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ABSTRACT

Neuromorphic event cameras possess superior temporal resolution, power effi-
ciency, and dynamic range compared to traditional cameras. However, their asyn-
chronous and sparse data format poses a significant challenge for conventional
deep learning methods. Existing solutions to this incompatibility often sacrifice
temporal resolution, require extensive pre-processing, and do not fully leverage
GPU acceleration. Inspired by word-to-vector models, we draw an analogy be-
tween words and events to introduce event2vec, a novel representation that al-
lows neural networks to process events directly. This approach is fully com-
patible with the parallel processing and self-supervised learning capabilities of
Transformer architectures. We demonstrate the effectiveness of event2vec on
the DVS Gesture, ASL-DVS, and DVS-Lip benchmarks. A comprehensive ab-
lation study further analyzes our method’s features and contrasts them with ex-
isting representations. The experimental results show that event2vec is remark-
ably parameter-efficient, has high throughput, and can achieve high accuracy even
with an extremely low number of events. Beyond its performance, the most sig-
nificant contribution of event2vec is a new paradigm that enables neural networks
to process event streams as if they were natural language. This paradigm shift
paves the way for the native integration of event cameras with large language
models and multimodal models. Code, model, and training logs are provided in
https://anonymous.4open.science/r/event2vec_iclr—-7B40.

1 INTRODUCTION

Neuromorphic computing is an emerging research field that seeks to develop the next generation
of artificial intelligence by emulating the brain’s principles (Mead, |1990). A significant advance-
ment stemming from this paradigm is the event camera, a sensor inspired by the biological retina
(Gallego et al.}2022). Prominent examples include the Dynamic Vision Sensor (DVS) (Lichtsteiner
et al.| [2008) and the Asynchronous Time-based Image Sensor (ATIS) (Posch et al., [2011). Unlike
traditional cameras that capture synchronous frames, event cameras operate asynchronously, gen-
erating events in response to per-pixel brightness changes. This operational principle endows them
with exceptionally high temporal resolution (on the order of microseconds), low power consump-
tion, and a High Dynamic Range (HDR) exceeding 120 dB. This asynchronous operation results
in a sparse stream of events, typically encoded in the Address-Event Representation (AER) format.
An event is represented as a tuple (z,y, t,p), composed of the pixel’s spatial coordinates (x,y), a
timestamp ¢, and a binary polarity p that indicates the direction of the brightness change.

Most contemporary deep learning models are designed to operate on dense, regularly structured,
multi-dimensional tensors. This tensor-based paradigm is foundational to mainstream deep learning
(LeCun et all 2015)) and is ubiquitously employed in modern scientific computing and machine
learning frameworks, including NumPy (Harris et al., |2020a), TensorFlow (Abadi et al., |2016),
and PyTorch (Paszke et al., 2019). Consequently, the sparse and asynchronous nature of event
streams in the AER format is fundamentally incompatible with these tensor-based methods. To
address this disparity, substantial research efforts have been devoted to converting events to dense
representations, or designing new data and network structures to process the irregular events directly.

Existing methods primarily address the challenge of event encoding: how to effectively extract infor-
mation from events and represent it for processing by neural networks. This challenge is analogous
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Word how are you
Index 5269 527 499
Position 0 1 2

Event E[0] E[1] E[2]
Index x[0],y[0],p[0]  x[1]y[1Lp[1] x([2],¥[2],p[2]
Position t[0] t[1] t[2]

Figure 1: Conceptual analogy between words and events. The illustration of the DVS 128 camera is
adapted from |[Lichtsteiner et al.[(2008).

to word encoding in natural language processing, a problem successfully addressed by foundational
techniques such as word-to-vector (word2vec) (Mikolov et al.,|2013). The word2vec model embeds
each word into a fixed-length vector, enabling the relationships between words to be represented by
mathematical operations between vectors. This vector representation approach is highly compatible
with deep learning architectures and has become a foundational component of modern Natural Lan-
guage Processing (NLP) models (Devlin et al.l |2019a; Brown et al., 2020). We identify numerous
parallels between words and events, as illustrated in Figure[I} The key similarities are as follows:

(1) Each element is a composite of an index and a position. In NLP, each word is assigned a
unique index from a vocabulary, a conversion handled by a tokenizer; the indices in Figure [T}
for instance, are generated by the Llama-3 tokenizer (Grattafiori et al.,2024). A word’s position
is its sequential location within the sentence (e.g., the word “how” is at position 0 in “how
are you”). Similarly, an event’s index is its spatial address, represented by the tuple (z,y, p).
Crucially, its position is not the sequence number, but its timestamp ¢, which marks its precise
temporal location in the event stream.

(2) The set of possible indices is finite. The vocabulary of a language, which forms the dictionary
used in NLP, is finite. Likewise, an event camera has a limited set of possible event indices,
defined by its sensor’s properties. For example, a DVS128 camera has 2 x 128 x 128 unique
indices, corresponding to 2 polarities across a 128 x 128 spatial resolution.

(3) The sequence exhibits a natural ordering. Words in a sentence are arranged in a specific
sequence that dictates meaning. Analogously, events are naturally ordered by their timestamps,
reflecting the chronological progression of captured changes. This inherent temporal order is a
key characteristic that distinguishes event data from unordered data structures like point clouds.

(4) The meaning of an element is determined by its context. A word can be polysemous; for
instance, “transformer” can refer to a neural network architecture or a character in an animated
series; its specific meaning is disambiguated by the surrounding text. An individual event merely
signals a brightness change at a specific pixel and time, conveying little information in isolation.
However, when viewed within a spatiotemporal stream, a sequence of events can delineate an
object’s contour, thus giving a single event a higher-level meaning, such as being part of an
edge. Therefore, the significance of an event is also fundamentally context-dependent.

Inspired by word2vec, we propose event-to-vector (event2vec), an efficient spatio-temporal repre-
sentation for asynchronous events. Our contributions are as follows:

(1) By embedding events into a vector space, our method natively handles the sparse nature of the
input stream, avoiding dense intermediate representations like event frames. This allows for
efficient, GPU-accelerated processing with modern network architectures.

(2) We propose a parametric spatial embedding and a convolution-based temporal embedding
method that captures neighborhood similarity—a task that is critical for accuracy but difficult
for a standard embedding layer to learn.

(3) We validated our method on three classification benchmarks: DVS Gesture, ASL-DVS, and
DVS-Lip. It achieved accuracy competitive with traditional methods while demonstrating re-
markable parameter efficiency, throughput, and robustness, especially with a low number of
events.

Beyond the performance metrics, the most significant contribution of event2vec is its ability to en-
able neural networks to process event streams in a manner analogous to natural language. Therefore,
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state-of-the-art NLP architectures and methods—such as Transformer variants, model acceleration
algorithms, and generative self-supervised training—can be directly leveraged for event-based vi-
sion. Event2vec paves the way for the native integration of event cameras with large language
models and multimodal models.

2 RELATED WORK

2.1 DENSE REPRESENTATIONS OF EVENTS

Dense representations, derived from raw event streams, are fully compatible with conventional deep
learning methods. This is typically achieved by integrating events along the time axis to form dense
3D or 4D tensors, such as event frames (Liu & Delbruckl 2018), multi-channel images (Barchid
et al.| 2022), voxel grids (Bardow et al.,|2016), volumetric cubes (Cordone et al2022)) and patches
(Sabater et al., 2023} [Peng et al.| [2023).

Specifically, event-to-frame methods accumulate events within discrete time intervals. These result-
ing frames can then be processed directly by standard neural networks. However, a significant draw-
back of these methods is the degradation or complete loss of the high temporal resolution inherent
to event data. This occurs because individual event timestamps are aggregated or quantized during
the conversion process. Furthermore, transforming the data into a dense representation negates the
inherent spatial sparsity of events. For instance, the generated frames often contain a substantial
number of zero-valued pixels. These pixels, while carrying no information, still incur significant
memory and computational overhead. While many methods use timestamps implicitly to define the
integration interval, some approaches explicitly leverage them to generate temporal weights (Zhu
et al., 2019; |Gehrig et al.,2019). Finally, the conversion process itself can be computationally in-
tensive, introducing considerable latency that is often prohibitive for real-time applications (Rebecq
et al., [2019; |Gallego et al., 2022).

2.2 IRREGULAR REPRESENTATIONS OF EVENTS

Conversely, methods for processing irregular representations aim to preserve the inherent sparsity
and asynchronicity of event data. This category includes SNNs (Maass} [1997; Roy et al., |2019)),
Sparse Convolutional Networks (Sparse CNNs) (Messikommer et al., [2020; [Santambrogio et al.,
2024), Graph Neural Networks (GNNs) (B1 et al., [2019} |Schaefer et al.l [2022), and point-based
methods (Yang et al.l 2019; Sekikawa et al.,[2019} |Lin et al., 2023} |Ren et al., [2025).

When deployed on neuromorphic hardware (Merolla et al.| 2014} Davies et al.| [ 2018), Spiking Neu-
ral Networks (SNNs) can process events in a naturally asynchronous event-driven manner. However,
on standard hardware, GPU-based simulations of SNNs produce dense tensor outputs, as the hard-
ware necessitates synchronous processing with discrete time-steps. Consequently, training SNNs
on conventional GPUs typically occurs in a synchronous fashion, leading to an unavoidable perfor-
mance gap between synchronous training and asynchronous inference (Yao et al., 2024} Du et al.,
2025)). Moreover, the reliance on backpropagation-through-time renders the training process slow
and memory-intensive. Sparse CNNs leverage the inherent sparsity of event data, achieving a theo-
retically low number of Floating-Point Operations (FLOPs). Nevertheless, the architecture of stan-
dard GPUs is not optimized for the dynamic computations and unstructured memory access patterns
required for efficient sparse acceleration. Consequently, similar to SNNs, Sparse CNN(s fail to fully
exploit the massive parallel processing capabilities of GPUs.

Event-based GNNs construct graphs from incoming events, an approach that effectively preserves
the spatio-temporal relationships between them. Since empty regions with no event activity do not
generate graph nodes, the data’s sparsity is well-utilized. Their main disadvantage lies in the need
for careful hyper-parameter tuning, such as the event downsampling rate and neighborhood radius
for graph construction. Additionally, functioning as low-pass filters (Nt & Maehara, 2019), GNNs
are susceptible to the over-smoothing problem (Zhou et al.|[2020), which limits their ability to form
deep architectures comparable to modern CNNs and Transformers (Vaswani et al., 2017)). Point-
based methods treat events from event cameras as analogous to point clouds from Light Detection
and Ranging (LiDAR) sensors. A fundamental limitation of most point cloud models is their permu-
tation invariance, which necessitates treating the input as an unordered set. Consequently, the event
timestamp is typically relegated to being an additional positional coordinate, thereby discarding the
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crucial causal ordering of events. To manage the data volume, these methods often employ classic
point cloud pre-processing techniques like farthest point sampling, which further increases latency.

3 METHODS

3.1 REPRESENTING EVENTS IN A VECTOR SPACE

Leveraging the strong analogy between words and events, we propose a method for representing
events within a vector space, which we term event-to-vector (event2vec). An event, generated by a
camera with a spatial resolution of H x W, is represented as a tuple (x, y, ¢, p). For our embedding,
we treat the triplet (z, y, p) as the spatial coordinate and the timestamp ¢ as the temporal coordinate.
The general formulation for the event2vec embedding is defined as:

vV =V + v = Embed,(z, y, p) + Embed,(¢), (1)

where v € RP is the resulting D-dimensional embedding vector, v, = Embed,(z,y,p) € R? is
the spatial embedding module, and v; = Embed;(t) € R” is the temporal embedding module. As
shown in Eq.[I} this method fuses spatial and temporal information through addition. This additive
fusion strategy is directly inspired by the positional encoding mechanism prevalent in Transformers.

3.2 SPATIAL EMBEDDING

A straightforward approach for the spatial embedding module is to adapt the standard embedding
layer from NLP, which is efficiently implemented as a look-up table:

v, = Embedy(x,y,p) = Wip- H- W4y - W + z], )

where W, € RH-W)xD g the learnable embedding matrix and D is the embedding size. This
method maps each unique spatial coordinate to a distinct row index in the embedding matrix Wj.

However, this standard embedding layer imposes no inductive bias on the relationship between
indices, compelling the model to learn all spatial relationships from data alone. In a tokenizer,
a word’s index is a non-semantic identifier, whose order is primarily determined by the token’s
frequency in the training corpus. Consequently, the words at indices ¢ and ¢ + 1 share no inherent
semantic similarity. This assumption does not hold for event coordinates. Images are continuous
two-dimensional functions (Gonzalezl 2009). Spatially adjacent pixels are known to exhibit strong
correlation. Therefore, an effective spatial embedding should incorporate this locality bias, ensuring
that events with close coordinates yield similar embedding vectors:

Embed;(z + Az, y + Ay, p) — Embed;(z,y,p) = 0, 3)
for small coordinate perturbations [Az, Ay], e.g., [Az, Ay] = [1,0].

The standard embedding in Eq. [2] fails to account for this crucial spatial relationship, which can
impede the learning process. To solve this issue, we propose an elegant parametric algorithm for
generating the embedding matrix W by a neural network ¢. To systematically enumerate all spatial
coordinates within a P x H x W volume (where P = 2 represents the two polarities), we first
establish a linear index sequence ¢ = [0, 1, ..., P-H-W —1]. This sequence is then decomposed into
three probe tensors, X, y,., and p,., which correspond to the coordinates along the width, height, and
polarity dimensions, respectively. The transformation is defined as follows: x, = ¢ (mod W),y =
L%J (mod H),p,. = LWCHJ Finally, these probe tensors are passed through ¢, which outputs
the complete embedding matrix Wy = ¢(Xc, ., p.). By substituting the parametrically generated
matrix Wy into the look-up mechanism of Eq. 2} we establish a direct equivalence for any given
event coordinate (x,y, p):

Crucially, the parametric network ¢ is designed to be a continuous and differentiable function. This
property allows us to formally analyze the relationship between neighboring embeddings using a
first-order Taylor series expansion:

0 0
oo + Ay + Ay.p) = 9o y.p) = GE AT + 50 Ayt o( ], ®
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where o(|| A||) represents higher-order remainder terms. As Eq. [5]illustrates, for small perturbations
[Axz, Ay], the difference between the embeddings is proportional to the gradient of ¢. Consequently,
as the perturbations approach zero, this difference vector also approaches zero:

o+ Az, y+ Ay,p) — ¢(x,y,p) = 0. (6)

In this manner, the use of a continuous parametric network ¢ inherently embeds the desired neigh-
borhood semantics, or spatial inductive bias, directly into the embedding matrix. This approach
elegantly satisfies the condition outlined in Eq.

3.3 TEMPORAL EMBEDDING

Timestamps, which denote the occurrence time of events, serve a function analogous to positional
indices in a sentence. In modern NLP models, relative positional encoding methods (Press et al.,
20215 |Su et al., 2024) are increasingly favored over absolute methods, such as sinusoidal encoding
(Vaswani et al.,|2017) or learnable absolute positional embeddings (Devlin et al., 2019b).

However, directly applying these relative positional encoding techniques to event timestamps is
ill-suited. Such methods are fundamentally designed for discrete and uniformly spaced indices,
whereas event timestamps are continuous and inherently non-uniform. To address this discrepancy,
we propose learning the temporal embedding directly from the differences between consecutive
timestamps using a neural network.

Specifically, the temporal embedding module is implemented as a stack of convolutional layers. For
the ¢-th event in an event stream, the input to this module is the first-order temporal difference,
t[i + 1] — t[¢]. This design offers several distinct advantages:

(1) Time-Shift Invariance: By operating on relative temporal distances, the embedding becomes
inherently invariant to absolute shifts in time.

(2) Generalization: It functions as a variant of position-wise learnable encoding but circumvents
the length generalization problem by accepting continuous values as input, rather than being
tied to a fixed vocabulary of discrete positions.

(3) Contextual Consistency: The convolutional operations allow the temporal embedding for an
event to be influenced by the timing of its immediate neighbors, thereby reinforcing the principle
of neighborhood semantics in the time domain.

3.4 EVENT SAMPLING AND AGGREGATION

Raw event streams often contain an extremely large number of events, with sequence lengths exhibit-
ing substantial variance. Furthermore, deep learning frameworks typically process data in batches,
which requires that all tensors within a single batch have uniform dimensions. Consequently, it is
necessary to sample or aggregate events from each stream to a fixed-length sequence of size L.

In this paper, we primarily use two methods. The first is uniform random sampling. We find that
this straightforward method works well in most cases and is extremely computationally efficient.
However, a significant limitation of random sampling is the substantial information loss incurred
by discarding the majority of the events, leading to suboptimal accuracy in complex tasks. Our
second method addresses this by leveraging k-means clustering to aggregate the entire event stream
into L representative clusters. Specifically, the clustering process is performed independently on the
two event polarities to preserve their distinct information channels. After clustering, the centroid of
each cluster is treated as a representative event. Its timestamp is taken directly from the centroid’s
temporal coordinate, while its spatial coordinates are quantized to the nearest integers. Furthermore,
we compute an intensity factor, p, equal to the number of raw events belonging to that cluster. This
intensity factor then modulates the corresponding spatial embedding vector, effectively weighting
the representation by its event density. This approach ensures that information from every event

contributes to the final representation.
In summary, the final event2vec representation for a sequence of L events is a tensor V € RL*P,
The embedding for the i-th event in this sequence, V[i], is formulated as:

V[i] = p[i] - Embed,(x[i], y[7], p[¢]) + Embed;(At)[d], (7
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Figure 2: The network architecture for event classification using the event2vec representation.

where p, X, y, p, and t are vectors representing the intensity factors, spatial coordinates, and times-
tamps for the sequence of L events. The vector of temporal differences is defined as At[i] =
t[i + 1] — t[i], with the final value set to zero. For a native event, p[i] is 1, while for a cluster event,
it represents the number of raw events aggregated into that cluster.

3.5 NETWORK STRUCTURE

In this paper, we employ the Transformer architecture, leveraging its core strengths: the ability to
efficiently process sequences in parallel and capture long-range dependencies. These characteristics
make it particularly well-suited for the sequential representations generated by event2vec.

As shown in Figure [2{a), the spatial embedding module ¢ consists of a stack of linear layers. It
gradually increases the number of features from 3 to D. Layer Normalization (Ba et al. [2016)
layers are also inserted to stabilize training but omitted from the figure for clarity. The temporal
embedding module has a similar structure to the spatial embedding module, except that it uses
depth-wise convolutional layers with a kernel size of 3 and a stride of 1, shown in Figure 2{b).

We employ the Forgetting Transformer (Lin et al. 2025) as the linear attention in Figure [2{c). It
is important to recognize that linear attention is fundamentally equivalent to RNNs (Katharopou-
los et al.| 2020), operating with fixed-size hidden states. To enhance the learning capability for
extremely long event sequences, we extend the linear attention model to a parameter-shared bi-
directional formulation. Further details are provided in Appendix [A.2] A linear attention module
and a feedforward network, consisting of two linear layers, together constitute a single backbone
block. As illustrated in Figure 2{c), the full backbone is composed of n such blocks stacked sequen-
tially. For the classification head, we employ an average pooling layer to aggregate features across
all positions in the sequence.

4 EXPERIMENTS

To validate the event2vec representation, we conduct a series of experiments on classification tasks
using three neuromorphic datasets: DVS Gesture (Amir et al., |2017), ASL-DVS (Bi et al., |2019),
and DVS-Lip (Tan et al., 2022)). In this section, results are reported in the format a £ b, representing
the mean and standard deviation, respectively. For experiments that involve random sampling, these
statistics are computed over 10 independent runs on the test set. Experimental details are provided

in Appendices[A.3|to[A.§]
4.1 COMPARISON BETWEEN REPRESENTATIONS

Accuracy and Parameter Efficiency Table |I| compares the accuracy and model parameters of
event2vec with those of other representations across the three datasets. Our models for DVS Ges-
ture and ASL-DVS are trained directly on randomly sampled events. For DVS-Lip, our model first
undergoes self-supervised pre-training (refer to Appendix on cluster events. We then report
the fine-tuning accuracy on both randomly sampled events and cluster events. Our method achieves
accuracy comparable to that of other leading representations while demonstrating exceptional pa-
rameter efficiency.
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Table 1: Model performance and size comparison on neuromorphic datasets

Dataset Method + Representation Accuracy (%) Params (MB)

DVS Gesture Sparse GRU + Frame (Subramoney et al.|[2023) 97.80 4.8
SNN + Frame (Yao et al.[[2023) 98.23 6.5

FARSE-CNN + Window Slicing (Santambrogio et al.|[2024) 96.6 10.79

Event MAE + Point Cloud (Sun et al.[[2025) 97.75 Unknown

Linear Attention + Event2vec (4096 Randomly Sampled Events) 97.57+1.31 0.52

ASL-DVS GNN,CNN + Graph (Bi et al.[|[2019) 90.10 19.46

GNN, Transformer + Image, Voxel Graph (Yuan et al.|[2023) 99.60 220.3

Linear Attention + Event2vec (512 Randomly Sampled Events) 99.91+0.05 0.27

DVS-Lip ResNet-18,BiGRU + Frame (Tan et al.[[2022) 60.3 72.1
Spiking ResNet18,BiGRU + Frame (Dampthotfer & Mesquida/[2024) 75.3 58.6

Linear Attention + Event2vec (1024 Randomly Sampled Events) 70.62+1.55 18.3

Linear Attention + Event2vec (1024 Cluster Events) 75.14 18.3

Table 2: Comparative analysis of pre-processing latency for event representations on DVS Gesture

Representation Hyper-Parameter Total Pre-processing Time (s)
Random Sampling (used in event2vec) 4096 events 1.2410.04
Frame (Yao et al.|[2023) 16 frames 4.4440.03
Graph (Schaefer et al.|[2022) Radius=5, 32 neighbors, 10000 samples 6.374+0.06
Voxel Grid (Zhu et al.|2019) 16 bins 7.70+0.15
Point Cloud (Sun et al.[[2025) 64 patches x 32 points 47.56+1.50
K-Means (used in event2vec) 1024 clusters 119.51£0.55
Window Slicing (Santambrogio et al.|2024)  Size=100ms, stride=20ms 230.7942.46

Table 3: Benchmark of throughput and single event stream inference latency on DVS Gesture

Throughput (samples/s) Single Stream
Method Training Inference  Latency (ms)
FARSE-CNN + Window Slicing (Santambrogio et al.|[2024) 6.65+0.85 23944921 324.16%111.15
AEGNN + Graph (Schaefer et al.|[2022) 111.06+6.68 1271.75+2.69 3.74+0.20
SNN + Frame (Yao et al.[[2023) 202.88+3.69 234.00+7.61 6.12+0.34
Sparse GRU + Frame (Subramoney et al.|[2023) 417.001+0.72 472.82+18.40 2.71+0.02
Event2vec + Randomly Sampling 1030.02+56.36  2884.56-+-283.89 11.44+0.69

Event Pre-processing Time Table 2]benchmarks the total pre-processing time required by different
representations to process all 1,176 event streams of the DVS Gesture training set. Hyper-parameters
were set to the values specified in their respective original publications, where available. For others,
we adopted commonly used values; for instance, graph construction was constrained to an average
node degree between 10 and 20 to ensure balanced connectivity, and the number of frames and bins
of the voxel grid was set to 16, a common configuration (Zhou et al.,2024)). The results indicate that
event2vec with random sampling exhibits minimal pre-processing time. While employing K-Means
clustering increases pre-processing time, it still remains faster than window slicing.

Throughput and Latency Table [3| compares the throughput and single event stream inference la-
tency of FARSE-CNN, AEGNN, SNN, Sparse GRU and our event2vec model on the DVS Gesture
dataset. Our event2vec model exhibits extremely high training and inference throughput, primarily
due to its full compatibility with a highly optimized linear attention library that can fully leverage
GPUs for acceleration. The FARSE-CNN model exhibits the lowest throughput. This is attributable
to its reliance on Sparse CNN, which receives limited acceleration from unstructured sparsity on
GPUs, and the inclusion of a recurrent structure that further constrains its speed.

4.2 ABLATION EXPERIMENTS

Embedding Comparison We conducted an ab- Table 4: Ablation analysis of embeddings on the
lation study on the DVS Gesture dataset to DVS Gesture dataset
evaluate the accuracy contributions of differ-

ent components, as detailed in Table @] We _Embedding Accuracy (%)
tested various combinations of spatial embed- Spatial Temporal

R Standard Conv(At) 91.1843.70
ding methods (standard (Eq. [2) vs. paramet- Standard  Sin(t) 93.1642.19
ric (Eq. f)) and temporal embedding modules Parametric ~ Sin(%) 96.56+1.46
(sinusoidal embedding on ¢ vs. convolutional Parametric Conv(At) 97.57+1.31

embedding on At). The combination of the standard embedding with our convolutional temporal
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Figure 3: Effect of number of events on models for (a) DVS Gesture (b) ASL-DVS.

embedding (Standard + Conv(At)) yields the lowest accuracy. We attribute this to the standard
embedding layer’s lack of inductive bias, which prevents it from effectively learning neighborhood
semantics and subsequently hinders the convolutional temporal encoder. Consequently, when using
our parametric embedding, the convolutional encoder achieves the highest accuracy. It is worth not-
ing that our parametric embedding consistently outperforms the standard version when paired with
any temporal embedding, validating the effectiveness of incorporating neighborhood semantics.

Effect of Event Numbers Processing fewer events results in lower resource consumption, which
is always desirable in event-based applications. We benchmark the impact of varying the num-
ber of randomly sampled events (L) on several key metrics: training/inference throughput, single
event stream inference latency, and accuracy on the DVS Gesture and ASL-DVS datasets. As illus-
trated in Figure[3] the performance trends are consistent across both datasets. For small values of L,
throughput decreases only marginally as L increases. This is attributable to the CUDA kernel launch
overhead, which dominates the computation time, rendering the actual kernel execution time negli-
gible in this regime. As L grows larger, the kernel execution time becomes the primary bottleneck,
causing a more pronounced decrease in throughput. Notably, while L increases, the throughput de-
creases approximately inversely proportionally, a finding consistent with the O(L) complexity of
linear attention. The single event stream inference latency for both models increases only slightly
with L, further indicating that kernel launch overhead, rather than execution time, remains the domi-
nant factor. In terms of accuracy, the general trend shows improvement as L increases. Surprisingly,
both models maintain a reasonable level of accuracy even with a very small number of events (e.g.,
L = 32), demonstrating their robustness to sparse inputs.

1.0

We also compare our method with the sophis-
ticated sampling techniques from |Araghi et al. 09
(2025), which use a voxel grid representation -
(Figure [4). The results highlight the inherent
effectiveness of event2vec: when paired with
simple random sampling, it consistently outper-
forms the voxel grid representation, even when
the latter employs more complex, meticulously
designed sampling strategies.
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4.3 VISUALIZATION events against Araghi et al.| (2025).

Neighborhood Semantics To visually inspect the neighborhood semantics, we extract the spatial
embedding weights from models trained on the DVS Gesture dataset with the parametric (W) and
standard (W) embedding layers. For each coordinate (x, y, p), its D-dimensional embedding vector
is projected onto a 3-dimensional space using Principal Component Analysis (PCA). These 3D
vectors are then interpreted as RGB color values and plotted at their corresponding (x, y) locations
to form an image. Figure [5(a) visualizes the resulting images for polarity O (images for polarity
1 are provided in Appendi%. The image derived from Wy displays smooth, continuous color
gradients, akin to a color palette, indicating that spatially adjacent coordinates have semantically
similar embeddings. In stark contrast, the image from W, resembles random noise, signifying a
lack of learned spatial correlation.

Polarity Similarity An object’s edge moving across a pixel often triggers events of both polarities in
close succession. We therefore hypothesize that the embeddings for opposite polarities at the same
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Figure 5: Visual comparison of the learned spatial embeddings: parametric vs. standard.

Figure 6: Event-level attention maps on samples from DVS Gesture (Row 1), ASL-DVS (Row 2),
and DVS-Lip (Row 3).

spatial location should also be semantically related. To test this, we compute the cosine similarity
between the embedding vectors of the two polarities at each coordinate. As shown in Figure [5(b),
the parametric embedding captures this relationship, exhibiting distinct regions of high similarity.
Conversely, the similarity map for the standard embedding is predominantly close to zero, indicating
that it fails to learn this inter-polarity correlation.

Vector Field Representation We visualize the learned spatial manifold as a vector field. The D-
dimensional embedding vectors are projected onto their first two principal components using PCA.
These resulting 2D vectors are then visualized using a quiver plot, where each arrow represents the
direction and magnitude of the vector at its spatial coordinate. Figure [5|c) illustrates the results.
The vector field for the parametric embedding exhibits a coherent, laminar-like flow, revealing a
smoothly structured semantic space. In contrast, the field for the standard embedding appears chaotic
and turbulent, further confirming its inability to capture meaningful spatial relationships.

Event-wise Attention As event2vec is an event-wise representation, its attention mechanism can be
visualized at a fine-grained, event-level resolution. Figure [6] displays attention heatmaps overlaid
on the original event streams for DVS Gesture (row 1), ASL-DVS (row 2), and DVS-Lip (row 3).
The visualizations reveal that the model correctly focuses on the hands in DVS Gesture, the finger
joints and contours in ASL-DVS, and the lip region in DVS-Lip. However, consistent with the lower
classification accuracy compared to the other two datasets, we also observe instances where the
model incorrectly allocates significant attention to other facial features, such as the eyes and ears.

5 CONCLUSIONS

Neuromorphic event cameras introduce a paradigm shift in computer vision, presenting both unique
opportunities and significant challenges. A central challenge has been reconciling their asyn-
chronous, sparse nature with the synchronous, dense tensor-based architectures of deep learning.
In this paper, we introduced event2vec, a novel representation that directly addresses this challenge
by enabling neural networks to natively process asynchronous events. Our experimental results
demonstrate that event2vec achieves accuracy competitive with established methods while offering
compelling advantages in parameter efficiency, pre-processing overhead, throughput, and robustness
across varying numbers of events. Beyond these performance metrics, the most significant contribu-
tion of event2vec is its conceptual alignment of event streams with the paradigm of natural language
processing. This opens new avenues for research and application. By treating events as a sequential
language, we can begin to explore novel applications by leveraging the sophisticated architectures
developed for large language models.



Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The experimental code, training logs, terminal output, and trained models for this paper are
all provided together in the code repository https://anonymous.4open.science/r/
event2vec_iclr-7B40. We have included detailed instructions in the repository, allowing
readers to easily prepare the dataset and reproduce the experiments based on these instructions. All
experiments in this paper fix the random number seeds of PyTorch, NumPy, and Python to O using
the seed_everything function from PyTorch Lightning, in order to maintain reproducibility as
much as possible.
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A APPENDIX

A.1 DATASETS

The DVS Gesture dataset is a benchmark commonly employed for model evaluation. It comprises
11 categories of hand gestures and is officially divided into a training set with 1,176 samples and a
testing set with 288 samples.

The ASL-DVS dataset contains 24 classes corresponding to letters from American Sign Language,
amounting to a total of 100,800 samples. Each class consists of 4,200 samples, and the duration of
each sample is approximately 100 ms. Following the methodology in |Bi et al.|(2019), we partition
the dataset by allocating the initial 80% for training and the remaining 20% for testing.

The DVS-Lip dataset encompasses 100 word classes derived from the visual information of a
speaker’s lip movements. It provides an official training/testing split with 14,896 and 4,975 samples,
respectively.
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Table 5: Hyper-parameters of training models for classification tasks on different datasets

Dataset D Df Npeaa Depth  Repeats ngpus (Tmin
DVS Gesture 64 128 2 4 24 4 0

ASL-DVS 64 128 2 2 1 7 106

DVS-Lip 192 384 6 16 3 4 10-6

A.2 BI-DIRECTIONAL LINEAR ATTENTIONS

Ignoring the layer index for simplicity, the recurrence relation for the hidden state S[¢] at time-step ¢
in a standard linear attention model is:

S[t] = f(S[t — 1], k[t], v[t]), (8)
O[t] = W,S[t], 9)

where K[t] and v[t] are input-dependent key and value vectors, W, is the output projection matrix,
and O[t] is the output vector. The specific recurrence function, f, used in this work is based on the
Forgetting Transformer (FOX) (Lin et al., 2025) implemented by the Flash Linear Attention library
(Yang & Zhang, [2024)

‘We adapt this formulation to be bi-directional by maintaining separate forward and backward hidden
states, which are then concatenated and fused through a linear layer to produce the output O s [t]:

Sslt] = f(Ss[t — 1], K[¢], v[t]), (10)
Solt] = F(Selt — 1],K[L —t — 1], v[L — ¢t — 1]), (11)
Srolt] = [S[t]: Su[t]], (12)
Oyt] = WreSpolt]- (13)

Unlike classic bi-directional RNNs (Schuster & Paliwal, |1997) that often use independent parame-
ters for each direction, our model employs shared parameters for the forward and backward passes.
Consequently, the only increase in parameters compared to the uni-directional model arises from the
output projection matrix W g5, which has twice the number of parameters as the original W.,.

A.3 MODEL HYPER-PARAMETERS

Unless otherwise stated, all models were trained using BFloat16 mixed precision. The training
configuration for all models includes a base learning rate of 1, = 0.001, a batch size of 64, and the
AdamW optimizer (Loshchilov & Hutter, |2019), conducted over 64 epochs. The effective learning
rate is determined by a linear scaling rule based on the number of GPUs (n4p,5) used in distributed
data-parallel training: Ir = Iry - Ngpys/256. A warmup phase is implemented for the first four
epochs, during which the learning rate is linearly increased from 0.01 - {7 to its full value, lr. For
the subsequent epochs, a cosine annealing schedule (Loshchilov & Hutter, [2017) is employed to
gradually reduce the learning rate to a minimum value, [7,,;,. For the DVS Gesture and ASL-
DVS datasets, both weight decay and label smoothing were disabled. In contrast, for the DVS-Lip
classification task, we set the weight decay to 0.05 and applied label smoothing with a factor of 0.1.

Table [5] provides a detailed summary of the model-specific hyper-parameters. Here, D denotes
the embedding dimension, Dy represents the hidden feature dimension of the feed-forward neural
network (FFN), and njeqq is the total number of attention heads. The repeat s parameter specifies
how many times the training set is iterated through within a single epoch. Notably, the number of
heads for the key (k) and value (v) projections is set t0 Npeqq/2, and group normalization (Wu &
He, [2018)) is applied to both. To prevent exploding gradients, we employ gradient clipping, capping
the Lo norm of the gradients at 1.0.

For the DVS Gesture classification model, the output of each FFN is average-pooled with a window
size of 2, whereas other models do not use pooling. The model for the DVS-Lip classification task
was pre-trained on the DVS-Lip dataset using a self-supervised learning approach. This pre-training
phase utilized a minimum learning rate of Ir,,,;, = 10~°, a weight decay of 0.05, a repeat s value
of 3, and a masking ratio of 30%. Refer to Appendix for more details.
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A.4 DATA AUGMENTATIONS

Denote U(a, b) as the uniform distribution between « and b, and RandInt(m, n) as a random integer
taken from the set m, m + 1, ..., n, where each integer has an equal probability of being selected.

For an event stream, the data augmentations are applied on events directly. For simplicity, we omit
the event index in this subsection. Unless otherwise specified, augmentations are applied on each
event stream independently. Note that the coordinates are converted to floating percision before
applying any augmentation. After all augmentations are applied, coordinates will be quantized, and
only events whose coordinates are valid, i.e., z € [0, W — 1],y € [0, H — 1], are kept.

For the classification task on DVS Gesture, the following transformations are each applied indepen-
dently with a probability of 0.6:

* Random Resizing: Coordinates (x,y) are scaled to (s, - z, s, - y), with scaling factors
Sz, Sy ~ U(0.8,1.2).

* Random Rotation: Coordinates are rotated by an angle r ~ U/(—10, 10) degrees.

* Random Shearing: A shear transformation is applied with factors A;, A, ~
U(-0.02,0.02).
* Random Translation: Coordinates are translated by offsets d, d,, ~ U(—16, 16).

* Random Erasing: Erase an h x w area with h, w ~ U/(0, 16) with the probability 0.1. The
center of this area (c,, ¢, ) satisfy ¢, ~ U0, W —1),¢, ~U(0, H —1).

* Temporal Chunk Dropout: A number of temporal chunks, n, = RandInt(0,8), are
removed from the event stream. The length of each removed chunk, l.;unk, is de-

termined relative to the total stream length, L, according to the sampling distribution

l __ RandInt(1,256)
chunk — 2 .

No data augmentations were applied for the ASL-DVS dataset.

During the self-supervised phase of the model for classifying DVS-Lip, a series of geometric trans-
formations are employed. Each of the following augmentations is applied independently with a
probability of 0.5:

* Random Resizing: Coordinates (x,y) are scaled to (s, - x, s, - y), with scaling factors
Sz, 8y ~ U(0.8,1.2).
* Random Rotation: Coordinates are rotated by an angle r ~ U/ (—15, 15) degrees.

* Random Shearing: A shear transformation is applied with factors A;, A, ~
U(-0.05,0.05).

» Horizontal Flipping: The event stream is flipped horizontally.
* Random Translation: Coordinates are translated by offsets d, d,, ~ U(—16, 16).

When training the model for classifying DVS-Lip, we use the following data augmentations:

* Random Resizing: Resize (z,y) to (s, - x, s, - y) where 55, s, ~ U(0.8,1.2).

* Random Rotation: Coordinates are rotated by an angle r ~ U/(—15, 15) degrees.

* Random Shearing: Shear transform on z and y with shear factors A;, A, ~
U(—-0.05,0.05).

* Random Flip: The event stream is flipped horizontally with a probability of 0.5.

* Random Translation: Translate 2 and y with translations d, d,, ~ U(—16, 16).

* Random Erasing: Erase an h x w area with h, w ~ U(0, 16) with the probability 0.1. The
center of this area (¢, ¢,) satisfies ¢; ~ U (0, W —1),¢, ~U(0, H — 1).

The augmentations listed above are each applied independently with a probability of 0.5. The token-
mix is applied on the embedding tensor with probability 0.5. Specifically, when training on cluster
events, the intensity p is randomly set to 1 with a probability of 0.1. We use drop path (Larsson
et al} |2016) in the linear attention layer, with the probability increasing linearly from 0 to 0.4 with
depth.
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A.5 SELF-SUPERVISED TRAINING DETAILS

The event-wise nature of the event2vec representation lends itself well to self-supervised pre-
training, which can significantly enhance model performance. Specifically, we adopt a masked
modeling approach, akin to that used in BERT. The training objective is to mask the spatial coor-
dinates (x,y, p) of a subset of these events and train the model to predict the masked coordinates
based on the context provided by the surrounding events and their associated temporal information.
This task compels the model to learn a meaningful understanding of spatio-temporal event patterns.

The self-supervised training framework is analogous to the Masked Language Model (MLM) ob-
jective in BERT (Devlin et al., [2019a)). Given a batch of embedding tensors v of shape (B, L, D),
where B is the batch size, L is the sequence length, and D is the embedding dimension, the process
begins by randomly masking a portion of the input tokens.

A binary mask m of shape (B, L) is generated from a Bernoulli distribution. The probability of
masking any given token is set to 0.3, which defines the mask ratio. Each token v[i][5] corresponding
to a mask entry m[é|[j] = 1 is replaced by a single, learnable, D-dimensional mask token v,,.
This operation results in a corrupted embedding tensor, denoted as v. Concurrently, the original
coordinates (X, ¥,,, P,,) of the masked tokens are preserved to serve as the ground truth for the
reconstruction loss.

The corrupted tensor v is then processed by the model’s linear attention layers. Following this, the
output embeddings that correspond to the initially masked positions, denoted V,,, are extracted from
the final output tensor using the mask m.

The objective is for the model to reconstruct the original spatial and polarity information from these
corrupted embeddings. To achieve this, we first apply the inverse of the spatio-temporal fusion
operation to isolate the spatial component of the reconstructed embeddings:

Vo= iy, (14)

P

The resulting tensor, Vs, is treated as the reconstructed spatial embedding. It is then passed through
a decoder network, which mirrors the architecture of the spatial embedding encoder, to predict the
original coordinates (X,y,p). Specifically, this decoder consists of a stack of linear layers, Layer
Normalization, and ReLU activation functions. The network is designed to gradually reduce the
feature dimension from D down to 3. The final output layer uses a tanh activation function to
constrain the predicted values to the range (—1, 1). This aligns with the input preprocessing, where
the ground-truth coordinates are also normalized to the same range.

Finally, the training objective is to minimize the Mean Squared Error (MSE) loss between the pre-
dicted coordinates (X, y, p) and the ground-truth coordinates (X, ¥,,,, P,,) of the masked tokens.

A.6 EXPERIMENTAL DETAILS FOR PRE-PROCESSING LATENCY

The pre-processing latency benchmarks, with results presented in Table[2] were conducted on a Red
Hat Enterprise Linux 8.10 server. This server was equipped with an NVIDIA A100 GPU (80GB
PClIe), an Intel Xeon Gold 6326 CPU (utilizing 8 cores), and 256GB of RAM. To mitigate the
impact of data I/O, the DVS Gesture dataset was loaded entirely into RAM for the duration of the
experiments. For each method, we optimized the batch size and the number of workers to achieve
the minimum possible latency. All implementations were based on the publicly available source
code from their respective original publications or other high-performance software libraries. The
reported latency for each method is the average of 8 measurement runs, which were preceded by 2
warm-up runs to ensure system stability. Further implementation details are provided in Table [6]

A.7 EXPERIMENTAL DETAILS FOR MODEL THROUGHPUT AND LATENCY

The throughput and latency experiments, with results presented in Table [3] were conducted under
the same operating system and hardware environment as the pre-processing benchmarks, which are
detailed in Appendix[A.6] The dataset was also pre-loaded into RAM to eliminate I/O bottlenecks.

For each model, we performed a search for the optimal batch size to maximize performance. The
optimal batch sizes were determined to be 64 for Sparse GRU, 16 for FARSE-CNN, 64 for AEGNN,
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Table 6: Implementation details of Table

Method Batch size Workers Software Library

Random Sampling 64 64 Numpy (Harris et al.;[2020b)

Frame 8 8 SpikingJelly (Fang et al.,|[2023)

Graph 8 8 PyTorch Geometric (Fey & Lenssen, 2019)
Voxel Grid 16 8 Tonic (Lenz et al.,[2021)

K-Means 2 2 Faiss (Johnson et al.,[2019)

Window Slicing 8 8 Original paper (Santambrogio et al.,[2024)

64 for SNN and 512 for event2vec, respectively. We observed that a fixed number of 8 workers
yielded the best performance across all models. The benchmarking process for each model involved
an initial warm-up phase, followed by multiple measurement runs, the results of which were then
averaged. Due to significant variations in computational cost among the models, the number of
warm-up iterations and measurement batches was tailored for each specific model. However, we
ensured that the number of batches was sufficiently large, such that further increases did not yield
any significant changes in the measured performance, confirming the stability of our results.

Regarding the implementations, for Sparse GRUE] and FARSE-CNNEL the complete source code
was available in the official GitHub repositories, and we used them directly. For AEGNN, only
the inference code was publicly availableﬂ We therefore implemented the necessary Dataset
class and model architecture by referencing their provided implementation for the N-Cars dataset
(Sironi et al.} 2018)). For SNNs, the model used by Yao et al|(2023) enhances the Parametric Leaky
Integrate-and-Fire Neuron Network (PLIF-Net) (Fang et al., [2021)) with attentions, but the source
code is not released. Given these additional attention modules only add slight complexity, we evalu-
ate on the PLIF-Net as an alternative. SpikingJelly (Fang et al.,|2023)) provides a high-performance
implementatiorﬂ for the PLIF-Net with advanced accelerating techniques, and we benchmark on
code from SpikingJelly directly.

All benchmarks were running in BFloat16 mixed precision except for Sparse GRU, which depends
on the Haste library (Nanavati, [2020) with only supports Float32.

A.8 EXPERIMENTAL DETAILS FOR THE ABLATION STUDY ON EVENT NUMBERS

The ablation study on the number of events, with results reported in Figure [3] evaluates the impact
on model throughput, latency, and accuracy. These experiments were conducted using the same
operating system and hardware environment detailed in Appendix [A.6] During the training process
on the DVS Gesture dataset, the chunk length parameter [ j,,,x for the temporal chunk dropout
augmentation is scaled proportionally with the number of events. Furthermore, for experiments
using 64 and 32 events, all data augmentation techniques are disabled. This measure is implemented
to prevent the augmentation from inadvertently removing all events, which would subsequently lead
to a NaN (Not-a-Number) loss.

A.9 VISUALIZATION OF NEIGHBORHOOD SEMANTICS

Due to space constraints in the main paper, Figures [5(a) and [5{c) display visualizations for only
a single event polarity. For completeness, this section provides supplementary visualizations that
include both polarities. Figure[7]illustrates the embedding weights mapped to the RGB color space,
while Figure|8|depicts them as a vector field.

"https://github.com/Efficient-Scalable-Machine-Learning/EvNN

https://github.com/AIRLab-POLIMI/farse—cnn

*https://github.com/uzh-rpg/aegnn

4https ://spikingjelly.readthedocs.io/zh-cn/latest/activation_based_en/
classify_dvsg.html
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Wy,p=0 Wy p=1 W;,p =10 W,p=1

Figure 7: Visualization of the parametric embedding weight W, and the standard embedding weight
W, in the RGB domain.

Ws,p=0 Ws‘pz]_

Figure 8: Visualization of the parametric embedding weight W and the standard embedding weight
W, in the vector field.
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