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Abstract

Federated learning is typically considered a beneficial technology which allows1

multiple agents to collaborate with each other, improve the accuracy of their models,2

and solve problems which are otherwise too data-intensive / expensive to be solved3

individually. However, under the expectation that other agents will share their4

data, rational agents may be tempted to engage in detrimental behavior such as5

free-riding where they contribute no data but still enjoy an improved model. In6

this work, we propose a framework to analyze the behavior of such rational data7

generators. We first show how a naive scheme leads to catastrophic levels of8

free-riding where the benefits of data sharing are completely eroded. Then, using9

ideas from contract theory, we introduce accuracy shaping based mechanisms to10

maximize the amount of data generated by each agent. These provably prevent11

free-riding without needing any payment mechanism.12

1 Introduction13

Data is a non-rivalrous good—once produced, it can be repeatedly used multiple times without14

exhaustion. Thus, multiple firms can simultaneously use the data produced by any individual15

firm, increasing societal utility/welfare [21]. To promote such multiple usage, data portability16

requirements have been widely legislated, e.g., the GDPR in the EU, CCPA in California, etc [35].17

As a consequence, services are required to enable a user to download any personal data collected and18

potentially re-upload it to a different service. These desiderata form a solid economic and legal basis19

for federated learning—a new paradigm in machine learning wherein multiple data-generating agents20

collaborate with each other to train a model on their combined data so that all the agents end up with21

a better model than they would have obtained on their own [22]. Such collaborative data sharing is22

already common in genomics research [51], internet advertisement targeting [18], and is also gaining23

traction between networks of hospitals [see, e.g., 45, 52, 41, 16].24

It is clear that once a certain amount of data has been produced, privacy issues aside, societal welfare25

is maximized by allowing free access to the data thereby making it a public good. However, under26

such an expectation, a rational agent may be tempted to free-ride, i.e., consume the benefits of the27

data production by others without contributing any data themselves. This may lead to a collapse in28

the data generation with everyone wanting to free-ride. Such a problem inevitably arises with any29

public good [5]. Further, even if no agent actually free-rides and everyone intends to contribute data30

out of altruism, the mere perception that others may be free-riding reduces pro-social behavior and31

willingness to contribute [11]. Thus, the long-term success of federated learning in particular and data32

portability in general critically require overcoming free-riding. This motivates our main question:33

How do we design a system which incentivizes rational agents to contribute their34

fair share of data, thereby maximizing the value of the resulting model and improv-35

ing collaboration?36
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• We formulate a principal-agent model [31] where each agent has a cost associated with38

generating a data point and wants to improve the value of a model while minimizing said39

costs (Sec. 2). Our formulation borrows ideas from contract theory while introducing new40

concepts that are specific to the federated learning setting.41

• Using this framework we show how giving unconditional benefit of the combined data to all42

agents (as is standard in federated learning) leads to catastrophic free-riding where almost43

none of the agents contribute any data (Sec. 3) at their optimal responses.44

• Accordingly, we propose to tune the value of the model received by an agent to their45

contribution. In the full-information setting when the agent’s cost of data generation is46

known, we derive an optimal mechanism which overcomes free-riding and leads to maximal47

collaboration and data generation (Sec. 4).48

• Finally, if the costs of an agent are unknown, we show (in App. D) how to design truth-49

revealing value curves at some cost to the principal (i.e., information rent) to incentivize the50

agents to report their true costs.51

Our framework can capture free-riding and the need for collaboration when faced with challenging52

learning problems. The latter is novel to our framework—we show that if the learning task is too53

challenging, then it is not economically viable for any single agent to tackle the problem. However,54

using incentivizing data-sharing mechanisms, it may be possible to share the costs among participants55

and solve it collaboratively.56

2 Modeling an Individual Agent57

We begin with modelling the learning task and objective for an individual agent. We then provide58

a characterization of the optimal data contribution for each single agent without participating in a59

federated learning scheme.60

2.1 Value of data61

There are n agents all of whom want to solve a common learning problem. This is often true in62

federated learning since coalitions form around solving some particular task. Concretely, we assume63

that all agents want to maximize a value function, v(D) : 2D → [0, 1], for a dataset D. For simplicity,64

we assume that every datapoint is exchangeable i.e. every datapoint has the same value as any65

other datapoint. While this is a strong assumption, it holds true if the data is generated by manually66

labelling a subset of an already public unlabelled dataset, as is common in machine learning; e.g.,67

Cifar [30] and ImageNet [43]. This assumption is arguably also valid in our autonomous driving68

example where each data point involves a random path taken under random external conditions. With69

this, we can simplify the value function v(·) to depend only on the size of the dataset m = |D|. For70

convenience, we will treat dataset sizes as a continuous real. Thus, every agent wants to maximize71

v(m) : R≥0 → [0, 1] = max(0, b(m)) , where b is continuous, non-decreasing and concave. (1)
We also assume w.l.o.g that v(0) = 0 and limm→∞ v(m) > 0. Perhaps the most natural way of72

defining the value of data is via the test accuracy obtained by training a model on the data. For73

example, each accurate product recommendation may lead to a sale or correct digital ad placement74

may lead to a click and hence ad revenue. This is also true if each error represents costly consequences.75

Each error by a medical diagnostic model, a loan application evaluation model, or an autonomous76

driving model may lead to significant suffering. In all of these cases, the value of data comes by77

directly improving generalization and guaranteeing test accuracy.78

2.2 Agent’s objective and optimal solution79

Each agent i has a marginal fixed cost ci > 0 for producing a data point. Their cost for producing a80

dataset D with m number of data points is then:81

costi(m) = cim. (2)
When manually labelling a dataset or when training an autonomous-driving model, this cost ci may82

represent the time spent by researchers/employees or an amount paid to crowd-sourced workers. The83

cost cim may also represent the risk associated with privacy loss for the agent for revealing m of84

their data points. By incurring this cost, they can obtain a model with value v(m). Thus, the net85

utility of an agent is improve value for the least cost; i.e., to maximize86

ui(m) = v(m)− cim. (3)
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Figure 1: Illustration of the optimal amount of data for a single agent. (a): Value and cost versus the
dataset size.(b)-(d): Utility function of a low/mid/high-cost agent versus the dataset size. Optimal
amount for low-cost agent is positive but zero for mid and high cost agents.

Theorem I (Optimal individual generation). Consider an individual agent i with marginal cost per87

data point ci and value function v satisfying (1) working on their own. Then, the optimal amount of88

data m∗
i is:89

m∗
i =

{
0 if maxmi≥0 ui(mi) ≤ 0;

α∗
i , such that b′(α∗

i ) = ci otherwise.
(4)

Further, for agents i, j with costs ci ≤ cj , their utility satisfies ui(m∗
i ) ≥ uj(m

∗
j ) and m∗

i ≥ m∗
j .90
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Figure 2: Optimal individual
data contribution m∗

i versus
the marginal cost ci for dif-
ferent number of total agents.

As Figure 1 shows, if the learning problem is too hard (m0 is large) or91

if the marginal cost ci is too high, the problem becomes infeasible for92

an individual agent to solve with m∗
i = 0. Such cases are especially93

important in federated learning where we want to enable agents to94

solve problems together which they cannot on their own. In other95

cases, the agent collects m∗
i > 0 data points.96

We can simulate the value function arising from the generalization97

guarantees of an ERM problem ([38, Theorem 11.8]) with k mea-98

suring different difficulty levels (higher k means that the learning99

problem is harder). Figure 2.2 shows the optimal data contribution100

m∗
i versus the marginal cost ci for different number of total agents on101

a log-log scale in such a setting. We see that the optimal contribution102

decreases with cost as m∗
i ∝ c

−2/3
i , matching the theory. The vertical103

lines indicate the cutoff for minimum viability—beyond this, the cost is too high for the problem104

to be solvable by an individual. This minimum viability cost is smaller for more harder problems105

(larger k), but the optimum contribution increases with increasing k once this threshold is crossed.106

3 Modeling Multiple Agents and Catastrophic Free-Riding107

In this section we will study how agents behave when collaborating with each other as they do in108

federated learning. For this, we use a principal-multi-agent framework where the server who sets up109

the federated learning server is the principal.110

3.1 Interaction between agents and server111

The interaction between the federated learning server and the agents is formalized by a mechanism112

M(m) : Rn≥0 → [0, 1]n , which maps agents’ contributions to values. (5)
We assume that each agent i generates and transmits mi data points to the server. Based on these113

contributions, the mechanism assigns models to the clients with differing valuations ; i.e., if agent114

i contributes mi data points it receives a model with value vi ∈ [0, 1], where M(m1, . . . ,mn) =115

(v1, . . . , vn). The interaction proceeds in three steps: (i) first the server publishes a mechanism M,116

then (ii) each agent generates and transmits some data mi to the server, and finally (iii) the server117

returns a trained model to each agent following the mechanism. Note that the agents decide how118

much data to generate adaptively after knowing the mechanism M. However, they do not have any119

bargaining power—they cannot re-negotiate the mechanism—but can only decide if they join or not.120

We also disallow monetary compensation or exchanges between the parties since implementing them121

adds additional complexity. The only guarantee is that the server truthfully executes the protocol M.122

Given that the server necessarily needs to follow through on the mechanism, we need to make sure123

the mechanism is implementable.124
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Definition A (Feasible mechanism). A mechanism which returns value [M(m)]i to agent i is said125

to be feasible if for any i ∈ [n] and any m ∈ Rn≥0, it satisfies [M(m)]i ≤ v(
∑
jmj) .126

This is because we can pool together all the agent contributions m and train a model to value127

v(
∑
jmj). Since v(·) is monotone, this is an upper bound on the value which can be obtained.128

However, it is always possible to use a subset of this data, or degrade the model in a controlled way129

using noisy perturbations. Thus, this captures mechanisms which are implementable in practice.130

Faced with a potential feasible mechanism M, an agent has to decide whether to join or simply train131

on their own. A mechanism which offers an especially bad value would discourage an agent and they132

would likely leave the server and train on their own. We will formalize this next.133

Definition B (Individual rationality (IR)). Given data contributions m by the n agents with costs134

c, the mechanism provides a model with value [M(m)]i to agent i. Such a mechanism M is said to135

satisfy IR if for any agent i ∈ [n] and any contribution m,136

[M(m)]i − cimi ≥ v(mi)− cimi . (6)

A mechanism which satisfies individual rationality guarantees that for any agent the value of the137

model received (and hence their utility) will be no worse than if they trained on their own. Since138

IR guarantees that all rational agents will participate in our mechanism, and participation is key to139

success of any platform, we will restrict our focus henceforth to mechanisms which satisfy IR.140

Given any mechanism M, we would like to argue about how rational agents would respond and how141

much data they would contribute. For this, we use the notion of an equilibrium.142

Theorem II (Existence of pure equilibrium). Consider a feasible mechanism M which can be143

expressed as:144

[M(mi;m−i)]i = max(0, νi(mi;m−i)) ,

for a function νi(mi;m−i) which is continuous in m and concave in mi. For any such M, there145

exists a pure Nash equilibrium in data contributions meq(M) which for any agent i satisfies,146

[M(meq(M))]i − cim
M
i ≥ [M(mi,m

eq(M)−i)]i − cimi , for all mi ≥ 0 . (7)

Thus, under reasonable conditions on the mechanism M which are satisfied for all the mechanisms147

we consider, an equilibrium always exists such that no agent can improve their utility by unilaterally148

changing their contribution. If all players are rational, then such an equilibrium point is a natural149

attractor with all the agents gravitating towards such contributions. Thus, it is reasonable to use the150

data contributions at this equilibrium to evaluate and compare different mechanisms.151

Note that the mechanism is not concave because of the presence of a max(0, ·), and the resulting152

utilities of the agents are not even quasi-concave. Despite this, our proof uses the specific properties153

of our setting to prove existence. Our techniques may be more broadly applicable to study non-154

concavities arising from “minimum viability”.155

3.2 Free-riding in the standard federated setting156

We now examine the behavior of rational agents in the standard federated learning. Returning a157

model trained on the combined dataset to everyone corresponds to the mechanism158

M(m) =
(
v(
∑
jmj) ,∀i ∈ [n]

)
. (8)

Clearly, this mechanism is feasible (Def. A) and also satisfies individual rationality (Def. B) since159

the value function v(·) is non-decreasing and
∑
jmj ≥ mi for any i ∈ [n]. In fact, given a data160

contribution m, this mechanism may maximize the utility for all agents. This observation may at first161

seem like a strong argument in favor of this standard scheme. However, recall that the agents choose162

their contribution m after the server publishes the mechanism M. Thus, we need to first analyze163

how much data rational agents would contribute.164

Theorem III (Catastrophic free-riding). Consider n agents with costs {ci} with a unique least cost165

agent cmin = mini ci. Let {m∗
i } be the equilibrium contributions of agents when alone. The standard166

federated learning mechanism corresponding to [M(m)]i = v(
∑
jmj) for all clients i is feasible167

and IR, and has an unique equilibrium. At this equilibrium, only the lowest cost agent contributes:168

meq
i =

{
m∗
i if ci = cmin

0 otherwise.
(9)
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The agent with the least cost cmin = mini ci would have collected m∗
min amount of data on their own.169

For any other agent i, ci ≥ cmin and so m∗
i ≤ m∗

min. Thus, agent i would already have access to170

data sufficient to satisfy them by the federated learning mechanism. The increase in value v(·) for171

collecting an additional data point beyond this is less than the marginal cost ci incurred. This results172

in catastrophic free-riding, with only a single agent collecting data.173

Remark 1 (Collapse of collaboration). Consider the case where m∗
i = 0 for all agents i, either174

because the learning problem is too hard or because the cost of data collection is too high for any175

individual agent. Theorem III implies that no data will be collected even with collaboration. Thus, if176

a problem is too costly to solve by an individual, it will remain insurmountable via standard federated177

learning. This is because everyone rationally assumes that everyone else will free-ride, defeating the178

main motivations of federated learning.179

4 Value Shaping under Verifiable Costs180

How do we design mechanisms which prevent free-riding? In this section we will study this question181

assuming everyone (the server and the agents) know the costs c involved in producing the data (we182

study the unknown costs setting in Section D), or that the costs can be verified; i.e., the agent cannot183

incur cost c and report a different cost c̃. This is justifiable in some cases—the cost of labelling a data184

point by a crowd-worker can be estimated by all parties. We formalize our goal of data maximization185

and give a simple optimal mechanism for it.186

4.1 Value shaping mechanism187

mi

costi = cim

m*i

a (∑
i

mi)

mmax
i

[ℳ(m)]i

A

B slopeAB = ci + ϵ

−acc. with all data
−acc. assigned by ℳ
−acc. no sharing

Figure 3: Illustration of value shaping. (red
curve): model value returned to agent i by
the mechanism; (grey curve): model value
for agent i without participation; (green
curve): model value if agent i receives all
the data from the other agents.

A mechanism M is data-maximizing given costs c if188

it maximizes the data collected at equilibrium.189

Definition C (Data Maximization). Suppose that190

given a mechanism M, let meq(M) correspond to the191

amount of data generated by the agents at equilibrium.192

M̂ is data-maximizing if it maximizes the amount of193

data collected at equilibrium194

M̂ ∈ argmax
M

∑
j [m

eq(M)]j , (10)

subject to M being feasible and satisfying IR.195

Mechanism description. If we give ∆mi free data196

to agent i, then at equilibrium they will reduce the data197

they generate—they will only generate (m∗
i −∆mi) additional data. To prevent this, our key insight198

is to condition the amount of extra data on their actual contribution. For a given set of costs c and199

some small ε > 0, consider the following mechanism:200

[M(m)]i =


v(mi) for mi ≤ m∗

i

v(m∗
i ) + (ci + ε)(mi −m∗

i ) for mi ∈ [m∗
i ,m

max
i ]

v(
∑
jmj) for mi ≥ mmax

i ,

(11)

where mmax
i is defined such that v(mmax

i +
∑
j ̸=imj) = v(m∗

i ) + (ci + ε)(mmax
i − m∗

i ). We201

illustrate the mechanism in Figure 3. Even without any external incentivization, agent i will compute202

m∗
i data points. Thus, for mi ≤ m∗

i (10) returns a model trained on solely their own data. After m∗
i ,203

however, the marginal gain in value becomes smaller than the additional cost ci. Hence, the agent204

requires active incentivization here and (10) ensures that for every additional data point computed,205

the marginal gain in value is strictly more than the cost ci. However, the mechanism cannot provide206

unlimited value either and has to remain feasible, giving us our final constraint.207

4.2 Analysis208

Theorem IV (Data maximization with known costs). The mechanism M defined by (11) is data-209

maximizing for ε→ 0+. At equilibrium, a rational agent i will contribute mmax
i data points where210

mmax
i ≥ m∗

i , yielding a total of
∑
jm

max
j data points.211
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Figure 4: Equilibrium simulations of our mechanism: the total data collected at equilibrium (a)
increases linearly with the number of agents n, (b) decreases as c−1

i with increasing marginal cost
per data point, and is relatively unaffected by the complexity k. (c) The number of agents required
to cross the minimum viability threshold (i.e. smallest n for which mmax

i > 0) increases linearly
with both the marginal cost ci and complexity k. Optimal individual contribution for all settings is
m∗
i = 0; i.e., no data would be generated by standard federated learning.

Thus, to encourage collaboration we can set up a central repository of the data to which each agent212

is required to contribute. The cost for collecting a data point (say c) can easily be estimated and213

assumed to be the same for all agents. Using this estimate, we can compute a threshold. The agents214

don’t receive any additional data for contributing up to this threshold. For each data point contributed215

beyond the threshold, the agents receive an increasing amount of additional data. By Theorem IV,216

this would prevent free-riding by the agents and ensure the best trained model reaches the consumers.217

Remark 2 (Deterrence). At equilibrium, mechanism M in (11) ensures all agents contributemmax
i ≥218

m∗
i ; i.e., they generate more data than they would on their own. Further, every agent receives a219

model trained on this combined dataset with value v(
∑
jm

max
j ). One can view our mechanism as220

using a deterrent which punishes free-riding, ensuring that all agents fully utilize the combined data.221

At equilibrium, such a deterrent is never actually invoked but just forms a credible threat.222

Suppose all agents have the same cost c. Theorem IV shows that the mechanism collects nmmax223

data points in total. However, mmax also depends on n. This is because with a larger pool of data224

contributions, the server can more strongly incentivize an individual and extract more data. There is225

a natural ceiling to this though—the value caps at 1. Thus, the absolute maximum data that can be226

extracted from an individual agent is m which satisfies v(m∗) + c(m−m∗) = 1. This gives us the227

range for the total data contributions to be [nm∗, n(m∗ + (1−v(m∗))/c)].228

Remark 3 (Collaboratively overcoming minimum viability). When m∗ = 0, i.e., the problem is229

not solvable by an individual agent, the net contribution from our mechanism nmmax may still be230

positive. Suppose that the cost for all agents is the same c. Then, the total data collected is mtot231

which satisfies232
c/n ·mtot = v(mtot) .

This implies that for sufficiently large n, the cost c is successfully shared and we obtain a positive233

data contribution. However, note that mtot = 0 is also a valid solution and remains an equilibrium.234

If all other agents don’t contribute, there is no extra data to share and so there is no incentive to235

compute extra data. In practice, this undesirable equilibrium is unlikely to be encountered since it has236

lower utility. It can also be prevented by the platform itself taking part as an agent and committing to237

non-zero data collection.238

Empirically, in Figure 4 we compute the equilibrium for value shaping assuming the value of the data239

is test accuracy. We assume all agents have the same cost, and observe the effect on the equilibrium240

data contribution as we vary the cost c and the total number of agents n. We used the following241

default parameters unless otherwise states: optimal value of aopt = 0.95, marginal cost ci = 0.1,242

participants n = 104. Under all parameter configurations of this experiment, the optimal individual243

contribution is m∗
i = 0, while the equilibrium data contributions are significantly larger as expected,244

validating our theory.245

Finally, in App. B we discuss the incentive compatibility of our schemes, App. C performs additional246

simulations and detailed comparisons with prior work, and in Appendix D we extend our framework247

to the setting of unverifiable costs. Our conclusions translate to this unverifiable cost setting as well.248
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A Review on the Related Work and Contract Theory Background426

The literature on mechanism design and federated learning is vast. We discussed the most closely427

related work in three verticals in the main text; we include a detailed review of the broader literature428

in this section.429

Over the past decade, federated learning (FL) has emerged as an important paradigm in modern430

large-scale machine learning [28, 27, 22, 32, 41]. Specifically, FL research has resulted in many431

applications to overcome practical challenges such as data silos and data sensitivity: on one side,432

since more training data often gives better model performance, data silos results in scarcity of433

labeled training data and puts limit on the industrial performance; on the other side, in high-stakes434

applications the data may contain private user information and thus the sharing of data is constrained435

by regulations and laws [49, 4, 10, 35]. Given these challenges, FL provides a useful scheme for436

different agents / parties to train collaboratively and leverage the benefit from other agents’ data,437

while the training data remains distributed over the agents. Such a framework has been shown to438

be able to bring improved model performance to all the participants. Indeed, many prior works439

have been devoted to develop more scalable and communication-efficient distributed optimization440

algorithms for FL [29, 37, 8].441

However, one cannot ignore an important aspect in the standard FL scheme, which is the incentives442

aspect. The standard FL scheme may incentivize strategic agents to contribute less data in order443

to minimize their data collection cost and maximize the gain from participating in the federated444

learning mechanism. Although the participation and contribution of each agent is often legislated445

by certain protocols, such free-riding behavior has been notoriously hard to regulate and prevent446

in practice [17, 19]. Recently, a few works have started to explore such free-riding behavior in FL,447

with various incentive models proposed [40, 44, 34, 17, 13, 55]. However, the majority this work448

has focused on a taxonomy of free-rider attacks or the detection of attacks under the existing FL449

scheme, instead of proposing mechanisms that incentivize maximal data contribution. In this work,450

we strive for a mechanism for information sharing under the standard federated learning setting such451

that rational agents are incentivized to contribute their maximal amount of data.452

In this work, we focus on the free-riding behavior of FL agents in terms of data collection. In FL,453

the data collection happen on the agents’ side before they join the mechanism for training models.454

Therefore, the cost of collecting data is often private information to each agent. Such an information455

asymmetry brings difficulty to prevent free-riding, because the agents might simply report fake costs.456

This brings the need to design incentive mechanisms for FL, under which the agents are incentivized457

to behave truthfully, which is also guaranteed to lead to the best utility.458

Indeed, designing incentive mechanisms under private costs is not new, and has been a main focus459

of the contract theory literature Smith [47], Laffont and Martimort [31], Bolton and Dewatripont460

[7]. Moreover, the existence of a central server (a “principal") in FL brings further convenience to461

apply a principle-agent model. An emerging line of recent works have been exploring the application462

of contract theory for federated learning [24, 25, 23, 33, 48, 12, 54]. In particular, Tian et al. [48]463

proposed a contract-based aggregator under a multi-dimensional contract model over two possible464

types of agents and showed improved model generalization accuracy under that contract. However,465

their mechanism focused on eliciting the private type information instead of maximizing the data466

contribution. To the best of our knowledge, our work is a first step to use contract theory for data467

maximization in federated learning. Further, prior work has focused on how to design payments to468

agents, rather than the value-shaping problem that we focus on here.469

This work is related to the active line of research on mechanism design for collaborative machine470

learning, which involves multiple parties each with their own data, jointly training a model or making471

predictions in a common learning task [46, 53]. In collaborative machine learning, a major focus has472

been the design of model rewards (i.e., data valuation) in order to ensure certain fairness or accuracy473

objectives. Towards that goal, there has been model rewards proposed based on notions from the474

cooperative game theory literature such as the Shapley value [20, 50]. However, the guarantees of475

these model rewards depend on the assumption that the agents are already willing to contribute the476

data they have. In this work, we study a different incentivization task for data maximization.477

More broadly, apart from data maximization, there are other objectives which are of interest in478

federated learning, such as fairness and welfare objectives, that have been under active study [15, 14,479

39]. We defer a thorough analysis of the tradeoffs among various objectives to future research.480
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B Incentive compatibility under Verifiable Costs481

One of our motivating reasons for preventing free-riding was to ensure that none of the participating482

agents feel taken advantage of. That is, we wish to satisfy some notion of fairness. However, there483

may potentially be new sources of unfairness in (11). In particular, consider two agents, i, j ∈ [n],484

with different costs: if ci ≤ cj then m∗
i ≥ m∗

j . Here, an agent i with smaller cost ci faces two485

disadvantages under mechanism (11): (i) they have a larger threshold amount of data m∗
i they have486

to contribute before receiving any benefit, and (ii) they receive a smaller increase in value (ci + ε) for487

each additional data point computed.488

If the cost for generating each data point is inherently fixed (such as the cost of driving a vehicle) this489

is arguably not an issue. However, in many other settings an agent may innovate and develop new490

methods to reduce their cost of collecting a data point. In fact, the business model of large internet491

advertising providers is based on systems which can cheaply capture consumer data in order to show492

them better advertisements. Would our data-sharing mechanism (10) disincentivize agents from such493

innovations? We show this is in fact not true.494

Theorem V (Incentive compatibility). Under given costs c, consider our optimal mechanism (11)495

with equilibrium contributions mmax, and agents working individually with equilibrium contributions496

of m∗. The utility of the every agent i remains unchanged:497

v(
∑
jm

max
j )− cim

max
i = v(m∗

i )− cim
∗
i .

Thus, our mechanism does not induce any distortions in the incentive structure. Further, recall by498

Theorem I, the utility ui(m∗
i ) ≥ uj(m

∗
j ) if ci ≤ cj . This implies that users with smaller costs499

continue to receive a higher utility, encouraging them to innovate and reduce the costs; i.e., our500

mechanism is incentive compatible. Of course this is assuming that the costs incurred by an agent is501

verifiable. They cannot lie about the true cost, but may be able to choose between different collection502

strategies.503

Remark 4 (Distribution of surplus). One may ask where the additional surplus which is generated504

by agents collaborating has disappeared, since the agents receive none of it. Our mechanism utilizes505

this surplus in order to extract additional data, mmax
i −m∗

i , from the agents. Thus, all the additional506

surplus goes into improving the value of the model and hence to the end consumers of the model.507

C Additional Simulations and Comparisons508

C.1 Simulating collaborative training of GPT-3509

We illustrate through a pedagogical example how one may use our theory in practice. We first extract510

the data of loss values obtained by training GPT-like language models on dataset of varying sizes511

from [26, Fig. 1] using WebPlotDigitizer [42]. Then, we fit a simple linear regression model in the512

log-log space to obtain a close fit loss(m) = ( 5.4×1013

m )0.95. We use this to model how the loss513

would decrease as data increases. Then, we can define accuracy as (1− loss(m)). To define the value514

function, we need to assign a dollar value to a perfectly trained model. Microsoft reportedly paid 1515

billion (109) 2019 dollars for a license to GPT-3 [2] and hence this forms an estimate of the value of516

a fully trained model to one company. Thus we have517

v(m) = 109(1− ( 5.4×1013

m )0.95) .

GPT-3 was trained on 500 billion tokens [9]. OpenAI has raised an estimated 1 billion USD [1].518

Suppose that accounting for salaries of all personnel involved etc., we allocate half of this money as519

being spent on training GPT-3, this gives an estimate of the marginal cost per datapoint as ci = 10−3520

USD. With these numbers, we see that we need at least 1000 companies (each for whom the trained521

model is worth 1 billion USD) collaborating together to make it feasible. Note that with our estimated522

costs and benefits, it seems like OpenAI is at a loss. This is true–it would likely need to license GPT-3523

(or its sucessors) to many more companies before it breaks even. Finally, we emphasize that this was524

more of a pedagogical exercise and not an actual prediction about outcomes. The stylized framework525

here is meant to provide qualitative insights about the incentives at play.526
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Figure 5: Simulating training of GPT-3. In (a), we take real world data (yellow dots) of how loss
scales with data size and show that ( 5.4×1013

m )0.95 is a good fit (dashed green). We combine this
with an estimate of the value of model and compute the optimal individual data contribution in (b)
for different marginal data costs. The blue star shows the estimated marginal cost and total data
collected by open-AI for training GPT-3. Finally, (c) shows the data collected by our data-maximizing
mechanism with the estimated utility function. It shows that we need at least 1000 collaborative agents
to train the GPT-3 model. The data collected initially grows super-linearly in n, but asymptotically
becomes linear.

C.2 Comparison with baselines527

We compare with some alternative fairness inspired deterrence mechanisms which do not rely on our528

contract theory framework. These can be summarized as if you do not contribute as much as your529

peers, then you may be punished. Suppose the agents submit m number of data points. Then, the530

server chooses a feasible mechanism which returns a model of value less than v(
∑
jmj) to the client531

i. We consider the following mechanisms:532

• Proportionate data (PD). Penalize agent i if they submit less number of data points than533

their peers as534

[M(m)]i =

(
mi

maxjmj

)p
v(
∑
jmj) for p ∈ [0, 1] (12)

• Proportionate value (PV). Penalize agent i for contributing less value than their peers:535

[M(m)]i =

(
v(mi)

maxj v(mj)

)p
v(
∑
jmj) for p ∈ [0, 1] (13)

• Proportionate Shapley (PS) [46]. Shapely values has a long history of being used a fair536

contribution measure. Thus, we can compute the Shapely value for each agent’s contribution537

ϕi(m) and penalize as538

[M(m)]i =

(
ϕi(m)

maxj ϕj(m)

)p
v(
∑
jmj) for p ∈ [0, 1] . (14)

If all other agents are contributingm datapoints, the shapely value for agent i for contributing539

mi datapoints simplifies as540

ϕi(mi) =
1

n

∑
k∈[n]

v(km+mi)− v(km) .

In all cases, p = 0 returns to the standard federated learning scheme which, as we saw in Section 3,541

has catastrophic free-riding. These measures have numerous shortcomings which we explore in542

sequence.543

C.2.1 Many bad equilibria544

Because the mechanism only penalizes on relative performance among the different agents, there are545

multiple stable equilibrium. Consider n identical agents with same cost c here in a low-cost setting546

with positive optimal individual contributions m∗ > 0. Our conclusions also hold in more general547

settings, but we focus on this setting for simplicity.548
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Theorem VI. Consider mechanisms (12)–(14) with n identical agents with marginal cost c. Let549

m∗ > 0 be the equilibrium individual contribution and mmax is the equilibrium contribution by our550

optimal mechanism. Then, there is a set of data contributions S such that all agents contributing551

m ∈ S constitutes an equilibrium. Further, m
∗

n ∈ S is an equilibrium with the maximum utility.552

Note that this implies that every agent only contributing m∗

n i.e. n times lesser than they would on553

their own is also an equilibrium. With this only m∗ datapoints would be collected by the server.554

Further, this equilibrium corresponds to the maximum utility and so it is possible that all agents555

will converge to this. In contrast, our optimal scheme has an unique equilibrium corresponding to556

maximum data contribution.557

Proof. Consider the generic mechanism [M(m)]i =
(

ψi(m)
maxj ψj(m)

)p
v(
∑
jmj) for any positive,558

continuous, non-decreasing contribution measure ψ. Suppose that all agents submit m data-points.559

This is an equilibrium if the following condition is satisfied:560

−pψ
′
i(m)

ψi(m)v(nm) ≥ v′(nm)− c ≥ 0 .

The right hand side is satisfied for m = m∗/n. Also note that ψ′ is positive meaning the left hand561

hand side is negative. This implies that as long as ψ′ and psi are continuous aroundm, there exist a set562

of solutions all of which satisfy the above condition. Contributing m = m∗/n is utility maximizing563

for all the agents in general, and so corresponds to the maximum utility equilibrium as well.564

One way out of this may be for the server to take part in the process as an agent and also contribute565

data. This way by increasing its contribution, the server can force other agents choose an equilibrium566

corresponding to a large equilibrium.567

C.2.2 Sensitivity to choice of p and under-performance568

Consider n agents each have identical high-costs c with optimal individual contribution is m∗ = 0.569

We use the same experimental setup as in Figure 4 with aopt = 0.95, marginal cost c = 0.1, and570

n = 104. In Figure 6, we numerically compute the equilibrium corresponding to the maximum data571

contribution for each of alternative mechanisms, assuming the server may be able to intervene and572

direct the agents towards the most beneficial equilibrium.573

When we use p = 0 all the alternative schemes recover the standard FedAvg scheme. As we saw in574

Sec. 3, this implies for p = 0 there is catastrophic free-riding and hence the equilibrium contribution575

is 0. However, if we choose a value of p too large, it is possible that the mechanism no longer576

satisfies individual rationality. This means that at equilibrium the agents drop out and effectively577

contribute 0 data points again. The proportional value scheme significantly under performs, whereas578

the proportional Shapley scheme suggested by Sim et al. [46] and the much simpler proportional data579

scheme both perform reasonably well. However, note that even for the best value of p, both these580

schemes do not match our much simpler data-maximizing value shaping mechanism.581

C.2.3 Discrimination against high-cost agents582

Consider n = 104 agents with aopt = 0.95 and which are one of two types: either they have a low583

cost of 1 × 10−4, or they have a comparable but slightly higher cost of 2 × 10−4. A fraction (say584

pi ∈ [0, 1]) are of the low cost and the rest have high cost. We assume the server is aware of (or585

can verify) the cost of each of the agent. In Figure 7, we numerically compute the equilibrium data586

contribution of the high and low cost agents for the data maximizing value shaping mechanism, and587

the proportional data mechanism. For the latter PD, we compute the maximum data contribution588

equilibrium as well as use the optimal p to compare value shaping against the best possible version of589

the alternative mechanism.590

We observe that the total amount of data collected by value shaping is much more (up to 50×) than591

PD, especially when a large fraction of agents have high cost. The high cost agents continue to592

contribute significant amount of data when using the value shaping mechanism. Recall that with593

these contribution levels, they receive full value of the combined data from the mechanism. However,594

very starkly, the high cost agent chooses to opt-out and contributed no data with the PD mechanism.595

This means that with PD, the high cost agents receive zero value. This is a direct result of PD being596
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Figure 6: Total data collected as we vary the exponent p in the different mechanisms. The black
dashed line represents the data collected by our data maximizing value-shaping mechanism outlined
in Sec. 4. Using a small p is an insufficient deterrent and so each agent tends to free-ride yielding low
overall data collection. Using too high value of p (say p = 1) makes the deterrent so strong that the
agents rationally chooses to drop out and contribute 0.
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Figure 7: Data contributions in a mixture of low and high cost agents as we vary the fraction of
low cost agents. Left shows the data maximizing value shaping mechanism and the (a)total data
collected, and (b) data contributed by the high cost agents. Right (c) and (d) show the same with
proportional data mechanism. Total data collected in (a) with value shaping is 50× more than in (c)
with proportional data. Further, the high cost agents continue to contribute and receive full value in
(b) with value shaping, but they opt-out and receive zero value in (d) with proportional data. Thus,
not accounting for costs may end up discriminating against high cost agents.

agnostic to the cost–it penalizes an agent for contributing lower amount of data without taking into597

consideration the difference in costs involved in such a process. In the face of such deterrent, the high598

cost agent rationally chooses to out-out. This is despite the costs differing by a mere 2×.599

Our framework has thus thrown to light an important insight–‘fair’ mechanisms which do not account600

for difference in costs of the agents will end up being extremely unfair. Further, the high cost agents601

will rationally chose to drop out and derive no value from the system. Consider the setting where602

agents from resource-rich and resource-poor locations collaborate. The latter agents will have a603

higher data collection costs due to systemic barriers and will be unfairly penalized in a proportionate604

fairness approach.605
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D Data Maximization under Unverifiable Costs606

Until now, we assumed that the cost of all agents is known to everyone involved, or is atleast verifiable.607

In some settings where the costs are universal and outside the control of the agent, this assumption608

may be justified. However, in numerous other cases, the exact process of the data generation may609

be a trade secret and so there is uncertainty about the cost incurred by an agent. In this section, we610

examine how to incorporate such uncertainties into our mechanism.611

We focus on the simplest version of this uncertainty. Suppose that we know that the cost of each612

agent can either be low (
¯
c) or high (c̄). Further, suppose we have some prior knowledge where agent613

i has low cost
¯
c with probability pi and c̄ with (1− pi). Note that there is an inherent information614

asymmetry in this setting. The agent knows the realization of their cost, ci ∈ {c̄,
¯
c}, whereas the615

server only knows the distribution from which it was drawn. In particular, the server needs to present616

a mechanism M to an agent without knowing their actual cost.617

D.1 Mechanism description618

Suppose each agent independently selects their cost to be low (ci =
¯
c) with probability pi. Let an619

agent with low cost
¯
c generate

¯
m∗ data points at equilibrium on their own (and correspondingly620

define m̄∗ for a high-cost agent). Then, for some small ε > 0 and m̄∗ ≤ m↑
i ≤ m↓

i , consider the621

following mechanism (illustrated in Figure 8)622

[M(m)]i =


v(mi) for mi ≤ m̄∗

v(m̄∗) + (c̄+ ε)(mi − m̄∗) for mi ∈ [m̄∗,m↑
i ]

v(m↓
i +

∑
j ̸=imj)− (

¯
c+ ε)(m↓

i −mi) for mi ∈ [m↑
i ,m

↓
i ]

v(
∑
jmj) for mi ≥ m↓

i .

(15)

mim̄*

a (∑
i

mi)

m̄↑
i

[ℳ(m)]i

B

slopeAC = c̄ + ϵ

−acc. with all data−acc. no sharing

high cost = c̄mi

low cost = cmi

m*

A
C

slopeCD = c + ϵ

m↓
i

D E

mmax

Figure 8: value shaping mechanism under unknown costs.
(red curve): model value returned to agent i by the mecha-
nism; (grey curve): model value for agent i without partic-
ipation; (green curve): model value if agent i receives all
the data from the other agents.

Recall from Theorem I that
¯
m∗ ≥ m̄∗623

since
¯
c ≤ c̄. Thus, agents with either624

costs do not need additional incentive to625

collect data up to m̄∗. Now, consider a626

high-cost agent. After m̄∗, they need627

a marginal gain in value of at least c̄628

which they do not get on their own. Addi-629

tional supplementary data is provided by630

(15) until m↑
i to incentivize a high-cost631

agent. It is now in their best interest to632

contribute m↑
i . For the low-cost agent,633

the marginal gain in value is at least
¯
c634

until m↓
i , making this their best contribu-635

tion. The specific values of m↓
i and m↓

i636

(points D and C) can then be chosen to637

maximize the expected data contribution638

((1− pi)m
↑
i + pim

↓
i ).639

For ∆m-i :=
∑
j ̸=imj , let m̄max be the640

maximum amount of data a high-cost641

agent can be incentivized to contribute642

as in (11) i.e. it is defined to be v(m̄max+643

∆m-i) = v(m̄∗) + c̄(m̄max − m̄∗), and644

¯
mmax defined correspondingly for the645

low-cost agent. Then, we define m↓
i (point D) to satisfy646

v′(m↓
i +∆m-i) = min

(
max

(
¯
c− p

1−p c̄ , v
′(
¯
mmax +∆m-i

)
, v′(m̄max +∆m-i)

)
. (16)

Then, we can define m↑
i (point C) as the intersection of the two linear curves (starting from A and D647

in Fig 8):648

v(m↓
i +

∑
j ̸=imj)− (

¯
c+ ε)(m↓

i −m↑
i ) = v(m̄∗) + (c̄+ ε)(m↑

i − m̄∗) . (17)
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Note that our mechanism withholds some data from a high-cost agent resulting in a lower value649

model for them. This is necessary to prevent a contribution level targeted at high-cost agent from650

becoming attractive to a low-cost agent.651

D.2 Analysis652

We now analyze the properties of our expected data-maximization algorithm.653

Theorem VII (Expected data maximization). Mechanism (15) is feasible, satisfies IR, and has a654

unique Nash equilibrium: meq
i = m↑

i if ci = c̄ and otherwise meq
i = m↓

i . Further, for ε → 0+,655

the mechanism (15) maximizes the expected (over the sampling of the true costs) amount of data656

collected with657 ∑
j(1− pj)m

↑
j + pjm

↓
j = maxM

{∑
j Ec[m

M
j ] , subject to M being feasible and IR

}
.

Remark 5 (Decreased data collection). By construction of our mechanism, the contribution of a658

high-cost agent would be m↑
i ∈ [m̄∗, m̄max] i.e. they contribute more than they would on their own,659

but lesser than the max possible under known costs. Further, our assumption that v(·) is concave660

means v′(·) is non-increasing. Hence, (16) implies that the data contributed by a low-cost agent is661

m↓
i ∈ [m̄max,

¯
mmax]. However, if pi ≥ ¯

c

¯
c+c̄ , (15) always implies that m↓

i = ¯
mmax.662

We extract lesser data than if we knew the agent’s true cost i.e. m↑
i ≤ m̄max. However, they also663

receive a model which has worse value with v(m̄∗) + c̄(m↑
i − m̄∗) ≤ v(

∑
jmj) i.e. it is not trained664

on the combined data. This is because if we offered a full value model to a high-cost agent at665

m̄max ≤ m↓
i contribution, the low-cost agent can claim they are actually high-cost and cheat our666

system. Instead, now the low-cost agent will contribute m↓
i ≥ m̄max and will receive a model trained667

on the combined data with value v(
∑
jmj).668

Theorem VIII (Information rent). Consider our optimal mechanism (15) with equilibrium contri-669

butions meq
i = m↑

i for a high-cost agent and meq
i = m↓

i for the low-cost agent. Further, let m̄∗670

and
¯
m∗ be the equilibrium individual contributions. Then, the utility of the high-cost agent remains671

unchanged with v(m̄∗) + c̄(m↑
i − m̄∗) − c̄m↑

i = v(m̄∗) − c̄m̄∗ . The utility of a low-cost agent,672

however, improves by
(
¯
c(
¯
mmax −m↓

i )− v(
¯
mmax +∆m-i) + v(m↓

i +∆m-i)
)
≥ 0.673

Because a low-cost agent can always lie and pretend to be high cost, they hold some power over the674

server when m↓
i < ¯

mmax. This is reflected in the extra utility they manage to extract and is called675

information rent. The utility of the high-cost agent remains unchanged since they hold no such power.676

18



E Proofs from Section 2 (Optimal Individual Contributions)677

Theorem I (Optimal individual generation). Consider an individual agent i with marginal cost per678

data point ci and value function v satisfying (1) working on their own. Then, the optimal amount of679

data m∗
i is:680

m∗
i =

{
0 if maxmi≥0 ui(mi) ≤ 0;

α∗
i , such that b′(α∗

i ) = ci otherwise.
(4)

Further, for agents i, j with costs ci ≤ cj , their utility satisfies ui(m∗
i ) ≥ uj(m

∗
j ) and m∗

i ≥ m∗
j .681

Proof. Recall that the utility function (see Eq. 3) of a single agent is:682

ui(mi) = v(mi)− cimi.

Thus we have,683

u′i(mi) = v′(mi)− ci.

Denote argmaxm v(m) = 0 as m0. By definition, ∀mi > m0, v(mi) = b(mi) > 0. Given that b(·)684

is concave, b′(mi),mi ≥ m0 (or u′i(mi)) is maximized when mi = m0.685

Case 1 (high-cost agent): u′i(m0) ≤ 0. Then, for ∀mi ≥ m0, u′i(mi) ≤ u′i(m
0) ≤ 0. On the686

other hand, ∀0 ≤ mi ≤ m0, u′i(mi) = −ci ≤ 0. Thus ui(mi) is non-increasing, and m∗
i = 0. The687

utility function of an agent in this case is illustrated in Figure 1 (d).688

Case 2 (mid-cost agent): u′i(m0) > 0 and maxmi
ui(mi) ≤ 0. When u′i(m

0) > 0, that implies689

that at m0, b′(m0) > ci. Moreover, for mi ≥ m0, we have that690

u′i(mi) = b′(mi)− ci < b′(m0)− ci.

Therefore, since b(mi) is concave, it is possible that ui(mi) increases first after m0. However, as691

long as maxmi
ui(mi) ≤ 0, we still have that m∗

i = 0. The utility function of an agent in this case is692

illustrated in Figure 1 (c).693

Case 3 (low-cost agent): u′i(m0) > 0 and maxmi ui(mi) > 0. Recall that for a mid-cost agent, it694

is possible that ui(mi) increases first after m0. Moreover, given that v(mi) ≤ 1, as mi → ∞,695

u′i(mi) = b′(mi)− ci ≤ 0.

Therefore, there exists α∗
i > m0 > 0 such that b′(α∗

i ) = ci. The utility function of an agent in this696

case is illustrated in Figure 1 (b).697

Combining the three cases above completes the first part of the proof.698

Next, consider two agents with costs ci ≤ cj . Note that for any fixed m, ui(m) ≥ uj(m). Hence,699

the inequality also holds after minimizing both sides. Finally, note that if j is not a low-cost agent,700

it is clear that m∗
i ≥ m∗

j = 0. If both i and j are low-cost agents, note that m∗
i = b′−1(ci) and701

m∗
j = b′−1(cj). Since b(·) is concave and positive, b′ (and hence b′−1) is non-increasing. This702

implies that m∗
i ≥ m∗

j finishing the theorem.703

F Proofs from Section 3 (Modeling Multiple Agents and Catastrophic704

Free-riding)705

Theorem II (Existence of pure equilibrium). Consider a feasible mechanism M which can be706

expressed as:707

[M(mi;m−i)]i = max(0, νi(mi;m−i)) ,

for a function νi(mi;m−i) which is continuous in m and concave in mi. For any such M, there708

exists a pure Nash equilibrium in data contributions meq(M) which for any agent i satisfies,709

[M(meq(M))]i − cim
M
i ≥ [M(mi,m

eq(M)−i)]i − cimi , for all mi ≥ 0 . (7)
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Proof. For a set of contributions m, define the following best response mapping:710

[B(m)]i := argmax
m̃i≥0

{ui(m̃i,m−i) := [M(m̃i,m−i)]i − cim̃i} , (18)

where recall [M(m̃i,m−i)]i is the value returned by the mechanism upon agent i submitting m̃i711

data points and the rest contributing m−i. Note that the mapping defined above is a multi-valued712

function i.e. B : Rn → 2R
n

. This is because the argmax defined above may potentially return713

multiple values. Nevertheless, suppose that there existed a fixed point to the mapping B i.e. there714

existed m̃ such that m̃ ∈ B(m̃). Then, m̃ is the required equilibrium contribution since by definition715

of the arg-max we have for any mi ≥ 0,716

[M(m̃i, m̃−i)]i − cim̃i ≥ [M(mi, m̃−i)]i − cimi .

So, we only have to prove that the mapping B has a fixed point. Since the mechanism M is feasible,717

by Definition A and equation (1) we have718

[M(m)]i ≤ v(
∑
jmj) ≤ limm→∞ v(m) ≤ 1 .

This implies that719

0 ≥ ui(m̃) ≤ 1− cim̃i ⇒ m̃i ≤ 1/ci .

Thus, we can restrict our search space to a convex and compact product set C :=
∏
j [0,

1/ci] ⊂ Rn720

and our mapping is then over B : C → 2C . Next by assumption on the mechanism M, our utility721

function can be written as722

ui(mi,m−i) = max(−cimi , ν(mi,m−i)− cimi) ,

where ν(mi,m−i) − cimi is concave in mi. Unfortunately, ui may not be quasi-concave in mi723

because of the max. If it was quasi-concave, the mapping B(m) would be continuous in m and724

applying Kakutani’s theorem would yield the existence of the required fixed point (see Maskin [36]725

or Acemoglu and Ozdaglar [3, Lecture 11], for details).726

Lemma 6 (Kakutani’s fixed point theorem). Consider a multi-valued function F : C → 2C over727

convex and compact domain C for which the output set F (m) i) is convex and closed for any fixed m,728

and ii) changes continuously as we change m. For any such F , there exists a fixed point m such that729

m ∈ F (m).730

However, our utility function is not quasi-concave and the mapping B may be discontinuous. While731

there have been recent extensions of Kakutani’s fixed point theorem to half-continuous functions (e.g.732

Bich [6, Theorem 3.2]), the mapping B does not satisfy this either. We next study the exact nature of733

discontinuity.734

Lemma 7. Consider the best-response mapping B in (18) over convex and compact domain C. For735

any m, either the mapping [B(m)]i is convex, closed, and continuous in m, or 0 ∈ [B(m)]i.736

Proof. Figure 9 looks at the best response mapping Bi depending on the utility curve ui(·,m−i).737

Even if the utility itself is smoothly varying with the parameters m, the best response may be738

discontinuous. In Fig. 9, for a small change in the utility curve between u2(mi) to u3(mi), the best739

response drastically changes from m̃i = 0 (A) to m̃i > 125 (B). However, this is the only source of740

discontinuity.741

Recall that our utility function ui is a max of a decreasing linear function and a concave function.742

Thus it has at most two local maxima: either 0, or the maxima of the concave function f(mi) =743

νi(mi;m−i)− cimi. The set of maxima of a continuous concave function is continuous, closed and744

convex. Hence, either 0 is part of the best response, or [B(m)]i is continuous, closed and convex.745

Armed with Kakutani’s fixed point theorem Lemma 6 and a description of the discontinuities in the746

best response mapping Lemma 7, we can continue with the proof of existence of a fixed point for B.747

Given any index set I ⊆ [n], we can define the following sub-domain CI :=
∏
i∈I [0,

1/ci]. Given748

any vector p ∈ CI , we can construct its extension m(p; I) ∈ C as749

[m(p; I)]i := pi if i ∈ I, and 0 otherwise.
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Figure 9: Utility curves u(mi) of some agent i, and the corresponding discontinuous best responses
(m̃i ≥ 0 which maximizes u(mi)). For both u1 and u2, the best response of the agent is m̃i = 0
(point A), and points B and C are the best responses for u3 and u4. A small change in the utility
curves (from u2 to u3) can result in a large change in the best response (from A to B).

We will omit the I dependence and use m(p) when clear from context. Given this mapping between750

sub-domain CI and the full domain C, we can define a mapping:751

BI(p) : CI → 2CI := ([B(m(p))]i for i ∈ I)
Finally, for any m ∈ C, define the set of indices I(m) ⊆ [n] as752

I(m) := {i for which 0 /∈ [B(m)]i .}
Let us start from m = 0. If I(0) = ∅, we are done since this implies 0 ∈ B(0). Otherwise,753

Lemma 7 states that the mapping BI(0)(p) over the compact convex domain CI(0) is convex,754

compact and continuous. Hence, by Lemma 6, it has a fixed point such that p1 ∈ BI(p
1). We can755

inductively continue applying the same argument. If m(p1) is a fixed point of the full mapping756

B with m(p1) ∈ B(m(p1)), we are done. Otherwise, I(m(p1)) ⊃ I(0) and we can continue757

repeating the same argument inductively. Since the size of I is at most n, the recursion will stop and758

yield a fixed point m̃ ∈ C such that m̃ ∈ B(m̃). As we initially proved, this fixed point m̃ to the759

best response dynamics is also the equilibrium of our mechanism.760

761

Theorem III (Catastrophic free-riding). Consider n agents with costs {ci} with a unique least cost762

agent cmin = mini ci. Let {m∗
i } be the equilibrium contributions of agents when alone. The standard763

federated learning mechanism corresponding to [M(m)]i = v(
∑
jmj) for all clients i is feasible764

and IR, and has an unique equilibrium. At this equilibrium, only the lowest cost agent contributes:765

meq
i =

{
m∗
i if ci = cmin

0 otherwise.
(9)

Proof. Let ĩ be the agent with the least cost. By Theorem I, it follows that m∗
j < m∗

ĩ
for all agents766

j ∈ [n].767

First, suppose thatm∗
ĩ
> 0. In this setting, all other agents agent j will have access to data contributed768

by ĩ which is m∗
ĩ
. Now given access to this, the marginal gain in value for an additional data-point769

for any agent j is less than their cost i.e. b′(m∗
ĩ
) = cĩ < cj . Hence, it is optimal for agent j to just770

use m∗
ĩ

data-points, and not generate any additional data-points. Thus, the equilibrium is all other771

agents contribute no data, and agent ĩ computes m∗
ĩ

datapoints as if on its own.772

Next consider the case where m∗
ĩ
= 0 and hence all m∗

i = 0. Suppose all the other agents in total773

contribute ∆m datapoints, which is given to all agents unconditionally. With this extra free data, it774

is possible that there exists some agent for whom m∗
ĩ
> 0. However, the incentives of the agents775

remain identical and so the agent with the least cost collects the most data. Given access to this776

∆m+m∗
ĩ

amount of data, agent j with higher cost cj ≥ cĩ has no incentive to collect any additional777
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data. Hence, only agent ĩ would collect any data and so ∆m = 0. However, if ∆m = 0, agent ĩ also778

has no incentive to collect any data. This implies that all agents contributing 0 datapoints is the only779

Nash equilibrium possible.780

G Proofs from Section 4 (value Shaping under Known Costs)781

Theorem IV (Data maximization with known costs). The mechanism M defined by (11) is data-782

maximizing for ε→ 0+. At equilibrium, a rational agent i will contribute mmax
i data points where783

mmax
i ≥ m∗

i , yielding a total of
∑
jm

max
j data points.784

Proof. We will do the proof in two steps. Consider the best response BM of the agents to a785

mechanism M similar to the definition in the proof of Theorem II:786

[BM(m)]i := argmax
mi≥0

[M(mi,m−i)]i − cimi .

We will first prove that given a fixed contribution m from other users, the best response for our787

mechanism mmax
i is higher than that of any other feasible and IR mechanism. We will then show that788

this necessarily implies that the equilibrium contribution of the agent is also data maximizing.789

Lemma 8. For a given data contribution m and any feasible and IR mechanism M̃, define best790

responses BM(m) and BM̃(m) for our mechanism M (defined in (11)) and the other mechanism791

M̃. Then, for any agent i and contribution m,792

[BM(m)]i ≥ [BM̃(m)]i .

Further, the best response [BM(m)]i is non-decreasing in the net contribution from other agents793

(
∑
j ̸=imj).794

For now, we will assume that the above lemma and continue with our proof. As shown in the proof of795

Theorem II, the equilibrium of all feasible mechanisms (if they exist) lie in the range C :=
∏
i[0,

1/ci].796

Suppose that m̃ ∈ M is the equilibrium of mechanism M̃ ∈ M. Note that m̃ is also the fixed point797

of the best response with m̃ ∈ BM̃(m̃). Now, define the following subspace798

C≥m̃ :=
∏
j

[m̃j , 1/cj] .

The set C≥m̃ is compact and convex. Thus, we can apply Theorem II to our optimal mechanism M799

to prove that there exists an equilibrium point m ∈ C≥m̃ such that800

[m]i ∈ argmax
mi≥m̃i

[M(mi,m−i)]i − cimi .

We will next show that the above point m is in fact a fixed of BM(m) and satisfies:801

[m]i ∈ argmax
mi≥0

[M(mi,m−i)]i − cimi .

Note that the only difference between the two claims is that in the latter the argmax is taken over802

≥ 0 where as it was more constrained in the former. For the sake of contradiction, suppose this is803

not true i.e. there exists an agent i such that mi /∈ [BM(m)]i and [BM(m)]i < m̃i. However, this804

leads to a contradiction:805 ∑
j ̸=i

mj ≥
∑
j ̸=i

m̃j

⇒[BM(m)]i ≥ [BM(m̃)]i ≥ [BM̃(m̃)]i = m̃i .

The first inequality is because m ∈ C≥m̃. The first inequality in the second step follows from the806

latter part of Lemma 8 while the next inequality is from the first part. Finally, the last equality807

follows because m̃ is a fixed point of BM̃. Hence, we have proven that there exists a fixed point808

m ∈ BM(m) such that m ∈ C≥m̃ i.e. the equilibrium contribution of every agent under M is at809

least as much as M̃.810
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Proof of Lemma 8. Recall the optimal mechanism defined in (11) restated below:811

[M(m)]i =


v(mi) for mi ≤ m∗

i

v(m∗
i ) + (ci + ε)(mi −m∗

i ) for mi ∈ [m∗
i ,m

max
i ]

v(
∑
jmj) for mi ≥ mmax

i .

(19)

For now, suppose that m∗
i > 0. Recall, from [case 3, Theorem I], that this implies v′(m∗

i ) =812

b′(m∗
i ) = ci.813

First we show that mmax
i is the unique equilibrium contribution for an agent i. The slope of the utility814

of agent i is815

u′i(mi;M) =
∂[M(m)]i

∂mi
− ci .

By construction, this slope is u′i(mi;M) > 0 for any mi < mmax
i . Suppose the contribution of816

all other agents is fixed to ∆m-i =
∑
j ̸=imj . The slope of the utility at mmax

i is u′i(m
max
i ;M) =817

v′(mmax
i +∆m-i)− ci. Again, by construction, mmax

i +∆m-i ≥ m∗
i . Since b is concave and b′ is818

non-increasing,819

u′i(m
max
i ;M) = v′(mmax

i +∆m-i)− ci = b′(mmax
i +∆m-i)− ci ≤ b′(m∗

i )− ci = 0 .

Thus, mmax
i is the unique equilibrium contribution of agent i. Next, we have to demonstrate the820

data-maximizing property. For the sake of contradiction, suppose there existed some other mechanism821

M̃ such that822

argmax
mi

[M̃(m)]i − cimi =: m̃i > mmax
i .

This implies that u′i(mi;M̃) > 0 for any mi ≤ m̃i, i.e. ∂[M̃(m)]i
∂mi

> ci. In particular, this implies823

that824

∂[M̃(m)]i
∂mi

>
∂[M(m)]i

∂mi
for all mi ∈ [m∗

i ,m
max
i ] .

Further, M̃ satisfies individual rationality and so at mi = m∗
i we have825

[M̃(m∗
i ,m-i)]i ≥ v(m∗

i ) = [M(m∗
i ,m-i)]i .

Together, these two conditions imply that for all mi ∈ [m∗
i ,m

max
i ], we have [M̃(m)]i > [M(m)]i.826

In particular at mi = mmax
i , we have827

[M̃(mmax
i ,m-i)]i > v(

∑
jmj) .

This gives us a contradiction since it violates feasibility. Thus, mmax
i is the maximum data which can828

be extracted from agent i.829

The proofs for the low and medium cost agents are similar, while noting that m∗
i = 0. This finishes830

the proof of the first part. The second part of the lemma follows directly from the definition of M and831

the fact that the value function v(mi +
∑
j ̸=imj) is non-decreasing in the contributions

∑
j ̸=imj .832

833

Theorem V (Incentive compatibility). Under given costs c, consider our optimal mechanism (11)834

with equilibrium contributions mmax, and agents working individually with equilibrium contributions835

of m∗. The utility of the every agent i remains unchanged:836

v(
∑
jm

max
j )− cim

max
i = v(m∗

i )− cim
∗
i .

Proof. This statement is true by construction of our mechanism. When ε→ 0, the slope of the utility837

becomes838

u′i(mi;M̃) =
∂[M(m)]i

∂mi
− ci = ci + ε− ci = 0 for all mi ∈ [m∗

i ,m
max
i ] .

Further, note that at mi = m∗
i , we have [M(m∗

i ,m-i)]i = v(m∗
i ). Thus, for all mi ∈ [m∗

i ,m
max
i ],839

the utility of agent i with our mechanism M remains constant and equal to the optimal individual840

utility ui(m∗
i ).841
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H Proofs from Appendix D (Data Maximization with Unverifiable Costs)842

Theorem VII (Expected data maximization). Mechanism (15) is feasible, satisfies IR, and has a843

unique Nash equilibrium: meq
i = m↑

i if ci = c̄ and otherwise meq
i = m↓

i . Further, for ε → 0+,844

the mechanism (15) maximizes the expected (over the sampling of the true costs) amount of data845

collected with846 ∑
j(1− pj)m

↑
j + pjm

↓
j = maxM

{∑
j Ec[m

M
j ] , subject to M being feasible and IR

}
.

Proof. Recall that we had defined the mechanism (15) as847

[M(m)]i =


v(mi) for mi ≤ m̄∗

v(m̄∗) + (c̄+ ε)(mi − m̄∗) for mi ∈ [m̄∗,m↑
i ]

v(m↓
i +

∑
j ̸=imj)− (

¯
c+ ε)(m↓

i −mi) for mi ∈ [m↑
i ,m

↓
i ]

v(
∑
jmj) for mi ≥ m↓

i .

(20)

First, we have to show that m↑
i and m↓

i are equilibrium for the high and low cost players c̄ and
¯
c848

respectively. For the sake of simplicity, we first assume that m̄∗ > 0 and
¯
m∗ > 0. The proofs directly849

extend to the other cases. Now, note that v′(m̄∗) = b′(m̄∗) = c̄. Thus, by constructions, we have850

that for a high cost agent,851

u′i(mi;M) =
∂[M(m)]i

∂mi
− c̄ > 0 for all mi ≤ m↑

i .

where as for mi > m↑
i , the slope u′i(mi;M) =

¯
c+ ε− c̄ < 0. Assuming ε is small enough, a high852

cost agent obtains optimal utility at m↑
i . Similarly, for the low cost agent, u′i(mi;M) > 0 for all853

mi < m↓
i and is negative after (similar to Theorem IV). Thus, the optimum contribution of the low854

cost player is m↓
i .855

Next, recall that we had defined in (16) that m↓
i satisfies856

m↓
i = min

(
max

(
b′−1

(
¯
c− pi

1−pi c̄
)
−∆m-i , m̄

max
)
,
¯
mmax

)
. (21)

We will show that m↓
i defined this way maximizes the expected data for agent i:857

max
m↓

i

{
(1− pi)m

↑
i + pim

↓
i

}
subject to m↑

i ,m
↓
i are feasible for M . (22)

This involves some variational calculus (see Fig. 10). As shown in Fig. 10, reducing the value of m↓
i858

results in an increase inm↑
i . Suppose we push the blue bar vertically by a small value dx. Because the859

slope of AC is c̄, this results in increase of dxc̄ in m↑
i . Correspondingly, we can show that the decrease860

in m↓
i will be dx

¯
c−v′(m↓

i +∆m-i)
. Putting these together, the net expected change in data contribution is861

(1− pi)
dx

c̄
− dx

¯
c− b′(m↓

i +∆m-i)
.

The local unconstrained maxima can then be derived by setting the above to 0 i.e when862

b′(m↓
i +∆m-i) =

¯
c− pi

1−pi c̄ .

Of course, we have to respect the constraints that m↓
i ∈ [m̄max,

¯
mmax] giving us our final result.863

Thus, the value of m↓
i as chosen by (22) is optimal for these class of mechanisms.864

Now, we have to show that any data-maximizing mechanism corresponds to M with some choice of865

m↓
i . Consider a mechanism M̃ whose equilibrium contributions are (m̃,

˜
m) for a high and low-cost866

agent respectively (see points I and J in Fig. 10). Now, from the optimality of
¯
mmax, we know that867

˜
m ≤

¯
mmax. Let us connect m̄∗ (point A) to m̃ (point I) and then to

˜
m (point J). Recall that we868

assumed that M̃ is different from M in (15). This means that the slope AI ̸= c̄ or IJ ̸=
¯
c. Consider869
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Figure 10: Value shaping mechanism under unknown costs. (red curve): model value returned to
agent i by the mechanism; (grey curve): model value for agent i without participation; (green curve):
model value if agent i receives all the data from the other agents. Point C and D (in red) and points
E and F (in blue) represent two different choices for (m↑ and m↓) respectively. If we choose a
smaller value of m↓ (shown in blue by point F), we would see an increase in m↑ to point E. Thus,
the optimum value balances these two depending on the probability pi. Finally, points I and J (in
magenta) represent potential other mechanisms M̃.

the latter. Combined with I and J corresponding to equilibria, we have slope of IJ >
¯
c. This implies870

that starting from point I, we could have instead drawn a line segment of slope
¯
c and increased the871

data contribution by the low cost agent, while keeping the contribution of the high-cost agent fixed.872

Similarly, we can show that the optimal slope for AI is c̄. Together, this implies that any optimal873

mechanism M must be of the form (15), finishing our proof.874

Theorem VIII (Information rent). Consider our optimal mechanism (15) with equilibrium contri-875

butions meq
i = m↑

i for a high-cost agent and meq
i = m↓

i for the low-cost agent. Further, let m̄∗876

and
¯
m∗ be the equilibrium individual contributions. Then, the utility of the high-cost agent remains877

unchanged with v(m̄∗) + c̄(m↑
i − m̄∗) − c̄m↑

i = v(m̄∗) − c̄m̄∗ . The utility of a low-cost agent,878

however, improves by
(
¯
c(
¯
mmax −m↓

i )− v(
¯
mmax +∆m-i) + v(m↓

i +∆m-i)
)
≥ 0.879

Proof. For a high cost player, the statement easily follows since ∂[M(m)]i
∂mi

−c̄ = 0 for allmi ∈ [c̄∗, c↑i ].880

Thus, a high cost player’s utility remains constant during this period and is equal to utility atmi = m̄∗881

which is v(m̄∗)− c̄m̄∗.882

For a low cost agent, ∂[M(m)]i
∂mi

− c̄ = 0 for all mi ∈ [m↑
i ,m

↓
i ], and hence their utility is constant in883

this region. In particular, the difference in utility with mechanism M and alone is884

v(m↓
i +∆m-i)−

¯
cm↓

i − v(
¯
mmax +∆m-i) +

¯
c
¯
mmax .

The above quantity is always non-negative since v′(mi +∆m-i) ≤
¯
c for all mi ∈ [m↓

i , ¯
mmax].885
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