
Under review as a conference paper at ICLR 2021

DYHCN: DYNAMIC HYPERGRAPH CONVOLUTIONAL
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Hypergraph Convolutional Network (HCN) has become a default choice for cap-
turing high-order relations among nodes, i.e., encoding the structure of a hyper-
graph. However, existing HCN models ignore the dynamic evolution of hyper-
graphs in the real-world scenarios, i.e., nodes and hyperedges in a hypergraph
change dynamically over time. To capture the evolution of high-order relations
and facilitate relevant analytic tasks, we formulate dynamic hypergraph and devise
the Dynamic Hypergraph Convolutional Networks (DyHCN). In general, DyHCN
consists of a Hypergraph Convolution (HC) to encode the hypergraph structure at
a time point and a Temporal Evolution module (TE) to capture the varying of the
relations. The HC is delicately designed by equipping inner attention and outer at-
tention, which adaptively aggregate nodes’ features to hyperedge and estimate the
importance of each hyperedge connected to the centroid node, respectively. Exten-
sive experiments on the Tiigo and Stocktwits datasets show that DyHCN achieves
superior performance over existing methods, which implies the effectiveness of
capturing the property of dynamic hypergraphs by HC and TE modules.

1 INTRODUCTION

Graph Convolutional Network (GCN) Scarselli et al. (2008) extends deep neural networks to process
graph data, which encodes the relations between nodes via propagating node features over the graph
structure. GCN has become a promising solution in a wide spectral of graph analytic tasks, such
as relation detection Schlichtkrull et al. (2018) and recommendation Ying et al. (2018). An emer-
gent direction of GCN research is extending the graph covolution operations to hypergraphs, i.e.,
hypergraph convolutional networks Zhu et al. (2017); Zhou et al. (2007); Zhang et al. (2017); Feng
et al. (2019b); Yadati et al. (2019), where high-order node relations are represented as hyperedges
(one hyperedge can connect multiple nodes). For instance, in a hypergraph of stocks, an financial
event relevant to several stocks is represented as a hyperedge. While a surge of attention paid on
hypergraph convolutional networks, most of them discard the dynamic property of hypergraphs in
real-world applications, e.g., new hyperedges (i.e., events) emerge in the hypergraph of stocks (see
Fig. 1), where the evolution of the hypergraph is crucial for the analytic tasks (e.g., stock price
prediction). Aiming to bridge the gap, this work explore the central theme of dynamic hypergraph
and the corresponding GCN.

Formally, a hypergraph with n nodes and m hyperedges is represented as G = (V ,E,A,H,X)
where V and E denote the set of nodes and hyperedges respectively; A ∈ Rn×m is an incidence
matrix with binary value indicating the connectedness of nodes; H ∈ Rm×c and X ∈ Rn×d are
features represent the hyperedges and nodes respectively. In order to account for the evolution, we
first extend the concept of static hypergraph to dynamic hypergraph, which has two different formu-
lations when treating the time as continuous value or discrete value. 1) Discrete-time formulation.
A straightforward solution is to treat a time window with length of T (e.g., T days) as a sequence
of time-steps and get a snapshot at each time-step. In this way, a dynamic hypergraph is defined
as GD = [G1, · · · ,Gt, · · · ,GT]T where Gt is a hypergraph dumped at time-step t. 2) Continuous
formulation. By treating time as a continuous variable, the dynamic hypergraph can be defined as
GC = (G0,U) where G0 is the initial status (a hypergraph) and U = {(pt, v t, at)|t <= T} is a
streaming of updates. pt denotes the target variable (e.g., a row of X) changed at time t ; v t de-
notes the latest value of the target variable, at denotes the action of change, including add, delete,

1

Under review as a conference paper at ICLR 2021

Figure 1: The evolution of dynamic hypergraph.

update. It should be noted that both formulations have pros and cons, e.g., the discrete-time for-
mulation is more friendly to existing analytic techniques on static hypergraph such as HCN while
the continuous-time formulation records the accurate time of changes. This work focuses on the
discrete-time formulation and makes the first attempt to extend HCN to dynamic hypergraph.

A big challenge of capturing spatial-temporal dependency in a dynamic hypergraph is that it is
tough to extract the features of those changing nodes or hyperedges in a unified manner for the
sake of varied scales of nodes and hyperedges. Besides, how to absorb their dynamic properties
is very important for various application tasks. Towards this end, we need to design the proper
convolution operations on dynamic hypergraph. There are two challenging toughs: 1) at each time
step, since there are various relations between hyperedges and nodes, it is important to update the
node features by considering various relations in the hyperedges; 2) due to dynamically changes of
the node features, modeling the temporal dependency needs to extract the corresponding temporal
features.

In this work, we propose a framework of Dynamic Hypergraph Convolutional Networks (DyHCN)
to tackle the challenges, which has two modules: Hypergraph Convolution (HC) module and Tem-
poral Evolution (TE) module. In a dynamic hypergraph, the set of hyperedges at each time step
includes different hyperedge embeddings and each hyperedge contains different numbers of nodes.
We exploit three submodules to update an node’s embeddings in HC: inner attention, outer attention,
and embeddings update. Firstly, inner attention transform node features along with its hyperedge
into the node-hyperedge feature; and then outer attention utilizes attention mechanism to estimate
the importance of each hyperedge and output the importance weights; and then we update the node’s
embeddings by aggregating node-hyperedge, hyperedge and node features with the weight of each
hyperedge. Getting the nodes embeddings, we extract temporal features of nodes’ embeddings and
make a prediction by the TE module. Extensive experimental results on two real-world datasets val-
idate the superior performance of DyHCN over the existing baselines which proves the effectiveness
of DyHCN on dynamically hypergraphs.

The rest of the paper is organized as follows. Section 2 introduces the preliminary knowledge
about GCN and the hypergraph convolutional network. Section 3 explains the proposed DyHCN
method. Section 4 introduces related work about GCN on the graph and hyperedge. Applications
and experimental results are presented in Section 5. Finally, we conclude this work in Section 6.

2 PRELIMINARY

Graph Convolutional Network Given a graph G = (V ,E) with N nodes vi ∈ V , edges (vi, vj) ∈
E , an adjacency matrix A ∈ RN×N and a degree matrix Dii =

∑
j Aij . With the input signal x,

Kipf & Welling (2016) considers spectral convolutions on graphs with a filter gθ = diag(θ) in the
Fourier domain, gθ ? x = UgθUT x, where U is the matrix of eigenvectors of the normalized graph
Laplacian L = IN − D−1/2AD−1/2 = UΛUT , with a diagonal matrix of eigenvalues Λ and the
graph Fourier transform UTx. In order to reduce the computation complexity, gθ is approximated
with Chebyshev polynomials Tk(x) = 2xTk−1(x)−Tk−2(x) Defferrard et al. (2016), which can be
formulated as: gθ ≈

∑K
k=0 θkTk(Λ̂), where Λ̂ = 2

λmax
Λ − I, λmax denotes the largest eigenvalue

2

Under review as a conference paper at ICLR 2021

of Laplacian matrix, θk denotes the Chebyshev coefficients. Kipf & Welling (2016) proved that the
GCN can be simplified to K=1 and λmax ≈ 2, which is the state-of-the-art of GCN.

Hypergraph Convolutional Network A hypergraph can be formulated as G = (V ,E,W), where
V is a set of vertes, E is a set of hyperedges and W is a diagonal matrix which denotes the weight
of each hyperedge. The adjacency matrix of hypergraph G can be denoted by H ∈ R|V|×|E|. The
degree of node is d(v) =

∑
e∈E w(e)h(v, e) and the degree of edge δ(e) =

∑
v∈V h(v, e). De and

Dv denotes the matrices of edge degrees and node degrees. The spectral convolution of x and filter g
can be formulated as g?x = Φ((ΦT g)� (ΦT x)) = Φg(Λ)ΦT x, where� denotes the element-wise
multiplication and g(Λ) is a function of Fourier coefficients Feng et al. (2019b). As simplified in
GCN, the convolution operation can be simplified to g ? x ≈ θD−1/2v HWDe −1HTD−1/2v x.

3 DYNAMIC HYPERGRAPH CONVOLUTIONAL NETWORKS

3.1 FORMULATION OF DYNAMIC HYPERGRAPH

Dynamic hypergraph can be formulated into two categories: discrete-time and continuous-time dy-
namic hypergraph. The discrete-time approach views dynamic hypergraph as a collection of static
graph snapshots over time, while the continuous counterpart extracts fine-grained temporal informa-
tion on nodes and hyperedges which characterize the dynamic evolution of hypergraph.

Discrete-time Dynamic Hypergraph Discrete-time dynamic hypergraph can be formulated as
GD = (Vt,Et,At,Ht,Xt), where Xt = [xt1,x

t
2, · · · ,xtn]T ∈ Rn×d, Ht = [ht1,h

t
2, · · · ,htm]T ∈

Rm×c, xti(i = 1, 2, · · · ,n) denotes the feature of the i -th node and htj(j = 1, 2, · · · ,m) denotes
the feature of the j-th hyperedge, and m , n is the number of hyperedges and nodes on hypergraph
Gt (hypergraph on time step t). At ∈ Rn×m is an incidence matrix with binary value indicating
the connectedness of nodes on hypergraph Gt. Vt is the set of nodes, Et is the set of hyperedges.
C t
e = [u t1,u

t
2, · · · ,u tkte] T ∈ Rkte×d and D t

u = [et1, e
t
2, · · · , etktu]T ∈ Rktu×c are used to denote

the node set contained in hyperedge e and the hyperedge set containing the node u at time setp
t respectively. Note that k te and k tu are the number of nodes in hyperedge e and the number of
hyperedges containing node u on time t, respectively. As the representation evolve over time, we
capture the spatial dependency by hypergraph convolutional networks and use CNNs to model the
temporal dependency.

Continuous-time Dynamic Hypergraph Continuous-time dynamic hypergraph can be defined as
GC = (G0,U) where G0 is the initial status (a hypergraph) and U = {(pt, v t, at)|t <= T} is a
streaming of updates. pt denotes the target variable (e.g., a row of X) changed at time t ; v t denotes
the latest value of the target variable, at denotes the action of change, including add, delete, update.
Due to a static hypergraph model can be extended to dynamic hypergraphs by applying it on each
snapshots and then aggregating the results of the model, and the distinction between an evolving
and a temporal network is less important Skarding et al. (2020), we adapt discrete-time dynamic
hypergraph to build the DyHCN model in our work.

DyHCN DyHCN is composed of two modules: hypergraph convolution (HC) and temporal evo-
lution (TE). The HC module is designed to aggregate features among nodes and hyperedges with
attention mechanisms and update the embeddings of centroid nodes. The TE module is used for
capturing dynamic changes in temporal features. The framework of DyHCN is illustrated in Fig.2,

3.2 HYPERGRAPH CONVOLUTION

Hypergraph convolution consists of three submodules: inner attention, outer attention, and embed-
dings update. In particular, inner attention aggregates nodes’ features to hyperedge, outer attention
uses attention mechanisms to determine the importance of each hyperedge, and embeddings update
submodule aggregates node-hyperedge features, hyperedge features and the node features to update
centroid node embeddings with the weight of each hyperedge.

3

Under review as a conference paper at ICLR 2021

Figure 2: The framework of DyHCN: HC module consists of inner attention, outer attention and em-
beddings update submodules, which aggregates various features to centroid vertex, and TE module
extracts temporal features for prediction.

Inner attention The inner attention is shown on the left plane of Fig. 3 which aggregates node
embeddings to node-hyperedge features by using a self-attention mechanism. With a multi-layer
perceptron (MLP) we can get the weight score of each node. For a specific node xti on time step t,
the input of inner attention is C t

e = [u t1,u
t
2, · · · ,u tkte]T ∈ Rkte×d and the output of node-hyperedge

embedding d t is the weighted sum of node features, which is formulated as:

ωt = softmax (C t
ewe + be), (1)

dt =

kte∑
j=0

ωtju
t
j , (2)

where we ∈ Rd×1 and be ∈ R kte×1 are trainable parameters, ωt ∈ R kte×1 is the weight of nodes in
hyperedge, dt ∈ R1×d denotes the node-hyperedge features, and k te denotes the number of nodes in
hyperedge, d is node feature dimension.

Outer attention Due to multiple hyperedges related to center node, and the importance of each
hyperedge is different, we propose an outer attention submodule to determine the weight of each
hyperedge. The right plane of Fig. 3 shows the outer attention submodule which calculates the
weight of each hyperedge based on hyperedge features. For specific node xti, the input of outer
attention is D t

u = [et1, e
t
2, · · · , etktu]T ∈ Rktu×c, a hyperedge set containing vertex xti, and the

output is ωth, the weight of each hyperedge on time step t.

rtu = sigmoid(Dt
uwu + bu), (3)

ωth = softmax (rtu), (4)

where wu ∈ Rc×1, bu ∈ Rktu ×1 are trainable parameters and ωth ∈ Rktu ×1 is the weight vector
of each hyperedge, k tu is the number of hyperedges containing vertex u at time step t, and c is the
hyperedge feature dimension.

Embeddings Update With the output of inner attention and out attention, we update the cen-
troid node embeddings sti by aggregating node’s input features xti, node-hyperedge features
dt and hyperedge features hti with the weight of hyperedges ωth. We explore three aggrega-
tion methods, 1) Concatenated features We concatenate the node-hyperedge features and hyper-
edge features directly with the activation funciton of tanh , qt = tanh[dt : hti] ∈ R1×(d+c).
2) Dot-product features We multiply the node-hyperedge features with hyperedge features with the
element-wise operation to model the interaction of two kinds features, tanh , qt = tanh[dt � hti] ∈

4

Under review as a conference paper at ICLR 2021

Figure 3: Inner attention on the left and outer attention on the right.

R1×d (by setting d=c), where� denotes element-wise product operation. 3) MLP features We con-
catenate the node-hyperedge features with hyperedge features with an MLP process to aggregate the
features, qt = tanh([dt : hti]Wc + bc) ∈ R1×d, where Wc ∈ R(d+c)×d, bc ∈ R1×d are trainable
parameters. Note that, htc only stands for the concatenated features for one hyperedge, so for k tu
hyperedges, we can get a concatenated features matrix Qt

i = [qt0, q
t
1, · · · , qtktu]T which denotes the

influence from nodes and each hyperedge.

Considering the weight of each hyperedge ωth, we first calculate the weighted sum of concatenated
features Qt

i to measure the influence from all hyperedges and related nodes. And then update the
specific node embedding sti with the input feature xti and the influence embeddings.

zt
i = sum(ωth ·Q

t
i), (5)

sti = tanh([xti : zt
i]Wh + bh), (6)

where zt
i ∈ R1×d is the weighted aggregated features, Wh ∈ R2d×d and bh ∈ R1×d are trainable

parameters.

3.3 TEMPORAL EVOLUTION

The centroid node embeddings extracted by HC are independent on different time steps, we will
get embeddings for each centroid node i along with time, i.e., Si = [s0i , s

1
i , · · · , sti]T . We adopt a

temporal evolution module to process temporal information extraction. The TE module utilize the
LSTM model to extract temporal features which can be used for classification or regression tasks.

Oi = LSTM(Si), (7)
ŷi = (tanh(OiWo + bo))Wy + by, (8)

where Oi ∈ R1×dim is the temporal features extracted by LSTM, dim is the hidden dimension of
LSTM. Wo ∈ R dim×k, bo ∈ R1×k, Wy ∈ Rk×l, by ∈ R1×l are trainable parameters, k is the
hidden dimension size for MLP and l is the final output size which determined by detail task.

4 RELATED WORK

GCN on regular graphs Existing graph-based learning solutions are divided into two directions:
spectral methods and spatial methods. Spectral graph convolution transform features to the spectral
domain by using graph Laplacian eigenvectors and then conclude node or graph features by spectral
convolution. However, the computation cost in Laplacian factorization is expensive, Defferrard et al.
(2016) introduced Chebyshev polynomials to approximate Laplacian eigenvectors, and further, Kipf
& Welling (2016) simplified the process by a localized first-order approximation of spectral graph
convolutions. On the other side, spatial methods generate node embeddings by aggregating neigh-
borhoods’ features. GraphSAGE generates embeddings by sampling and aggregating features from
a node’s local neighborhood Hamilton et al. (2017). GAT leverage self-attentional mechanism and
weighting different nodes in a neighborhood to generate node embeddings Veličković et al. (2017).
The graph-based learning limits the relationships into pairwise, however, in many applications, the
relations between objects are in higher-order that cannot be formulated by a graph structure.

GCN on hypergraph To evaluate the higher-order relations between nodes, Zhou et al. (2007)
introduced the first hypergraph learning, where multiple nodes share the same hyperedge. On the

5

Under review as a conference paper at ICLR 2021

Table 1: Details of Tiingo and Stockwits datasets

Dataset Nodes Avg hyperedges Training days Validation days Testing days
Tiggo 91 691 529 151 76
Stocktwits 91 177.1 712 203 103

direction of spectral methods, considering different subsets of nodes in the same hyperedge may
have different structural importance, Li & Milenkovic (2017) proposed inhomogeneous hypergraph
partitioning model to assign different costs to different hyperedge cuts. Li & Milenkovic (2018)
defined the notion of p-Laplacians which constitute the basis of new spectral hypergraph clustering
methods. Chan et al. (2018) considered a stochastic diffusion process and introduces a new hyper-
graph Laplacian operator generalizing the Laplacian matrix of graphs. Yadati et al. (2019) simplified
hypergedges into simple edges with mediators and demonstrate the effectiveness through detailed
experiments. The other way, spatial methods, Gilmer et al. (2017) raised a Message Passing Neural
Networks (MPNN) framework which learns a message-passing algorithm and aggregate features for
node representation. Feng et al. (2019b) introduced the first hypergraph deep learning method hy-
pergraph neural network (HGNN). However, most of the existing works focus on static hypergraph
structure which has little effort on optimizing the hypergraph structure during the learning process.
DHSL Zhang et al. (2018) is the first dynamic hypergraph structure learning method that optimizes
the label projection matrix and the hypergraph structure itself simultaneously. But DHSL fails to ex-
ploit high-order relations among features Jiang et al. (2019). DHGCN Jiang et al. (2019) proposed
a stacked layers framework to evaluate the dynamic hypergraph with KNN to build the dynamic
hyperedges. However, the input of DHGCN is fixed, which means the relations among nodes are
fixed and the hypergraph structure just update on each layer. But in the real world, the relations of
nodes may be connected temporarily, and existing models cannot process temporary connections or
change connections among different nodes.

5 EXPERIMENTS

The DyHCN model can be applied to various tasks that can be formulated as dynamic hypergraph.
In our work, we adopt DyHCN with news and social comment datasets for stock price prediction.

5.1 EXPERIMENTAL SETTING

Tiingo dataset 1. The dataset covers the news content, stocks contained in the news, and the
release time of news. On a specific trading day, there are varity news and each news many contains
different numbers of stocks, so we construct a hypergraph with news as hyperedges and stocks as
nodes. We construct the dynamic hypergraph based on crawled news from June 22, 2016 to June 23,
2019, a total of 756 trading days with one hypergraph on each trading day. Inspired by Chen et al.
(2019), we adapt Finance Event Dictionary (TFED) to extract fine-grained events, and pick out the
most activate 91 stocks on market for price prediction.

Stockwits dataset The Stocktwits dataset is a stock comment dataset which can be crawled from
the web of stockwits 2. The dataset covers the stock comment content, stocks mentioned in the com-
ment, and the comment time. On a specific trading day, we construct a hypergraph with comments
as hyperedges and stocks as nodes. We pick out 91 stocks with the highest market value in different
industries on S&P 500 for price prediction, and collect the data from Aug. 7, 2014 to Aug. 20, 2018,
a total of 1015 trading days with one hypergraph on each trading day. The details of datasets are
shown on Table 1.

With the construction of dynamic hypergraph, we assign the nodes featuress with the hidden em-
bedding of price and volume extracted by LSTM, and hyperedges featrues with the embedding
represented by GloVe Pennington et al. (2014). The feature dimension of hyperedges and nodes are
set to 50. The training, validation, and testing sets are separated as in Table 1. To measure the result

1https://www.tiingo.com
2https://stocktwits.com

6

Under review as a conference paper at ICLR 2021

Table 2: Performance on Tiingo and Stocktwits dataset with hidden size 128 of TE

Dataset Tiingo Stocktwits

Models MAE MAPE MSE Promote MAE MAPE MSE Promote

DA-RNN 0.1869 0.4786 0.0467 55.37% 0.1855 1.0950 0.0384 71.55%
HAN 0.1466 0.3017 0.0548 42.43% 0.1272 0.5517 0.0414 61.29%
RSR 0.0946 0.2596 0.0183 7.57% 0.0893 0.1870 0.0158 18.19%
DHGCN 0.0984 0.2754 0.0216 15.08% 0.0845 0.1782 0.0156 14.86%

DyHCN 0.0873 0.2533 0.0160 0.0732 0.1660 0.0118
of different models for prediction, we use three evaluation metrics, the mean squared error (MSE),
mean absolute error (MAE) and mean absolute percentage error (MAPE).

Baselines To evaluate the result of our proposed DyHCN model, we compare the experiment result
with the traditional time series, NLP-based, graph-based and hypergraph-based model: 1) DA-RNN
Hsu et al. (2009) One of the state-of-the-art models for time series prediction. 2) HAN Hu et al.
(2018) The representations of the NLP model for stock price prediction. 3) RSR Feng et al. (2019a)
The state-of-the-art graph-based model for price prediction. 4) DHGCN Jiang et al. (2019) The
hypergraph-based model for prediction. Because the model RSR and DHGCN are designed for
static graph/hypergraph, we present the RSR and DHGCN for daily price prediction. To compare
with baseline models, we use DyHCN with stacked layer HC and TE module for price prediction,
and add a dropout layer with the dropout rate of 0.5 before TE module. We set the learning rate
0.005 and training epoch 1000.

5.2 RESULTS AND ANALYSIS

We report the performance of all methods in Table 2, Table 3 and Fig. 4. From Table 2, we have the
following observations:

1) Compared with DA-RNN, the MAE and MAPE scores of HAN decreases by 21.56% and 36.96%
from 0.1869, 0.4786 to 0.1466, 0.3017, while the MSE increases by 17.34% from 0.0467 to 0.0548,
indicating that the extra features such as Tiingo or Stocktwits comment data are useful for stock
price prediction.

2) The MAE, MAPE and MSE results of RSR outperform HAN, and decrease by 35.47%, 13.95%
and 66.61% respectively, indicating that the consideration of relations between different stocks
would improve the performance of the prediction result.

3) Comparing the graph-based model RSR with hypergraph-based model DHGCN, there is no sig-
nificant difference in the performance of the model. However, in the Tiingo dataset, the results
of RSR decrease by 3.86%, 5.74%, 15.28% comparied with DHGCN respectively, while in the
Stocktwits comment dataset, the model shows the opposite result, the three metrics of RSR increase
by 5.68%, 4.94%, 1.28% comparied with DHGCN. This shows that the performance of RSR and
DHGCN models are not stable on different datasets.

4) The results of DyHCN outperform RSR and DHGCN. On Tiingo dataset, the MAE decreases by
7.72%, 11.28%, the MAPE decreases by 2.43%, 8.02%, and the MSE decreases 12.57%, 25.93%
compared with RSR and DHGCN respectively. On Stocktwits comment dataset, the MAE decreases
by 18.03%, 13.37%, the MAPE decreases by 11.23%, 6.85%, and the MSE decreases by 25.32%,
24.36% compared with RSR and DHGCN respectively. The result shows that in both Tiingo and
Stocktwits comment datasets, the performance of DyHCN would keep stable, and with the consider-
ation of dynamic information, the performance is better than static graph/hypergraph based model.

5) Comparing DyHCN with DA-RNN, HAN, RSR and DHGCN, the average loss of MAE, MAPE
and MSE decrease by 55.37%, 42.43%, 7.57% and 15.08% on Tiingo dataset respectively, and
71.55%, 61.29%, 18.19%, 14.86% on Stocktwits comment dataset respectively.

To test the stability and the scalability of the model, we evaluate different feature aggregation meth-
ods. Fig. 4 shows the performance of different feature aggregation methods with a hidden size of 16,
32, 64, and 128 on TE module. Comparing the results, the MLP feature concatenate method reminds
stable and outperforms the cat and multi-feature aggregate methods. Besides, with the comparison

7

Under review as a conference paper at ICLR 2021

Figure 4: Performance of different features aggregate methods on Tiingo and Stocktwits social
comment datasets with the hidden size of 16, 32, 64 and 128 of TE.

Table 3: Performance on Tiingo and Stocktwits dataset with hidden size 128 of TE

Dataset Tiingo Stocktwits

Models MAE MAPE MSE MAE MAPE MSE

DyHCN(no inner) 0.1303 0.3988 0.0347 0.0745 0.1667 0.0122
DyHCN(no outer) 0.0887 0.2613 0.0165 0.0732 0.1695 0.0120
DyHCN(no TE) 0.0982 0.2754 0.0218 0.0842 0.1784 0.0160
HGCN(with TE)Feng et al. (2019b) 0.2943 0.8025 0.1771 0.2943 0.8025 0.1771

DyHCN 0.0873 0.2533 0.0160 0.0732 0.1660 0.0118

of results with different hidden size, the performance has no significant difference, indicating that
the hidden size of LSTM is not the major factor for model prediction.

In addition to the comparison with baselines above, we also evaluate the effectiveness of submodules
including inner attention, outer atteniton, HC and TE. We evaluate the effectiveness of each module
which shown in Table 3, we use DyHCN without inner attention, DyHCN without outer attention
and DyHCN without TE to evaluate the effectiveness of inner, outer attention and TE module. Also,
we use HGCN model Feng et al. (2019b) which aggregate node features on static hypergrap to
replace HC module to evaluate the effectiveness of HC module. The result shows that, on both
datasets, the performance of DyHCN are better than DyHCN without inner, outer and TE module.
The inner and outer attention module determines the importance of each message, and passes the
corresponding information to the centroid which would be used for prediction more acurrate. The TE
module considers the impact of previous information and extracts the temporal features from series
embeddings, which would be better than from individual time step. In addition, the performance of
HGCN Feng et al. (2019b) with TE model is also worse than DyHCN, while HGCN works well on
static hypergraph, indicating that DyHCN is more suitble for dynamic hypergraph tasks.

6 CONCLUSION

In this paper, we proposed a framework of dynamic hypergraph convolutional networks (DyHCN),
which consists of hypergraph convolution (HC) and temporal evolution (TE) module. The HC is
delicately designed by equipping inner attention and outer at-tention, which adaptively aggregate
nodes’ features to hyperedge and estimate theimportance of each hyperedge connected to the cen-
troid node, respectively. And then update the centroid node embeddings by aggregating various
related features. The TE captures the long-range temporal information of dynamic hypergraph fea-
tures. Based on the two modules, the DyHCN get the dynamic relations between different nodes
with the dynamic weight of hyperedges on different time steps. DyHCN can be used for various
tasks that can be formulated as dynamic hypergraph, and extensive experiments on the newly con-
structed Tiingo and Stocktwits comment datasets show that our proposed DyHCN outperforms the
state-of-the-art model for the modeling of dynamic hyper-order relations.

8

Under review as a conference paper at ICLR 2021

REFERENCES

T-H Hubert Chan, Anand Louis, Zhihao Gavin Tang, and Chenzi Zhang. Spectral properties of
hypergraph laplacian and approximation algorithms. Journal of the ACM (JACM), 65(3):1–48,
2018.

Deli Chen, Yanyan Zou, Keiko Harimoto, Ruihan Bao, Xuancheng Ren, and Xu Sun. Incorporating
fine-grained events in stock movement prediction. arXiv preprint arXiv:1910.05078, 2019.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in neural information processing systems,
pp. 3844–3852, 2016.

Fuli Feng, Xiangnan He, Xiang Wang, Cheng Luo, Yiqun Liu, and Tat-Seng Chua. Temporal
relational ranking for stock prediction. ACM Transactions on Information Systems (TOIS), 37(2):
1–30, 2019a.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 3558–3565,
2019b.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 1263–1272. JMLR. org, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in neural information processing systems, pp. 1024–1034, 2017.

Sheng-Hsun Hsu, JJ Po-An Hsieh, Ting-Chih Chih, and Kuei-Chu Hsu. A two-stage architecture for
stock price forecasting by integrating self-organizing map and support vector regression. Expert
Systems with Applications, 36(4):7947–7951, 2009.

Ziniu Hu, Weiqing Liu, Jiang Bian, Xuanzhe Liu, and Tie-Yan Liu. Listening to chaotic whispers: A
deep learning framework for news-oriented stock trend prediction. In Proceedings of the eleventh
ACM international conference on web search and data mining, pp. 261–269, 2018.

Jianwen Jiang, Yuxuan Wei, Yifan Feng, Jingxuan Cao, and Yue Gao. Dynamic hypergraph neu-
ral networks. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence (IJCAI), pp. 2635–2641, 2019.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Pan Li and Olgica Milenkovic. Inhomogeneous hypergraph clustering with applications. In Ad-
vances in Neural Information Processing Systems, pp. 2308–2318, 2017.

Pan Li and Olgica Milenkovic. Submodular hypergraphs: p-laplacians, cheeger inequalities and
spectral clustering. arXiv preprint arXiv:1803.03833, 2018.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European Semantic Web
Conference, pp. 593–607. Springer, 2018.

Joakim Skarding, Bogdan Gabrys, and Katarzyna Musial. Foundations and modelling of dynamic
networks using dynamic graph neural networks: A survey. arXiv preprint arXiv:2005.07496,
2020.

9

Under review as a conference paper at ICLR 2021

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha
Talukdar. Hypergcn: A new method for training graph convolutional networks on hypergraphs.
In Advances in Neural Information Processing Systems, pp. 1511–1522, 2019.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–
983, 2018.

Zhihong Zhang, Lu Bai, Yuanheng Liang, and Edwin Hancock. Joint hypergraph learning and sparse
regression for feature selection. Pattern Recognition, 63:291–309, 2017.

Zizhao Zhang, Haojie Lin, Yue Gao, and KLISS BNRist. Dynamic hypergraph structure learning.
In IJCAI, pp. 3162–3169, 2018.

Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hypergraphs: Clustering,
classification, and embedding. In Advances in neural information processing systems, pp. 1601–
1608, 2007.

Xiaofeng Zhu, Yonghua Zhu, Shichao Zhang, Rongyao Hu, and Wei He. Adaptive hypergraph
learning for unsupervised feature selection. In IJCAI, pp. 3581–3587, 2017.

10

	Introduction
	Preliminary
	Dynamic Hypergraph Convolutional Networks
	Formulation of Dynamic Hypergraph
	Hypergraph Convolution
	Temporal Evolution

	Related work
	Experiments
	Experimental setting
	Results and analysis

	Conclusion

