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Abstract

We consider independent component analysis of
binary data. While fundamental in practice, this
case has been much less developed than ICA for
continuous data. We start by assuming a linear mix-
ing model in a continuous-valued latent space, fol-
lowed by a binary observation model. Importantly,
we assume that the sources are non-stationary; this
is necessary since any non-Gaussianity would es-
sentially be destroyed by the binarization. Interest-
ingly, the model allows for closed-form likelihood
by employing the cumulative distribution function
of the multivariate Gaussian distribution. In stark
contrast to the continuous-valued case, we prove
non-identifiability of the model with few observed
variables; our empirical results imply identifiability
when the number of observed variables is higher.
We present a practical method for binary ICA that
uses only pairwise marginals, which are faster to
compute than the full multivariate likelihood. Ex-
periments give insight into the requirements for
the number of observed variables, segments, and
latent sources that allow the model to be estimated.

1 INTRODUCTION

Despite significant progress in both linear and nonlinear ICA
in recent years [Hyvärinen and Morioka, 2016, Hyvärinen
et al., 2019, Khemakhem et al., 2020], ICA for binary data
remains a challenging and important problem as binary data
is abundant in various fields, such as bioinformatics, health
informatics, social sciences, natural language, and electrical
engineering. An ICA model for binary data may also open
new opportunities in solving problems closely related to
ICA, such as causal discovery [Shimizu et al., 2006] and
feature extraction [Hyvärinen and Morioka, 2016].

Methods for binary ICA have been proposed based on either

binary or continuous-valued independent components. In the
case of binary components, Himberg and Hyvärinen [2001]
and Nguyen and Zheng [2011] assumed an OR mixture
model. In addition, some extensions of Latent Dirichlet can
be seen as binary ICA [Podosinnikova et al., 2015, Buntine
and Jakulin, 2005]. On the other hand, Kabán and Bingham
[2006] presented an approach based on a latent linear model
and binarized observations, although the components were
restricted to the unit interval, which limits its applicability.
Recently, Khemakhem et al. [2020] presented a nonlinear
ICA model (iVAE) that can employ binarized observations,
making several contributions that we can build on.

Our goal is to study the prospects of ICA for binary data
using a model that is both theoretically analyzable and intu-
itively appealing. It is crucial to investigate the identifiability
of such a model, and to have a consistent estimator which
is not based on approximations whose validity are not clear.
None of the approaches above fulfills all of these criteria.1

We propose a binary ICA model inspired by recent devel-
opments in nonlinear ICA. We formulate a latent linear
model with a separate binarizing measurement equation.
Crucially, we assume the components to be non-stationary,
which is a powerful principle and very useful here because
any non-Gaussianity (commonly employed in ICA) may be
destroyed by binarization. Thus, we obtain a binary ICA
model whose likelihood can be described in closed-form
via the multivariate Gaussian cumulative distribution func-
tion. We further propose to combine the likelihood with a
moment-matching approach to obtain a fast and accurate
estimation algorithm. In fact, due to the model structure,
pairwise marginal distributions of non-binarized data can be
accurately estimated from the binary data and the likelihood
can be computed directly from them. We investigate the iden-
tifiability of the model, and somewhat surprisingly, we show
that low-dimensional models are in fact non-identifiable—

1As noted in the Corrigendum of Khemakhem et al. [2020] (v4
on arXiv), their initial identifiability proof for a discrete non-linear
ICA model is incorrect.
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while higher-dimensional models are (empirically) shown
to be identifiable.

2 A MODEL FOR BINARY ICA

In this section, we define a binary counterpart of the linear
ICA model. In particular, we consider here a model based on
non-stationarity of the components, and start by motivating
such an approach.

2.1 THE APPROACH OF NON-STATIONARITY

While often non-stationarity is considered a nuisance, in
the theory of ICA it is well-known that a suitable non-
stationarity of the independent components can be very
useful. Pham and Cardoso [2001] already used it in the case
of linear ICA, and Hyvärinen and Morioka [2016] extended
the idea to nonlinear ICA. Note that the mixing is assumed
stationary, and the non-stationarity is a statistical property
of the components only.

In line with such literature, we assume the n-dimensional
data is divided into nu segments which express the non-
stationarity, i.e. the segments have different distributions.
In the case of time series, we may be able to find such
segmentation simply by taking time bins of equal sizes.
Such non-stationarity based on a segment-wise (piece-wise
stationary) model is well-known in linear ICA [Pham and
Cardoso, 2001, Miettinen et al., 2017]. Formally, each data
point has a segment index u assigned to it.

In fact, this setting is more general and it is not necessary
to have time-series. The additionally "observed" variable u
makes the non-stationarity a special case of the auxiliary
variable framework of Khemakhem et al. [2020]. It is thus
not only natural in the case of non-stationary time series,
but also when there is any other external discrete variable,
such as the experimental condition or intervention, or even
a class label that modulates the distribution of the data.

The motivation for such a non-stationary model is that it can
greatly extend the identifiability of ICA. Linear ICA is iden-
tifiable if the components are simply non-Gaussian, which is
why the utility of non-stationarity in that context has always
been dubious and such algorithms are rarely used. How-
ever, in the case of nonlinear ICA, non-Gaussianity does not
enable identifiability, which may be intuitively clear since
a nonlinear transformation can change the marginal distri-
butions quite arbitrarily from non-Gaussian to Gaussian or
vice versa. A major advance was in fact obtained by Hyväri-
nen and Morioka [2016], who showed that non-stationarity
does enable identifiability in the nonlinear case.

Here, we propose that using non-stationarity of the compo-
nents is very useful in the case of binary data as well. Again,
intuitively, non-Gaussianity is likely to be rather useless

since the binarization destroys any detail about the non-
Gaussianity of the distributions, and such a model would
be unlikely to be identifiable. However, non-stationarity is
not destroyed by binarization. Thus, binary ICA can be esti-
mated based on non-stationarity of the components, as we
will show later in this paper.

2.2 FORMAL MODEL DEFINITION

To define the model in detail, we assume the n-dimensional
data is generated from nz latent variables (independent com-
ponents, or sources), collected into a latent random vector
zu, which are generated independently of each other from
a Gaussian distribution. Crucially, the parameters of the
Gaussian distribution change as a function of the segment
as

zu ∼ N (µuz ,Σ
u
z )

where Σu
z is a diagonal matrix of the source variances in

segment u.

We define “intermediate” variables yu which are a linear
mixing of the sources by a mixing matrix A with n rows
and nz linearly independent columns

yu = Azu ∼ N (Aµuz , AΣu
zAᵀ). (1)

Here the mixing matrix A is constant, i.e., stationary, over
the segments u [Pham and Cardoso, 2001].

While some work in ICA considers noisy continuous ob-
servations by adding noise to yu, we can consider here
binarized observations xu instead. The binarization is done
using a linking function σ so that the probability of ith
element of xu being 1 is:

P (xui = 1) = σ(yui ).

We use a linking function based on the Gaussian CDF (cu-
mulative distribution function):

σ(yui ) = Φ

(√
π

8
yui
∣∣0, 1)

where Φ is the cumulative distribution function of the Gaus-
sian distribution, here with mean 0 and variance 1. We use√
π/8 as the coefficient to match closely to the sigmoid

function σ(yi) = 1
1+e−yi

[Waissi and Rossin, 1996, Li,
2021], which is standardly used in statistics and machine
learning in similar linking contexts.

We directly allow for different coefficients instead of
√
π/8,

but our estimation methods assume that the linking func-
tion has the particular form. The motivation is to allow for
closed-form expressions of the Gaussian integrals involved
in Section 3 in terms of the Gaussian CDF. The difference
to the logistic function is very small, while the methods are
much simpler with the used linking function. In fact, our



ICA model allows for closed-form likelihood with this par-
ticular linking function (Section 3), which would be difficult
to achieve with a logistic linking function.

Furthermore, the linking function has the following intu-
itive interpretation. Take yui , add independent noise ε from
N (0, 8

π ), and binarize yui simply by a hard threshold 0 to
get xui . This gives the same distribution for xui , since the
probabilities match:

P (xui = 1) = P (yui + ε > 0) = P (ε > −yui )

=

∫ ∞
−yui
N
(
ε
∣∣0, 8

π

)
dε = Φ

(√
π

8
yui
∣∣0, 1) .

A binary ICA modelM = (A, {µuz}u, {Σ
u
z}u) thus con-

sists of the following parameters: the mixing matrix A, the
means µuz and the diagonal (co)variance matrices Σu

z for all
segments u, denoted by {µuz}u and {Σu

z}u. Consequently,
it defines a distribution for a binary vector xu in each seg-
ment indexed by u.

3 THE LIKELIHOOD

A surprising observation regarding the the latent variable
model defined in Section 2 is that we can calculate the likeli-
hood in closed-form by employing the multivariate Gaussian
CDF. For example, the model defines the probability of the
data vector of all ones, denoted by 1, as:

P (xu = 1|M) =

∫
P (xu = 1|yu)P (yu|M)dy

=

∫
Φ

(√
π

8
yu|0, I

)
N (yu|Aµuz ,AΣu

zAᵀ)dy

where the univariate Gaussian CDFs are written as a multi-
variate Gaussian CDF Φ with an identity covariance matrix.
The benefit of using a Gaussian CDF-based linking function
comes into play here, as the value of the integral is directly
a value of a multivariate Gaussian CDF [Waissi and Rossin,
1996, Li, 2021]: The above formula actually specifies the
probability of first drawing yu, multiplying it by

√
π/8, and

then, independently, drawing a standard Gaussian variable
n ∼ N (0, I) that is element-wise smaller. We therefore
have:

P (xu = 1|M) = P

(
n−

√
π

8
yu < 0

)
This motivates us to define a random vector qu, an important
construct in the following developments, as:

qu = n−
√
π

8
yu, (2)

which is simply a noisy, re-scaled and sign-flipped version
of the linear mixture yu. In fact, since qu is the sum of

Figure 1: Binary ICA model for two observed variables and
three segments. For each segment, there is a bivariate Gaus-
sian distribution on qu, the probability of an assignment to
the binary observed variables is the probability mass in the
corresponding quadrant.

two independent Gaussian random vectors, it also has a
Gaussian distribution qu ∼ N

(
µuq,Σ

u
q

)
with:

µuq = −
√
π

8
Aµuz , (3)

Σu
q = I +

π

8
AΣu

zAᵀ. (4)

The probability of the data vector of ones in segment u is,
then:

P (xu = 1|M) = P (qu < 0) = Φ
(
0|µuq,Σ

u
q

)
, (5)

where the cumulative distribution function of the multivari-
ate Gaussian Φ has all variables integrated from−∞ to 0; it
is readily implemented in basic packages [Genz and Bretz,
2009].

Similar derivation gives the probabilities for other assign-
ments to xu. These probabilities can be expressed compactly
for all value assignments as:

P (xu|M) = Φ
(
l(xu), u(xu)|µuq,Σ

u
q

)
(6)

in which the multivariate Gaussian probability density func-
tion is integrated from the lower bound l(xu) to the upper
bound u(xu), with the ith elements in the bounds defined
by:

l(xu)[i] =

{
−∞ if xui = 1

0 otherwise
u(xu)[i] =

{
0 if xui = 1

∞ otherwise

Importantly, this formulation allows for a particularly clear
intuitive interpretation of the model. Figure 1 shows this
for two observed variables and three segments. For each
segment, the model defines a bivariate Gaussian distribution
for qu, depicted by colors and contours on the planes. The
probability for an assignment of the observed binary vari-
ables xu in a segment is simply the probability mass in a



corresponding quadrant. The multivariate Gaussian distri-
butions for qu in each segment are related in the sense that
they are formed by the same mixing matrix performing on
independent sources particular to the segment.

The log-likelihood of the whole data set can then be calcu-
lated as

l =
∑
u

∑
xu

c(xu) log Φ(l(xu), u(xu)|µuq,Σ
u
q), (7)

where c(xu) is the count of the data points with assignment
xu in a segment u and the sum is taken over all assignments
to xu and u.

4 ON IDENTIFIABILITY

Many ICA models can only be identified up to scaling and
permutation indeterminacies of the sources [Hyvärinen et al.,
2001, Khemakhem et al., 2020]. Straightforwardly we can
see that those limitations apply for our model as well. By
re-ordering columns of the mixing matrix and the sources,
the implied distribution is unaffected; similarly, we can
counteract the scaling (or sign-flip) of the mixing matrix
columns by scaling (or sign-flipping) the sources. However,
binarization actually induces additional indeterminacies as
we will show next.

4.1 THE BINARIZATION INDETERMINACY

Recall that the probability of an assignment to binary xu is
given by the probability of the Gaussian qu landing in dif-
ferent regions (Equation 5). But note that the probability in
Equation 5 stays exactly the same even if qu is multiplied by
a diagonal matrix Qu, possibly different for each segment
u, with positive entries (scaling factors) on the diagonal:

P (qu < 0) = P (Ququ < 0) .

This is valid even if the elementwise operator is > or a
mixture of > and <.2 Figure 2 shows an example of this
equivalence relation for one segment and two observed vari-
ables. The two Gaussian distributions for qu represented
by the blue and red contours imply the exact same joint
distribution for binary observed variables xu. The amount
of mass in each of the 4 quadrants is exactly the same. This
means that we essentially lose all scale information on qu

in the binarization.

Then, two binary ICA modelsM = (A, {µuz}u, {Σ
u
z}u)

and M̂ = (Â, {µ̂uz}u, {Σ̂
u

z}u) are indistinguishable if

2For the probability of xu being all ones, any permutation
matrix Qu would similarly preserve the implied probability, but
the probability of some other assignment for x (each of which
corresponds to some mixture of > and <) may change then.
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Figure 2: Two Gaussian distributions (red and blue) for a two
dimensional qu which imply the same binary distributions
after binarization by the linking function. That is because
the mass of both distributions in each of the 4 quadrants is
identical.

there are positive diagonal matrices {Qu}u such that for
each segment u, the means and covariances of qu satisfy:

µ̂uq = Quµuq, (8)

Σ̂
u

q = QuΣu
qQu, (9)

which can be written more clearly using the model parame-
ters (Equations 3 and 4) as:√

π

8
Âµ̂uz = Qu

√
π

8
Aµuz , (10)

I +
π

8
ÂΣ̂

u

z (Â)ᵀ = Qu(I +
π

8
AΣu

zAᵀ)Qu. (11)

This limits identifiability possibilities (Section 4.2) but nev-
ertheless also allows for the development of efficient esti-
mation procedures in Sections 4.3 and 5.2.

4.2 THE ROW ORDER INDETERMINACY

One of the consequences of the binarization indeterminacy
is the following non-identifiability result concerning n = 2
observed variables, proven in Appendix A in the supple-
ment.

Theorem 1. If the row order of the 2-by-2 mixing matrix A
of a binary ICA model is reversed, then the source means
µuz and variances Σu

z can be adjusted such that the implied
distributions for the observed binary xu remain identical.

This means that in addition to column order and scale, we
also have row order indeterminacy here. Although the result
may generalize to certain sparse higher dimensional models,
fortunately, it does not jeopardize the estimation of higher
dimensional models in general.

This result does have consequences for causal discov-
ery [Shimizu et al., 2006, Suzuki and Inaoka, 2021, Peters



et al., 2011, Inazumi et al., 2014]. Consider two structural
equation models, implying opposite causal directions:

yu =

(
0 0
b 0

)
yu + zu, yu :=

(
0 b
0 0

)
yu + zu.

where zu has a Gaussian distribution in each segment u with
diagonal covariance matrix Σu

z . The models correspond
respectively to the mixing models (compare to Equation 1):

yu =

(
1 0
b 1

)
zu, yu =

(
1 b
0 1

)
zu.

If we observed binarized yu, i.e. xu, we can at most identify
the mixing matrix up to row order, column order and column
scale. By switching the column order and then the row
order of the mixing matrix on the left, we get the mixing
matrix on the right. Thus, unlike in the continuous case,
we cannot detect the causal direction between two variables
without further limiting assumptions or information on other
variables.

4.3 THE CORRELATION IDENTIFIABILITY

Note that the indistinguishable models satisfying Equation 9
or Equation 11 have equal correlation matrices (i.e. ma-
trices of Pearson correlation coefficients) for the random
variables qu. The next theorem and corollary show that the
correlations between elements of qu are indeed theoretically
identifiable from the distributions of the binary observed
variables xu. Intuitively, the higher the correlation, the more
likely will the pair of binary observed variables in xu re-
ceive equal assignments. The fairly technical proof is given
in Appendix B in the supplement.

Theorem 2. Two binary ICA models imply different distri-
butions for binary observations xu (in a given segment u) if
the correlation matrices for qu are not equal.

This result is crucial for the development of our novel esti-
mation method (Section 5.2), via the corollary:

Corollary 1. The correlation matrix of qu in a given seg-
ment u is identifiable from the distribution for binary xu.

On the other hand, the following theorem recaps the well-
known result [Hyvärinen et al., 2001, Pham and Cardoso,
2001] that the means do not help in estimating the mixing
matrix (proven in Appendix C):

Theorem 3. If two modelsM and M̂ with n = nz imply
the same correlation matrices for qu (in a given segment)
then the means µuz can be adjusted such that the implied
binary distributions are identical.

5 METHODS FOR BINARY ICA

Next, we present three methods for estimating the binary
ICA model, building on the theory in Sections 3 and 4. The
BLICA method of Section 5.2 is the main novel algorithmic
contribution of the paper.

5.1 MAXIMUM LIKELIHOOD ESTIMATION

We have already derived the likelihood of the binary ICA
model in Equation 7. A straightforward approach is then to
optimize this using e.g. L-BFGS [Liu and Nocedal, 1989].
The gradient involves the moments for the truncated multi-
variate Gaussian distribution, which can be obtained from R
package tmvtnorm [Wilhelm and Manjunath, 2015]. Vari-
ances and scaling factors can be kept positive by using the
log-exp transform. Unfortunately, the computation of the
likelihood and its gradient can only be done for small mod-
els in practice, because the evaluation of the multivariate
Gaussian CDF is time consuming, necessitating the use of
sampling-based approximations. Our experiments refer to
this as full MLE.

5.2 THE BLICA METHOD

However, we can circumvent the computational burden of
the high-dimensional Gaussian cumulative distribution func-
tion. Due to the theory in Section 4, the correlations of qu

convey the essential information between the binary data
and the continuous mixing model. Since the marginalization
properties of our model are inherited from the multivariate
Gaussian, such correlations can be estimated from pairwise
marginal distributions of elements of xu; in 2D the Gaussian
cumulative distribution function is still quite quick to com-
pute. Thus, we combine maximum likelihood estimation
with what could be called a “moment-matching” approach
as follows. We first recover the pairwise correlations of the
continuous-valued qu from the observed binary data on xu

(this is possible by Corollary 1) via MLE in 2D. Then we
fit those correlations to the correlations implied by the la-
tent linear mixing model using a more scalable MLE in the
continuous-valued latent space. The resulting algorithm is
summarized as Algorithm 1 and explained in detail below.

Correlation estimation. On line 4, we estimate each corre-
lations between elements in qu separately, by directly fitting
the likelihood in Equation 7 in two dimensions, thus estimat-
ing µuq and Σu

q. To calculate the multivariate Gaussian CDF,
we use the R package mvtnorm [Genz and Bretz, 2009].
We employ the GenzBretz method, which is particularly
suitable for the fast evaluation needed here [Genz, 1993].
Furthermore, the estimation can be simplified [Lee and Som-
polinsky, 1999]. Due to Equation 11 the diagonal of Σu

q can
be set to 1s in this step. Furthermore, since the marginal of



Algorithm 1 The BLICA algorithm for Binary ICA.
1: Input data recorded at nu different segments.
2: for segment u ∈ {1, . . . , nu} do
3: for each observed variable pair {xui , xuj } do
4: Estimate the correlation between qui and

quj by maximizing the marginal pairwise
likelihood of xui and xuj (in segment u).

5: Form and regularize the correlation matrix Cu
q ob-

tained from the pairwise correlations.
6: Optimize scaled Gaussian likelihood with L-BFGS over

sufficient statistics Cu
q from all segments u.

7: Return the estimated mixing matrix A and source vari-
ances Σu

z for all segments u.

xui is

P (xui = 1) = Φ(−µuq[i]/
√

Σu
q[i, i]|0, 1), (12)

both means in µuq can be computed from the respec-
tive marginals using the 1D inverse Gaussian CDF sep-
arately [Genz and Bretz, 2009]. The univarite optimiza-
tion problem for the remaining parameter in the interval
[−1, 1] can then be solved efficiently using a line search
method [Brent, 2013]. The scalability of Algorithm 1 de-
pends crucially on this step, as nu · (n2 − n)/2 correlations
need to be estimated. The separately estimated correlations
are collected to nu segmentwise n-by-n correlation matrices
denoted by Cu

q.

Regularization. When estimating the correlations of qu

from sample data, it can happen that a correlation matrix
Cu

q is close to singular or not positive definite. We use the
following regularization on line 5, based on the parameter
r [Warton, 2008], which marks the approximate condition
number targeted. The regularized correlation matrix is then

1

1 + δ
(Cu

q + δI), where δ = max

(
0,
λ1 − r · λn
r − 1

)
,

where λ1 is the largest and λn the smallest eigenvalue of
Cu

q. This regularization keeps the unit diagonal.

Moment Matching. Finally, on line 6, we fit the model
parameters (including stationary A) to the estimated cor-
relations Cu

q using a Gaussian likelihood model over the
different segments u (Section 2). But in contrast to the usual
case where we have the covariance matrices, here we need
to account for the “binarization indeterminacy”, resulting
in additional nuisance scaling parameters, as pointed out
above. We use the term scaled Gaussian likelihood to re-
fer to the ordinary multivariate Gaussian likelihood where
we include additional parameters Qu as the scaling factors.
The fitting is thus done by the following scaled Gaussian
likelihood based on the sufficient statistics Cu

q:

l =

nu∑
u=1

N

2

[
− log(det(Σu

q))− Tr(Cu
q(Σu

q)−1)
]

where recall that Σu
q = Qu(I + AΣu

zAT )Qu by Equa-
tion 11 is a function of the mixing matrix A, source vari-
ances {Σu

z}u (diagonal, positive elements) and scaling fac-
tors {Qu}u (diagonal, positive elements). Variances and
scaling factors can be kept positive by using the log-exp
transform. Note that without the scaling factors {Qu}u,
the mixing matrix A could be found via joint diagonaliza-
tion [Miettinen et al., 2017]. Note also that due to Theorem 3,
the source means do not need to be estimated. Here, instead,
we perform the fitting by maximizing this likelihood us-
ing L-BFGS [Liu and Nocedal, 1989] with respect to the
aforementioned parameters.

5.3 BINARY ICA THROUGH LINEAR IVAE

Khemakhem et al. [2020] presented the identifiable Varia-
tional Autoencoder (iVAE), an approach for nonlinear ICA
employing variational autoencoders [Kingma and Welling,
2014, Rezende et al., 2014] that assumes access to an addi-
tionally observed variable such that the sources are indepen-
dent given the auxiliary variable; further, each source fol-
lows an exponential family distribution given the auxiliary
variable. Here, we apply the iVAE approach to estimate the
binary ICA model from Section 2 [Barin Pacela, 2021]. As
proposed by Kingma and Welling [2014] and Khemakhem
et al. [2020], we use the factorized Bernoulli observational
model and apply a sigmoid function element-wise to the
output of the decoder to obtain the binary probabilities. Due
to the linearity of our mixing model and the segment-wise
structure, we can simplify the encoder (posterior approxi-
mation) of the VAE, and make all the transformations in the
iVAE affine or linear, thus greatly simplifying the system.
The linear iVAE is presented in more detail in Appendix E.

5.4 ESTIMATION OF THE SOURCES

After estimating the mixing matrix A, it may be desired to
estimate the sources zu as well. In the case of binary data,
the individual source values cannot be accurately estimated
(even up to scale and order indeterminacies) due to the
inherent noise introduced by the binarization procedure.
Presumably, though, if the number of observed variables is
large and the number of sources is small, the estimation may
be reasonable. In any case, the posterior P (zu|xu) can be
easily calculated after estimating the mixing matrix.

6 EXPERIMENTS

We implemented our proposed methods and baselines using
R (BLICA, full MLE) and python (linear iVAE). Here we
investigate the identifiability of the model, as well as the
finite-sample estimation performance and the scalability of
our methods, also comparing to previous approaches.
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Figure 3: Identifiability with equal number of observed variables and sources. The BLICA method used true (pairwise)
probability distributions (i.e. infinite sample limit data). Each box is based on 30 models. A lower value on the y-axis
(log-error) implies better performance. Runs with values less than −7 (e.g. those in which the model was identified up to
machine precision) are marked with −7. Compare to Table 1.

Data. The data was generated from the Binary ICA model
(Section 2) in the following way. Means were drawn from
unif(−0.5, 0.5), standard deviations from unif(0.5, 3).
Mixing matrix elements were drawn from unif(−3, 3) while
ensuring invertibility by resampling until the condition num-
ber (κ) was below 20 for n < 20, or for n ≤ 20 below the
75th quantile of 1000 sampled similar dimensional mixing
matrices. For practical estimations from finite sample data
we use 40 segments, varying the sample size per segment.

Evaluation. ICA methods are often compared in terms of
the mean correlation coefficient of the estimated sources.
Here, however, binarization induces heavy noise and indi-
vidual samples of the estimated sources cannot be accurately
estimated. We therefore focus our evaluation on the mix-
ing model, and measure the mean cosine similarity (MCS)
of the mixing matrix columns (taking the inherent order
and scale indeterminacy of the sources into account, see
Appendix D).

6.1 IDENTIFIABILITY

Results. Recall from Sections 4 and 5 that the correlations
of qu convey the information between the binary data and
the mixing model, and each of these correlations can be
determined from the marginal distributions over the cor-
responding pair of binary observed variables in xu(in a
segment u). Thus, by using the exact pairwise binary dis-
tributions of elements of xu from Equation 6 as input for
BLICA, we are here able to investigate identifiability em-
pirically without any finite sample effects. Figure 3 shows
results on which models can be identified when the number
of sources and observed variables are equal (n=nz). In
many cases, the method found the mixing matrix essentially
up to machine precision, which can be seen as indication of
identifiability. Each box includes 30 different data generat-
ing models, and for each we ran BLICA 3 times; the MCS
of the run with highest scaled Gaussian likelihood is plotted.
With only 2 segments, or only 2 observed variables (also in

Number of Number of Observed Variables (n)
Segments (nu) 2 3 4 5 6 7 8 9 10

2 -6 -9 -12 -15 -18 -21 -24 -27 -30
3 -7 -9 -10 -10 -9 -7 -4 0 5
4 -8 -9 -8 -5 0 7 16 27 40
5 -9 -9 -6 0 9 21 36 54 75
6 -10 -9 -4 5 18 35 56 81 110

Table 1: Heuristic identifiability analysis. Each entry states
the number of statistics (equations) minus the number of
unknowns. The minimal cases with a non-negative number,
suggesting identifiability, are bolded in red.

Theorem 3), the model is not identifiable in any case. The
minimal cases deemed identifiable (up to source scale and
order) are (n=5, nu=5), (n=6, nu=4), (n=7, nu=4),
(n=8, nu=4), (n=9, nu=3), and (n=10, nu=3). Thus
generally, the more observed variables (n) we have, the less
segments (nu) are needed.

Heuristic Identifiability Analysis. We contrast the re-
sults to the well-known heuristic approach to identifiability
used in factor analysis. It is based on counting the number
of statistics we can calculate (or equations we can form),
and the number of unknowns (parameters) we need to solve.
If the former is at least as large as the latter, there is hope
that the model is identifiable. The calculations in Table 1 are
based on Equations 10 and 11 when the number of sources
equals the number of observations (n = nz). The statistics
correspond to nu(n2 − n)/2 covariances, nu · n variances
and nu · n means (for qu). Unknowns include n · n mixing
matrix coefficients, nu · n (segment-wise) source variances,
nu · n source means, as well as nu · n scaling terms (diago-
nal elements of Qu). In line with the classical literature in
factor analysis, we ignore the source order indeterminacy.
Figure 3 and Table 1 show a remarkably similar dependence
between identifiability and the numbers of the segments and
the observed variables: in particular, they agree on the mini-
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Figure 4: Finite sample performance. Left: 10 observed variables and 10 sources. Center: 6 observed variables and 6 sources.
Right: 6 observed variables and 2 sources. Each box is based on thirty 40-segment datasets.

mal cases identifiable. Interestingly, cases with 2 observed
variables as well as the cases with only 2 segments are never
identifiable. Note that these computational results together
with Section 4 provide a bound for any future analytical
results on identifiability. If identifiability turns out to be
possible in further cases, e.g., with a different mixing model
or linking function, the results will need to depend on the
particular parametric forms, thus limiting applicability.

6.2 FINITE SAMPLE ESTIMATION

Methods. Next we turn our attention to estimation perfor-
mance from finite sample data. We compare our new BLICA
(with different regularization parameter value r) method to
its main competitors, fastICA [Himberg and Hyvärinen,
2001, Hyvärinen, 1999] and the baseline implementations
of linear iVAE and full MLE. Note that the model of fastICA
is somewhat different, but it still employs a linear mixing
of the sources and has the same sources scale and order
indeterminacies; thus, MCS comparison is sensible. fastICA
does not use the segment index, but pools all data from dif-
ferent segments. Recall from Section 5.3 and Appendix E
that the linear iVAE uses essentially the same model, but
instead of employing the likelihood, it optimizes the ELBO
objective through L-BFGS. For runs with n < 20 observed
variables, a time budget of 2h was used, and the results that
were obtained within the time limit are reported. For larger
simulations, we allowed for 12h per run. To avoid local min-
ima due to the difficult optimization landscape, we ran the
linear iVAE, full MLE and BLICA with 3 different learning
seeds and selected the best run according to the objective
function (e.g. likelihood).

Results. Figure 4 (left) shows the result for 10 observed
variables and 10 sources. BLICA clearly outperforms others
consistently improving with increasing sample size. With
smaller dimensions, 6 observed variables and 6 sources in
Figure 4 (center), BLICA needs more samples to achive sim-
ilar MCS. However, with fewer sources fewer samples are
needed: Figure 4 (right) shows that for 6 observed variables

and 2 sources, high MCS can be obtained with only 50 sam-
ples per segments. Interestingly, linear iVAE performs well
only with fewer sources than observations, while fastICA is
not able to reliably estimate the mixing matrix from binary
data. Unfortunately, full MLE cannot perform sufficiently
many optimization steps within the time limit of 2h even
with 6 observed variables in Figure 4 (center).

Scalability. Figure 5 assesses the performance in higher
dimensions over data sets with 40 1000-sample segments,
thirty for each n. Only BLICA can estimate the mixing ma-
trix with equal number of observed variables equals and
sources in Figure 5 (left). When the number of sources is
fixed to 10 in Figure 5 (center), also linear iVAE shows
improving performance with increasing number of observed
variables. Finally, Figure 5 (right) shows the running time
performance of BLICA (Algorithm 1) on the previous runs.
The estimation of the quadratic number of correlations starts
taking considerable time with 100 observed variables. L-
BFGS is relatively quick in solving the optimization prob-
lem to a solution close to the final result (i.e. 1% lower
MCS), then still gradually improving.

7 RELATED WORK

Our research connects particularly to the following earlier
and more recent literature. Himberg and Hyvärinen [2001]
consider binary observed vectors x and binary sources z,
so that the ICA mixing model is given by the Boolean ex-
pression xi =

∨nz

j=1 aij ∧ zj . They show that this Boolean
OR mixing can be approximated by a linear mixing model
followed by a unit step function. Thus, they propose to es-
timate the model by ordinary ICA, and obtain reasonable
results when the data is very sparse. Similarly, Nguyen and
Zheng [2011] studied binary ICA with OR mixtures by
defining a disjunctive generative model. They prove identifi-
ability and propose an algorithm without continuous-valued
approximations.
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Figure 5: Scalability. Left: equal number of sources and observed variables. Center: 10 sources. Each box is based on thirty
40-segment datasets with 1000 samples per segment. Right: Running times of the steps of BLICA (Algorithm 1).

Kabán and Bingham [2006] proposed a model where con-
tinuous sources follow a Beta distribution, followed by a
binary observation model. While their approach is related to
ours, their latent variables are restricted to a finite interval,
and they estimate the model using variational approximation
which is unlikely to yield consistent estimators. Discrete
ICA has further been approached by extensions of LDA
where the topic intensities are mutually independent [Po-
dosinnikova et al., 2015, Buntine and Jakulin, 2005, Canny,
2004]. Although their identifiability guarantees are limited
[Podosinnikova et al., 2016], their method has the advantage
of allowing for discrete data. Lee and Sompolinsky [1999]
consider PCA employing a binarized Gaussian model.

Finally, we note that the very idea of estimating latent vari-
able models by non-stationarity, originating in [Matsuoka
et al., 1995, Pham and Cardoso, 2001], has been recently
increasingly used in estimating generative models [Hyväri-
nen and Morioka, 2016, Khemakhem et al., 2020] as well as
for causal discovery [Zhang et al., 2017, Monti et al., 2019],
even in deep learning. Automatically estimating the segment
index by a HMM has been further proposed by Hälvä and
Hyvärinen [2020]. Instead of the wide-spread idea of joint
diagonalization of covariance matrices [Belouchrani et al.,
1997, Tsatsanis and Kweon, 1998], we used correlation ma-
trices without explicit diagonalization criteria; related work
on diagonalizing correlation matrices can be found in [Joho
and Rahbar, 2002].

8 CONCLUSION

We presented a model for ICA of binary data which is based
on a linear latent mixing model and non-stationarity of the
sources. We investigated the identifiability, showing some
surprising indeterminacies not present in ordinary ICA, in-
cluding the fact that in the two-variable case the model can-
not be identified. We believe that our identifiability results,
theoretical and empirical, will be useful in future research
on binary ICA. Based on our approach using a Gaussian
link function, the likelihood can be obtained in closed form

although the Gaussian cumulative distribution function is
still computationally heavy. These advances allowed for a
practical method BLICA that combines maximum likeli-
hood estimation and moment-matching; it was shown to
be applicable in higher dimensions while still empirically
showing consistent behaviour. As future work, we aim to
generalize from binary to discrete variables, consider paral-
lelized approaches for scaling up full MLE estimation, and
investigate the potential of the new learning algorithm in
applications.
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