceaseless play.
It cradles the world in a leafy embrace, A silent serenade to nature’s grace.”

Notice that if the token “green” ∈ G, it increases the probability of the language model generating “green” at the
beginning. However, regardless of the text’s length, the subsequent portion of the generated text will not contain the word
“green”, as instructed by the prompt. This decreases the expected number of times the token “green” appears.

Theorem B.12 (Only true detection). For a fixed language modelM and a prompt x. The sentence y1:n generated from
M̂(x) where M̂ is an output of our watermarking scheme Watermarkδ,γ(M) with parameter δ, γ. Then the following
statements are true.

1. Assume homophily (Assumption E.8), then

E[|y|G] ≥
nγeδ

1 + (eδ − 1)γ
− γ(1− γ)eδ

n∑
t=1

E
y1:t−1∼p(·|x)

∥pt∥2.

In particular, if Assumption E.5 condition is true with parameter ξ ≤ (1− κ) eδ−1
(1+(eδ−1)γ)eδ

for a parameter 0 < κ < 1,
then

E[|y|G] ≥ nγ

(
1 + κ

(eδ − 1)(1− γ)

1 + (eδ − 1)γ

)
or equivalently E[zy] ≥

κ(eδ − 1)
√

nγ(1− γ)

1 + (eδ − 1)γ
.

2. Assume high-probability version of homophily (Assumption E.9). There exists a parameter Cδ,γ that depends only δ, γ
such that with probability at least 1− β for any β > 0 (over both G and y ∼ p̂(·|x, G)),

∥y∥G ≥
nγeδ

1 + (eδ − 1)γ
−
√
2n log(6/β)

− Cδ,γ log
2 27(n+ 1)

β

(
∥

n∑
t=1

pt∥+
n∑

t=1

∥pt∥2 + ∥
n∑

t=1

pt∥∞ +

n∑
t=1

∥pt∥2∞

)
.

In particular, if for a parameter 0 < κ < 1,

n ≥ 8 log(6/β)(1− γ + eδγ)2

(1− κ)2γ2(1− γ)2(eδ − 1)2
= Ω̃(1/δ2) (3)

11

and Assumption E.6 condition is true with parameter (ξ, β/3) where

ξ ≤ (1− κ)γ(1− γ)(eδ − 1)

8Cδ,γ(1− γ + eδγ) log2
(

27(n+1)
β

) = Õ(δ), (4)

then

P
[
∥y∥G < nγ(1 + κ

(eδ − 1)(1− γ)

1− γ + γeδ
)

]
= P

[
zy <

κ(eδ − 1)
√

nγ(1− γ)

1 + (eδ − 1)γ

]
≤ β.

Remark B.13 (Exponentially small Type I and Type II error guarantees). Recall that according to Theorem B.7, in order to
have a false positive rate controlled at level α, we need to set the threshold τ ≳

√
log(1/α) for sufficiently high-entropy

sequences. Theorem B.12 says that if we want the false negative rate to be smaller than β, we only need the threshold
τ ≲ κδn under similar (slightly different) high-entropy sequences for n ≳ log(1/β)/δ2. Observe that there is a wide range
of valid choices of τ for us to have a detection algorithm that does not make Type I or Type II error with high probability.
These observations together suggest that we can afford to choose δ ≍ 1/

√
n if the sequence is sufficiently high-entropy.

Remark B.14 (Information-theoretic optimality). The sample complexity of n ≳ 1/δ2 is information-theoretically optimal
(up to a logarithmic factor) in δ because, our accuracy guarantee (together with the composition theorem) indicates that
the KL-divergence between a sequence of length n generated from p and that generated from p̂ is nδ2 indistinguishable,
i.e., n > 1/δ2 for any classifier — even the uniform most-powerful Neyman-Pearson likelihood-ratio test (which requires
additional information, e.g., x and p which we do not have) — to make no mistakes with a constant probability.

C. Experiment
In this section, we aim to conduct experiments to demonstrate the performance of watermark detection, the quality of
watermarked text, and the robustness against various attacking schemes, as compared to the baseline method.

C.1. Experiment setting

Datasets and prompts. We utilize two long-form text datasets: OpenGen and LFQA. OpenGen, collected by (Krishna
et al., 2023), consists of 3K two-sentence chunks sampled from the validation split of WikiText-103 (Merity et al., 2017).
The subsequent 300 tokens serve as the human-written continuation. LFQA is a long-form question-answering dataset
created by (Krishna et al., 2023) by scraping questions from Reddit, posted between July and December 2021, across six
domains. (Krishna et al., 2023) randomly select 500 questions from each domain and pair them with their corresponding
longest human-written answers, resulting in 3K QA pairs. In our experiments, we use the questions as prompts and the
corresponding answers as human-written text.

Language models. We conduct experiments using three state-of-the-art public language models of varying sizes from
different model families: GPT2-XL with 1.5B parameters (Radford et al., 2019), OPT-1.3B (Zhang et al., 2022), and
LLaMA-7B (Touvron et al., 2023). Nucleus Sampling (Holtzman et al., 2020) is employed as the default decoding algorithm
to introduce randomness while maintaining human-like text output. The models are loaded from the Huggingface library
(Wolf et al., 2019), and the generate API function is used to adjust the logits distribution of the language model.

Evaluation methods. Maintaining a low false positive rate is crucial to prevent misclassifying un-watermarked text
as watermarked. To ensure this, we set the false positive rates at 1% and 10% for all detection algorithms and adjust
the detection threshold accordingly. We report the true positive rate (TPR), F1 score, and present ROC curves. GPT3
(text-davinci-003), with 175 billion parameters and reinforcement learning from human feedback (Ouyang et al.,
2022), is used as the oracle model for perplexity evaluation. The experiments are conducted on Nvidia A100 GPUs.

C.2. Watermarking results

We use a watermark strength of δ = 2.0 and a green list ratio of γ = 0.5. We also use different watermark keys k for
different models. Stronger watermarks can be achieved for shorter sequences for a smaller γ and a larger δ. From the
two datasets, we generate 500 watermarked sentences and 500 un-watermarked sentences using three different models
(GPT2-XL, OPT-1.3B, and LLaMA-7B). We label them as “watermarked” and “un-watermarked” respectively. We also
have corresponding human-written text for each prompt, referred to as "human". All sentences are cropped to a length
of 200 tokens. z-scores are calculated for hypothesis testing as shown in Algorithm 3 between different sentence groups.

12

Watermarked Un-watermarked Human

5

0

5

10

15
z s

co
re

dataset-model
OpenGen-GPT2
OpenGen-OPT
OpenGen-LLaMA
LFQA-GPT2
LFQA-OPT
LFQA-LLaMA

(a) z-scores of watermarked and un-watermarked machine-
generated text, along with the z-score of human-generated
text. The watermarked text z-score surpasses the empirical
threshold of z = 6.0.

GPT2 OPT LLaMA
0

20

40

60

80

Te
xt

 P
er

pl
ex

ity

Human
Un-watermarked

KGW+23 watermark
GPTWatermark

(b) Text perplexity comparison (evaluated by GPT-3) between
human-generated text and text generated by various models
on the OpenGen dataset.

Figure 1: z-score comparison and text perplexity comparison.

The results (Figure 1a) indicate a clear distinction between watermarked and non-watermarked text. A default threshold of
z-score = 6.0 can be used to determine if a text is watermarked. For a fair comparison with (Kirchenbauer et al., 2023), we
also set δ = 2.0 and γ = 0.5 for their method.

Figure 1b demonstrates the text perplexity of human, un-watermarked machine-generated, and two watermarking-generated
texts, evaluated on the OpenGen dataset. The perplexity of human text is significantly lower, likely due to the expertise
contributed in the Wikipedia-based dataset used to train GPT3. We observe that the perplexity of the watermarked text is
comparable to that of human-generated text, especially with the use of the largest model LLaMA-7B. This finding further
supports the effectiveness of our method in preserving linguistic characteristics and coherence, ensuring seamless integration
of watermarks without compromising overall text quality. One example of the prompt questions, human answers, and
machine-generated answers can be found in Table 1.

C.3. Robustness results

One of the key advantages of our method is its robustness. To provide comprehensive evidence of its resilience, we conduct
experiments to test its resilience against various attacking methods.

Paraphrasing attack. In the soft watermarking scheme proposed by (Kirchenbauer et al., 2023), the selection of an output
token from the language model’s green list relies on the token’s prefix. However, this approach is vulnerable to paraphrase
attacks that aim to remove the watermark signature. To demonstrate the superior robustness of our method, supported by
our theorem, we devise experiments to compare its performance against (Kirchenbauer et al., 2023). We employ different
paraphrase attack techniques targeting the removal of the watermark. Firstly, we utilized two versions of the DIPPER
model(Krishna et al., 2023), we denote them as “DIPPER-1” and “DIPPER-2”. DIPPER-2 has greater diversity than
DIPPER-1. Additionally, we leverage the ChatGPT API, generating paraphrased text by providing prompts such as Rewrite
the following paragraph:. Furthermore, we employ BART (Lewis et al., 2019) (bart-large-cnn, a large-sized model
fine-tuned on the CNN Daily Mail dataset (Hermann et al., 2015)) for text summarization as another type of paraphrasing
attack. The results of our experiments are shown in Figure 2 and Table 2. We also show the true positive rate, F1 score for
false positive rates at 1% and 10%. The results illustrate the substantial improvement in robustness achieved by our method
compared to (Kirchenbauer et al., 2023). Notably, our method achieves an accuracy rate of over 85% with a false positive
rate of 10%.

Editing attack. To further evaluate the robustness of our method against edit attacks, we examine its performance
when subjected to synonym replacement, random deletion, and random swapping. These edit attack scenarios represent
common techniques used to manipulate text and potentially remove watermarks. We conduct various editing attacks
for the watermarked text of GPTWatermark and KGW+23. The results are shown in Figure 2. In each scenario, our

13

OpenGen LFQA
Setting Method 1% FPR 10% FPR 1% FPR 10% FPR

TPR F1 TPR F1 TPR F1 TPR F1

No attack KGW+23 1.000 0.995 1.000 0.952 1.000 0.995 1.000 0.952
GPTWatermark 1.000 0.995 1.000 0.952 1.000 0.995 1.000 0.952

ChatGPT KGW+23 0.565 0.704 0.853 0.747 0.327 0.453 0.673 0.490
GPTWatermark 0.866 0.910 0.961 0.818 0.442 0.568 0.865 0.584

DIPPER-1 KGW+23 0.386 0.546 0.738 0.720 0.372 0.534 0.740 0.767
GPTWatermark 0.729 0.830 0.922 0.837 0.639 0.770 0.909 0.865

DIPPER-2 KGW+23 0.490 0.646 0.810 0.769 0.432 0.595 0.845 0.839
GPTWatermark 0.777 0.862 0.941 0.852 0.693 0.810 0.948 0.894

BART KGW+23 0.342 0.505 0.667 0.759 0.457 0.617 0.783 0.836
GPTWatermark 0.590 0.730 0.861 0.857 0.656 0.784 0.885 0.897

Table 2: Performance comparison of our method (GPTWatermark) and the soft watermarking method proposed in (Kirchen-
bauer et al., 2023) (denoted as KGW+23). Both methods employ LLaMA-7B with nucleus sampling, utilizing δ = 2.0 and
γ = 0.5. We use ChatGPT, DIPPER, and BART for paraphrasing the watermarked text as paraphrasing attacks. True positive
rate and F1 score are presented for fixing the false positive rates at 1% and 10%. When there is no attack, both methods
exhibit perfect watermark detection. Nevertheless, when subjected to paraphrasing attacks, GPTWatermark consistently
outperforms KGW+23.

method consistently outperforms (Kirchenbauer et al., 2023) watermarking scheme, showcasing its enhanced resilience and
effectiveness in protecting the integrity of the embedded watermarks.

C.4. Distinguishing human-written text

OriginalityAI

Quil
Sapling

HFOpenAI

GPTZero

Crossplag

ZeroGPT

Ours

0%

20%

40%

60%

80%

100%

M
isc

la
ss

ifi
ed

 ra
te 76% 75%

68%
58%

52% 52% 48%

0%

Ours

3

2

1

0

1

2

z s
co

re

Figure 3: Distinguishing human-written text on TOEFL
dataset.

An interesting observation emphasized by (Liang et al., 2023)
is the misclassification of non-native English writing samples
as AI-generated by existing AI content detectors. In light of
this, our method has the unique capability to effectively estab-
lish the origin of suspicious text and maintain its robustness
against distribution shifts. We evaluate the effectiveness of our
watermark in distinguishing human-written text on a dataset of
human-written TOEFL essays collected by (Liang et al., 2023)
(more details are deferred to the Appendix). Our method demon-
strates a remarkable ability to accurately classify human-written
text, as evidenced by significantly lower z-scores compared to
the empirical threshold of z = 6.0. This outcome underscores
the effectiveness of our watermark in discerning text generated
by human authors, further enhancing its practical utility and
reliability.

14

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ChatGPT KGW+23 AUC: 0.949
ChatGPT Ours AUC: 0.989

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

BART KGW+23 AUC: 0.892
BART Ours AUC: 0.949

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

DIPPER-1 KGW+23 AUC: 0.903
DIPPER-1 Ours AUC: 0.974
DIPPER-2 KGW+23 AUC: 0.926
DIPPER-2 Ours AUC: 0.979

(a) GPTWatermark against paraphrasing attacks on OpenGen dataset with LLaMA-7B.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Replace-0.1 KGW+23 AUC: 0.886
Replace-0.1 Ours AUC: 0.900
Replace-0.3 KGW+23 AUC: 0.821
Replace-0.3 Ours AUC: 0.850
Replace-0.5 KGW+23 AUC: 0.770
Replace-0.5 Ours AUC: 0.803

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Delete-0.1 KGW+23 AUC: 0.931
Delete-0.1 Ours AUC: 0.966
Delete-0.3 KGW+23 AUC: 0.896
Delete-0.3 Ours AUC: 0.963
Delete-0.5 KGW+23 AUC: 0.841
Delete-0.5 Ours AUC: 0.970

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Swap-0.1 KGW+23 AUC: 0.881
Swap-0.1 Ours AUC: 0.966
Swap-0.3 KGW+23 AUC: 0.738
Swap-0.3 Ours AUC: 0.975
Swap-0.5 KGW+23 AUC: 0.702
Swap-0.5 Ours AUC: 0.978

(b) GPTWatermark against editing attacks on LFQA dataset with LLaMA-7B. We vary the rates of synonym
replacement, random deletion, and random swapping (0.1, 0.3, 0.5) to demonstrate different attack scenarios.

Figure 2: ROC curves with corresponding AUC values for watermark detection against various attack methods. Complete
results can be found in the Appendix. Our method (GPTWatermark) exhibits superior robustness compared to the baseline
(KGW+23) across both datasets and all attack scenarios.

D. Additional experiment results
D.1. Empirical error rates

We perform experiments on two datasets (OpenGen and LFQA) using three different models (GPT2-XL, OPT-1.3B, and
LLaMA-7B). Table 3 presents the error rates, showcasing the sensitivity of the resulting hypothesis test based on observed
z-scores. The results demonstrate that there are no Type-I (false positive) errors for all models, with true positive rates
exceeding 0.94 for a threshold of z = 6.0.

z = 6.0 z = 7.0

Dataset Model FPR TNR TPR FNR FPR TNR TPR FNR

OpenGen
GPT2-XL 0.0 1.0 0.943 0.057 0.0 1.0 0.832 0.168
OPT-1.3B 0.0 1.0 0.998 0.002 0.0 1.0 0.996 0.004
LLaMA-7B 0.0 1.0 0.974 0.026 0.0 1.0 0.911 0.089

LFQA
GPT2-XL 0.0 1.0 0.948 0.052 0.0 1.0 0.889 0.111
OPT-1.3B 0.0 1.0 1.000 0.000 0.0 1.0 0.997 0.003
LLaMA-7B 0.0 1.0 0.976 0.024 0.0 1.0 0.942 0.058

Table 3: Empirical error rates for watermark detection using different models on two datasets. All models employ nucleus
sampling with δ = 2.0 and γ = 0.5. No Type-I (false positive) errors are observed across all models.

15

D.2. Different watermark parameters

We conduct an analysis to understand the impact of changing watermark strength (δ), green list size (γ), and sampling
methods on two datasets. The results are summarized in Table 4. When using nucleus sampling with a fixed γ = 0.5,
increasing the watermark strength resulted in higher true positive rates (TPR), but it also led to an increase in perplexity
(lower quality). Furthermore, for the same watermark strength δ, varying the green list ratio from 0.25 to 0.5 and 0.75
showed improved detection results with smaller γ. Additionally, we explore different decoding methods, transitioning from
nucleus sampling to multinomial sampling and beam search. Remarkably, watermark detection performed effectively with
all decoding methods. It is worth noting that the perplexity score for beam search is significantly lower than that of nucleus
sampling. However, beam search tends to generate shorter sequences with repeated words.

z = 6.0 z = 7.0

Dataset decoding δ γ PPL FPR TNR TPR FNR FPR TNR TPR FNR

OpenGen

nucleus 1.0 0.5 18.376.45 0.0 1.0 0.576 0.424 0.0 1.0 0.310 0.690
nucleus 2.0 0.5 19.428.78 0.0 1.0 0.998 0.002 0.0 1.0 0.996 0.004
nucleus 5.0 0.5 19.4415.02 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
nucleus 10.0 0.5 19.2018.01 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
nucleus 2.0 0.25 17.969.54 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
nucleus 2.0 0.75 20.037.67 0.0 1.0 0.820 0.180 0.0 1.0 0.485 0.515
m-nom. 2.0 0.5 1.750.59 0.0 1.0 0.951 0.049 0.0 1.0 0.924 0.076
4-beams 2.0 0.5 1.830.97 0.0 1.0 0.992 0.008 0.0 1.0 0.982 0.018
6-beams 2.0 0.5 1.891.10 0.0 1.0 0.984 0.016 0.0 1.0 0.982 0.018
8-beams 2.0 0.5 1.961.23 0.0 1.0 0.986 0.014 0.0 1.0 0.984 0.016

LFQA

nucleus 1.0 0.5 18.637.19 0.0 1.0 0.455 0.545 0.0 1.0 0.199 0.801
nucleus 2.0 0.5 19.1411.11 0.0 1.0 1.000 0.000 0.0 1.0 0.997 0.003
nucleus 5.0 0.5 16.3715.39 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
nucleus 10.0 0.5 16.0714.25 0.0 1.0 0.998 0.002 0.0 1.0 0.998 0.002
nucleus 2.0 0.25 15.2710.00 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
nucleus 2.0 0.75 19.448.20 0.0 1.0 0.893 0.107 0.0 1.0 0.582 0.418
m-nom. 2.0 0.5 3.172.39 0.0 1.0 0.934 0.066 0.0 1.0 0.914 0.086
4-beams 2.0 0.5 3.242.85 0.0 1.0 0.990 0.010 0.0 1.0 0.986 0.014
6-beams 2.0 0.5 3.202.52 0.0 1.0 0.994 0.006 0.0 1.0 0.994 0.006
8-beams 2.0 0.5 3.132.37 0.0 1.0 0.994 0.006 0.0 1.0 0.992 0.008

Table 4: Comparison of empirical error rates for watermark detection using nucleus sampling, multinomial decoding, and
beam search. Each row represents the average of 500 sequences. While sequences generated with beam search exhibit lower
perplexity, they tend to favor shorter outputs, potentially resulting in less diverse text.

D.3. Additional robustness results

In addition to the previously discussed robustness evaluations, we provide further analysis of our method’s resilience
against paraphrasing attacks and editing attacks. The results are presented in Figure 4. Notably, our proposed method
(GPTWatermark) consistently outperforms the baseline approach (KGW+23) across various datasets and attack scenarios.
This demonstrates the superior robustness of our method in accurately detecting watermarked text.

E. Proofs of the theoretical results
In this section, we provide the full proof details for the guarantees for GPTWatermark which certifies the required quality,
correctness, and security properties of a language model watermarking scheme from Definition 2.2.

16

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ChatGPT KGW+23 AUC: 0.877
ChatGPT Ours AUC: 0.949

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

BART KGW+23 AUC: 0.925
BART Ours AUC: 0.959

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

DIPPER-1 KGW+23 AUC: 0.901
DIPPER-1 Ours AUC: 0.967
DIPPER-2 KGW+23 AUC: 0.943
DIPPER-2 Ours AUC: 0.984

(a) GPTWatermark against paraphrasing attacks on LFQA dataset with LLaMA-7B.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Replace-0.1 KGW+23 AUC: 0.896
Replace-0.1 Ours AUC: 0.923
Replace-0.3 KGW+23 AUC: 0.842
Replace-0.3 Ours AUC: 0.877
Replace-0.5 KGW+23 AUC: 0.789
Replace-0.5 Ours AUC: 0.861

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Delete-0.1 KGW+23 AUC: 0.929
Delete-0.1 Ours AUC: 0.959
Delete-0.3 KGW+23 AUC: 0.879
Delete-0.3 Ours AUC: 0.951
Delete-0.5 KGW+23 AUC: 0.817
Delete-0.5 Ours AUC: 0.956

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Swap-0.1 KGW+23 AUC: 0.855
Swap-0.1 Ours AUC: 0.959
Swap-0.3 KGW+23 AUC: 0.773
Swap-0.3 Ours AUC: 0.963
Swap-0.5 KGW+23 AUC: 0.688
Swap-0.5 Ours AUC: 0.967

(b) GPTWatermark against editing attacks on OpenGen dataset with LLaMA-7B. We vary the rates of synonym
replacement, random deletion, and random swapping (0.1, 0.3, 0.5) to demonstrate different attack scenarios.

Figure 4: ROC curves with corresponding AUC values for watermark detection against various attack methods.

E.1. Quality guarantees

We start by providing a strong utility analysis of the watermarked language model than the “perplexity” bound from
(Kirchenbauer et al., 2023). Our results work for the entire family of Rényi-divergence and imply guarantees in Kullback-
Leibler (KL) divergence and Total Variation-distance.

The Renyi-divergence of two distributions P , Q is defined as

Dα

(
P∥Q

)
=

1

α− 1
log E

x∼Q

[
(
dP

dQ
)α
]

where dP
dQ is the Radon–Nikodym derivative. When α → 1, the Renyi divergence converges to the KL-divergence.

Additionally, when α = 0.5, it serves as an upper bound for the TV-distance.

On the technical level, we leverage a surprising connection to a modern machinery developed in the differential privacy
literature known as “bounded range” analysis (Dong et al., 2020) of the classical exponential mechanism (McSherry and
Talwar, 2007).

Theorem E.1 (Restatement of Theorem B.5). Consider h as the input to the language model at step t, denoted as
h = [x,y1:t−1]. Fix green list G. Let δ represent the watermark strength. For any h, the α-th order Renyi-divergence
between the watermarked probability distribution p̂t = p̂t(·|h) at time step t and the original probability distribution
pt = pt(·|h) satisfies:

∀h,max
(
Dα

(
p̂t∥pt

)
, Dα

(
pt∥p̂t

))
≤ min{δ, αδ2/8}.

Proof. We define δv = 0 when v ∈ R and δv = δ when v ∈ G. Using this definition, we have:

p̂(v|h) = exp(ℓv + δv)∑
w exp(ℓw + δw)

≤ exp(δ) exp(ℓv)

exp(−δ)
∑

w exp(ℓw)
= e2δp(v|h)

Similarly, p̂(v|h) ≥ e−2δp(v|h).

17

Consequently, p̂ and p are 2δ-close in terms of max-divergence, which can be interpreted as (ϵ, δ̃)-indistinguishable, similar
to the concept of Differential Privacy (Dwork et al., 2006) with δ̃ = 0 and ϵ = 2δ.

Additionally, p̂(v|h) and p(v|h) satisfy δ-BoundedRange (Proposition 1 in (Dong et al., 2020)) with parameter δ, since the
changes to ℓv is monotonic. Lemma 3.2 in (Cesar and Rogers, 2021) shows that δ-Bounded Range implies δ2/8-concentrated
differential privacy, which says that Dα(p̂∥p) ≤ δ2α

8 for all α ≥ 1 (where Dα represents Rényi Divergence of order α).
Specifically, when α = 1, the KL-divergence satisfies DKL(p̂∥p) ≤ δ2

8 .

Furthermore, δ-BoundedRange implies δ-DP (or rather (δ, 0)-indistinguishability, since we are dealing with just two
distributions rather than a family of neighbor distributions). It follows from the that

DKL(p̂∥p) ≤ D∞(p̂∥p) ≤ δ

Corollary E.2. For any prompt x, the KL-divergence between the probability distribution of the watermarked sequence and
the original sequence satisfies:

∀x,max{DKL

(
p̂(y1:n|x)∥p(y1:n|x)

)
, DKL

(
p(y1:n|x)∥p̂(y1:n|x)

)
} ≤ αmin{nδ, nδ2/8}

Proof. The proof follows from the adaptive composition theorem for Renyi-divergence, and max-divergence (from the
DP literature) for the autoregressive decomposition of p̂(y1:n|x) and p(y1:n|x) and then invoke Theorem B.5 for each
factor.

E.2. Robustness / Security guarantees

In this section, we provide the proof for Theorems B.1, F.1, and B.5 to ensure completeness and precision. We begin by
restating the theorems and providing the corresponding proofs with necessary modifications.

Theorem E.3 (Robustness to editing (Restatement of Theorem B.1)). Let y = [y1, . . . , yn] represent the watermarked
sequence. Suppose the adversary A follows Definition 2.2 and outputs a modified text u = [u1, . . . , um]. Following
Equation 2, we calculate z-score zy and zu. Assume edit distance between y and u (denoted as η) satisfies η < n. Then we
have

zu ≥ zy −max{ (1 + γ/2)η√
n

,
(1− γ/2)η√

n− η
}.

In particular, when η ≤ 2γn
(1+γ/2)2 , we can drop the second term in the max.

Proof. Define bivariate function f(x, y) = x−γy√
y . By Taylor’s theorem

f(x− kx, y − ky) = f(x, y) +

[
∂xf(x− k̃xy − k̃y)

∂yf(x− k̃xy − k̃y)

]T [
−kx
−ky

]
= f(x, y)−

 kx√
y − k̃y

− γky

2
√

y − k̃y

where k̃x is between 0 and kx and k̃y is between 0 and ky . We also know that |kx| ≤ k and |ky| ≤ k.

A lower bound of the above can be obtained by finding an upper bound to

kx√
y − k̃y

− γky

2
√

y − k̃y

=
kx − γ

2ky√
y − k̃y

First observe that we can always choose kx = k. Next we discuss two possibilities of ky. If ky is negative, then choosing
ky = −k and k̃ = 0 maximizes the bound, which gives (1+γ/2)k√

y .

If ky is positive, then we should always choose k̃y = ky to maximize the expression, which gives us an upper bound of

k − γ
2ky√

y − ky
=

k + γ
2 (y − ky)− γ

2 y√
y − ky

=
k − γ

2 y√
y − ky

+
γ
√

y − ky

2
.

18

We will discuss two cases again, the first case is when k − γy/2 ≤ 0. In this case, the function g(u) = a/u + bu with
a ≤ 0 has a derivative of −a/u2 + b ≥ 0, thus g is monotonically increasing. Thus we should choose ky = 0. The second
case is when k − γy/2 > 0, in this case the a > 0 in the above g(u) and g(u) is convex, thus maxumin≤u≤umax g(u) =

max{g(umax), g(umin)}. Thus we should just compare the two cases when ky = 0 and ky = k, i.e., max{ k√
y ,

(1−γ/2)k√
y−k

}.

Collect everything together, we get an upper bound o

max{ (1 + γ/2)k
√
y

,
k
√
y
,
(1− γ/2)k√

y − k
} = max

{
(1 + γ/2)k
√
y

,
(1− γ/2)k√

y − k

}
i.e.,

f(x− kx, y − ky)− f(x, y) ≥ −max

{
(1 + γ/2)k
√
y

,
(1− γ/2)k√

y − k

}
.

Now notice that our z-score has the same form as the f(x, y) function. We can take y = n and x = |y|G. Instantiate k
be the maximum number of edits η. Observe that given that the adversary has a bounded edit distance, each operation of
“insertion”, “deletion”, or “edit” can, at most, alter one token from the green list to the red list. They also can only alter the
length by the number of edits. The above result translates into

zu ≥ zy −max{ (1 + γ/2)η√
n

,
(1− γ/2)η√

n− η
},

where η denotes the edit distance between y and u.

The robustness theorem above implies the security guarantees as we discussed in Corollary B.4.

E.3. No false positive (Type I error guarantees)

Theorem E.4 (No false positives (Restatement of Theorem B.7)). Consider y = y1:n as any fixed suspect text. Let
N =: |V| and G ⊂ |V| satisfying |G| = γN . G is selected through Algorithm 2, using a uniform random choice. Let |y|G
denote the number of tokens in G and zy := |y|G−γn√

nγ(1−γ)
as in Algorithm 3. Then the following statements hold true:

1. Assume n ≥ 1, then
E[|y|G|y] = γn and E[zy|y] = 0.

2. Define Cmax(y) := maxi∈[N]

∑n
j=1 1(yj = i) and V (y) := 1

n

∑N
i=1(

∑n
j=1 1(yj = i))2, then with probability 1− α

(over only the randomness of G),

P
[
|y|G ≥ γn+

√
64γnV log(9/α) + Cmax log(9/α)

∣∣∣y] ≤ α

or equivalently (when n ≥ 1)

P

[
zy ≥

√
64V log(9/α)

c(1− γ)
+

Cmax log(9/α)√
nγ(1− γ)

∣∣∣∣∣y
]
≤ α.

Proof. To prove the first statement, observe that any fixed token has a probability γ to be included in the green list, thus by
the linearity of the expectation and the independence of y in G.

E[|y|G|y] =
n∑

i=1

E[1(yi ∈ G)|y] =
n∑

i=1

γ = γn.

Next, we will prove the second statement by applying Lemma G.1 to obtain the result stated in the third statement. Let
ai,j = 1(j ≤ γN)

∑n
ℓ=1 1(yℓ = i). By our assumption 0 ≤ ai,j ≤ Cmax for all i, j. Observe that

∑N
i=1 ai,ΠN (i) is

identically distributed with |y|G.

19

By Lemma G.1 with t = 16 log(8e1/16/α), we get that with probability 1− α,

||y|G − γn| < 2

√
16 log(9/α)

N
NγnV + 16Cmax log(9/α)

where we used that 8e1/16 ≤ 9 and the fact that only γN columns of the ai,j matrix ai,j is nonzero, and for each non-zero
column L2-norm of the column is bounded by

√
nV by our definition of V . The result for the z-score follows trivially.

E.4. Only true detection (Type II error guarantees)

For bounding the Type II error, i.e., false negative rates, we will work with our proposed method that generates y from the
language model, i.e., sampling from the watermarked distribution p̂ recursively one token at a time.

Let’s first recall a few notations. h is the input to the language model at step t, i.e., h = [x,y1:t−1]. Let δ represent the
watermark strength from Equation 1. The green list G ⊂ [N] is a random index set of the vocabulary of size γN . The
watermarked probability distribution p̂t = p̂t(·|h) at time step t. The process of generating the sentence y1, y2, . . . , yn
involves recursively sampling from p̂t, which we refer to as a “roll-out” procedure.

We need to make a few assumptions about the language model’s probability distribution p and the prompt x. We will first
state them and then explain why these are natural and arguably needed for the Type II error to be small.

E.4.1. ON-AVERAGE HIGH ENTROPY ASSUMPTION

The first such assumption requires the probability of the roll-out to be “sufficiently diverse” on average. We will introduce

the notation ∥p∥2 :=
√∑N

i=1 p[i]
2.

Assumption E.5 (On-average-high-entropy). We say a language model’s probability distribution p with a prompt x satisfies
ξ-on-average-high-entropy if

1

n

n∑
t=1

E
y1:t−1∼p(·|x)

[∥pt∥2] ≤ ξ.

This assumption requires the distribution of the roll-out to be sufficiently diffuse on average (either in expectation or with
high probability).

The purpose of these assumptions is to rule out the cases when y1:n is almost deterministic under p and perturbing the logits
by δ does not change the distribution much at all.

For example, if the prompt writes

“Generate the English alphabet in capital letters for 200 times please.”

Then the language model would generate

“ABC...XYZ, ABC...XYZ, ...”.

Despite that the generated sequence is very long, i.e., n is as large as 5, 200, the added watermark does not change the
distribution very much at all. To see this, if p(y3 = “C”|x,h) ≥ 1 − ϵ for a tiny ϵ, and then by our quality guarantee,
p̂(y3 = “C” |x,h) ≥ 1− ϵeδ .

Quantitatively, for nearly uniform pt, ξ = O(1/N), if pt concentrates on a single token for all t, e.g., when a football
commentator exclaims “Goal goal goal goal”, then we cannot obtain a better bound than the trivial ξ ≤ 1.
In the alphabet example above ξ ≤ 1/26.

Why is it called entropy? Assumption E.5 is related to the “high-entropy” assumption in Kirchenbauer et al. (2023) but
for a slightly different kind of entropy. In a more formal sense, the quantity ∥pt∥2 is connected to the Tsallis entropy of
order 2, defined as S2(pt) = kB(1− ∥pt∥2) where kB is known as the Boltzmann constant. Our assumption requires the
expected Tsallis entropy of the conditional distribution pt over the roll-out of p to be larger than kB(1 − ξ) on average
among t = 1, ..., n.

For a high-probability result, we also need a stronger version.

20

Assumption E.6 (On-average-high-entropy (high probability)). We say that a language model’s probability distribution p
with a prompt x satisfies (ξ, β)-on-average-high-entropy if with probability at least 1− β over the generated sequence y1:n,

1

n
max

{∥∥∥∥∥
n∑

t=1

pt

∥∥∥∥∥ ,
n∑

t=1

∥pt∥2 ,

∥∥∥∥∥
n∑

t=1

pt

∥∥∥∥∥
∞

,

n∑
t=1

∥pt∥2∞

}
≤ ξ.

The behavior is similar to that of the expectation version of the assumption. When pt is nearly uniform, pt[i] = O(1/N),
then ξ = O(1/

√
N). When pt is supported only on one token, then ξ = 1. In practice, ξ is a small constant. As we will

present in the main theorem, as long as ξ ≍ δ, the number of green list tokens is guaranteed to grow faster γn as n gets
larger.

One may also ask whether it is necessary to make entropy assumptions on the conditional probabilities instead of the
marginal probabilities induced by p or p̂, but this is unfortunately not sufficient as illustrated in the following example.

Example E.7 (Marginal high entropy is insufficient). Let the prompt x be

“Generate the first token uniformly at random, then repeat the token you
generated for the remaining n− 1 tokens”.

In this case, a good language model that follows the instruction will have Pp(yt = i) = 1/N for all i and all t = 1, ..., n
marginally, which implies that the entropy is the maximum and for any green list G, Pp(yt ∈ G) = γ. On the other hand,
with probability γ, |y|G = n and with probability 1 − γ, |y|G = 0. There isn’t any concentration around γn possible.
Moreover, check that if we apply watermark, then Pp̂(yt ∈ G) = γeδ

γeδ+(1−γ)
for all t and all G. This changes the probability

of seeing |y|G = n slightly but the two world remains indistinguishable.

E.4.2. A “HOMOPHILY” ASSUMPTION

The second assumption that we need to make is called “homophily”, which says that increasing the probability of a group of
tokens by adding the watermarks will not decrease the probability of generating the same group of tokens in the future as the
language model rolls out.

Assumption E.8 (“Homophily”). We say a language model’s probability distribution p and prompt x satisfy “homophily”
if for any G, the corresponding watermarked p̂ satisfies that

E
h∼p̂(·|x)

[
P

y∼p̂(·|h,x)
(y ∈ G)

]
≥ E

h∼p(·|x)

[
P

y∼p̂(·|h,x)
(y ∈ G)

]
where h denotes the generated sequence before y.

This assumption says that by increasing the probability of tokens in G, the induced distribution of the prefix h cannot
counter-intuitively reduce the probability of tokens in G in the future on average.

The assumption is not unreasonable, because we expect a language model to be more likely to refer to text it has generated
in the prefix than those that did not appear in the prefix.

This assumption is needed to rule out the unnatural situation where increasing the green list tokens initially ends up reducing
the number of green list tokens in the long run. We gave an example in Section 3 to demonstrate the type of prompts that
may lead to such a counter-intuitive sequence distribution.

To hammer it home, consider the following more quantitative construction of that works no matter which random green list
G realizes.

x = “Choose the first k token by random sampling without replacement. Then sample
from all but the token you choose uniformly for n-k rounds.”

It’s easy to calculate that the expected number of times any token appears in a language model that perfectly follows the
instruction will be n/N . However, the watermarked language model, let’s say we use a very large δ such that the first k
tokens are from the green list, then the expected number of times a green-list token appears is k

γN + γN−k
γN

(n−k)(γN−k)
N−k

which is bounded by 1 if k = γN instead of growing linearly in n as in the original language model.

21

To obtain a concentration bound, we also need a stronger version of the homophily assumption as follows.

Assumption E.9 (High probability on-average homophily). There exists a coupling – a joint distribution of y1:n and ŷ1:n

where marginally y1:n ∼ p(·|x), ŷ1:n ∼ p̂(·|x) – such that for any G, with probability 1− β over the joint distribution,

1

n

n∑
t=1

p̂t(G|ŷ1:t−1)) ≥
1

n

n∑
t=1

p̂t(G|y1:t−1)).

The reason for defining the existence of a coupling is for technical reasons, but the purpose of the assumption is identical to
that of the in-expectation version.

E.5. Theorem statement on “Only true detection”

Now we are ready to state the main theorem.

Theorem E.10 (Only true detection; Restating Theorem B.12). For a fixed language model M and a prompt x. The
sentence y1:n generated from M̂(x) where M̂ is an output of our watermarking scheme Watermarkδ,γ(M) with parameter
δ, γ. Then the following statements are true.

1. Assume homophily (Assumption E.8), then

E[|y|G] ≥
nγeδ

1 + (eδ − 1)γ
− γ(1− γ)eδ

n∑
t=1

E
y1:t−1∼p(·|x)

∥pt∥2.

In particular, if Assumption E.5 condition is true with parameter ξ ≤ (1− κ) eδ−1
(1+(eδ−1)γ)eδ

for a parameter 0 < κ < 1,
then

E[|y|G] ≥ nγ

(
1 + κ

(eδ − 1)(1− γ)

1 + (eδ − 1)γ

)
or equivalently E[zy] ≥

κ(eδ − 1)
√

nγ(1− γ)

1 + (eδ − 1)γ
.

2. Assume high-probability version of homophily (Assumption E.9). There exists a parameter Cδ,γ that depends only δ, γ
such that with probability at least 1− β for any β > 0 (over both G and y ∼ p̂(·|x, G)),

∥y∥G ≥
nγeδ

1 + (eδ − 1)γ
−
√
2n log(6/β)

− Cδ,γ log
2 27(n+ 1)

β

(
∥

n∑
t=1

pt∥+
n∑

t=1

∥pt∥2 + ∥
n∑

t=1

pt∥∞ +

n∑
t=1

∥pt∥2∞

)
.

In particular, if for a parameter 0 < κ < 1,

n ≥ 8 log(6/β)(1− γ + eδγ)2

(1− κ)2γ2(1− γ)2(eδ − 1)2
= Ω̃(1/δ2) (5)

and Assumption E.6 condition is true with parameter (ξ, β/3) where

ξ ≤ (1− κ)γ(1− γ)(eδ − 1)

8Cδ,γ(1− γ + eδγ) log2
(

27(n+1)
β

) = Õ(δ), (6)

then

P
[
∥y∥G < nγ(1 + κ

(eδ − 1)(1− γ)

1− γ + γeδ
)

]
= P

[
zy <

κ(eδ − 1)
√

nγ(1− γ)

1 + (eδ − 1)γ

]
≤ β.

E.6. Proof of Theorem B.12

In the false negative error cases, y is drawn from the watermarked language model M̂. To be explicit, let us write
y = [ŷ1, ..., ŷn] = ŷ1:n. Now let’s also define a hypothetical (possibly coupled) sequence y1:n which is drawn from the
original (un-watermarked) language modelM.

22

For convenience, we define the following shorthand p(G) := Py∼p[y ∈ G]. for a probability mass function p defined on the
vocabulary V . Specifically, p̂t(G|ŷ1:t−1) means Py∼p̂t(·|x,ŷ1:t−1)

[y ∈ G], parameterized by a fixed green list G. Similarly,
pt(G|y1:t−1) denotes Py∼pt(·|x,y1:t−1)

[y ∈ G].

The proof of Theorem B.12 considers the following decomposition

|y|G =|y|G −
∑
t

p̂t(G|ŷ1:t−1) (7)

+
∑
t

p̂t(G|ŷ1:t−1)−
∑
t

p̂t(G|y1:t−1) (8)

+
∑
t

p̂t(G|y1:t−1) (9)

steps to prove a lower bound to each of the three terms. We will start with the high probability bound (the second statement
in Theorem B.12) then deal with the expectation.

E.6.1. MANY GREEN LIST TOKENS WITH HIGH PROBABILITY

To obtain a high-probability lower bound, it requires us to obtain concentration for each of the three terms. Specifically,

1. To bound Term (7), we use Lemma E.11 which invokes Martingale concentration over the randomness in y to show |y|G
is close to

∑
t p̂t(G|ŷ1:t−1).

2. We will show Term (8) is non-negative with high probability by using the homophily assumption (Assumption E.9). This
allows us to study the roll-out ŷ1:t−1 under M̂(x) (or p̂) by studying a hypothetical alternative roll-out y1:t−1 sampled
underM(x) (or p).

3. Then we control Term (9) by first Taylor expanding it into quantities involving pt(G|y1:t−1) instead of p̂(G|y1:t−1),
then apply concentration inequalities for each expanded terms over the randomness of G (while fixing y1:t−1) to obtain a
high probability lower bound. Proposition E.14 gives the results.

We start by tackling (7) via Martingale concentration.

Lemma E.11. For any green list G and prompt x.

E

[
|y|G −

n∑
t=1

P
yt∼p̂(·|x,y1:t−1)

[yt ∈ G]

]
= 0.

Moreover, with probability at least 1− β over the roll-out

|y|G ≥
n∑

t=1

P
yt∼p̂(·|x,y1:t−1)

[yt ∈ G]−
√
2n log(2/β).

Proof. We fix G and construct a martingale sequence X1, X2, ..., Xn where X0 = 0 and:

Xt = Xt−1 + 1(yt ∈ G)− P
yt∼p̂(·|x,y1:t−1)

[yt ∈ G].

Check that E[Xt|y1:t−1] = Xt−1. The underlying filtration is the sigma-field generated by y1:t.

The claim about the expectation follows from that X0 = 0 and an inductive argument following the tower property of
conditional probabilities.

By the fact that |Xt −Xt−1| ≤ 1 we can apply Azuma-Hoeffding’s inequality and get

P [|Xn − E[Xn]| ≥ u] ≤ 2e−
u2

2n .

23

Check that by an inductive argument E[Xn] = 0. So we get that with probability at least 1− δ

|Xn| =

∣∣∣∣∣
n∑

t=1

1(yt ∈ G)−
n∑

t=1

P
yt∼p̂(·|x,y1:t−1)

[yt ∈ G]

∣∣∣∣∣ ≤√2n log(2/δ).

To handle (8), we apply Assumption E.9 with parameter β/3, which says that with probability 1−β/3 (8)≥ 0. This converts
a roll-out from ŷ ∼ p̂ to a roll-out from the original p.

Before we deal with (9), let us write a lemma that rewrites p̂t(G|y1:t−1) into a more convenient form.

Lemma E.12. For any t, ht. Fix G. Denote short hands p̂(G) := Pyt∼p̂t(·|x,ht)[yt ∈ G] and p(G) := Pyt∼pt(·|x,ht)[yt ∈
G].

p̂(G) =
eδp(G)

1 + (eδ − 1)p(G)
=

(
1 +

(eδ − 1)(1− p(G))

1 + (eδ − 1)p(G)

)
p(G).

Proof. By definition,

p̂(G) =

∑
y∈G eℓy+δ∑

y∈G eℓy+δ +
∑

y/∈G eℓy

=
eδp(G)

eδp(G) + 1− p(G)
=

eδ

1 + (eδ − 1)p(G)
p(G)

=

(
1 +

(eδ − 1)(1− p(G))

1 + (eδ − 1)p(G)

)
p(G).

The lemma implies that p̂(G) ≥ p(G) and that if p(G) is bounded away from 1, p̂(G) ≥ (1 +O(δ))p(G).

Lemma E.13. For any t, ht. Fix G.

p̂(G) ≥ eδγ

1 + (eδ − 1)γ
+

eδ

(1 + (eδ − 1)γ)2
(p(G)− γ)− eδ(p(G)− γ)2

Proof. By the second-order Taylor’s theorem

eδx

1 + (eδ − 1)x
=

eδγ

1 + (eδ − 1)γ
+

eδ

(1 + (eδ − 1)γ)2
(x− γ)− eδ

(1 + (eδ − 1)x̃)3
(x− γ)2

where x̃ ∈ [x, γ] is a function of x. By relaxing x̃ to 0 we obtain the lower bound as claimed.

Now we are ready to handle (9) with high probability in the following proposition.

Proposition E.14 (Concentration). For any fixed sequence y1:n, and the corresponding language model’s probability
distribution p that gives conditional distributions p1, ...,pn. There exists a parameter Cδ,γ that depends only δ, γ. Then
with probability at least 1− β for any β > 0 (over G),

n∑
t=1

P
yt∼p(·|x,y1:t−1)

[yt ∈ G] ≥ nγeδ

1 + (eδ − 1)γ

−Cδ,γ log
2 9(n+ 1)

β

(
∥

n∑
t=1

pt[·]∥+
n∑

t=1

∥pt[·]∥2 + ∥
n∑

t=1

pt[·]∥∞ +

n∑
t=1

∥pt[·]∥2∞

)
.

24

Proof. By Lemma E.12 and E.13

n∑
t=1

P
yt∼p̂(·|x,y1:t−1)

[yt ∈ G]

=
∑
t

eδpt(G)

1 + (eδ − 1)pt(G)

≥
∑
t

eδγ

1 + (eδ − 1)γ
+

eδ(pt(G)− γ)

(1 + (eδ − 1)γ)2
− eδ(pt(G)− γ)2

=
nγeδ

1 + (eδ − 1)γ
+

eδ

(1 + (eδ − 1)γ)2

∑
t

Nγ∑
i=1

pt[π[i]]− nγ︸ ︷︷ ︸
(∗)

− eδ
∑
t

Nγ∑
i=1

pt[π[i]]− γ︸ ︷︷ ︸
(∗∗)

2

where π is a random permutation of the index set {1, ..., N}.

We will now apply Lemma G.1 to lowerbound (∗) with high probability and to bound the absolute value of (∗∗) with high
probability.

Remark E.15. The reason why we can apply these lemmas even after we condition on y1:t−1 is due to the “high-probability
homophily” assumption which allows us to use the fact that y1:t−1 is independent to G, i.e., the distribution of the green list
remains uniform at random after we condition on each qualifying y1:t−1 separately.

Using a similar argument from the proof of Theorem B.7, we can apply Lemma G.1 and get that with probability 1− β,

(∗) ≥ −

√√√√64γ∥
n∑

t=1

pt(·)∥2 log(9/β)− ∥
n∑

t=1

pt(·)∥∞ log(9/β).

Similarly by Lemma G.1 again to bound (∗∗) =
∑Nγ

i=1 pt[π[i]]− γ w.h.p for each t.∣∣(∗∗)∣∣ ≤√64γ∥pt(·)∥2 log(9/β) + ∥pt(·)∥∞ log(9/β).

To put things together, with probability 1− (n+ 1)β,

n∑
t=1

P
yt∼p(·|x,y1:t−1)

[yt ∈ G]

≥ nγeδ

1 + (eδ − 1)γ
− eδ

(1 + (eδ − 1)γ)2

√√√√64γ∥
n∑

t=1

pt[·]∥2 log(9/β) + ∥
n∑

t=1

pt[·]∥∞ log(9/β)

− eδγ(1− γ)

∑
t

∥pt[·]∥2 − 2eδ

(
64γ

n∑
t=1

∥pt[·]∥22 log(9/β) +
n∑

t=1

∥pt[·]∥2∞ log2(9/β)

)

≥ nγeδ

1 + (eδ − 1)γ
− Cδ,γ log(9/β)

2

(
∥

n∑
t=1

pt[·]∥+
n∑

t=1

∥pt[·]∥2 + ∥
n∑

t=1

pt[·]∥∞ +

n∑
t=1

∥pt[·]∥2∞

)

for a constant Cδ,γ that depends only in δ, γ. The proof is complete by defining β̃ = 9(n+ 1)β, and get the same result
under probability 1− β̃.

25

E.6.2. MANY GREEN LIST TOKENS IN EXPECTATION

To obtain the lower bound in expectation, we just need to bound the expectation of (7), (8) and (9).

1. Observe that E[Term (7)|G] = 0 (from Lemma E.11)

2. Also, observe that (8) ≥ 0 under the homophily assumption (Assumption E.8).

3. Term (9) can be further lower bounded by a second-order Taylor expansion argument (Lemma E.13) and a variance
calculation for sampling without replacement (Lemma E.16), which ends up depending on the on-average high-entropy
parameter from Definition E.5. The formal result is stated in Proposition E.17.

Lemma E.16. Fix pt

E
G
[(pt(G)− γ)2] ≤ γ(1− γ)∥pt[·]∥2.

Proof. First observe that EG[pt(G)] = γ because every token has γ probability to be included. By the variance formula for
sampling without replacement (N choose Nγ),

VarG[pt(G)|y1:t−1] = γN
1

N

N∑
i=1

(pt[i]
2 −N−2)(1− γN − 1

N − 1
) ≤ γ(1− γ)

N∑
i=1

pt[i]
2.

Proposition E.17. Assume homophily, then

E

[
n∑

t=1

P
yt∼p̂(·|x,y1:t−1)

[yt ∈ G]

]
≥ nγ

(
eδ

1 + (eδ − 1)γ
− (1− γ)eδ

n

n∑
t=1

E
y1:t−1∼p(·|x)

N∑
i=1

pt[i]
2

)
.

Proof. By homophily,

E

[
n∑

t=1

P
yt∼p̂(·|x,y1:t−1)

[yt ∈ G]

]

=

n∑
t=1

E
G,y1:t−1∼p̂(·|x)

[
P

yt∼p̂(·|x,y1:t−1)
[yt ∈ G]

]

≥
n∑

t=1

E
G,y1:t−1∼p(·|x)

[
P

yt∼p̂(·|x,y1:t−1)
[yt ∈ G]

]

=

n∑
t=1

E
y1:t−1∼p(·|x)

E
G

[
eδ Pyt∼pt(·|y1:t−1)

[yt ∈ G]

1 + (eδ − 1)Pyt∼pt(·|y1:t−1)
[yt ∈ G]

∣∣∣∣∣y1:t−1

]
(10)

By Lemma E.13, we can decompose (10). Also observe that EG

[
pt(G)

∣∣y1:t−1

]
= γ where pt(G) := Pyt∼pt(·|y1:t−1)

[yt ∈
G] is short hand for clarity. To see the second observation, notice that yt is independent to G, thus we can apply Statement 1
of Theorem B.7).

Apply the two observations to (10), we have

(10) ≥
n∑

t=1

E
y1:t−1∼p(·|x)

E
G

[
eδγ

1 + (eδ − 1)γ
+

eδ(pt(G)− γ)

(1 + (eδ − 1)γ)2
− eδ(pt(G)− γ)2

∣∣∣∣y1:t−1

]

=
eδnγ

1 + (eδ − 1)γ
+

n∑
t=1

E
y1:t−1∼p(·|x)

[
eδ(EG[pt(G)|y1:t−1]− γ)

(1 + (eδ − 1)γ)2
− eδ E

G
[(pt(G)− γ)2|y1:t−1]

]

=
eδnγ

1 + (eδ − 1)γ
−

n∑
t=1

eδ E
y1:t−1∼p(·|x)

VarG[pt(G)|y1:t−1].

26

By the variance formula for sampling without replacement (N choose Nγ),

VarG[pt(G)|y1:t−1] = γN
1

N

N∑
i=1

(pt[i]
2 −N−2)(1− γN − 1

N − 1
) ≤ γ(1− γ)

N∑
i=1

pt[i]
2.

Thus it follows that

(10) ≥ eδnγ

1 + (eδ − 1)γ
−

n∑
t=1

eδ E
y1:t−1∼p(·|x)

γ(1− γ)

N∑
i=1

pt[i]
2

= nγ

(
eδ

1 + (eδ − 1)γ
− (1− γ)eδ

n

n∑
t=1

E
y1:t−1∼p(·|x)

N∑
i=1

pt[i]
2

)
.

F. Analysis of Kirchenbauer et al. (2023)
F.1. Soft watermarking scheme of Kirchenbauer et al. (2023)

This section illustrates the soft watermarking scheme proposed by Kirchenbauer et al. (2023). This straightforward algorithm
only requires access to the language model’s logits at each time step. Let y = [y1, . . . , yn] represent the output sentence of
language modelM given the prompt x. The watermarking scheme generates y1:n by hashing yt−1 to a partition of the
token space (Green List and Red List) and amplifies the probability of tokens on the Green List. Specifically, [y1, . . . , yn] is
derived from the following Markov chain:

1. y1 ∼ Softmax
(
logitsM

(
y1 = ·|x

))
2. For t = 2 : n,

yt ∼ Softmax
(
logitsM(yt = ·|[x, y1 . . . , yt−1]) + δ1(· ∈ Green(yt−1))

)
Typically, γ|V| tokens are selected to form a Green List, where γ symbolizes the fraction of tokens to be watermarked (by
default, γ = 0.5). The logit value for each green token is augmented by a constant δ (default value = 2), which denotes
the watermark strength. This elevation enhances the likelihood of sampling green, watermarked tokens, particularly for
high-entropy distributions.

Validation of whether a text was generated by a watermarked language model is achievable given knowledge of the hash
function and tokenizer. The adversary constructs u = [u1, . . . , um] from x,y1:n and any auxiliary input. The detection
algorithm calculates the quantity of green tokens |u|G =

∑m
t=2 1(ut ∈ Green(ut−1)). One can assume the null hypothesis,

denoted as H0: The text sequence is produced independently of the green list rule. Following this, a z-statistic score is
computed as z = (|u|G − γm) /

√
mγ(1− γ). If the z-score exceeds a predetermined threshold, the algorithm declares,

“This was generated from M̂!”.

F.2. Security property of Kirchenbauer et al. (2023)

We also demonstrate the robustness property of the soft watermarking algorithm in Kirchenbauer et al. (2023) in the
following Theorem F.1

Theorem F.1 (Robustness to editing in the watermarking scheme of Kirchenbauer et al. (2023)). Let y = [y1, . . . , yn]
represent the watermarked sequence. Suppose the adversary A follows the definition 2.2 and outputs a modified text
u = [u1, . . . , um]. Following Equation 2, we calculate the z-score of the soft watermarking (Kirchenbauer et al., 2023) zy
and zu. Then we have

zu ≥ zy −max{ (2 + γ/2)η√
n

,
(2− γ/2)η√

n− η
}.

Proof. The proof is similar to that of Theorem B.1 except that the maximum perturbation to |y|G is now 2η rather than η.
We now justify that the maximum perturbation has really doubled below, but ignore the part that is the same as in the proof
of Theorem B.1.

27

Let BiGrams(u) = {{u1, u2}, {u2, u3}, ..., {un−1, un}} and similarly BiGrams(y) enumerates the set of all two grams in
sequence y1:m.

We claim that each edit can modify at most two elements in the above set. To see this, consider “insertion”, “deletion”, and
“edit” separately.

• If we “insert” one token ũ at t, then {ut−1, ut} and {ut, ut+1} become {ut−1, ũ}, {ũ, ut} and {ut, ut+1}. Only one
element of BiGrams(u) is modified — {ut−1, ut}.

• For “deletion” at t, {ut−1, ut} and {ut, ut+1} become {ut−1, ut+1}. So two elements from BiGrams(u) are gone.

• For “edit” at t, {ut−1, ut} and {ut, ut+1} become {ut−1, ũ} and {ũ, ut+1}. Thus again only two elements from
BiGrams(u) are gone.

It follows that when y is obtained after up to η edits

|BiGrams(u) ∩ BiGrams(y)| ≥ |BiGrams(u)| − 2η

Observe that
∑n

t=2 1(ut ∈ Green(ut−1)) counts the number of qualifying elements in BiGrams(u), which completes the
proof.

For this reason, our watermark is twice as robust as that of Kirchenbauer et al. (2023). This provides the theoretical
guarantee to our empirical results presented in the experiments!
Remark F.2. We can view our watermark as a trivial Markovian watermarking scheme with k = 0, and what Kirchenbauer
et al. (2023) proposed to be k = 1. For the more general k-Markovian watermarking scheme that depends on a prefix of
length k, the robustness deteriorates by a factor of k, as the maximum perturbation will become ((k+1)+γ/2)η√

n
. To say it

differently, choosing k = 0 gives the maximum robustness and maximum simplicity at the same time, and the benefit leads
to significant gains in our experiments, especially against paraphrasing attacks.

The other approach leverages the randomness in the language model rollout. In particular, we fix G and construct a
martingale sequence X1, X2, ..., Xn where X0 = 0 and

Xt = Xt−1 + 1(yt ∈ G)− P
yt∼p̂(·|x,y1:t−1)

(yt ∈ G).

Check that E[Xt|y1:t−1] = Xt−1. By the fact that |Xt −Xt−1| ≤ 1 we can apply Azuma-Hoeffding’s inequality and get

P [|Xn − E[Xn]| ≥ u] ≤ 2e−
u2

2n .

Check that by an inductive argument E[Xn] = 0. So we get that with probability at least 1− δ

|Xn| =

∣∣∣∣∣
n∑

t=1

1(yt ∈ G)−
n∑

t=1

P
yt∼p̂(·|x,y1:t−1)

(yt ∈ G)

∣∣∣∣∣ ≤√2n log(2/δ).

The issue is that both
∑n

t=1 1(yt ∈ G) and
∑n

t=1 Pyt∼p̂(·|x,y1:t−1)
(yt ∈ G) are random. While Azuma-Hoeffding allows

us to bound their differences whp, we still have to show that
∑n

t=1 Pyt∼p̂(·|x,y1:t−1)
(yt ∈ G) is a constant factor larger than

nγ (the factor depends on δ and should be like 1 + δ). It doesn’t happen for any fixed G and maybe randomness over G will
need to be taken into account and that makes it a bit complicated. One observation we can make even in the fixed G case is
that if we know x, y1:n and the language model, then we can compute

∑n
t=1 Pyt∼p̂(·|x,y1:t−1)

(yt ∈ G) exactly and whether
the deviation is substantially larger than random can be observed.

G. Technical Lemmas
Lemma G.1 (Bernstein-style inequality for random permutation (Albert, 2019, Proposition 2.2)). Let {ai,j}1≤i,j≤n be
a collection of non-negative numbers and Πn be a random uniform permutation. Let Zn =

∑n
i=1 ai,Πn(i). Then, for any

t > 0

P

|Zn − E[Zn]| ≥ 2

√√√√ t

n

n∑
i,j=1

a2i,j + max
1≤i,j≤n

{ai,j}t

 ≤ 8e1/16e−
t
16 .

28

Lemma G.2 (Variance for sampling without replacement). Let x1, ..., xN ∈ R. For any sample size 1 ≤ n ≤ N , and π be
a random permutation of {1, 2, ..., N}. The variance of X = 1

n

∑n
i=1 xπ(i) satisfies

Var(X) =
1

nN

N∑
i=1

(xi − x̄)2(1− n− 1

N − 1
).

Definition G.3 (Martingale). A sequence of random variables (Xn)n∈N is called a martingale if it satisfies the following
conditions:

1. E[|Xn|] <∞ for all n ∈ N.

2. E[Xn+1|Fn] = Xn for all n ∈ N.

where F1 ⊆ F2 ⊆ ... ⊆ Fn ⊆ Fn+1 ⊆ ... is a filtration. Specifically, Fn can be the sigma-algebra generated by another
sequence of random variable Y1, ..., Yn, i.e., Fn = σ(Y1:n) and Xn can be a function of Y1:n.

Lemma G.4 (Azuma-Hoeffding Inequality). Let (Xn)n∈N be a martingale such that |Xn+1−Xn| ≤ cn for some constants
cn and all n ∈ N. Then for all t > 0 and n ∈ N, we have

P (|Xn −X0| ≥ t) ≤ 2 exp

(
− t2

2
∑n

i=1 c
2
i

)
.

29

	Introduction
	Problem definition
	Definition of language model watermarking
	Threat models

	Method
	Limitations and conclusion
	Related work
	Theoretical guarantees
	Security property of GPTWatermark
	Quality guarantee of GPTWatermark
	Type I error of GPTWatermark
	Type II error of GPTWatermark

	Experiment
	Experiment setting
	Watermarking results
	Robustness results
	Distinguishing human-written text

	Additional experiment results
	Empirical error rates
	Different watermark parameters
	Additional robustness results

	Proofs of the theoretical results
	Quality guarantees
	Robustness / Security guarantees
	No false positive (Type I error guarantees)
	Only true detection (Type II error guarantees)
	On-average high entropy assumption
	A ``homophily'' assumption

	Theorem statement on ``Only true detection''
	Proof of Theorem B.12
	Many green list tokens with high probability
	Many Green List Tokens in Expectation

	Analysis of kirchenbauer2023watermark
	Soft watermarking scheme of kirchenbauer2023watermark
	Security property of kirchenbauer2023watermark

	Technical Lemmas

