BRASS: Budget-Aware RAW Sensor Sampling for
Edge Vision via Co-Design

Kailash Talreja* Saurabh Jha
kailashntalreja@gmail.com saurabhjha.210@gmail.com

Abstract

Most cameras read every pixel at full precision, even in areas that do not mat-
ter—wasting a lot of energy. We propose BRASS, a budget-aware RAW sensing
framework that treats sensed bits as a first-class resource. For each small patch of
a mosaic RAW image, a lightweight policy jointly learns (1) whether to read (a
mask) and (2) if read, how many ADC bits to use (mixed precision). A compact
RAW backbone then processes the resulting sparse, mixed-precision tensor directly
(no demosaicing). We train with a budget-aware objective to obtain controllable
accuracy—efficiency operating points. On Imagenette-RAW, BRASS matches the
accuracy of a small RGB baseline while using about 0.47 x the normalized sensing-
bit proxy, and it produces better-calibrated confidence scores (lower ECE). GPU
measurements on an NVIDIA A800 at batch 128 indicate higher throughput con-
sistent with reduced sensed bits; these numbers are not single-image latencies and
exclude ISP/demosaic and I/O. These results support the L2S goal of co-designing
sensors and models under explicit measurement budgets.

1 Introduction

Most camera systems follow a pipeline: read every RAW pixel, run a fixed image signal processor
(ISP), then feed a model that treats all pixels with the same precision. This can speed up computation
after capture, but it ignores what the sensor should read in the first place. As a result, effort is spent
on uninformative regions, and when resources are tight the model’s confidence can become poorly
calibrated. Prior work that learns directly from RAW often keeps fidelity uniform [1; 2; 3], and most
speed-up methods operate only on the model after capture [4; 5; 6; 7]. Sensing—inference co-design,
including event-inspired approaches, shows that what we measure can make systems much more
efficient [8; 9].

Goal: Co-design sensing and inference so the camera reads only what matters, at only the precision
it needs without requiring demosaicing or uniform precision.

BRASS: A tiny controller decides, per small RAW mosaic patch, whether to read (mask) and
bit-depth (mixed precision); a lightweight RAW model consumes this sparse, mixed-precision input
directly (no demosaicing). Training optimizes task accuracy under a sensed-bit target.

Contributions: (i) A differentiable sensing policy that learns both the mask and the bit-depth; (ii)
compact RAW backbones tailored to masked inputs; (iii) a budget-aware objective that exposes
tunable accuracy—efficiency trade-offs.

Scope and limitations: Our study is software-based. We report a sensing-bit proxy (not absolute
energy) and use A800 batch-128 GPU throughput as an indicator rather than single-image timings.
Deployment requires sensor/driver support such as region-of-interest (ROI) readout and configurable
ADC bit-depth [10; 11; 12].

* Appears in the NeurIPS 2025 Workshop on Learning to Sense (L2S), non-archival track.

2 Methodology

Overview: We split the RAW RGGB mosaic into small square patches and, for each patch, decide (i)
whether to read it and (ii) how many analog-to-digital converter (ADC) bits to use. Let H, W € N be
image height and width, and z € R *W >4 the four-plane RAW mosaic (R, G;, G,, B). We tile z into
non-overlapping pxp patches (index (4, j)) forming an H,x W, grid. A policy network 7y outputs a
binary mask M € {0, 1}#»*W» (read=1/skip=0) and a per-patch bit-depth map B € BH»*W» with
B;; € B C {4,5,6,7,8}. A sampler S constructs £ = S(z; M, B, p) by zeroing skipped patches
and quantizing read patches to B;; bits; a compact RAW backbone f, predicts labels from .

Quantization: We assume RAW values are normalized to [0, 1] and use uniform mid-tread quantiza-
tion for a patch assigned b € 15:

. z 1
a(2) = Ay - chp({Ab-‘ 70,217—1) : Ay = T

Here | -] is round-to-nearest and clip(u, a, b) = min(max(u, a), b). The sampler applies gz, (-) to
all pixels in patch (¢,) if M;;=1 and writes zeros otherwise.

Learning discrete choices: Because read/skip and bit-depth are discrete, we train with relaxations.
The mask uses a Binary-Concrete (Gumbel-Sigmoid) relaxation J\Zfij € (0,1); bit-depth uses a
softmax distribution 7;; (b), with expected bit-depth B;; = >, b7;;(b). Atinference we take hard
decisions: M;; = J%[Mij > 7] (We use 7,,, = 0.5) and B;; = argmax 7;;(b) [13; 14]. We use a
straight-through estimator so gradients pass through these choices [15].

Budget-aware objective: We optimize {6, ¢} with
L= ﬁtask(f(,ﬁ(fé)a y) +A Chis + A7 G@pv
————

task loss

where y is the label, A\, A > 0 are trade-off weights, and
1 - - _ 1
Chits penalizes expected sensed bits per patch; Cy, nudges the read fraction toward a target 7.

Reporting the budget (normalized proxy): At evaluation we report the normalized hard budget that
matches our tables/figures,

_— 1
PrOthard = 78H W E Mij Bij7
5]

which scales the per-patch average by the 8-bit full-frame baseline (set to 1.0). The same normaliza-
tion (1/8) is applied when summarizing operating points as (sb/8).

Backbones and training: We use two lightweight RAW backbones (no demosaicing): (i) patch-
embedding — biGRU [16] — mean-pooling — linear head, following mobile design guidance
[17; 18]; (ii) patch-embedding — shallow CNN mixer — adaptive-pooling — linear head. We jointly
optimize {6, ¢} with AdamW [19]; mask/bit temperatures are annealed; ONNX exports enable
CPU/GPU timing [20]. Optional conditional compute can be added [21].

3 Experiments

Data and preprocessing: We use Imagenette-RAW at 160 x 160 pixels [22]. Each image is
represented as an RGGB mosaic (four planes: R, Gy, Go, B) and normalized to [0, 1]. When starting
from sRGB images, we convert to realistic RAW using the “unprocessing” procedure of Brooks
et al. [1]. We follow a standard train/validation split. Unless noted, batch size is 128 and all timing
numbers are measured with CUDA synchronization enabled.

Method Backbone Read s Bitsb Proxy (sb/8) Val Top-1(%) Time' (ms) Speedup
RGB small CNN (RGB) 1.00 8.00 1.000 62.3 4.999 1.00x
Uniform RAW (s=0.50, b=6) 0.50 6.00 0.375 41.6 1.313 3.81x
Uniform RAW (s=0.75,b=6) 0.75 6.00 0.562 46.4 1.293 3.87x
BRASS RAW CNN 0.63 5.95 0.466 62.7 0.875 5.71x
BRASS RAW biGRU 0.62 6.00 0.468 52.6 — —

Table 1: Fairness table: Best validation accuracy with corresponding read fraction s and bit-depth
b. Proxy is normalized to a full-frame 8-bit read (= 1.0). TGPU throughput indicator: batch=128,
forward-only on an NVIDIA A800; excludes ISP/demosaic (RGB) and host I/O; policy cost included.

Accuracy vs Relative Enert . .
y’ v RGB Ablation: Accuracy vs Target Sparsity
brass_cnn_t0.5_lam0.0801 Inference Latency

o
o
=)

0.50

Latency (ms)

x

Validation Top-1
Validation Top-1
o
0
o

=]
w
=)

Lod 2 P ey
0.40 Oobtvtv(;\“?)v:v‘;v:v‘;ﬁ ":°°1°°3°°:D°\e° & 1£0.3
IPCACT SN S SR SR
SSPVEFISVEFS 0

X X

o>

0.3 0.4 0.5 0.6 0.7
Target Sparsity T

0.2 0.4 0.

6 0.8 1.0 &
Relative Energy Proxy (RGB = 1.0) .

@,
@
&

Figure 1: Summary of results. (a) Accuracy vs. normalized sensing-bit proxy: BRASS reaches
RGB-level accuracy at about 0.47x the proxy. (b) GPU throughput indicator on an NVIDIA A800
(batch=128; forward-only; CUDA-synchronized; ISP/demosaic for RGB excluded; policy cost
included; host I/O excluded.). (c) Accuracy remains stable as we vary the target sparsity 7 in the loss.

3.1 Setup, baselines, and metrics

Backbones. Two compact RAW backbones: (i) patch-embed + biGRU, and (ii) patch-embed +
shallow CNN mixer (no demosaicing).

Baselines. (a) RGB: a small convolutional network trained on demosaiced RGB; (b) Uniform: RAW
patches sampled uniformly with fixed sparsity s and fixed bit-depth b (see Fig. 1a for matched-proxy
comparisons).

Metrics. Val Top-1 accuracy; Normalized sensing-bit proxy (sb/8) (below; x-axis in Fig. la); GPU
throughput indicator on an NVIDIA A800 at batch size 128 (forward-only, CUDA-synchronized;
Fig. 1b); Calibration via Expected Calibration Error (ECE; 15 bins) [23; 24] (Fig. 2a).

Normalized sensing-bit proxy: We summarize sensed work as the normalized proxy
—— 1
Proxy = vavp ; M;; Bij,

the per-patch average of “whether we read” times “how many ADC bits we used,” scaled by the 8-bit
full-frame baseline (set to 1.0). This correlates with readout/quantization effort, but it is not a full
energy model (it omits analog front-end and row/column overheads).

Main trade-off and calibration: Figure 1a shows the key trade-off: BRASS matches (or slightly
exceeds) the RGB baseline in accuracy while using roughly half the normalized sensing-bit proxy.
The Uniform baseline at the same proxy lags behind, highlighting the benefit of learning both where
to read and how many bits to use. For calibration (Fig. 2a) we compute ECE with 15 equal-width bins
and do not apply temperature scaling; BRASS consistently yields lower ECE than the RGB baseline.

Throughput (indicator): We measure synchronized forward-pass times on an NVIDIA A800 with
batch size 128. As shown in Fig. 1b, BRASS achieves substantially higher GPU throughput than the
RGB model, consistent with reading fewer bits and running lighter computation on masked RAW.
These are not single-image latencies; measuring on-device/on-sensor timings is left for future work.

brass_t0.3_lam0.0001
RGB Baseline brass cnn t0.5 1lam0.0001 Policy Mask (1 = sense) Per-Patch Bit-Depth
Reliability Diagram o

-

Figure 2: Calibration and policy behavior. (a) Reliability diagrams (ECE with 15 bins; no post-hoc
temperature scaling) show lower ECE for BRASS than the RGB baseline. RGB 0.206, BRASS-CNN
0.054 (b) Visualization of the learned policy: reads concentrate on informative regions, with higher
bit-depth near edges.

Robustness: We evaluate RAW-aware corruptions (shot/read noise, RAW-domain blur, exposure
darkening). At matched proxy budgets, BRASS retains a higher fraction of clean accuracy than
uniform sampling. Full per-corruption results are provided in robustRAW_* . csv. These tests avoid
RGB-only artifacts (e.g., JPEG-on-RAW) and better reflect on-sensor perturbations.

Policy behavior: Figure 2b visualizes masks and bit-depth maps. The policy focuses sensing on
textured/high-gradient regions and increases precision near edges. Failure-case grids (supplement)
show remaining confusions are often tied to heavy downweighting of large smooth regions—the
intended budget trade-off.

Ablations and stability: We sweep target sparsity 7, budget weight A, and backbone family. Across
settings (Fig. 1c for the 7 sweep), BRASS dominates uniform sampling at the same proxy and
matches RGB accuracy at substantially lower proxy. A small 3-seed study (supplement) shows low
variance and consistent ranking.

4 Threats to validity

* Proxy vs. energy: The normalized sensing-bit proxy correlates with readout/quantization
work but omits analog front-end and row/column overheads.

e Hardware realism: Per-patch ADC control and ROI readout are emulated; commercial
parts expose ROI/windowing and selectable ADC precision—typically at frame/global
scope—via registers [12; 25].

» Task/domain scope: Results are on Imagenette-RAW classification; extensions to other
RAW domains and tasks (detection/segmentation) are future work.

* Throughput measurement: A800 batch-128 throughput is an indicator, not single-image
latency; on-device/on-sensor timings will differ.

5 Conclusion

BRASS treats sensed bits as a first-class, controllable budget. A tiny controller jointly decides where
to read and with how many ADC bits on mosaic RAW, and a compact RAW backbone consumes the
resulting sparse, mixed-precision tensor end-to-end. On Imagenette-RAW, BRASS matches a small
RGB baseline at roughly ~ 0.47 x the normalized proxy while delivering lower ECE and higher GPU
throughput (measured as a synchronized, batch-128 forward-pass indicator). At matched budgets it
also retains competitive accuracy under RAW-aware corruptions.

Limitations and Future Work: Our proxy is not a full energy model and our timings are throughput
indicators; deployment requires ROI readout and per-region ADC control. Future work includes
hardware-in-the-loop evaluation with sensor/driver support, single-image/on-device latency, richer
RAW noise/exposure models, adaptive budgets at test time, broader tasks (detection/segmentation)
and datasets, coupling with learned ISPs and optical co-design, and establishing standardized “sensed-
work” metrics.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Tim Brooks, Ben Mildenhall, Tianfan Xue, Jiawen Chen, Dillon Sharlet, and
Jonathan T. Barron. Unprocessing images for learned raw denoising. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2019. URL https://openaccess.thecvf.com/content_CVPR_2019/papers/Brooks_
Unprocessing_Images_for_Learned_Raw_Denoising CVPR_2019_paper.pdf.

Eli Schwartz, Raja Giryes, and Alex M. Bronstein. Deepisp: Toward learning an end-to-end
image processing pipeline. IEEE Transactions on Image Processing, 27(10):4935-4949, 2018.
doi: 10.1109/T1P.2018.2837019. URL https://doi.org/10.1109/TIP.2018.2837019.

Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun. Learning to see in the dark. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018. doi:
10.1109/CVPR.2018.00347. URL https://openaccess.thecvf.com/content_cvpr_
2018/papers/Chen_Learning_to_See_CVPR_2018_paper.pdf.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neu-
ral networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2704-2713,
2018. URL https://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_
Quantization_and_Training_CVPR_2018_paper.html.

Moran Shkolnik, Brian Chmiel, Ron Banner, Gil Shomron, Yury Nahshan, Alex M. Bronstein,
and Uri Weiser. Robust quantization: One model to rule them all. In Advances in Neural
Information Processing Systems (NeurIPS), 2020. URL https://papers.nips.cc/paper/
2020/hash/3948ead63a9f2944218de038d8934305-Abstract .html.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynam-
icvit: Efficient vision transformers with dynamic token sparsification. In Advances in Neural
Information Processing Systems (NeurIPS), 2021. URL https://proceedings.neurips.
cc/paper/2021/hash/747d3443e319a22747fbb873e8b2f9f2-Abstract .html.

Daniel Bolya and Judy Hoffman. Token merging: Your vit but faster. arXiv preprint
arXiv:2210.09461,2023. URL https://arxiv.org/abs/2210.09461.

Felix Heide, James Gregson, Matthias B. Hullin, and Wolfgang Heidrich. Deep optics: Learning
deformable optical elements for task-specific imaging. In ACM SIGGRAPH 2016, 2016. doi:
10.1145/2897824.2925895. URL https://doi.org/10.1145/2897824.2925895.

Guillermo Gallego, Tobi Delbriick, Garrick Orchard, Chiara Bartolozzi, Brian Taba, Andrea
Censi, Stefan Leutenegger, Andrew J. Davison, Jorg Conradt, Kostas Daniilidis, and Davide
Scaramuzza. Event-based vision: A survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 44(1):154-180, 2022. doi: 10.1109/TPAMI.2020.3008413. URL https:
//doi.org/10.1109/TPAMI.2020.3008413.

Mohit Jain, Nitin Choubey, Parth Bhatia, Sudhir Raut, Aditya Bohara, and Abhilasha Kasana.
A review of recent advances in high-dynamic-range CMOS image sensors. Imaging, 4(1):8,
2025. URL https://www.mdpi.com/2674-0729/4/1/8.

Sony Semiconductor Solutions Corporation. Sony develops a stacked
CMOS image sensor technology with 2-layer transistor pixel, 2019. URL
https://www.sony-semicon.com/en/technology/technology/library/

stacked-cmos-image-sensor-2-layer-transistor-pixel.html. Press release;

describes on-sensor functions including smart ROI / windowing.

onsemi. Python 2000 and python 5000: High-performance global shutter CMOS image sensors,
2017. URL https://www.onsemi.com/pdf/datasheet/python-2000-d.pdf. Datasheet;
documents random programmable ROI readout and selectable ADC resolution (8/10-bit).

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
In International Conference on Learning Representations (ICLR),2017. URL https://arxiv.
org/abs/1611.01144.

https://openaccess.thecvf.com/content_CVPR_2019/papers/Brooks_Unprocessing_Images_for_Learned_Raw_Denoising_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Brooks_Unprocessing_Images_for_Learned_Raw_Denoising_CVPR_2019_paper.pdf
https://doi.org/10.1109/TIP.2018.2837019
https://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Learning_to_See_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Learning_to_See_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://papers.nips.cc/paper/2020/hash/3948ead63a9f2944218de038d8934305-Abstract.html
https://papers.nips.cc/paper/2020/hash/3948ead63a9f2944218de038d8934305-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/747d3443e319a22747fbb873e8b2f9f2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/747d3443e319a22747fbb873e8b2f9f2-Abstract.html
https://arxiv.org/abs/2210.09461
https://doi.org/10.1145/2897824.2925895
https://doi.org/10.1109/TPAMI.2020.3008413
https://doi.org/10.1109/TPAMI.2020.3008413
https://www.mdpi.com/2674-0729/4/1/8
https://www.sony-semicon.com/en/technology/technology/library/stacked-cmos-image-sensor-2-layer-transistor-pixel.html
https://www.sony-semicon.com/en/technology/technology/library/stacked-cmos-image-sensor-2-layer-transistor-pixel.html
https://www.onsemi.com/pdf/datasheet/python-2000-d.pdf
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1611.01144

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous re-
laxation of discrete random variables. In International Conference on Learning Representations
(ICLR),2017. URL https://arxiv.org/abs/1611.00712.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1305.2982, 2013.
URL https://arxiv.org/abs/1305.2982.

Kyunghyun Cho, Bart van Merriénboer, Dzmitry Bahdanau, and Yoshua Bengio. Learning
phrase representations using RNN encoder—decoder for statistical machine translation. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1724—1734, 2014. URL https://aclanthology.org/D14-1179/.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861,2017. URL https:
//arxiv.org/abs/1704.04861.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines
for efficient cnn architecture design. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 122-138, 2018. doi: 10.1007/978-3-030-01264-9_8. URL https:
//arxiv.org/abs/1807.11164.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations (ICLR), 2019. URL https://openreview.net/
forum?id=Bkg6RiCqY7.

Microsoft. ONNX Runtime: High-performance machine learning inference and training, 2019.
URL https://onnxruntime.ai/.

Brandon Yang, Gabriel Bender, Quoc V. Le, and Jiquan Ngiam. Condconv: Conditionally pa-
rameterized convolutions for efficient inference. In Advances in Neural Information Processing
Systems (NeurIPS), 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
£2201£5191c4e92ccbaf043eebfd0946-Abstract .html.

Jeremy Howard. Imagenette dataset (fast.ai), 2019. URL https://github.com/fastai/
imagenette/blob/master/README.md.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In Proceedings of the 34th International Conference on Machine Learning (ICML),
volume 70 of Proceedings of Machine Learning Research, pages 1321-1330, 2017. URL
https://proceedings.mlr.press/v70/guol7a.html.

Matthias Minderer, Josip Djolonga, Rob Romijnders, Filip Hubis, Xiaohua Zhai,
Neil Houlsby, Dustin Tran, and Mario Lucic. Revisiting the calibration of
modern neural networks. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
8420d359404024567bbaefdal231af24-Abstract.html.

Teledyne FLIR. Blackfly s camera features: Image format control, 2020. URL https://www.
flir.com/support/products/blackfly-s/. Product documentation; shows Multiple ROI
and ADC Bit Depth settings exposed to users.

https://arxiv.org/abs/1611.00712
https://arxiv.org/abs/1305.2982
https://aclanthology.org/D14-1179/
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1807.11164
https://arxiv.org/abs/1807.11164
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://onnxruntime.ai/
https://proceedings.neurips.cc/paper/2019/hash/f2201f5191c4e92cc5af043eebfd0946-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/f2201f5191c4e92cc5af043eebfd0946-Abstract.html
https://github.com/fastai/imagenette/blob/master/README.md
https://github.com/fastai/imagenette/blob/master/README.md
https://proceedings.mlr.press/v70/guo17a.html
https://proceedings.neurips.cc/paper/2021/hash/8420d359404024567b5aefda1231af24-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/8420d359404024567b5aefda1231af24-Abstract.html
https://www.flir.com/support/products/blackfly-s/
https://www.flir.com/support/products/blackfly-s/

Appendix

.1 Supplementary Figures

Inference Latency

Latency (ms)

4) s
,(—: :
;'C\/
&

Figure 3: GPU throughput indicator (A800, batch=128, forward-only; excludes ISP/demosaic and
1/0).

Ablation: Accuracy vs Target Sparsity

o

o

o
T

055} 7=0.7

Validation Top-1

e

u

(@]
T

7#0.3

0.3 014 0.|5 O.I6 0.7
Target Sparsity T

Figure 4: Ablation: accuracy vs. target sparsity 7.

brass _t0.3 lam0.0001
Policy Mask (1 = sense) Per-Patch Bit-Depth

Selected patches Per-patch bit-depth

1.0 8.0
L]
15
0.8
2 7.0
0.6 63
4
6.0
0.4 55
5.0
0.2
45
0.0 4.0
o 2 4 6 8

Figure 5: Policy overlay: mask (left) and per-patch bit-depth (right) for a representative operating
point.

@

@

	Introduction
	Methodology
	Experiments
	Setup, baselines, and metrics

	Threats to validity
	Conclusion
	Supplementary Figures

