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Abstract

Hyperparameter (HP) tuning in deep learning is an expensive process, prohibitively
so for neural networks (NNs) with billions of parameters. We show that, in the
recently discovered Maximal Update Parametrization (µP), many optimal HPs
remain stable even as model size changes. This leads to a new HP tuning paradigm
we call µTransfer: parametrize the target model in µP, tune the HP indirectly on a
smaller model, and zero-shot transfer them to the full-sized model, i.e., without
directly tuning the latter at all. We verify µTransfer on Transformer and ResNet.
For example, 1) by transferring pretraining HPs from a model of 13M parameters,
we outperform published numbers of BERT-large (350M parameters), with a total
tuning cost equivalent to pretraining BERT-large once; 2) by transferring from
40M parameters, we outperform published numbers of the 6.7B GPT-3 model, with
tuning cost only 7% of total pretraining cost. A Pytorch implementation of our
technique can be found at github.com/microsoft/mup.2

1 Introduction
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Figure 1: Training loss against learning rate on
Transformers of varying dmodel trained with Adam.
Conventionally and in contrast with our technique,
different widths do not share the same optimal hy-
perparameter; wider networks do not always per-
form better than narrower ones; in fact they under-
perform the same-width networks in our technique
even after tuning learning rate. See Sections 3
and 4 for experimental setup.

Hyperparameter (HP) tuning is critical to deep
learning. Poorly chosen HPs result in subpar
performance and training instability. Many pub-
lished baselines are hard to compare to one
another due to varying degrees of HP tuning.
These issues are exacerbated when training ex-
tremely large deep learning models, since state-
of-the-art networks with billions of parameters
become prohibitively expensive to tune.

Recently, [45] showed that different neural net-
work parametrizations induce different infinite-
width limits and proposed the Maximal Update
Parametrization (abbreviated µP) (summarized
in Table 3) that enables “maximal” feature learn-
ing in the limit. Intuitively, it ensures that each
layer is updated on the same order during train-
ing regardless of width.3 In contrast, while the
standard parametrization (SP) ensures activations are of unit order at initialization, it actually causes

†Work done partly during Microsoft AI Residency Program.
∗Equal contribution. Order is random. Correspondence to {gregyang, edwardhu}@microsoft.com
2See arxiv.org for the full, up-to-date version of this work.
3i.e., the updates’ effect on activations becomes roughly independent of width in the large width limit.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).
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Algorithm 1 Tuning a Large Target Model via µTransfer

1: Parametrize target model in Maximal Update Parametrization (µP)
2: Tune a smaller version (in width and/or depth) of target model
3: Copy tuned hyperparameters to target model

Table 1: Hyperparameters That Can Be µTransferred, Not µTransferred, or µTransferred
Across, with a few caveats discussed in Section 5.1. * means empirically validated only on Trans-
formers, while all others additionally have theoretical justification.

µTransferable Not µTransferable µTransferred Across

optimization related, init, regularization width, depth*, batch size*,
parameter multipliers, etc (dropout, weight decay, etc) training time*, seq length*

them to blow up in wide models during training [45] essentially due to an imbalance of per-layer
learning rate (also see Fig. 8). We leverage µP to zero-shot transfer HPs from small models to large
models in this work – that is, we obtain near optimal HPs on a large model without directly tuning
it at all! While practitioners have always guessed HPs of large models from those of small models,
the results are hit-or-miss at best because of incorrect parametrization. For example, as shown in
Fig. 1, in a Transformer, the optimal learning rate is stable with width in µP (right) but far from
so in standard parametrization (left). In addition to width, we empirically verify that, with a few
caveats, HPs can also be transferred across depth (in Section 5.1) as well as batch size, language
model sequence length, and training time (in Appendix I.2.1). This reduces the tuning problem of
an (arbitrarily) large model to that of a (fixed-sized) small model. Our overall procedure, which we
call µTransfer, is summarized in Algorithm 1 and Fig. 2, and the HPs we cover are summarized in
Tables 1 and 2.
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Figure 2: Illustration of µTransfer

There are several benefits to our approach: 1. Better Per-
formance: µTransfer is not just about predicting how the
optimal learning rate scales in SP. In general, we expect the
µTransferred model to outperform its SP counterpart with
learning rate optimally tuned. For example, this is the case
in Fig. 1 with the width-8192 Transformer. We discuss the
reason for this in Appendices B and C. 2. Speedup: It pro-
vides massive speedup to the tuning of large models. For
example, we are able to outperform published numbers of
(350M) BERT-large [9] purely by zero-shot HP transfer,
with tuning cost approximately equal to 1 BERT-large pre-
training. Likewise, we outperform the published numbers
of the 6.7B GPT-3 model [6] with tuning cost being only
7% of total pretraining cost. For models on this scale, HP
tuning is not feasible at all without our approach. 3. Tune
Once for Whole Family: For any fixed family of models with varying width and depth (such as
the BERT family or the GPT-3 family), we only need to tune a single small model and can reuse
its HPs for all models in the family.4 For example, we will use this technique to tune BERT-base
(110M parameters) and BERT-large (350M parameters) simultaneously by transferring from a 13M
model. 4. Better Compute Utilization: While large model training needs to be distributed across
many GPUs, the small model tuning can happen on individual GPUs, greatly increasing the level
of parallelism for tuning (and in the context of organizational compute clusters, better scheduling
and utilization ratio). 5. Painless Transition from Exploration to Scaling Up: Often, researchers
explore new ideas on small models but, when scaling up, find their HPs optimized during exploration
work poorly on large models. µTransfer would solve this problem.

Nevertheless, µTransfer still has several limitations. For example, while it is very effective for
pretraining, it cannot transfer regularization HPs,5 so it’s generally not applicable to the finetuning of
pretrained models. We discuss other limitations carefully in Section 5.1.

4but possibly not for different data and/or tasks.
5It can transfer regularization HPs to the extent they help training but it may not transfer their effect on

testing.
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Table 2: Examples of µTransferable Hyperparameters. All of the below can also be specialized
to per-layer hyperparameters.

Optimizer Related Initialization Parameter Multipliers

learning rate (LR), momentum, per-layer multiplicative constants after
Adam beta, LR schedule, etc init. variance weight/biases, etc

Our Contributions

• We demonstrate it is possible to zero-shot transfer near optimal HPs to a large model from a
small version via the Maximal Update Parametrization (µP) from [45].

• While [45] only covered SGD, here we derive µP for Adam as well (Table 3).
• We propose a new HP tuning technique, µTransfer, for large neural networks based on this

observation that provides massive speedup over conventional methods and covers both SGD
and Adam training;

• We thoroughly verify our method on machine translation and large language model pretrain-
ing (in Section 6.3) as well as image classification (in Appendix I.1);

• We release a PyTorch [27] package for implementing µTransfer painlessly. A sketch of this
package is given in Appendix J.

Terminologies Sometimes, to be less ambiguous, we often refer to the “large model” as the target
model, as it is the model we wish to ultimately tune, while we refer to the “small model” as the
proxy model, as it proxies the HP tuning process. We follow standard notation dmodel, dhead =
dk, dv, nhead, dffn regarding dimensions in a Transformer; one can see Fig. 11 for a refresher.

Tensor Programs Series This paper is the 5th installment of the Tensor Programs series. While
the target audience here are practitioners and empirical researchers, this paper presents the first major
practical payoff of the theoretical foundation built in previous works [41–46].

2 Parametrization Matters: A Primer

In this section, we give a very basic primer on why the correct parametrization can allow HP transfer
across width, but see Appendices L.1 to L.3 for more (mathematical) details.

The Central Limit Theorem (CLT) says that, if x1, . . . , xn are iid samples from a zero-mean, unit-
variance distribution, then 1√

n
(x1 + · · ·+ xn) converges to a standard Gaussian N (0, 1) as n→∞.

Therefore, we can say that 1√
n

is the right order of scaling factor cn such that cn(x1 + · · · + xn)

converges to something nontrivial. In contrast, if we set cn = 1/n, then cn(x1 + · · ·+ xn)→ 0; or
if cn = 1, then cn(x1 + · · ·+ xn) blows up in variance as n→∞.

Now suppose we would like to minimize the function

Fn(c)
def
= E

x1,...,xn

f(c(x1 + · · ·+ xn)) (1)

over c ∈ R, for some bounded continuous function f : R→ R. If we reparametrize c = α/
√
n for

α ∈ R, then by CLT, Gn(α)
def
= Fn(c)→ E f(N (0, α2)) stabilizes into a function of α as n→∞.

Then for sufficiently large n, the optimal α∗n
def
= arg minαGn(α) should be close to α∗N for any

N > n, and indeed, for N =∞— this precisely means we can transfer the optimal c∗n or α∗n for a
smaller problem (say Fn) to a larger problem (say FN ): GN is approximately minimized by α∗n and
FN is approximately minimized by c∗n

√
n/N . Because the transfer algorithm is simply copying α,

we say the parametrization c = α/
√
n is the correct parametrization for this problem.

In the scenario studied in this paper, x1, . . . , xn are akin to randomly initialized parameters of a
width-n neural network, c is akin to a HP such as learning rate, and f is the test-set performance
of the network after training, so that Fn gives its expectation over random initializations. Just as
in this example, if we parametrize the learning rate and other HPs correctly, then we can directly
copy the optimal HPs for a narrower network into a wide network and expect approximately optimal
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performance — this is the hyperparameter transfer we propose here. It turns out the Maximal Update
Parametrization (µP) introduced in [45] is correct (akin to the parametrization in α above), while the
standard parametrization (SP) is incorrect (akin to the parametrization in c). We will review both
parametrizations shortly. Theoretically, a µP network has a well-defined infinite-width limit — akin
to (x1 + · · ·+ xn)/

√
n having aN (0, 1) limit by CLT — while a SP network does not (the limit will

blow up) [45].6 In fact, based on the theoretical foundation laid in [45], we argue in Appendix L.3
that µP should also be the unique parametrization that allows HP transfer across width.

We emphasize that, to ensure transferability of any hyperparameter (such as learning rate), it’s not
sufficient to reparametrize only that hyperparameter, but rather, we need to identify and correctly
reparametrize all hyperparameters in Table 2. For example, in Fig. 1, the wide models in SP still
underperform their counterparts in µP, even with learning rate tuned optimally. This is precisely
because SP does not scale parameter multipliers and input/output layer learning rates correctly in
contrast to µP (see Table 3). See Appendix C for more intuition via a continuation of our example
here. We shall also explain this more concretely in the context of neural networks in Appendix B.

3 Hyperparameters Don’t Transfer Conventionally

In the community there seem to be conflicting assumptions about HP stability. A priori, models
of different sizes don’t have any reason to share the optimal HPs. Indeed, papers aiming for state-
of-the-art results often tune them separately. On the other hand, a nontrivial fraction of papers in
deep learning fixes all HPs when comparing against baselines, which reflects an assumption that
the optimal HPs should be stable — not only among the same model of different sizes but also
among models of different designs — therefore, such comparisons are fair. Here, we demonstrate HP
instability across width explicitly in MLP and Transformers in the standard parametrization. We will
only look at training loss to exclude the effect of regularization.

MLP with Standard Parametrization We start with a 2-hidden-layer MLP with activation func-
tion φ, using the standard parametrization7 with LeCun initialization8 akin to the default in PyTorch:

f(ξ) = W 3>φ(W 2>φ(W 1>ξ + b1) + b2)

with init. W 1 ∼ N (0, 1/din), W {2,3} ∼ N (0, 1/n), b{1,2} = 0,
(2)
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Figure 3: MLP width different hidden sizes trained
for 20 epoch on CIFAR-10 using SGD. Left uses stan-
dard parametrization (SP); right uses maximal update
parametrization (µP). µP networks exhibit better learning
rate stability than their SP counterparts.

where W 1 ∈ Rdin×n, b1 ∈ Rn,
W 2 ∈ Rn×n, b2 ∈ Rn, W 3 ∈
Rn×dout and din, n, and dout are
the input, hidden, and output dimen-
sions. The particular MLP we use has
φ = ReLU and a cross-entropy (xent)
loss function. We define the width of
MLP as the hidden size n, which is
varied from 256 to 8192. The mod-
els are trained on CIFAR-10 for 20
epochs, which is more than enough to
ensure convergence.

As shown on the left in Fig. 3, the
optimal learning rate shifts by roughly
an order of magnitude as the width
increases from 256 to 8192; using the
optimal learning of the smallest model
on the largest model gives very bad performance, if not divergence.

Transformer with Standard Parametrization This perhaps unsurprising observation holds for
more complex architectures such as Transformer as well, as shown in Fig. 1 (left). We define width

6The more theoretically astute reader may observe that SP with a Θ(1/width) learning rate induces a
well-defined infinite-width limit exists as well. Nevertheless, this does not allow HP transfer because this limit is
in kernel regime as shown in [45]. See Appendix L.3 for more discussions.

7i.e. the default parametrization offered by common deep learning frameworks. See Table 3 for a review.
8The key here is that the init. variance ∝ 1/fan_in, so the same insights here apply with e.g. He initialization.
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Table 3: µP[45] and SP for General Neural Networks, Basic Form. This basic form emphasizes
the scaling with width (fan_in or fan_out); in practice, we may insert tunable multipliers in front
of fan_in and fan_out as in Eq. (4). Notations: 1) η is the “master” learning rate. 2) The fan_out
of a bias vector is its dimension (whereas fan_in is 1). 3) Purple text highlights key differences
from standard parametrization (SP); Gray text recalls the corresponding SP. SGD (resp. Adam)
here can be replaced by variants such as SGD with momentum (resp. Adagrad, Adadelta, etc). In
general, the three columns here can be interpreted as linear layers that have {finite, infinite, infinite}
input dimension and {infinite, finite, infinite} output dimension in an infinite-width network; this
description generalizes more readily to other parameters such as those of layernorm. Transformer µP
requires one more modification (1/d attention instead of 1/

√
d); see Definition 4.1. This version of

µP gets rid of parameter multipliers; for the version similar to that in [45], see Table 13. Also see
Table 12 for a µP formulation that is easier to implement (and compatible with input/output weight
sharing).

Input weights & all biases Output weights Hidden weights

Init. Var. 1/fan_in 1/fan_in2 (1/fan_in) 1/fan_in

SGD LR η · fan_out (η) η/fan_in (η) η
Adam LR η η/fan_in (η) η/fan_in (η)

as dmodel, with dk = dq = dv = dmodel/nhead and dffn = 4dmodel. The models are trained on
wikitext-2 for 5 epochs. In Fig. 18 in the appendix we also show the instability of initialization scale
and other HPs.

4 Unlocking Zero-Shot Hyperparameter Transfer with µP

We show that µP solves the problems we see in Section 3.

MLP with µP For the MLP in Section 3, to switch to µP, we just need to modify Eq. (2)’s
initialization of the last layer and its learning rates of the first and last layer as well as of the biases.
The basic form is9

initialize W 1 ∼ N (0, 1/din), W 2 ∼ N (0, 1/n), W 3 ∼ N (0, 1/n2), b{1,2} = 0

with SGD learning rates ηW 1 = ηb1 = ηb2 = ηn, ηW 2 = η, ηW 3 = ηn−1.
(3)

Here, η specifies the “master” learning rate, and we highlighted in purple the differences in the two
parametrizations. This basic form makes clear the scaling with width n of the parametrization, but in
practice we will often insert (possibly tune-able) multiplicative constants in front of each appearance
of n. For example, this is useful when we would like to be consistent with a SP MLP at a base width
n0. Then we may insert constants as follows: For ñ def

= n/n0,

initialize W 1 ∼ N (0, 1/din), W 2 ∼ N (0, 1/n), W 3 ∼ N (0, 1/n·ñ), b{1,2} = 0

with SGD learning rates ηW 1 = ηb1 = ηb2 = ηñ, ηW 2 = η, ηW 3 = ηñ−1.
(4)

Then at width n = n0, all purple factors above are 1, and the parametrization is identical to SP
(Eq. (2)) at width n0. Of course, as n increases from n0, then Eq. (4) quickly deviates from Eq. (2).
In other words, for a particular n, µP and SP can be identical up to the choice of some constants (in
this case n0), but µP determines a different “set" of networks and optimization trajectory than SP as
one varies n. As we will see empirically in the next section, this deviation is crucial for HP transfer.

Indeed, in Fig. 3(right), we plot the CIFAR10 performances, over various learning rates and widths,
of µP MLPs with n0 = 128. In contrast to SP, the optimal learning rate under µP is stable. This
means that, the best learning rate for a width-128 network is also best for a width-8192 network in µP
— i.e. HP transfer works — but not for SP. In addition, we observe performance for a fixed learning
rate always weakly improves with width in µP , but not in SP.

This MLP µP example can be generalized easily to general neural networks trained under SGD or
Adam, as summarized in Table 3, which is derived in Appendix L.

9While superficially different, this parametrization is equivalent to the µP defined in [45].
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Figure 4: Empirical validation of the stability of four representative hyperparameters on pre-
LN Transformers in µP: learning rate, last layer weight multiplier αoutput, weight initialization
standard deviation, and learning rate schedule. We use the following learning rate schedules: (a)
linear decay; (b) StepLR @ [5k, 8k] with a decay factor of 0.1; (c) StepLR @ [4k, 7k] with a decay
factor of 0.3; (d) cosine annealing; (e) constant; (f) inverse square-root decay. All models are trained
on wikitext-2 for 10k steps. When not specified in the legend, the width used is 256, depth 2, batch
size 20, sequence length 256, and LR schedule constant. We sweep a particular HP, corresponding to
each column, while fixing all others constant. See Section 5.1 for discussion of these results.

Transformers with µP We repeat the experiments with base width n0 = 128 for Transformers:

Definition 4.1. The Maximal Update Parametrization (µP) for a Transformer is given by Table 3
and 1/d attention instead of 1/

√
d, i.e. the attention logit is calculated as q>k/d instead of q>k/

√
d

where query q and key k have dimension d.10

The results are shown on the right in Fig. 1, where the optimal learning rate is stable, and the
performance improves monotonically as width increases.

5 Which Hyperparameters Can Be µTransferred?

In this section, we explore how common HPs fit into our framework. In general, they can be divided
into three kinds, summarized in Table 1:

1. those that can transfer from the small to the large model, such as learning rate (Table 2);

2. those that primarily control regularization and don’t work well with our technique; and

3. those that define training scale, such as width as discussed above as well as others like depth
and batch size, across which we transfer other HPs.

Those in the first category transfer across width, as theoretically justified above in Section 2. To
push the practicality and generality of our technique, we empirically explore the transfer across
the other dimensions in the third category. Note that µTransfer across width is quite general, e.g.
it allows varying width ratio of different layers or number of attention heads in a Transformer;
see Appendix G.2. This will be very useful in practice. For the second category, the amount of
regularization (for the purpose of controlling overfitting) naturally depends on both the model size
and data size, so we should not expect transfer to work if the parametrization only depends on model
size. We discuss these HPs in more detail in Appendix G.1.

10This is roughly because during training, q and k will be correlated so q>k actually scales like d due to Law
of Large Numbers, in contrast to the original motivation that q, k are uncorrelated at initialization so Central
Limit applies instead. See Appendix L.2.1 for a more in-depth discussion.
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5.1 Empirical Validation and Limitations

Our empirical investigations focus on Transformers (here) and ResNet (in Appendix I.1.1), the
most popular backbones of deep learning models today. We train a 2-layer pre-layernorm µP11

Transformer with 4 attention heads on Wikitext-2. We sweep one of four HPs (learning rate, output
weight multiplier, initialization standard deviation, and learning rate schedule) while fixing the others
and sweeping along width and depth (with additional results in Fig. 19 on transfer across batch size,
sequence length, and training time). Fig. 4 shows the results averaged over 5 random seeds.

Empirically, we find that for language modeling on Transformers, HPs generally transfer across
scale dimensions if some minimum width (e.g. 256), depth (e.g., 4), batch size (e.g., 32), sequence
length (e.g., 128), and training steps (e.g., 5000) are met, with some caveats discussed below. While
the exact optimum can shift slightly with increasing scale, this shift usually has very small impact
on the loss, compared to SP (Figs. 1 and 3(left)). However, there are some caveats. For example,
the best initialization standard deviation does not seem to transfer well across depth (2nd row, 3rd
column), despite having a stabler optimum across width. In addition, while our results on width,
batch size, sequence length, and training time still hold for post-layernorm (Fig. 17),12 the transfer
across depth only works for pre-layernorm Transformer. Nevertheless, in practice (e.g. our results in
Section 6.3) we find that fixing initialization standard deviation while tuning other HPs works well
when transferring across depth.

6 Efficiency and Performance of µTransfer

Now that the plausibility of µTransfer has been established in toy settings, we turn to more realistic
scenarios to see if one can achieve tangible gains. Specifically, we perform HP tuning only on a
smaller proxy model, test the obtained HPs on the large target model directly, and compare against
baselines tuned using the target model. We seek to answer the question: Can µTransfer make HP
tuning more efficient while achieving performance on par with traditional tuning? As we shall see by
the end of the section, the answer is positive. We focus on Transformers here, while experiments on
ResNets on CIFAR10 and Imagenet can be found as well in Appendix I.1. All of our experiments are
run on V100 GPUs.

6.1 Transformer on IWSLT14 De-En

Setup IWSLT14 De-En is a well-known machine translation benchmark. We use the default IWSLT
(post-layernorm) Transformer implemented in fairseq [25] with 40M parameters, which we denote
as the 1x model.13 For µTransfer, we tune on a 0.25x model with 1/4 of the width, amounting to
4M parameters. For this experiment, we tune via random search the learning rate η, the output layer
parameter multiplier αoutput, and the attention key-projection weight multiplier αattn. See the grid
and other experimental details in Appendix H.1.

We compare transferring from the 0.25x model with tuning the 1x model while controlling the total
tuning budget in FLOPs.14 To improve the reproducibility of our result: 1) we repeat the entire HP
search process (a trial) 25 times for each setup, with number of samples as indicated in Table 4, and
report the 25th, 50th, 75th, and 100th percentiles in BLEU score; 2) we evaluate each selected HP
combination using 5 random initializations and report the mean performance.15

We pick the HP combination that achieves the lowest validation loss16 for each trial. The reported
best outcome is chosen according to the validation loss during tuning. We compare against the default
in fairseq, which is presumably heavily tuned. The result is shown in Table 4.

11“2 layers” means the model has 2 self-attention blocks. To compare with SP Transformer, see Fig. 18.
12in fact, post-layernorm Transformers are much more sensitive to HPs than pre-layernorm, so our technique

is more crucial for them, especially for transfer across width. Fig. 1 uses post-layernorm.
13https://github.com/pytorch/fairseq/blob/master/examples/translation/README.md.
14Ideally we would like to measure the wall clock time used for tuning. However, smaller models such as the

proxy Transformer used for IWSLT are not efficient on GPUs, so wall clock time would not reflect the speedup
for larger models like GPT-3. Thus, we measure in FLOPs, which is less dependent on hardware optimization.

15We do not report the standard deviation over random initializations to avoid confusion.
16We find this provides more reliable result than selecting for the best BLEU score.
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Table 4: Transformer on IWSLT14 De-En. 1x and 0.25x refers to scaling of width only. Compared
to traditional tuning (“Tuning on 1x”), µtransfer from 0.25x provides better and more reliable outcome
given fixed amount of compute. On the other hand, naive transfer (i.e. with SP instead of µP) fails
completely. The percentiles are over independent trials, with each trial involving the entire tuning
process with a new HP random search.

Val. BLEU Percentiles
Setup Total Compute #Samples 25 50 75 100

fairseq[25] default - - - - - 35.40

Tuning on 1x 1x 5 33.62 35.00 35.35 35.45
Naive transfer from 0.25x 1x 64 training diverged
µTransfer from 0.25x (Ours) 1x 64 35.27 35.33 35.45 35.53
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Figure 5: Efficiency-performance Pareto fron-
tier of µTransfer compared to conventional tuning,
on IWSLT Transformer, using random HP search
as the base method. We plot the median BLEU
score over 25 trials (Left) against relative compute
budget in log scale and (Right) against number
of HP samples taken. While with the same num-
ber of samples, µTransfer slightly underperforms
conventional tuning, this gap vanishes with more
samples, and in terms of compute, our Pareto fron-
tier strongly and consistently dominates that of
conventional tuning. Note that, in larger models
(e.g. BERT or GPT-3, not shown here), we believe
our efficiency advantage will only widen as our
small proxy model can stay the same size while
the target model grows.

Performance Pareto Frontier The result
above only describes a particular compute bud-
get. Is µTransfer still preferable when we have
a lot more (or less) compute? To answer this
question, we produce the compute-performance
Pareto frontier in Fig. 5(left), where we repeat
the above experiment with different compute
budgets. Evidently, our approach completely
dominates conventional tuning.

Sample Quality of Proxy Model vs Target
Model The Pareto frontier in Fig. 5(right) sug-
gests that, given a fixed number of random sam-
ples from the HP space, 1) tuning the target
model directly yields slightly better results than
tuning the proxy model (while taking much
more compute of course), but 2) this perfor-
mance gap seems to vanish as more samples
are taken. This can be explained by the intu-
ition that the narrower proxy model is a “noisy
estimator” of the wide target model [45].With
few samples, this noise can distort the random
HP search, but with more samples, this noise is
suppressed.

6.2 Transformer on WMT14 En-De

We scale up to WMT14 En-De using the large (post-layernorm) Transformer from [37] with 211M
parameters. We tune on a proxy model with 15M parameters by shrinking dmodel, dffn, and nhead.
For this experiment, we tune via random search the learning rate η, the output layer parameter
multiplier αoutput, and the attention key-projection weight multiplier αattn following the grid in
Appendix H.2. The result is shown in Table 5: While random search with 3 HP samples far
underperforms the fairseq default, we are able to match it via transfer using the same tuning budget.

Table 5: Transformers on WMT14 En-De. 1x and 0.25x refers to scaling of width only. We report
BLEU fluctuation over 3 independent trials, i.e., 3 independent random HP searches.

Val. BLEU Percentiles
Setup Total Compute #Samples Worst Median Best

fairseq[25] default - - - - 26.40

Tuning on 1x 1x 3 training diverged 25.69
Naive transfer from 0.25x 1x 64 training diverged
µTransfer from 0.25x (Ours) 1x 64 25.94 26.34 26.42
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6.3 BERT

Finally, we consider large-scale language model pretraining where HP tuning is known to be challeng-
ing. Using Megatron (pre-layernorm) BERT [32] as a baseline, we hope to recover the performance
of the published HPs by only tuning a proxy model that has roughly 13M parameters, which we call
BERT-prototype. While previous experiments scaled only width, here we will also scale depth, as
discussed in Section 5 and validated in Fig. 4. We use a batch size of 256 for all runs and follow the
standard finetuning procedures. For more details on BERT-prototype, what HPs we tune, and how we
finetune the trained models, see Appendix H.3.

During HP tuning, we sample 256 combinations from the search space and train each combination
on BERT-prototype for 105 steps. The total tuning cost measured in FLOPs is roughly the same as
training 1 BERT-large for the full 106 steps; the exact calculation is shown in Appendix H.3. The
results are shown in Table 6. Notice that on BERT-large, we obtain sizeable improvement over the
well-tuned Megatron BERT-large baseline.

Table 6: BERT pretraining. HP transfer outperforms published baselines without tuning the full
model directly at all. We tune BERT-base and BERT-large simultaneously via a single proxy model,
BERT-prototype. The total tuning cost = the cost of pretraining a single BERT-large. Model speedup
refers to the training speedup of BERT-prototype over BERT-base or BERT-large. Total speedup in
addition includes time saving from transferring across training steps. Both speedups can be interpreted
either as real-time speedup on V100s or as FLOPs speedup (which turn out to be empirically very
similar in this case).

Model Method Model Speedup Total Speedup Test loss MNLI (m/mm) QQP

BERTbase Megatron Default 1x 1x 1.995 84.2/84.2 90.6
BERTbase Naive Transfer 4x 40x training diverged
BERTbase µTransfer (Ours) 4x 40x 1.970 84.3/84.8 90.8

BERTlarge Megatron Default 1x 1x 1.731 86.3/86.2 90.9
BERTlarge Naive Transfer 22x 220x training diverged
BERTlarge µTransfer (Ours) 22x 220x 1.683 87.0/86.5 91.4

6.4 GPT-3

In order to further verify µTransfer at scale, we applied it to GPT-3 6.7B [6]. This Transformer model
(the target model) consists of 32 residual blocks with width 4096. We form the small proxy model by
shrinking width to 256, resulting in roughly 40 million trainable parameters, 168 times smaller than
the target model. HPs were then determined by a random search on the proxy model. The total tuning
cost was only 7% of total pretraining cost. Details of the HP sweep can be found in Appendix H.4.

In order to exclude code difference as a possible confounder, we also re-trained GPT-3 6.7B from
scratch using the original HPs from [6]. During training of the µTransfer model we encountered
numerical issues that lead to frequent divergences. In order to avoid them, the model was trained
using FP32 precision, even though the original 6.7B model and our re-run were trained using FP16.17

18 The resulting µTransfer model outperforms the 6.7B from [6], and is in fact comparable to the
twice-as-large 13B model across our evaluation suite (see Table 9). Selected evaluation results can be
found in Table 7 and further details are given in Table 8 and Appendix H.4.

7 Related Works

Hyperparameter Tuning Many have sought to speed up HP tuning beyond the simple grid or
random search, such as via Bayesian optimization [34, 35] or multi-arm bandits [15, 18]. There are
also dedicated tools such as Optuna [4] and Talos [3] which integrate with existing deep learning
frameworks and provide an easy way to apply more advanced tuning techniques. Our work is

17While we are mainly focused on the efficacy of µTransfer regardless of precision, it would be interesting to
ablate the effect of precision in our results, but we did not have enough resources to rerun the baseline in FP32

18It is quite interesting that µTransfer identified a useful region of hyperparameters leading to much improved
performance, which probably would be difficult to discover normally because 1) researchers usually change
hyperparameters to accomodate precision and 2) there was no precise enough justification to go against this
judgment until µTransfer.
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Table 7: GPT-3 6.7B Pretraining. Selected evaluation results for the GPT-3 6.7B model tuned
with µTransfer (transfered from a small proxy model of 40M parameters), compared to the results
published in [6] and a re-run with original HPs. Note that the perplexities in this table are based
on a custom tokenization and are not comparable to the literature. The validation loss refers to the
loss achieved on a random held-out part of our dataset. Zero-shot, One-Shot and Few-Shot refer
to the number of additional query and answer pairs passed in the context when performing the
sampling-based evaluations. See Appendix H.4 for full evaluation results.

Task Metric 6.7B+µP 6.7B re-run 6.7B from [6]

Validation loss cross-entropy 1.98 2.03 -
PTB perplexity 11.4 13.0 -
WikiText-103 perplexity 8.56 9.13 -
One Billion Words perplexity 20.5 21.7 -
LAMBADA Zero-Shot accuracy 73.5 70.8 70.3
LAMBADA One-Shot accuracy 69.9 64.8 65.4
LAMBADA Few-Shot accuracy 74.7 77.1 79.1
HellaSwag Zero-Shot accuracy 72.0 66.7 67.4
HellaSwag One-Shot accuracy 71.1 65.9 66.5
HellaSwag Few-Shot accuracy 72.4 66.4 67.3

complementary to the above, as they can be used to tune the proxy model. it is only for scientific
reasons that we primarily did random search throughout this work.

Hyperparameter Transfer Many previous works explored transfer learning of HP tuning (e.g.
[12, 28, 36, 49]). However, to the best of our knowledge, our work is the first to explore zero-shot HP
transfer. In addition, we focus on transferring across model scale rather than between different tasks
or datasets. Some algorithms like Hyperband [19] can leverage cheap estimates of HP evaluations
(like using a small model to proxy a large model) but they are not zero-shot algorithms, so would
still be very expensive to apply to large model training. Nevertheless, all of the above methods are
complementary to ours as they can be applied to the tuning of our proxy model.

Previously Proposed Scaling Rules of Hyperparameters [11, 23, 31, 33] investigated the right
way to scale learning rate with batch size, with sometimes conflicting proposals. which we summarize
in Appendix F. [26] studied how learning rate (and batch size) should scale with width for MLPs and
CNNs trained with SGD in NTK or standard parametrizations. We provide a detailed comparison of
our work with theirs in Appendix F.

Many previous works proposed different initialization or parametrizations with favorable properties,
such as better stability for training deep neural networks [5, 10, 13, 21, 30, 47, 48, 51]. Our work
differs from these in that we focus on the transferability of optimal HPs from small models to large
models in the same parametrization.

8 Conclusion

Leveraging the discovery of a feature learning neural network infinite-width limit, we hypothesized
and verified that the HP landscape across NNs of different width is reasonably stable if parametrized
according to Maximal Update Parametrization (µP). We further empirically showed that it’s possible
to transfer across depth, batch size, sequence length, and training time, with a few caveats. This
allowed us to indirectly tune a very large network by tuning its smaller counterparts and transferring
the HPs to the full model.

Venues of Improvement Nevertheless, our method has plenty of room to improve. For example,
initialization does not transfer well across depth, and depth transfer generally still does not work for
post-layernorm Transformers. This begs the question whether a more principled parametrization in
depth could solve these problems. Additionally, Fig. 4 shows that the optimal HP still shifts slightly
for smaller models. Perhaps by considering finite-width corrections to µP one can fix this shift.
Finally, it will be interesting to consider if there’s a way to transfer regularization HPs as a function
of both the model size and data size.
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Broader Impact Our work makes HP tuning of large models more efficient. This enables large
models to be better tuned given the same compute budget, thereby increasing the performance per
cost. Organizations large and small can focus their research on small models and scale up only once
with reasonable confidence that the training would go well. We do not foresee any direct negative
societal impact.
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