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Abstract
Preference-based Reinforcement Learning
(PbRL) circumvents the need for reward engi-
neering by harnessing human preferences as the
reward signal. However, current PbRL methods
excessively depend on high-quality feedback
from domain experts, which results in a lack
of robustness. In this paper, we present RIME,
a robust PbRL algorithm for effective reward
learning from noisy preferences. Our method
utilizes a sample selection-based discriminator
to dynamically filter out noise and ensure robust
training. To counteract the cumulative error
stemming from incorrect selection, we suggest
a warm start for the reward model, which addi-
tionally bridges the performance gap during the
transition from pre-training to online training in
PbRL. Our experiments on robotic manipulation
and locomotion tasks demonstrate that RIME
significantly enhances the robustness of the
state-of-the-art PbRL method. Code is available
at https://github.com/CJReinforce/
RIME_ICML2024.

1. Introduction
Reinforcement Learning (RL) has demonstrated remarkable
performance in various domains, including gameplay (Pero-
lat et al., 2022; Kaufmann et al., 2023), robotics (Chen et al.,
2022), autonomous systems (Bellemare et al., 2020; Zhou
et al., 2020), multimodal (Yue et al., 2024), etc. The success
of RL frequently relies on the meticulous crafting of reward
functions, a process that can be both time-consuming and
susceptible to errors. In this context, Preference-Based RL
(PbRL) (Akrour et al., 2011; Cheng et al., 2011; Christiano
et al., 2017) emerges as a valuable alternative, eliminating
the requirement for manually designed reward functions.
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PbRL adopts a human-in-the-loop paradigm, where human
teachers provide preferences over distinct agent behaviors
as the reward signal.

Nevertheless, existing works in PbRL have primarily fo-
cused on enhancing feedback-efficiency, aiming to maxi-
mize the expected return with few feedback queries. This
focus induces a substantial reliance on high-quality feed-
back, typically assuming expertise on the teachers (Liu
et al., 2022; Kim et al., 2022). However, humans are
prone to errors (Christiano et al., 2017). In broader ap-
plications, feedback is often sourced from non-expert users
or crowd-sourcing platforms, where the quality can be incon-
sistent and noisy. Further complicating the matter, Lee et al.
(2021a) showed that even a mere 10% corruption rate in
preference labels can dramatically degrade the performance.
Therefore, the lack of robustness to noisy preference labels
hinders the wide applicability of PbRL.

Meanwhile, learning from noisy labels, also known as ro-
bust training, is a rising concern in deep learning, since such
labels severely degrade the generalization performance of
deep neural networks. Song et al. (2022) classifies robust
training methods into four key categories: robust architec-
ture (Cheng et al., 2020), robust regularization (Xia et al.,
2020), robust loss design (Lyu & Tsang, 2019), and sam-
ple selection (Li et al., 2020; Song et al., 2021). However,
it is challenging to effectively incorporate these advanced
methods for robust training in PbRL. This complexity arises
from the pursuit of feedback-efficiency and cost reduction,
necessitating access to a limited amount of feedback. Simul-
taneously, the distribution shift problem during RL training
undermines the assumption of i.i.d input data, a core princi-
ple that supports robust training methods in deep learning.

In this work, we aim to improve the robustness of preference-
based RL methods on noisy and quantitatively limited pref-
erences. To this end, we present RIME: Robust preference-
based reInforcement learning via warM-start dEnoising
discriminator. RIME modifies the training paradigm of the
reward model in the widely-adopted two-phase (i.e.,pre-
training and online training phases) pipeline of PbRL. Fig-
ure 1 shows an overview of RIME. In particular, to em-
power robust learning from noisy preferences, we introduce
a denoising discriminator. It utilizes dynamic lower and
predefined upper bounds on the Kullback–Leibler (KL) di-
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Figure 1. Overview of RIME. In the pre-training phase, we warm start the reward model r̂ψ with intrinsic rewards rint to facilitate a
smooth transition to the online training phase. Post pre-training, the policy, Q-network, and reward model r̂ψ are all inherited as initial
configurations for online training. During online training, we utilize a denoising discriminator to screen denoised preferences for robust
reward learning. This discriminator employs a dynamic lower bound τlower on the KL divergence between predicted preferences Pψ and
annotated preference labels ỹ to filter trustworthy samples Dt, and an upper bound τupper to flip highly unreliable labels Df .

vergence between predicted and annotated preference labels
to filter samples. Further, to mitigate the accumulated er-
ror caused by incorrect filtration, we propose to warm start
the reward model during the pre-training phase for a good
initialization. Moreover, we find that the warm start also
bridges the performance gap that occurs during the transi-
tion from pre-training to online training. Our experimental
results indicate that RIME significantly outperforms exist-
ing baselines under noisy preference conditions, thereby
substantially enhancing robustness for PbRL.

In summary, our work has three main contributions. First,
we present RIME, a robust reward learning algorithm for
PbRL, designed to effectively train reward models from
noisy feedback—an important and realistic topic that has
not been studied extensively. Second, we observe a dramatic
performance gap during the transition from pre-training
to online training in PbRL and propose to warm start the
reward model for a seamless transition, which proves to
be crucial for both robustness and feedback-efficiency in
limited-feedback cases. Last, we show that RIME outper-
forms existing PbRL baselines under noisy feedback set-
tings, across a diverse set of robotic manipulation tasks from
Meta-World (Yu et al., 2020) and locomotion tasks from
the DeepMind Control Suite (Tassa et al., 2018; 2020), and
further is more suitable for non-expert humans.

2. Related work
Preference-based Reinforcement Learning. Incorporat-
ing human feedback into the training of reward models
has proven effective in various domains, including natu-
ral language processing (Ouyang et al., 2022), multimodal

(Lee et al., 2023), and reinforcement learning (Christiano
et al., 2017; Ibarz et al., 2018; Hejna III & Sadigh, 2023).
In the context of RL, Christiano et al. (2017) proposed a
comprehensive framework for PbRL. To improve feedback-
efficiency, PEBBLE (Lee et al., 2021b) used unsupervised
exploration for policy pre-training. SURF (Park et al., 2021)
employed data augmentation and semi-supervised learn-
ing to enrich the preference dataset. RUNE (Liang et al.,
2021) encouraged exploration by modulating reward un-
certainty. MRN (Liu et al., 2022) introduced a bi-level
optimization to optimize the Q-function’s performance. PT
(Kim et al., 2022) utilized Transformer architecture to model
non-Markovian rewards, proving effective in complex tasks.

Despite these advancements, the focus on feedback effi-
ciency should not overshadow the equally critical issue of
robustness in PbRL. Lee et al. (2021a) indicated that a mere
10% rate of corrupted preferences can significantly impair
algorithmic performance. Furthermore, in more extensive
application contexts, the collection of preferences from non-
experts increases the likelihood of incorporating incorrect la-
bels. Therefore, enhancing the robustness of PbRL remains
a vital research direction. In this work, we address robust
PbRL via a warm-start denoising discriminator, which dy-
namically filters denoised preferences and is more adaptable
to cases of distribution shift during RL training.

Learning from Noisy Labels. Learning from noisy labels
has gained more attention in supervised learning, particu-
larly in light of the wide presence of noisy or imprecise
labels in real-world applications. A variety of approaches
have been proposed for robust training (Song et al., 2022),
including architectural modifications (Goldberger & Ben-
Reuven, 2016), regularization (Lukasik et al., 2020), loss
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function designs (Zhang & Sabuncu, 2018), and sample se-
lection methods (Wang et al., 2021). Despite these advance-
ments, the direct application of these methods to reward
learning in PbRL has presented challenges, mainly due to
the limited sample sizes and the absence of i.i.d. of sam-
ples. In the context of PbRL, Xue et al. (2023) proposed an
encoder-decoder architecture to model diverse human prefer-
ences, which required approximately 100 times the amount
of preference labels used in our experiments. Our approach
can be situated within the sample selection category and
improves robustness while preserving feedback-efficiency.

Policy-to-Value Reincarnating RL. Policy-to-value rein-
carnating RL (PVRL) transfers a sub-optimal teacher policy
to a value-based RL student agent (Agarwal et al., 2022).
Uchendu et al. (2023) found that a randomly initialized Q-
network in PVRL leads to the teacher policy being forgotten
quickly. Within the widely-adopted pipeline of PbRL, the
challenge intrinsic to PVRL also arises during the transition
from pre-training to online training, but has been neglected
in previous research (Lee et al., 2021b; Park et al., 2021;
Liang et al., 2021; Liu et al., 2022). The issue of forget-
ting the pre-training policy becomes more critical under
noisy feedback conditions, as detailed in Section 4.2. Based
on the observation, we propose to warm start the reward
model for a seamless transition. Our ablation study demon-
strates that the warm start is crucial for both robustness and
feedback-efficiency.

3. Preliminaries
Preference-based Reinforcement Learning. In standard
RL, an agent interacts with an environment in discrete time
steps (Sutton & Barto, 2018). At each time step t, the
agent observes the current state st and selects an action at
according to its policy π(·|st). The environment responds
by emitting a reward r(st,at) and transitioning to the next
state st+1. The agent’s objective is to learn a policy that
maximizes the expected return,R0 =

∑∞
t=0 γ

trt, which is
defined as a discounted cumulative sum of the reward with
the discount factor γ.

In Preference-based RL, there is no predefined reward func-
tion. Instead, a teacher offers preferences between the
agent’s behaviors, and an estimated reward function r̂ψ
is trained to align with collected preferences. Following pre-
vious works (Lee et al., 2021b; Liu et al., 2022; Kim et al.,
2022), we consider preferences over two trajectory segments
of length H , where segment σ = {(s1,a1), ..., (sH ,aH)}.
Given a pair of segments (σ0, σ1), a teacher provides a pref-
erence label ỹ from the set {(1, 0), (0, 1), (0.5, 0.5)}. The
label ỹ = (1, 0) signifies σ0 ≻ σ1, ỹ = (0, 1) signifies
σ1 ≻ σ0, and ỹ = (0.5, 0.5) represents an equally prefer-
able case, where σi ≻ σj denotes that segment i is preferred
over segment j. Each feedback is stored in a dataset D as

a triple (σ0, σ1, ỹ). Following the Bradley-Terry model
(Bradley & Terry, 1952), the preference predicted by the
estimated reward function r̂ψ is formulated as:

Pψ[σ
i ≻ σj ] =

exp
(∑

t r̂ψ(s
i
t,a

i
t)
)∑

k=i,j exp
(∑

t r̂ψ(s
k
t ,a

k
t )
) (1)

The estimated reward function r̂ψ is updated by minimizing
the cross-entropy loss between the predicted preferences Pψ
and the annotated labels ỹ:

LCE(ψ) = E
[
LReward

]
= −E

[
ỹ(0) lnPψ[σ

0 ≻ σ1]

+ỹ(1) lnPψ[σ
1 ≻ σ0]

]
(2)

The policy π can subsequently be updated using any RL
algorithm to maximize the expected return with respect to
the estimated reward function r̂ψ .

Unsupervised Pre-training in PbRL. Pre-training the
agent is important in PbRL because the initial random policy
often results in uninstructive preference queries, requiring
many queries for even elementary learning progress. Recent
studies addressed this issue through unsupervised explo-
ration for policy pre-training (Lee et al., 2021b). Specif-
ically, agents are encouraged to traverse a more expan-
sive state space by using an intrinsic reward derived from
particle-based state entropy (Singh et al., 2003). Formally,
the intrinsic reward is defined as (Liu & Abbeel, 2021):

rint(st) = log(∥st − skt ∥) (3)

where skt is the k-th nearest neighbor of st. This reward
motivates the agent to explore a broader diversity of states.
This exploration, in turn, leads to a varied set of agent
behaviors, facilitating more informative preference queries.

Noisy Preferences in PbRL. We denote the annotated pref-
erence labels as ỹ and the ground-truth preference labels,
typically sourced from expert human teachers or scripted
teachers, as y. To simulate the noise in human annotations,
Lee et al. (2021a) introduced four noisy 0-1 labeling models:
Equal, Skip, Myopic, and Mistake. The “Mistake” model,
in particular, proved to be significantly detrimental to per-
formance across various environments. It hypothesizes that
the preference dataset is contaminated with corrupted pref-
erences whose annotated labels ỹ are 1 − y. Drawing on
previous insights, our work starts from addressing robust
reward learning under the “Mistake” model settings. This
approach is guided by empirical evidence suggesting that
solutions developed to overcome complex challenges could
be efficiently adapted to simpler cases.

4. RIME
In this section, we formally introduce RIME: Robust
preference-based reInforcement learning via warM-start
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dEnoising discriminator. RIME consists of two main com-
ponents: 1) a denoising discriminator designed to filter out
corrupted preferences while accounting for training insta-
bility and distribution shifts, and 2) a warm start method to
effectively initialize the reward model and enable a seamless
transition from pre-training to online training. See Figure 1
for the overview of RIME. The full procedure of RIME is
detailed in Appendix A.

4.1. Denoising Discriminator

In the presence of noisy labels, it is well-motivated to distin-
guish between clean and corrupted samples for robust train-
ing. Existing research indicates that deep neural networks
first learn generalizable patterns before overfitting to the
noise in the data (Arpit et al., 2017; Li et al., 2020). There-
fore, prioritizing samples associated with smaller losses as
clean ones is a well-founded approach to improve robust-
ness. Inspired by this, a theoretical lower bound on the
KL divergence between the predicted preference Pψ and
the annotated preference ỹ for corrupted samples could be
established to filter out large-loss corrupted samples.
Theorem 4.1 (KL Divergence Lower Bound for Corrupted
Samples). Consider a preference dataset {(σ0

i , σ
1
i , ỹi)}ni=1,

where ỹi is the annotated label for the segment pair (σ0
i , σ

1
i )

with the ground truth label yi. Let xi denote the tuple
(σ0
i , σ

1
i ). Assume the cross-entropy loss LCE for clean data

(whose ỹi = yi) is bounded by ρ. Then, the KL divergence
between the predicted preference Pψ(x) and the annotated
label ỹ(x) for a corrupted sample x is lower-bounded as:

DKL (ỹ(x)∥Pψ(x)) ≥ − ln ρ+
ρ

2
+O(ρ2) (4)

The proof of Theorem 4.1 is presented in Appendix C. Based
on Theorem 4.1, the lower bound on KL divergence thresh-
old could be formulated to filter out untrustworthy samples
as τbase = − ln ρ+αρ in practice, where ρ denotes the max-
imum cross-entropy loss on trustworthy samples observed
during the last update, and α is a tunable hyperparameter
with a theoretically-determined value range in (0, 0.5].

However, compared to deep learning, the shifting state dis-
tribution makes the robust training problem in RL more
complicated. To add tolerance for clean samples in cases of
distribution shift, we introduce an auxiliary term character-
izing the uncertainty for filtration, defined as τunc = βt ·sKL,
where βt is a time-dependent parameter, and sKL is the stan-
dard deviation of the KL divergence. Our intuition is that the
inclusion of out-of-distribution data for training is likely to
induce fluctuations in training loss. Therefore, the complete
threshold equation is formulated as:

τlower = τbase + τunc = − ln ρ+ αρ+ βt · sKL (5)

We utilize a linear decay schedule for βt to initially allow
greater tolerance for samples while becoming increasingly

conservative over time, i.e.,βt = max(βmin, βmax − kt).
At each training step for the reward model, we apply the
threshold in Equation (5) to identify trustworthy sample
dataset Dt, as described below:

Dt = {(σ0, σ1, ỹ) |DKL(ỹ∥Pψ(σ0, σ1)) < τlower} (6)

To ensure efficient usage of samples, we introduce a label-
flipping method for the reintegration of untrustworthy sam-
ples. Specifically, we pre-define an upper bound τupper and
reverse the labels for samples exceeding this threshold:

Df = {(σ0, σ1, 1− ỹ) |DKL(ỹ∥Pψ(σ0, σ1)) > τupper} (7)

Beyond improving sample utilization, the label-flipping
method also bolsters the model’s predictive confidence and
reduces output entropy (Grandvalet & Bengio, 2004). Fol-
lowing two filtering steps, the reward model is trained on the
unified datasets Dt ∪Df , using the loss function as follows:

LCE = E
(σ0,σ1,ỹ)∼Dt

[
LReward(σ0, σ1, ỹ)

]
+

E
(σ0,σ1,1−ỹ)∼Df

[
LReward(σ0, σ1, 1− ỹ)

]
(8)

Our denoising discriminator belongs to the category of sam-
ple selection methods for robust training. It stands out due
to its use of a dynamically adjusted threshold enhanced by
a term that accounts for instability and distributional shifts,
thereby making it more suitable for the RL training process.

4.2. Warm Start

Sample selection methods usually suffer from accumulated
errors due to incorrect selection, which highlights the need
for good initialization. Meanwhile, we observe a signifi-
cant degradation in performance during the transition from
pre-training to online training (see Figure 2). This gap is
clearly observable under noisy feedback settings and is fatal
to robustness. It is exacerbated when following the most
widely-adopted backbone, PEBBLE, which resets the Q-
network and only retains the pre-trained policy after the
pre-training phase. Because the Q-network is optimized
with a biased reward model trained on noisy preferences to
minimize the Bellman residual, this biased Q-function leads
to a poor learning signal for the policy, erasing gains made
during pre-training.

Inspired by these observations, we propose to warm start
the reward model to facilitate a smoother transition from
pre-training to online training. Specifically, we pre-train the
reward model to approximate intrinsic rewards during the
pre-training phase. Because the output layer of the reward
model typically uses the tanh activation function (Lee et al.,
2021b), we firstly normalize the intrinsic reward to the range
(−1, 1) as follows:

rint
norm(st) = clip(

rint(st)− r̄
3σr

,−1 + δ, 1− δ) (9)
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where 0 < δ ≪ 1. r̄ and σr are the mean and
standard deviation of the intrinsic rewards, respectively.
Then the agent receives the reward rint

norm and stores each
tuple (st,at, r

int
norm, st+1) in a replay buffer, denoted as

Dpretrain. During the reward model update, we sample
batches of (st,at) along with all encountered states S =
{s|s in Dpretrain} for nearest neighbor searches. The loss
function for updating the reward model r̂ψ is given by the
mean squared error as:

LMSE = E
(st,at)∼Dpretrain

[1
2

(
r̂ψ(st,at)− rint

norm(st)
)2 ]

(10)

Thanks to warm start, both the Q-network and reward model
are aligned with intrinsic rewards, allowing for the reten-
tion of all knowledge gained during pre-training (i.e.,policy,
Q-network, and reward model) for subsequent online train-
ing. Moreover, the warm-started reward model contains
more information than random initialization, enhancing the
discriminator’s ability initially.
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Figure 2. Performance degradation during transition on Walker-
walk (left) and Quadruped-walk (right) with 30% noisy preferences.
We pre-train an agent using SAC for 20k steps. The warm start
method shows a smaller transition gap and faster recovery.

5. Experiments
5.1. Setups

We evaluate RIME on six complex tasks, including robotic
manipulation tasks from Meta-world (Yu et al., 2020) and
locomotion tasks from DMControl (Tassa et al., 2018; 2020).
The details of experimental tasks are shown in Appendix
D.1. Similar to prior works (Lee et al., 2021a;b; Park et al.,
2021), to ensure a systematic and fair evaluation, we con-
sider a scripted teacher that provides preferences between
two trajectory segments based on the sum of ground-truth
reward values for each segment. To generate noisy prefer-
ences, we follow the procedure of the “mistake” scripted
teacher in Lee et al. (2021a), which flips correct prefer-
ences with a probability of ϵ. We refer to ϵ as the error
rate. We choose PEBBLE (Lee et al., 2021b) as our back-
bone algorithm to implement RIME. In our experiments,
we compare RIME against ground-truth reward-based SAC

and four state-of-the-art PbRL algorithms: PEBBLE (Lee
et al., 2021b), SURF (Park et al., 2021), RUNE (Liang et al.,
2021), and MRN (Liu et al., 2022). Here, SAC is considered
as an upper bound for performance, as it utilizes a ground-
truth reward function not available in PbRL settings. We
include SAC in our comparisons because it is the backbone
RL algorithm of PEBBLE.

Implementation Details. For the hyperparameters of
RIME, we fix α = 0.5, βmin = 1 and βmax = 3 in the lower
bound τlower, and fix the upper bound τupper = 3 ln(10) for
all experiments. The decay rate k in τupper is 1/30 for DM-
Control tasks, and 1/300 for Meta-world tasks, respectively.
Other hyperparameters are kept the same as PEBBLE. For
the sampling of queries, we use the disagreement sampling
scheme for all PbRL algorithms, following the setting in
Christiano et al. (2017). For the implementation of baselines,
we use their corresponding publicly released repositories
(see Table 8 for source codes). The feedback amount in total
and per query session in each environment with specified
error rate are detailed in Table 1.

For each task, we run all algorithms independently ten times
and report the average performance along with the standard
deviation. Tasks from Meta-world are measured on suc-
cess rate, while tasks from DMControl are measured on
ground-truth episode return. More details on the algorithm
implementation are provided in Appendix D.2.

Table 1. Feedback amount in each environment with specified error
rate. The “value” column refers to the feedback amount in total /
per session.

Environment Error rate Value Environment Error rate Value

Walker ϵ < 0.2 500/50 Button Press ϵ < 0.2 10000/50

Walker ϵ ≥ 0.2 1000/100 Button Press ϵ ≥ 0.2 20000/100

Cheetah ϵ < 0.2 500/50 Sweep Into ϵ < 0.2 10000/50

Cheetah ϵ ≥ 0.2 1000/100 Sweep Into ϵ ≥ 0.2 20000/100

Quadruped ϵ < 0.2 2000/200 Hammer ϵ < 0.2 20000/100

Quadruped ϵ ≥ 0.2 4000/400 Hammer ϵ = 0.2, 0.25 40000/200

Hammer ϵ = 0.3 80000/400

5.2. Results

For robotic manipulation tasks, we consider three tasks
from Meta-world: Button-press, Sweep-into, and Hammer.
For locomotion tasks, we choose three environments from
DMControl: Walker-walk, Cheetah-run, and Quadruped-
walk. Figure 3 and Figure 4 show the learning curves of
RIME and baselines on Meta-world and DMControl tasks
with five error rates, respectively. Table 2 shows the mean
and standard deviation of metrics across the five error rates.

Since some preferences are corrupted, we observe that there
is a gap between all PbRL methods and the best perfor-
mance (i.e.,SAC with task reward), but RIME exceeds the
PbRL baselines by a large margin in almost all environ-
ments. Especially, RIME remains effective in cases where
all baselines struggle, such as Button-press with ϵ = 0.2,
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Figure 3. Learning curves for robotic manipulation tasks from Meta-world, where each row represents a specific task and each column
corresponds to a different error rate ϵ. SAC serves as a performance upper bound, using a ground-truth reward function unavailable in
PbRL settings. The corresponding number of feedback in total and per session are shown in Table 1. The solid line and shaded regions
respectively denote the mean and standard deviation of the success rate, across ten runs.

Hammer with ϵ = 0.3, and Walker with ϵ = 0.3, etc. These
results demonstrate that RIME significantly improves ro-
bustness against noisy preferences. We also observe that
although some feedback-efficient baselines based on PEB-
BLE perform comparable to or even exceed PEBBLE in
low-level noise, they become ineffective as the error rate
rises. Additionally, Table 2 shows that PEBBLE is a robust
algorithm second only to RIME. These results reveal that
the pursuit of feedback efficiency leads to over-reliance on
feedback quality.

5.3. Ablation Study

Performance with more types of (noisy) teachers. To
investigate whether our method can generalize to more sit-
uations, we evaluate RIME, PEBBLE, and MRN with the
other four types of teachers proposed by Lee et al. (2021a):
Oracle, Skip, Equal, and Myopic. “Oracle” teacher provides
ground-truth preferences. “Skip” teacher will skip the query
if the cumulative rewards of segments are small. “Equal”
teacher will give equal preference ỹ = (0.5, 0.5) if the dif-
ference between the cumulative rewards of two segments
is small. “Myopic” teacher focuses more on the behavior
at the end of segments. More details of these four teachers
are shown in Appendix D.3. We report mean and standard

deviation across five runs in Table 3. We found that RIME
not only performs the best when teachers can provide am-
biguous or wrong labels (Equal and Myopic), but it is also
comparable with baselines on correct labels (Oracle and
Skip). Based on the superior performance of RIME with
multiple teachers, it has better chances of performing well
with real teachers as well (Lee et al., 2021a).

Comparison with other robust training methods. Since
the reward learning in PbRL is posed as a classification
problem, the robust training methods in Machine Learning
could be migrated to compare with RIME. Consider a sam-
ple selection method: adaptive denoising training (ADT)
(Wang et al., 2021), two robust loss functions: Mean Abso-
lute Error (MAE) (Ghosh et al., 2017) and t-CE (Feng et al.,
2021), and a robust regularization method: label smoothing
(LS) (Wei et al., 2021), as our baselines. ADT drops a-τ(t)
proportion of samples with the largest cross-entropy loss at
each training iteration, where τ(t) = min(γt, τmax). We set
τmax = 0.3, γ = 0.003, and 0.0003 for tasks from DMCon-
trol and Meta-world, respectively. MAE loss if formulated
as LMAE(ψ) = E[|ỹ − Pψ|], while t-CE loss is formulated as

Lt-CE(ψ) = E[
∑t
i=1

(1−ỹ⊤·Pψ)i
i ]. Label smoothing method

replace ỹ in Equation (2) with (1− r) · ỹ + r
2 · [1, 1]

⊤. We
adopt t = 4 for t-CE loss and r = 0.1 for label smoothing
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Figure 4. Learning curves on locomotion tasks from DMControl, where each row represents a specific task and each column corresponds
to a different error rate ϵ setting. SAC serves as a performance upper bound, using a ground-truth reward function unavailable in PbRL
settings. The corresponding number of feedback in total and per session are shown in Table 1. The solid line and shaded regions
respectively denote the mean and standard deviation of episode return, across ten runs.

respectively. All baselines are implemented based on PEB-
BLE. Table 4 shows the result on four tasks with “Mistake”
teacher and error rate as ϵ = 0.3. Additional experiments
with fixed lower bound τlower are provided in Appendix
E. We observe that label smoothing almost fails to han-
dle corrupted labels in our experiments. Sample selection
methods (RIME and ADT) work better compared to other
types of methods, and RIME still outperforms baselines.
The reason is that the dynamic threshold with tolerance for
out-of-distribution data is particularly well-suited to the RL
training process.

Performance with real non-expert human teachers. The
ultimate goal of improving robustness in PbRL is to better
align with human users. To investigate how RIME performs
with non-expert humans, we conduct experiments on Hop-
per utilizing non-expert human instructors, following the
approach of Christiano et al. (2017); Lee et al. (2021b).
Specifically, we selected five students with no prior knowl-
edge on robotics from unrelated majors to provide annota-
tions in an online setting. These students were instructed
solely on the objective: to train an agent to perform back-
flips and received no additional information or guidance
on the task. Their annotations were later used to train the
algorithms RIME and PEBBLE. The feedback amount in

total and per session are 100 and 10 respectively. For further
details on the annotation protocol, refer to Appendix D.4.

We employ a hand-crafted reward function designed by ex-
perts (Christiano et al., 2017) as the ground-truth scripted
teacher. We notice that compared to ground-truth prefer-
ences, the error rate of our non-expert annotations reached
nearly 40%. The learning curves are shown in Fig. 5a. We
find that RIME significantly outperforms PEBBLE when
learning from actual non-expert human teachers and success-
fully performs consecutive backflips using 100 non-expert
feedback, as shown in Figure 5b.
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(a) Learning curves of RIME
and PEBBLE on Hopper

(b) Frames of consecutive backflips
from agents trained by RIME.

Figure 5. Ablation study on real non-expert human teachers

Trade-off between sample efficiency and robustness. To
quantify the trade-off between sample efficiency and robust-
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Table 2. Results on tasks from Meta-world and DMControl with “mistake” teacher. The result shows the mean and standard deviation of
metric (i.e.,episode return for DMControl tasks and success rate for Meta-world tasks) across all five error rates within 10 runs.

Algorithm DMControl Meta-world
Walker Cheetah Quadruped Button Press Sweep Into Hammer

PEBBLE 692.05 ± 192.67 604.77 ± 126.63 208.66 ± 106.81 50.07 ± 29.53 19.09 ± 29.82 26.22 ± 32.08

SURF 211.28 ± 195.25 341.43 ± 178.10 125.51 ± 040.15 42.60 ± 27.55 16.04 ± 22.86 11.43 ± 22.76

RUNE 584.06 ± 271.84 424.17 ± 205.16 152.66 ± 131.43 27.04 ± 18.89 15.02 ± 19.18 12.14 ± 19.30

MRN 537.40 ± 281.36 538.74 ± 169.63 139.65 ± 088.24 43.48 ± 30.58 14.74 ± 22.89 06.35 ± 09.55

RIME 837.79 ± 133.49 602.18 ± 096.10 415.52 ± 180.74 85.70 ± 22.92 51.96 ± 42.90 42.28 ± 42.31

Table 3. Results on tasks from Meta-world and DMControl with 4 other types of (noisy) teacher. The result shows the mean and standard
deviation of metric (i.e.,episode return for DMControl tasks and success rate for Meta-world tasks) averaged over 5 runs.

Domain Environment Algorithm Oracle Equal Skip Myopic Average

DMControl

Walker
PEBBLE 877.44 ± 44.06 930.90 ± 17.77 904.31 ± 26.59 762.53 ± 165.98 868.80
MRN 913.66 ± 51.84 942.80 ± 14.14 919.61 ± 48.87 882.34 ± 019.68 914.60
RIME 958.87 ± 03.08 954.89 ± 01.43 950.83 ± 16.44 952.16 ± 001.80 954.19

Quadruped
PEBBLE 620.35 ± 193.74 743.04 ± 107.30 776.01 ± 065.86 622.78 ± 200.04 690.55
MRN 682.98 ± 182.25 666.56 ± 298.40 653.28 ± 150.78 525.91 ± 233.77 633.18
RIME 678.36 ± 033.02 784.05 ± 056.96 755.58 ± 116.24 688.44 ± 130.59 726.61

Meta-world

Button-Press
PEBBLE 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 099.8 ± 0.4 99.95
MRN 100.0 ± 0.0 100.0 ± 0.0 099.6 ± 0.5 100.0 ± 0.0 99.90
RIME 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.00

Hammer
PEBBLE 37.46 ± 44.95 53.20 ± 34.20 55.40 ± 33.97 48.40 ± 40.39 48.62
MRN 67.20 ± 39.92 44.13 ± 34.86 52.20 ± 23.22 41.60 ± 33.97 51.28
RIME 56.00 ± 27.28 53.80 ± 36.17 54.80 ± 34.25 70.60 ± 38.95 58.80

Table 4. Results of different robust training methods on tasks from
Meta-world and DMControl with “mistake” teacher and error rate
as ϵ = 0.3. The result shows the mean and standard deviation of
the metric averaged over 5 runs.

Algorithm DMControl Meta-world
Walker Quadruped Button Press Hammer

PEBBLE 431 ± 157 125 ± 038 22.0 ± 13.8 08.6 ± 04.8

+ ADT 572 ± 247 295 ± 194 74.1 ± 20.9 37.6 ± 26.1

+ MAE 453 ± 295 246 ± 022 71.2 ± 31.0 17.8 ± 26.9

+ t-CE 548 ± 240 234 ± 047 36.0 ± 35.2 20.2 ± 31.4

+ LS 425 ± 172 117 ± 032 27.8 ± 21.0 04.2 ± 02.3

RIME 741 ± 139 301 ± 184 80.0 ± 27.7 58.5 ± 42.0

ness, we conduct experiments with RIME, where we either
held the feedback volume constant and increase the error
rate, or maintain the error rate while increasing the feedback
volume, as shown in Tables 5 and 6, respectively. Table 5
indicates a progressive decline in performance with rising
error rates, with a notable deterioration at an error rate of
0.3 across all four environments. Table 6 demonstrates that
increasing the feedback volume improves performance, par-
ticularly at an error rate of 0.3, where doubling the feedback
approximately doubles the performance gains. The same
analysis repeated for PEBBLE is shown in Appendix E.

Component analysis. We perform an ablation study to indi-
vidually evaluate each technique in RIME: warm start (WS),
lower bound τlower, and upper bound τupper of KL divergence.

Table 5. Results of RIME as the error rate increases with constant
amount of feedback, across 5 runs.

Environment Feedback Error rate
volume 0.1 0.2 0.3

Walker 500 909 ± 132 806 ± 162 493 ± 91

Quadruped 2000 484 ± 166 400 ± 166 117 ± 24

Button-press 10000 99.9 ± 0.3 92.2 ± 15.6 38.8 ± 33.8

Hammer 20000 46.5 ± 43.9 41.2 ± 48.0 1.8 ± 3.1

Table 6. Results of RIME as the feedback volume increases with
constant error rate, across 5 runs. N refers to the minimal feedback
volume for each environment shown in Table 1.

Domain Environment Error rate Feedback volume
N 2N

DMControl
Walker 0.2 806 ± 162 894 ± 80

0.3 493 ± 91 741 ± 139

Quadruped 0.2 400 ± 166 477 ± 152

0.3 117 ± 24 301 ± 184

Meta-world Button-press 0.2 92.2 ± 15.6 93.4 ± 13.6

0.3 38.8 ± 33.8 80.0 ± 27.7

We present results in Table 7 in which we compare the per-
formance of removing each component from RIME. We
observe that warm start is crucial for robustness when the
number of feedback is quite limited (i.e.,on Walker-walk).
This is because the limited samples restrict the capability
of the reward model, leading to more rounds of queries to
cross the transition gap. Moreover, identifying whether the
sample is corrupted or not is challenging for the discrimi-
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nator initially due to the limited training data, underscoring
the need for well-initialized reward models.

The lower bound τlower for filtering trustworthy samples is
important in high error rate (ϵ = 0.3 on Walker-walk and
Button-press) and adequate feedback (on Button-press) sit-
uations. The upper bound τupper for flipping labels always
brings some improvements in our ablation experiments. The
full algorithm outperforms every other combination in most
tasks. Additionally, the results show that although the con-
tribution of warm start and denoising discriminator vary in
different environments with low-level noise, they are both ef-
fective and their combination proves essential for the overall
success of RIME in environments with high-level noise.

Table 7. Ablation study of components in RIME on Walker and
Button-press with different error rates, across 5 runs.

Component Walker Button Press
WS τlower τupper ϵ = 0.1 ϵ = 0.3 ϵ = 0.1 ϵ = 0.3
✗ ✗ ✗ 749 ± 123 431 ± 157 93.1 ± 10.6 22.0 ± 13.8

✓ ✗ ✗ 821 ± 093 483 ± 144 92.7 ± 11.8 25.8 ± 16.2

✗ ✓ ✓ 688 ± 148 457 ± 190 97.2 ± 04.6 64.7 ± 26.5

✓ ✗ ✓ 886 ± 070 492 ± 188 89.8 ± 11.5 35.1 ± 24.1

✓ ✓ ✗ 842 ± 107 693 ± 167 96.9 ± 04.0 51.4 ± 30.0

✓ ✓ ✓ 909 ± 132 741 ± 139 99.9 ± 00.3 80.0 ± 27.7

6. Conclusion
In this paper, we present RIME, a robust algorithm for
preference-based reinforcement learning (PbRL) designed
for effective reward learning from noisy preferences. Unlike
previous research which primarily aims to enhance feed-
back efficiency, RIME focuses on improving robustness by
employing a sample selection-based discriminator to dy-
namically denoise preferences. To reduce accumulated error
due to incorrect selection, we utilize a warm-start method
for the reward model, enhancing the initial capability of
the denoising discriminator. The warm-start approach also
facilitates a seamless transition from pre-training to online
training. Our experiments show that RIME substantially
boosts the robustness of the state-of-the-art PbRL method
across a wide range of complex robotic manipulation and
locomotion tasks. Ablation studies further demonstrate that
the warm-start approach is crucial for both robustness and
feedback efficiency. We believe that RIME has the potential
to broaden the applicability of PbRL by leveraging prefer-
ences from non-expert users or crowd-sourcing platforms.

Limitations. The intrinsic challenge of PbRL with noisy
preferences is the trade-off between sample-efficiency and
robustness. As shown in Table 1, 5, and 6, RIME still needs
to increase the amount of feedback in total to perform rea-
sonably as the error rate increases. Therefore, exploring
how to achieve better trade-offs is an interesting future di-
rection. Another limitation is that RIME introduces several

hyperparameters in the denoising discriminator, resulting
in extra tuning efforts for optimal performance. Moreover,
the divergence between the noise in actual human prefer-
ences and the noise models proposed by BPref deserves
further investigation. While attaining high performance
across multiple simulated teachers suggests a likelihood of
good performance under real human teachers, it remains
imperative to investigate simulated noise models that more
closely align with the characteristics of real-world human
preference noise.

Impact Statement
Compared to natural language processing, control tasks
typically demand higher-quality human feedback (Kim et al.,
2022). Our work reduces the difficulty of annotating human
preferences for control tasks, allowing for the presence of
noise in preferences and thereby alleviating the requirement
of domain knowledge for annotators. This enables human
preferences for control tasks to be sourced from crowd-
sourcing platforms or ordinary users, potentially expanding
the application scope of PbRL.
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A. RIME Algorithm Details
In this section, we provide the full procedure for RIME based on the backbone PbRL algorithm, PEBBLE (Lee et al., 2021b),
in Algorithm 1.

Algorithm 1 RIME

1: Initialize policy πϕ, Q-network Qθ and reward model r̂ψ
2: Initialize replay buffer B ← ∅
3: for each pre-training step t do ▷ UNSUPERVISED PRE-TRAINING
4: Collect st+1 by taking at ∼ πϕ(at|st)
5: Compute normalized intrinsic reward rint

norm,t ← rint
norm(st) as in Equation (9)

6: Store transitions B ← B ∪
{
(st,at, st+1, r

int
norm,t)

}
7: for each gradient step do
8: Sample minibatch

{
(sj ,aj , sj+1, r

int
norm,j)

}B
j=1
∼ B

9: Optimize policy and Q-network with respect to ϕ and θ using SAC
10: Update reward model r̂ψ according to Equation (10) ▷ WARM START
11: end for
12: end for
13: Initialize the maximum KL divergence value ρ =∞
14: Initialize a dataset of noisy preferences Dnoisy ← ∅
15: for each training step t do ▷ ONLINE TRAINING
16: if step to query preferences then ▷ ROBUST REWARD LEARNING

17: Generate queries from replay buffer {(σ0
i , σ

1
i )}

Nquery
i=1 ∼ B and corresponding human feedback {ỹi}

Nquery
i=1

18: Store preferences Dnoisy ← Dnoisy ∪ {(σ0
i , σ

1
i , ỹi)}

Nquery
i=1

19: Compute lower bound τlower according to Equation (5)
20: Filter trustworthy samples Dt using lower bound τlower as in Equation (6)
21: Flip labels using upper bound τupper to obtain dataset Df as in Equation (7)
22: Update reward model r̂ψ with samples from Dt ∪ Df according to Equation (8)
23: Relabel entire replay buffer B using r̂ψ
24: Update parameter ρ with the maximum KL divergence between predicted and annotated labels in datasetDt∪Df
25: end if
26: Collect st+1 by taking at ∼ πϕ(at|st)
27: Store transitions B ← B ∪ {(st,at, st+1, r̂ψ(st,at))}
28: for each gradient step do
29: Sample minibatch from replay buffer {(sj ,aj , sj+1, r̂ψ(sj ,aj)}Bj=1 ∼ B
30: Optimize policy and Q-network with respect to ϕ and θ using SAC
31: end for
32: end for

B. Effects of biased reward model
Previous work empirically showed the detrimental impact of noisy preference on the reward model (Lee et al., 2021a). To
further demonstrate the effects of a biased reward model, we introduce the following theorem and give the proof as follows.

Assumption B.1 (Fitting error of reward model). Post the phase of reward learning, the fitting error between the learned
reward model r̂ψ and the ground-truth reward function r∗ within the state-action distribution encountered by policy π is
upper-bounded by a value δ:

E
(s,a)∼ρπ

|r̂ψ(s,a)− r∗(s,a)| ≤ δ (11)

Theorem B.2 (Upper bound of Q-function error). Consider a Markov Decision Process characterized by the state transition
function P , ground-truth reward function r∗, and discount factor γ. Let Qπ denote the Q-function for policy π with respect
to the learned reward model r̂ψ . Then the error between Qπ and the optimal Q-function Q∗ is upper-bounded by the fitting
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RIME: Robust Preference-based Reinforcement Learning with Noisy Preferences

error δ of the reward model:

E
(s,a)∼ρπ

|Qπ(s,a)−Q∗(s,a)| ≤ δ

1− γδ
(12)

Proof.

E
(s,a)∼ρπ

|Qπ(s,a)−Q∗(s,a)| (13)

= E
(s,a)∼ρπ

∣∣∣∣∣r̂ψ(s,a) + γ
∑
s′

P (s′|s,a)
∑
a′

π(a′|s′)Qπ(s′,a′)− r∗(s,a)− γ
∑
s′

P (s′|s,a)max
a′

Q∗(s′,a′)

∣∣∣∣∣ (14)

≤ E
(s,a)∼ρπ

|r̂ψ(s,a)− r∗(s,a)|+ γ E
(s,a)∼ρπ

∑
s′

P (s′|s,a)

∣∣∣∣∣∑
a′

π(a′|s′)Qπ(s′,a′)−max
a′

Q∗(s′,a′)

∣∣∣∣∣ (15)

=δ + γ E
(s,a)∼ρπ

∑
s′

P (s′|s,a)

∣∣∣∣∣∑
a′

π(a′|s′)(Qπ(s′,a′)−max
a′′

Q∗(s′,a′′))

∣∣∣∣∣ (16)

≤δ + γ E
(s,a)∼ρπ

∑
s′

P (s′|s,a)
∑
a′

π(a′|s′)(max
a′′

Q∗(s′,a′′)−Qπ(s′,a′)) (17)

≤δ + γ E
(s,a)∼ρπ

∑
s′

P (s′|s,a)
∑
a′

π(a′|s′)(Q∗(s′,a′)−Qπ(s′,a′)) (18)

=δ + γ E
(s′,a′)∼ρπ

|Qπ(s′,a′)−Q∗(s′,a′)| (19)

≤δ + γδ2 + γ2δ3 + . . . (20)

≤ δ

1− γδ
(21)

C. Proof for Theorem 4.1
Theorem (4.1). Consider a preference dataset {(σ0

i , σ
1
i , ỹi)}ni=1, where ỹi is the annotated label for the segment pair

(σ0
i , σ

1
i ) with the ground truth label yi. Let xi denote the tuple (σ0

i , σ
1
i ). Assume the cross-entropy loss LCE for clean data

(whose ỹi = yi) within this distribution is bounded by ρ. Then, the KL divergence between the predicted preference Pψ(x)
and the annotated label ỹ(x) for a corrupted sample x is lower-bounded as follows:

DKL (ỹ(x)∥Pψ(x)) ≥ − ln ρ+
ρ

2
+O(ρ2) (22)

Proof. For a clean sample (σ0, σ1) with annotated label ỹ and ground-truth label y, we have ỹ = y. Denote the predicted
label as Pψ. In PbRL, the value of y(0) can take one of three forms: y(0) ∈ {0, 0.5, 1}. We categorize and discuss these
situations as follows:

1. For y(0) = 0:

Because the cross-entropy loss LCE for clean data is bounded by ρ, we can express:

LCE(Pψ, ỹ) = − ln(1− Pψ(0)) ≤ ρ (23)

From the above, we have:

Pψ(0) ≤ 1− exp (−ρ) (24)

Then if the label is corrupted, denoted by ỹc (i.e.,ỹc = (1, 0) in this case), the KL divergence between the predicted label
and the corrupted label is formulated as follows:

DKL(ỹc∥Pψ) = − lnPψ(0) ≥ − ln(1− exp(−ρ)) (25)
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2. For y(0) = 1:

The discussion parallels the y(0) = 0 case. Hence, the KL divergence between the predicted label and the corrupted label
also maintains a lower bound:

DKL(ỹc∥Pψ) ≥ − ln(1− exp(−ρ)) (26)

3. For y(0) = 0.5:

Although this case is not under the mistake model settings (Lee et al., 2021a), the lower bound still holds in this case.
Due to the bounded cross-entropy loss LCE for clean data, we have:

LCE(Pψ, ỹ) = −
1

2
lnPψ(0)−

1

2
ln(1− Pψ(0)) ≤ ρ (27)

Solving the inequality (27), we can get:

Pψ(0)
2 − Pψ(0) + exp(−2ρ) ≤ 0 (28)

When ρ ≥ ln 2, the inequality (28) has a solution:

1− p ≤ Pψ(0) ≤ p (29)

where p = 1+
√

1−4 exp(−2ρ)

2 .

Then if the label is corrupted, i.e.,ỹc ∈ {(0, 1), (1, 0)}, the KL divergence between the predicted label and the corrupted
label is formulated as follows:

DKL(ỹc∥Pψ) ≥min(− lnPψ(0),− ln(1− Pψ(0))) = − ln p (30)

Construct an equation about ρ:

f(ρ) = p− 1 + exp(−ρ) =
1 +

√
1− 4 exp(−2ρ)

2
− 1 + exp(−ρ) (31)

where ρ ≥ ln 2.

Denote z = exp(−ρ), Equation (31) can be simplified as follows:

f(z) = z +

√
1− 4z2

2
− 1

2
(32)

where 0 < z ≤ 1
2 .

Derivative of function f with respect to z, we have:

f
′
(z) = 1− 2

√
1

1
z2 − 4

(33)

Function f
′
(z) decreases monotonically when z ∈ (0, 0.5], is greater than 0 on the interval (0,

√
2
4 ), and is less than 0 on

the interval (
√
2
4 , 0.5]. Therefore, we have:

f(z) ≤ max(f(0), f(
1

2
)) = 0 (34)

Thus, p ≤ 1− exp(−ρ) when ρ ≥ ln 2. In turn, we have:

DKL(ỹc∥Pψ) = − ln p ≥ − ln(1− exp(−ρ)) (35)

To sum up, inequality (36) holds for the corrupted samples:

DKL(ỹc∥Pψ) ≥ − ln(1− exp(−ρ)) (36)

Perform Taylor expansion of the lower bound at ρ = 0, we can get:

DKL(ỹc∥Pψ) ≥ − ln(1− exp(−ρ)) = − ln ρ+
ρ

2
+O(ρ2) (37)
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D. Experimental Details
D.1. Tasks

The robotic manipulation tasks from Meta-world (Yu et al., 2020) and locomotion tasks from DMControl (Tassa et al., 2018;
2020) used in our experiments are shown in Figure 6.

(a) Button Press (b) Sweep Into (c) Hammer

(d) Walker (e) Cheetah (f) Quadruped

Figure 6. Six tasks from Meta-world (a-c) and DMControl (d-f).

Meta-world Tasks:

◦ Button Press: An agent controls a robotic arm to press a button. The button’s initial position is randomized.

◦ Sweep Into: An agent controls a robotic arm to sweep a ball into a hole. The ball’s starting position is randomized.

◦ Hammer: An agent controls a robotic arm to hammer a screw into a wall. The initial positions of both the hammer and
the screw are randomized.

DMControl Tasks:

◦ Walker: A planar walker is trained to control its body and walk on the ground.

◦ Cheetah: A planar biped is trained to control its body and run on the ground.

◦ Quadruped: A four-legged ant is trained to control its body and limbs, enabling it to crawl on the ground.

D.2. Implementation Details

For the implementation of baselines, we use their corresponding publicly released repositories that are shown in Table 8.
SAC serves as a performance upper bound because it uses a ground-truth reward function which is unavailable in PbRL
settings for training. The detailed hyperparameters of SAC are shown in Table 9. PEBBLE’s settings remain consistent
with its original implementation, and the specifics are detailed in Table 10. For SURF, RUNE, MRN, and RIME, most
hyperparameters are the same as those of PEBBLE and other hyperparameters are detailed in Table 11, 12, 13, and 14,
respectively. The total amount of feedback and feedback amount per session in each experimental condition are detailed in
Table 1. The reward model comprises an ensemble of three MLPs. Each MLP consists of three layers with 256 hidden units,
and the output of the reward model is constrained using the tanh activation function.
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Table 8. Source codes of baselines.
Algorithm Url

SAC, PEBBLE https://github.com/rll-research/BPref
SURF https://github.com/alinlab/SURF
RUNE https://github.com/rll-research/rune
MRN https://github.com/RyanLiu112/MRN

Table 9. Hyperparameters of SAC.
Hyperparameter Value Hyperparameter Value

Number of layers 2 (DMControl), 3 (Meta-world) Initial temperature 0.1
Hidden units per each layer 1024 (DMControl), 256 (Meta-world) Optimizer Adam
Learning rate 0.0005 (Walker), 0.001 (Cheetah) Critic target update freq 2

0.0001 (Quadruped), 0.0003 (Meta-world) Critic EMA τ 0.005
Batch Size 1024 (DMControl), 512 (Meta-world) (β1, β2) (0.9, 0.999)
Steps of unsupervised pre-training 9000 Discount γ 0.99

Table 10. Hyperparameters of PEBBLE.
Hyperparameter Value

Segment Length 50
Learning rate 0.0005 (Walker, Cheetah), 0.0001 (Quadruped), 0.0003 (Meta-world)
Frequency of feedback 20000 (Walker, Cheetah), 30000 (Quadruped), 5000 (Meta-world)
Number of reward functions 3

Table 11. Hyperparameters of SURF.
Hyperparameter Value

Unlabeled batch ratio µ 4
Threshold τ 0.999 (Cheetah, Sweep Into), 0.99 (others)
Loss weight λ 1
Min/Max length of cropped segment 45/55
Segment length before cropping 60

Table 12. Hyperparameters of RUNE.
Hyperparameter Value

Initial weight of intrinsic reward β0 0.05
Decay rate ρ* 0.001 (Walker), 0.0001 (Cheetah, Quadruped, Button Press)

0.00001 (Sweep Into, Hammer)
*: Following the instruction of Liang et al. (2021), we carefully tune the hyperparameter ρ in a range of ρ ∈
{0.001, 0.0001, 0.00001} and report the best value for each environment.

Table 13. Hyperparameters of MRN.
Hyperparameter Value

Bi-level updating frequency N 5000 (Cheetah, Hammer, Button Press), 1000 (Walker)
3000 (Quadruped), 10000 (Sweep Into)

Table 14. Hyperparameters of RIME.
Hyperparameter Value

Coefficient α in the lower bound τlower 0.5
Minimum weight βmin 1
Maximum weight βmax 3
Decay rate k 1/30 (DMControl), 1/300 (Meta-world)
Upper bound τupper 3 ln(10)
δ in Equation (9) 1× 10−8

Steps of unsupervised pre-training 2000 (Cheetah), 9000 (others)
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D.3. Details of scripted teachers

For a pair of trajectory segments (σ0, σ1) with lengthH , where σi = {(si1,ai1), . . . , (siH ,aiH)}, (i = 0, 1). The ground-truth
reward function from the environment is r(s,a). Then scripted teachers are defined as follows (Lee et al., 2021a):

Oracle: Oracle teacher provides ground-truth preferences. It prefers the segment with larger cumulative ground-truth
rewards. For example, if

∑H
i=1 r(s

0
i ,a

0
i ) >

∑H
i=1 r(s

1
i ,a

1
i ), then it returns the label as (1, 0).

Equal: Equal teacher gives equal preference (0.5, 0.5) if the difference between the cumulative rewards of two segments is
small. In particular, if |

∑H
t=1 r(s

1
t ,a

1
t )−

∑H
t=1 r(s

0
t ,a

0
t )| < δ, then it return the label (0.5, 0.5). δ = H

T Ravgϵadapt, where T
is the episode length, Ravg is the average returns of current policy, ϵadapt is a hyperparameter and is set to 0.1 in experiments,
following the setting in Lee et al. (2021a).

Skip: Skip teacher skips the query if the cumulative rewards of segments are small. In particular, if
maxi∈{0,1}

∑H
t=1 r(s

i
t,a

i
t) < δ, then it will skip this query.

Myopic: Myopic teacher focuses more on the behavior at the end of segments. It prefers the segment with larger discounted
cumulative ground-truth rewards. For example, if

∑H
i=1 γ

H−tr(s0i ,a
0
i ) >

∑H
i=1 γ

H−tr(s1i ,a
1
i ), then it returns the label

(1, 0).

Mistake: Mistake teacher flips the ground-truth preference labels with a probability of ϵ.

D.4. Details of experiments with human teachers

Human experiments adopt an online paradigm consistent with PEBBLE’s pipeline, where agent training alternates with
reward model training. When it is the timestep to collect preferences (post-agent training and pre-reward training), the
training program generates segment pairs, saving each segment in GIF format. The program then pauses, awaiting the input
of human preferences. At this juncture, human labelers engage, reading the paired segments in GIF format and labeling their
preferences. Subsequently, this annotated data is fed into the training program for reward model training.

To ensure a fair comparison between RIME and PEBBLE, for one human labeler, we start the training programs for RIME
and PEBBLE simultaneously. When both training programs are waiting for inputting preferences, we collate all GIF pairs
from both RIME and PEBBLE and shuffle the order. Then the human labeler starts working. Therefore, from the labeler’s
perspective, he/she does not know which algorithm the currently labeled segment pair comes from and just focuses on
labeling according to his/her preference. The labeled data is then automatically directed to the respective training programs.
We conduct this experiment parallelly on each of the five labelers, thus preferences from different users do not get mixed.

In the Hopper task, the labeling process itself requires approximately 5 minutes, not accounting for waiting time. However,
due to the online annotation, labelers experience downtime while waiting for agent training and GIF pair generation.
Consequently, considering all factors, the total time commitment for labeling amounts to about 20 minutes per annotator.

E. Additional Experiment Results
Effects of hyperparameters of RIME. We investigate how the hyperparameters of RIME affect the performance under
noisy feedback settings. In Figure 7 we plot the learning curves of RIME with a different set of hyperparameters: (a)
coefficient α in the lower bound τlower: α ∈ {0.3, 0.4, 0.5, 0.6}, (b) maximum value of βt: βmax ∈ {1, 3, 5, 10}, (c) decay
rate k ∈ {0.01, 1/30, 0.06, 0.1}, and (d) upper bound of KL divergence τupper ∈ {2 ln(10), 3 ln(10), 4 ln(10)}.

For the coefficient α in the lower bound τlower, we find the theoretical value α = 0.5 performs the best. The maximum
weight βmax and decay rate k control the weight of uncertainty term in the lower bound τlower: βt = max(βmin, βmax − kt).
The combination of βmax = 3 and k = 1/30 also performs optimally. Due to the quite limited feedback amount (1000
feedback) and training epochs for the reward model (around 150 ∼ 200 epochs on Walker-walk), RIME is sensitive to the
weight of uncertainty term. If one tries to increase βmax to add more tolerance for trustworthy samples in early-stage, we
recommend increasing the decay rate k simultaneously so that the value of βt decays to its minimum within about 1/3
to 1/2 of the total epochs. For the upper bound τupper, although we use 3 ln(10) for balanced performance on DMControl
tasks, individually fine-tuning τupper can further improve the performance of RIME on the corresponding task, such as using
τupper = 4 ln(10) for Walker-walk.
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Figure 7. Hyperparameter analysis on Walker-walk using 1000 feedback with ϵ = 0.3. The results show the mean and standard deviation
averaged over five runs.
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Figure 8. Uncertainty term analysis on Walker-walk using 1000 feed-
back with error rate ϵ = 0.3, across ten runs.

Effects of different uncertainty terms in the lower
bound. In RIME, we use an auxiliary uncertainty term
τunc in the lower bound τlower to accommodate tolerance
during the early training stages and in cases of distribu-
tion shifts. The standard deviation of the KL divergence,
denoted as the KL metric in this section, is employed
to discern these cases. Here, we compare this with two
other metrics: the disagreement metric and a combination
of both, termed as KL + disagreement. The disagree-
ment metric uses the standard deviation of Pψ[σ0 ≻ σ1]
across the ensemble of reward models (denoted as sP )
to discern cases of distribution shifts: τunc = γt · sP .
Our intuition is that the predictions of the model for
OOD data typically vary greatly. Notably, this metric
induces sample-level, rather than buffer-level, thresholds,
potentially offering more nuanced threshold control. The
combined metric, KL + disagreement, integrates both as
τunc = βt · sKL + γt · sP .

For reference, we also include a group devoid of any
uncertainty term, termed the “None” group. As shown in
Figure 8, the KL metric outperforms the other approaches
on Walker-walk with an error rate of ϵ = 0.3. This might be because the disagreement metric fluctuates violently at every
query time, often leading to excessive trust in new data, which hinders the stabilization of the lower bound.

Comparison with fixed lower bound. We conducted experiments to compare fixed lower bound with dynamic lower bound
(RIME) and presented the results in Table 15. Notice that the convergence value of τlower in RIME are 0.972 and 0.711 for
Walker and Button-press, respectively. Table 15 indicates that the dynamic lower bound employed by RIME outperforms
the fixed lower bound method substantially. This superiority stems from RIME’s ability to adapt its lower bound value
according to the situation during training. By contrast, employing a fixed lower bound might exacerbate incorrect selections
either in the early or late phase of training, depending on whether the lower bound is small or large respectively. The issue of
incorrect selection will in turn lead to cumulative errors and compromise the effectiveness of selection-based robust training
methods.

Explore the error rate limits of RIME. To understand the boundaries of RIME, we conduct supplementary experiments in
both the Walker-walk and Cheetah-run environments, varying the error rates ϵ within the range {35%, 40%, 45%, 50%},
across 5 runs. The results, presented in Table 16, reveal that RIME failed with 45% and 40% noisy data in the Walker-walk
and Cheetah-run environments, respectively. Interestingly, even with the feedback amount increased to ten times the
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Table 15. Ablation study of the lower bound on Walker and Button-press over 5 runs.
Method Value of τlower Walker (ϵ = 0.3) Button-press (ϵ = 0.3)

0.5 98 ± 92 36.8 ± 45.4

Fixed 0.7 179 ± 165 64.8 ± 26.4

lower 0.9 256 ± 88 58.0 ± 41.9

bound 1.1 468 ± 186 49.0 ± 37.6

1.3 325 ± 79 56.6 ± 34.0

RIME dynamic 741 ± 139 80.0 ± 27.7

Table 16. Performance of RIME with different noise levels over 5 runs.

Environment Feedback Error rate
volume 35% 40% 45% 50%

Walker
1000 646.58 497.63 164.31 /
5000 / 500.64 210.86 145.05
10000 / 554.69 312.61 217.34

Cheetah
1000 403.72 246.51 / /
5000 440.4 347.4 / /
10000 503.57 393.0 / /

minimum, it has not change the result of failure. The performance gains from increasing the amount of feedback are limited
under high error rates (ϵ ≥ 0.4).

Trade-off between sample efficiency and robustness. We repeat the same analysis that is detailed in 5.3 for PEBBLE
and present the results in Table 17 and Table 18 below. Similarly, we observe a gradual decline in PEBBLE’s performance
with rising error rates. Doubling the amount of feedback engenders a marginal enhancement to PEBBLE; however, this
improvement is negligible on Quadruped and Button-press when ϵ ≥ 0.2. Intriguingly, by comparing the 4-th column (N )
of Table 6 with the 5-th column (2N ) of Table 18, we find that RIME even outperforms PEBBLE with only half the number
of feedbacks in most cases.

Table 17. Results of PEBBLE as the error rate increases with constant amount of feedback, across 5 runs.

Environment Feedback Error rate
volume 0.1 0.2 0.3

Walker 500 749 ± 123 490 ± 252 230 ± 172

Quadruped 2000 292 ± 166 171 ± 26 125 ± 38

Button-press 10000 93.1 ± 10.6 21.6 ± 15.3 17.8 ± 25.2

Hammer 20000 36.6 ± 41.4 20.0 ± 17.8 15.7 ± 12.0

Table 18. Results of PEBBLE as the feedback volume increases with constant error rate, across 5 runs. N refers to the minimal feedback
volume for each environment shown in Table 1.

Domain Environment Error rate Feedback volume
N 2N

DMControl
Walker 0.2 490 ± 252 656 ± 158

0.3 230 ± 172 431 ± 157

Quadruped 0.2 171 ± 26 212 ± 47

0.3 125 ± 38 165 ± 35

Meta-world Button-press 0.2 21.6 ± 15.3 26.2 ± 35.7

0.3 17.8 ± 25.2 22.0 ± 13.8
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