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ABSTRACT

A methodology for informed machine learning is presented and its effectiveness is
shown through numerical experiments with physics-informed learning problems.
The methodology has three main distinguishing features. Firstly, prior information
is introduced in the training problem through hard constraints rather than through
the typical modern practice of using soft constraints (i.e., regularization terms).
Secondly, the methodology does not employ penalty-based (e.g., augmented La-
grangian) methods since the use of such methods results in an overall methodology
that is similar to a soft-constrained approach. Rather, the methodology is based
on a recently proposed stochastic-gradient-based algorithm that maintains compu-
tationally efficiency while handling constraints with a Newton-based technique.
Thirdly, a new projection-based variant of the well-known Adam optimization
methodology is proposed for settings with hard constraints. Numerical experiments
on a set of physics-informed learning problems show that, when compared with a
soft-constraint approach, the proposed methodology can be easier to tune, lead to
accurate predictions more quickly, and lead to better final prediction accuracy.

1 INTRODUCTION

In this paper, we propose a methodology for informed supervised machine learning and demonstrate
its effectiveness on a set of challenging test problems. The methodology involves incorporating prior
knowledge into the learning process through hard constraints that are imposed during training only.
Both of these highlighted aspects are critical for its effectiveness. Our methodology’s use of hard
constraints is in contrast to previously proposed methodologies that incorporate prior knowledge
through either (a) soft constraints (Zhu et al., 2019) (i.e., through regularization/penalty terms in
the objective function) or (b) designing the prediction function to incorporate knowledge directly
(Chalapathi et al., 2024; Négiar et al., 2023) (e.g., through neural network layers for which a
forward pass requires solving a set of equations or even an optimization problem). By imposing
such constraints during training only, one can avoid having the trained network require expensive
operations for each forward pass. Another key feature of our proposed methodology is that we do
not solve the hard-constrained training problem with a penalty-based (e.g., augmented Lagrangian)
method. This feature is also critical for the effectiveness of our methodology. Ours is not the
first article to propose the use of hard constraints for informed learning; see, e.g., Márquez-Neila
et al. (2017). However, some other approaches for training with hard constraints that have been
proposed use such penalty-based methods, even though this ultimately means that the behavior of the
training algorithm is similar to employing an unconstrained training algorithm to a soft-constrained
formulation; see, e.g., Lu et al. (2021). Our intuition is that hard constraints guide the neural network
to prioritize mapping the PDE solution, e.g. in physics-informed machine learning, even only at
certain inputs, enabling faster and more efficient training. For our methodology to solve the hard-
constrained problems, we propose a variant of the stochastic-gradient-based algorithm from Berahas
et al. (2021) that handles the constraints with a Newton-based technique; see also Berahas et al.
(2023). An additional important feature of our proposed methodology is a new projection-based
variant of the well-known Adam (Kingma & Ba, 2015) optimization routine. (Our framework is easily
extended to other diagonal-scaling methods, such as Adagrad (Duchi et al., 2011) and RMSprop
(Dauphin et al., 2015; Tieleman & Hinton, 2012). We simply demonstrate our framework using Adam
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due to its popularity in the supervised learning literature (Rathore et al., 2024).) By decomposing the
stochastic algorithm’s step computation routine and exploiting the fact that the Adam scaling matrix
is diagonal and positive definite, the per-iteration cost of our algorithm is comparable to that of an
Adam-based method employed in a soft-constraint/regularization approach.

As a case study for demonstrating the effectiveness of our proposed methodology, we consider a set
of physics-informed learning problems. Through straightforward formulations of such problems, we
show that our stochastic algorithmic framework with projected Adam (P-Adam) scaling outperforms
alternative approaches involving only soft constraints or a non-projection-based Adam routine. In
particular, we show that our approach can (a) yield good solutions more quickly, (b) yield more
accurate predictions after training is completed, and (c) require less hyperparameter tuning.

1.1 CONTRIBUTIONS AND LIMITATIONS

We propose a methodology for informed supervised machine learning that (a) incorporates prior
knowledge through hard constraints, (b) employs a computationally efficient method that handles the
objective with a stochastic-gradient-based technique and handles the constraints with a Newton-based
technique such that the overall per-iteration cost is comparable to that of alternative soft-constrained
approaches, and (c) involves a new projection-based variant of Adam. We show that our method
yields superior performance on a test set of physics-informed learning problems.

Our proposed algorithm is based on a method that enjoys state-of-the-art convergence and complexity
guarantees. We do not show that these guarantees extend to the setting when our P-Adam routine
is employed, although our experiments show that the routine is robust. In addition, our approach
has a higher per-iteration cost when compared to a method that may be employed to minimize a
soft-constraint-based (unconstrained) training problem. However, our experiments show that, within
the same computational time budget, our approach can offer better trained models. Also, the fact
that—through our methodology—one might avoid having to employ a model that requires expensive
operations with every forward pass can justify this additional per-iteration cost during model training.

2 STOCHASTIC-GRADIENT-BASED, HARD-CONSTRAINED TRAINING

The supervised training of a machine learning model involves solving an optimization problem over
a set of parameters of a prediction function, call it p : Rnf × Rd → Rno , where nf is the number of
features in an input vector, d is the dimension of the training/optimization problem, and no is the
dimension of the output vector. Denoting known input-output pairs in the form (x, y) ∈ Rnf × Rno

and given a loss function ℓ : Rno × Rno → R, the training/optimization problem can be viewed in
expected-loss or empirical-loss minimization form, i.e., respectively,

min
w∈Rd

∫
X×Y ℓ(p(x,w), y)dP(x, y) ≈ minw∈Rd

1
N

∑N
i=1 ℓ(p(xi, w), yi),

where X is the input domain, Y is the output domain, P is the input-output probability function, and
{(xi, yi)}Ni=1 ⊂ Rnf×Rno . In our setting, the problem has (hard) constraints on w as well. Generally,
these can be formulated in various ways; e.g., expectation, probabilistic, or almost-sure constraints.
We contend that for many informed-learning problems—such as for many physics-informed learning
problems, as we discuss in §3—a fixed, small number of constraints suffices to improve training.
Given a (small) number m of input-output pairs {(xc

i , y
c
i )}mi=1, the constraints may take the form

ϕi(p(x
c
i , w), y

c
i , . . . ) = 0 for all i ∈ {1, . . . ,m},

where the arguments to the constraint functions {ϕi}may include additional terms, such as derivatives
of the prediction function with respect to inputs and/or model weights; see §4 for specific examples.

2.1 STOCHASTIC-GRADIENT-BASED METHOD THAT HANDLES CONSTRAINTS WITH A
NEWTON-BASED TECHNIQUE

For the sake of notational simplicity, let us proceed in this section with the problem formulation

min
w∈Rd

f(w) subject to c(w) = 0 with f(w) = E[F (w,ω)], (1)
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where f : Rd → R, c : Rd → Rm, ω is a random variable with associated probability space
(Ω,F ,P), F : Rd × Ω→ R and E[·] denotes expectation with respect to P. The algorithm that we
propose follows the stochastic-gradient-based Sequential Quadratic Programming (SQP) framework
proposed and analyzed in Berahas et al. (2021) for solving constrained optimization problems. We
state a simplified version of the method as Algorithm 1 below. The algorithm requires Lipschitz
constants for the objective gradient and constraint Jacobian, which are denoted as L∇f ∈ R>0
and L∇c ∈ R>0, respectively. In practice these values can be estimated, e.g., as in Berahas et al.
(2021). We emphasize that when the Jacobian ∇c(wk)

T has a small number of rows and Hk is a
positive definite diagonal matrix and for all k ∈ N, the linear system (2) can be computed with a
computational cost that is proportional to that of computing H−1

k gk, as shown later in this section.

Algorithm 1 Stochastic-Gradient-based SQP Framework (Berahas et al., 2021)

Require: w1 ∈ Rd, (L∇f , L∇c) ∈ R>0 × R>0, (τ, ξ) ∈ R>0 × R>0, and {ᾱk} ⊂ (0, 1]
1: for all k ∈ N do
2: Compute a stochastic gradient estimate gk ≈ ∇f(wk) and choose symmetric Hk ∈ Rd×d

3: Compute sk by solving[
Hk ∇c(wk)

∇c(wk)
T 0

] [
sk
λk

]
= −

[
gk

c(wk)

]
(2)

4: Set wk+1 ← wk + αksk, where αk ← (ᾱkξτ)/(τL∇f + L∇c)
5: end for

For the sake of completeness, we state the following theorem pertaining to convergence guarantees of
Algorithm 1 for solving (1), for which (w, λ) ∈ Rd×Rm satisfies first-order stationarity conditions if
and only if ∇f(w) +∇c(w)λ = 0 and c(w) = 0. The theorem shows that the algorithm guarantees
asymptotic convergence in probability of the sequence of primal iterates to stationarity, which for the
sake of analysis is described in terms of the stochastic process {Wk}, which in turn are determined
by the process of stochastic gradient estimators {Gk} that generate a sequence of sub-σ-algebras
{Fk}. The theorem refers to “true” quantities that would be computed with exact objective-gradient
information even though Algorithm 1 only uses stochastic-gradient estimates.
Theorem 1 (see Berahas et al. (2021, Corollary 3.14) and Curtis et al. (2023a, Equation (16))). Sup-
pose there exists convex W ⊆ Rd containing the stochastic process {Wk} generated by Algo-
rithm 1 almost-surely such that f : Rd → R is continuously differentiable and bounded overW ,
∇f : Rd → Rd is bounded and Lipschitz continuous overW , c : Rd → Rm is Lipschitz continuous,
continuously differentiable, and bounded overW , and∇cT : Rd → Rm×d is Lipschitz continuous
with singular values bounded uniformly away from zero overW . In addition, suppose that there
exists a tuple (σ, ζ, κ) ∈ R>0×R>0×R>0 such that, for all k ∈ N, one has E[Gk|Fk] = ∇f(Wk),
E[∥Gk −∇f(Wk)∥22|Fk] ≤ σ, and Hk is Fk-measurable with ∥Hk∥2 ≤ κ and uTHku ≥ ζ∥u∥22
for all u ∈ Null(∇c(Wk)

T ). Finally, suppose that (τ, ξ) ∈ R>0 × R>0 is chosen such that, for all
k ∈ N, one finds ξ ≤ ξ̄k, where

ξ̄k :=

∞ if Sk = 0
−τ(GT

k Sk+
1
2S

T
k HkSk)+∥c(Wk)∥1

τ∥Sk∥2
2

otherwise,

and τ ≤ τ̄ true
k , where, with Strue

k being the first component of the solution of (2) that would be
computed if Gk were replaced by ∇f(Wk), one defines

τ̄ true
k :=

∞ if∇f(Wk)
TStrue

k + (Strue
k )THkS

true
k ≤ 0

1
2∥c(Wk)∥1

∇f(Wk)TStrue
k +(Strue

k )THkS
true
k

otherwise.

Then, if {ᾱk} is monotonically nonincreasing (ᾱk+1 ≤ ᾱk for all k ∈ N), unsummable (
∑∞

k=1 ᾱk =
∞), and square-summable (

∑∞
k=1 ᾱ

2
k <∞) with ᾱ1 ∈ R>0 sufficiently small, one has that

lim inf
k→∞

E[∥∇f(Wk) +∇c(Wk)Λ
true
k ∥22 + ∥c(Wk)∥2] = 0,

where for all k ∈ N the vector Λtrue
k is the latter component of the solution of (2) that would be

computed if Gk were replaced by ∇f(Wk). That is, under these conditions, the sequence {Wk}
corresponds to a sequence of first-order stationarity measures that vanishes.
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Under these conditions and additional assumptions (see Curtis et al. (2023a) for details), the sequence
of iterates {Wk} generated by Algorithm 1 converges almost-surely to a primal stationary point
and a running average of the sequence {Λk} generated by Algorithm 1 converges almost-surely to
a dual stationary point. In addition, in Curtis et al. (2023c), it is shown that the algorithm enjoys
worst-case complexity guarantees that are on par with those of stochastic-gradient-based methods
for unconstrained optimization. The rate of convergence of the constraint violation is improved by a
two-step size SQP method in O’Neill (2024).

2.2 A NEW PROJECTION-BASED VARIANT OF ADAM

The practical performance of stochastic-gradient-based methods for (unconstrained) training can
be improved significantly with adaptive scaling. Approaches of this type include Adagrad (Duchi
et al., 2011), RMSProp (Dauphin et al., 2015; Tieleman & Hinton, 2012), and Adam (Kingma &
Ba, 2015), the popular variants of which involve only diagonal scaling matrices. One approach for
employing, say, an Adam-based scheme in the context of a Newton-based algorithm for constrained
optimization is to choose the matrix Hk in (2) as such a positive definite diagonal scaling matrix and
to replace the first component on the right-hand side of (2) with the running average of gradients that
is employed in Adam for unconstrained training/optimization. Such an approach was proposed and
tested in Márquez-Neila et al. (2017).

We propose a new projection-based variant of Adam for constrained optimization, presented in
Algorithm 2. It is similar to that proposed in Márquez-Neila et al. (2017), but takes into account the
fact that, in the setting of a Newton-based method for constrained optimization, the component of a
stochastic-gradient estimate that lies in the range space of the constraint derivative does not affect
the search direction. Therefore, the idea proposed here projects-out this component for the running
averages of gradient values. In other words, our Algorithm2 mainly differs from Márquez-Neila et al.
(2017) in that Algorithm2 utilizes the momentum of the component of the stochastic gradient in the
null space of∇c(wk)

T rather than the entire stochastic gradient, which is the case in Márquez-Neila
et al. (2017). This is a nontrivial change. In our experiments, this distinction demonstrates the
superior performance of our method compared to that of Márquez-Neila et al. (2017).

A Newton-based step for the constraints and a steepest-descent-type step for the objective can
be computed at wk by solving (2) with Hk = I . By the fundamental theorem of linear algebra,
let sk = vk + uk, where vk ∈ Range(∇c(wk)) and uk ∈ Null(∇c(wk)

T ). The second row
of (2) implies vk = −∇c(wk)(∇c(wk)

T∇c(wk))
−1c(wk), which is unaffected by gk. On the other

hand, with the columns of an orthogonal matrix Zk spanning the null space of∇c(wk)
T , one finds

uk = −Zk(Z
T
k Zk)

−1ZT
k gk is the orthogonal projection of gk onto Null(∇c(wk)

T ).

The discussion in the prior paragraph shows that the solution component sk in (2) with Hk replaced
by I is the same when the stochastic gradient gk is replaced by its orthogonal projection onto the null
space of∇c(wk)

T , which is to say that this projection of gk is what matters for the search direction
component. This suggests that an Adam-based approach can be employed where the scaling matrix
and right-hand side vectors are computed based on the projection of gk, rather than on gk itself. Since
it is not computationally tractable to compute a null-space basis matrix Zk for all k ∈ N, one can
instead employ the projection operator as shown in Algorithm 2 below.

Algorithm 2 offers various alternatives as well. For example, a projection-based variant of Adagrad
is obtained when, instead, p̂k ← gk and q̂k ← q̂k−1 + (gk ◦ gk). The major computation cost of
Algorithm 2 per iteration is from Line 3 and Line 8. For Line 3, the cost of (∇c(wk)

T∇c(wk))
−1 is

O(m2d+m3). Hence the cost of computing ḡk isO(m2d+m3). The cost of computing sk in Line 8
is also O(m2d+m3), as shown next. Therefore, the overall cost of Algorithm 2 is O(m2d+m3).
When the number of rows of ∇c(wk)

T (i.e., m) is small, the overall cost per iteration is proportional
to that of computing H−1g with a diagonal and positive definite H , as is required for an Adam-based
method for the unconstrained setting.

2.3 SOLVING THE LINEAR SYSTEMS

In each iteration, Algorithm 1 (with Algorithm 2) requires solving a linear system of the form[
H JT

J 0

] [
s
λ

]
= −

[
p
c

]
, (3)

4
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Algorithm 2 P-Adam, Projection-based Adam

Require: w1 ∈ Rd, (L∇f , L∇c) ∈ R>0 × R>0, (τ, ξ) ∈ R>0 × R>0, p0 and q0 are zero vectors,
β1 ∈ (0, 1), β2 ∈ (0, 1), µ ∈ R>0, and {ᾱk} ⊂ (0, 1]

1: for all k ∈ N do
2: Compute a stochastic gradient estimate gk ≈ ∇f(wk)
3: Compute ḡk ← (I −∇c(wk)(∇c(wk)

T∇c(wk))
−1∇c(wk)

T )gk
4: Set pk ← β1pk−1 + (1− β1)ḡk
5: Set qk ← β2qk−1 + (1− β2)(ḡk ◦ ḡk), where (ḡk ◦ ḡk)i = (ḡk)

2
i for all i ∈ {1, . . . , d}

6: Set p̂k ← (1/(1− βk
1 ))pk

7: Set q̂k ← (1/(1− βk
2 ))qk

8: Compute sk by solving
[
diag(

√
q̂k + µ) ∇c(wk)

∇c(wk)
T 0

] [
sk
λk

]
= −

[
p̂k

c(wk)

]
9: Set wk+1 ← wk + αksk, where αk ← (ᾱkξτ)/(τL∇f + L∇c)

10: end for

where H ∈ Rd×d is diagonal and positive definite and J ∈ Rm×d has full row rank. Our focus is on
computing s ∈ Rd. When m ≪ d, as in the context of the problems considered in this paper, this
solution component can be computed with relatively low computational cost through a decomposition.

Let s = v + u with v ∈ Range(JT ) and u ∈ Null(J). As mentioned, (3) gives v = −JT (JJT )−1c.
Thus, v can be computed by solving an m-dimensional positive definite system JJT ṽ = −c
for ṽ ∈ Rm, then computing JT ṽ = v. Now letting Z ∈ Rd×(d−m) denote an orthogonal
matrix whose columns span Null(J), the first row of (3) states Hs + JTλ = −(p + Hv), so
u = −Z(ZTHZ)−1ZTH(H−1p+ v). However, this is not efficient since it requires Z. Fortunately,
one can replace Z(ZTHZ)−1ZTH with a matrix in terms of H and J , as we now explain.

The H-inner-product is defined by ⟨a, b⟩H = aTHb for all (a, b) ∈ Rd × Rd. Given a matrix
P ∈ Rd×d, its H-adjoint is the matrix P ∗ ∈ Rd×d such that ⟨a, Pb⟩H = ⟨P ∗a, b⟩H for all
(a, b) ∈ Rd × Rd. Since H ≻ 0, it can be verified easily that P ∗ = H−1PTH . One calls P an
H-orthogonal-projection matrix if and only if it is idempotent (i.e., P = P 2) and H-self-adjoint (i.e.,
P = P ∗). Moreover, P projects onto span(Z) if and only if Pa = Zb for some b for all a ∈ Rd.

One finds Z(ZTHZ)−1ZTH = I−H−1JT (JH−1JT )−1J is the unique H-orthogonal-projection
operator onto Null(J), so u = −(I−H−1JT (JH−1JT )−1J)(H−1p+v). Thus, u can be computed
by: scaling J and p to form J̃T := H−1JT and p̃ := H−1p; computing H̃ := JJ̃T and p̂ :=
J(p̃ + v); solving an m-dimensional positive definite system H̃r = p̂ for p̂ ∈ Rm; multiplying
J̃T p̂; and computing a few sums. Similar to ḡk, the cost of computing v and u are O(m2d+m3).
Therefore, since s = v + u, the cost of computing s is also O(m2d+m3).

3 PHYSICS-INFORMED LEARNING PROBLEMS

Our stochastic-gradient-based algorithm with P-Adam scaling for solving hard-constrained problems
can be employed in numerous informed-learning contexts (e.g., fair learning (Curtis et al., 2023b;
Donini et al., 2018; Komiyama et al., 2018; Zafar et al., 2017a;b; 2019)). For this work, we tested
our approach on a few physics-informed learning problems. We emphasize that our goal here is not
to test huge-scale, state-of-the-art techniques for physics-informed learning. Rather, we take a few
physics-informed learning test problems and train relatively straightforward neural networks in order
to demonstrate the relative performance of our proposed algorithm with a soft-constrained approach
with Adam scaling (Kingma & Ba, 2015) and a hard-constrained approach with Adam (not P-Adam)
scaling (Márquez-Neila et al., 2017). The relative performance of the algorithms would be similar if
we were to train much more sophisticated and large-scale neural networks that are being developed
in state-of-the-art physics-informed learning. For more on physics-informed learning we direct the
reader to, e.g., Cuomo et al. (2022); Karniadakis et al. (2021); Lagaris et al. (1998); Raissi et al.
(2019); Takamoto et al. (2023); Wang et al. (2021; 2023). The work (Chen et al., 2024) lies in the
physics-informed learning with hard constraints, but is restrict to the hard constraints that the PDE
inputs and solutions are linearly related, whereas our method handles general nonlinear constraints.

5
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They enforce feasibility via projection, while we allow infeasible iterates, using projection only for
momentum. Thus, we do not compare our method with theirs.

Let us now provide an overview of the setting of physics-informed learning that we consider in
our experiments. A parametric partial differential equation (PDE) can be written generically as
F(ϕ, u) = 0, where (Φ,U ,V) is a triplet of Banach spaces, F : Φ×U → V is a differential operator,
ϕ ∈ Φ represents PDE parameters, and u ∈ U denotes a solution of the PDE corresponding to ϕ. The
aim is to train a model to learn a mapping from the PDE parameters to a corresponding solution. Let
(an approximation of) such a mapping be denoted as G : Φ× Rn × Rd → U , the inputs to which are
PDE parameters, a vector encoding information about the domain of the PDE solution about which
one aims to make a prediction (e.g., temporal and/or spatial coordinates), and, say, neural-network
model parameters, and the output is a solution value predicted by the neural network model.

For training a model to solve the PDE with potentially no known solution values (see Karniadakis
et al. (2021)), one can consider a set of training inputs {(ϕi, yi)}i∈S1

and minimize the average
PDE residual over the training inputs. Assuming that, in addition, one has access to observed
and/or computed solution data in the form of tuples {(ϕi, yi, ui)}i∈S2

, one can also aim to minimize
the differences between known and predicted solution values. Mathematically, these aims can be
expressed as finding w to minimize

1

|S1|
∑
i∈S1

∥F(ϕi,G(ϕi, yi, w))∥22 and/or
1

|S2|
∑
i∈S2

∥ui − G(ϕi, yi, w)∥22. (4)

Note that the ϕi and/or yi elements in {(ϕi, yi)}i∈S1
may be the same or different from those in

{(ϕi, yi, ui)}i∈S2
. Additional terms may also be used for training, e.g., pertaining to initial and/or

boundary conditions, or pertaining to partial physics information. For example, in §4.2, we train
a model for which it is known that a mass-balance equation should hold, so our training problem
involves residuals for the known mass-balance equation, even though this only defines the physics
partially. Overall, if one combines all learning aims into a single objective function—say, with a
linear combination involving weights for the different objective terms—then one is employing a
soft-constrained approach to learning. We contend that a more effective approach can be to take
at least a subset of terms and impose them as hard constraints during training. For example, with
respect to the aims in (4), one might impose constraints such as F(ϕi,G(ϕi, yi, w)) = 0 for some
i ∈ S1 and/or ui = G(ϕi, yi, w) for some i ∈ S2. Our experiments show the benefits of this idea.

4 EXPERIMENTS

In this section, we present the results of numerical experiments that compare the performance of
our proposed methodology (P-Adam(con), where “con” stands for “constrained”) versus a soft-
constrained approach with Adam scaling (Adam(unc) for “unconstrained”) (Karniadakis et al.,
2021) and a hard-constrained approach with (projection-less) Adam scaling (Adam(con)) (Márquez-
Neila et al., 2017). We consider four test problems. A few of them—namely, our 1D spring, 1D
Burgers’ equation, and 2D Darcy flow problems—have been seen in the literature; see Li et al. (2021);
Négiar et al. (2023). We also consider a problem from chemical engineering, a modified version of a
reaction network proposed in Gupta et al. (2016). To ensure a fair comparison, for a test problem,
P-Adam(con), Adam(unc) and Adam(con) use the same objective function, which is usually
the data-fitting loss plus PDE residual, while the hard-constrained methods P-Adam(con) and
Adam(con) impose additional constraints: the PDE residuals are zero at some input data points.
Further details are provided in each problem’s subsection. A GitHub repository containing the
implementations of each of the algorithms and our test problems can be found at [to be inserted in
non-anonymized version]. The software uses PyTorch (BSD-3 license). For all algorithms and all
experiments, the Adam parameters β1 = 0.9, β2 = 0.999, and µ = 10−7 were used; see Algorithm 2.
Our numerical experiments were performed using Google CoLaboratoryTM V100 GPU platforms.
We estimate that it would require about one week to reproduce all of our experimental results. We
discuss a comparison of the running times of the three methods in Appendix C.

4.1 1D SPRING

Our first test problem aims to predict the movement of a damped harmonic (mass-spring) oscillator
(Moseley, 2018) under the influence of a restoring force and friction. For simplicity, our aim was

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

to train a model to predict the movement of the spring for known parameters and a single initial
condition. (Our later test problems involved more complicated situations; this simple problem and
the case of only a single initial conditions merely serves as a good starting point for comparison.)
The spring can be described by a linear, homogeneous, second-order ordinary differential equation
with constant coefficients, namely, md2u(t)

dt2 + µdu(t)
dt + ku(t) = 0 over t ∈ [0, 1], where we fixed

the mass m = 1, friction coefficient µ = 4, and spring constant k = 400. This corresponds to an
under-damped state for which the exact solution with amplitude A and phase ϕ is well known to be
u(t) = e−δt(2A cos(ϕ+ (

√
w2

0 − δ2)t)), where δ = µ/(2m) and w0 =
√
k/m.

Our aim was to train a neural network with the known ODE and a few observed solution values to
be able to predict the height of the spring at any time t ∈ [0, 1]. We used a fully connected neural
network with 1 input neuron (corresponding to t), 3 hidden layers with 32 neurons each, and 1 output
neuron (that predicts the spring height at time t). Hyperbolic tangent activation is used at each
hidden layer. For the training problems, we used two types of terms: ODE-residual and data-fitting
terms. The times at which the ODE-residual terms were defined were 30 evenly spaced points over
[0, 1]. The times at which the data-fitting terms were defined were 10 evenly spaced points over
[0, 0.4]. The runs for Adam(unc) only considered an objective function where the terms in (4)
were combined with a weight of 10−4 on the average ODE-residual. The runs for Adam(con) and
P-Adam(con) considered the same objective and included hard constraints for the ODE residual
at times { 4

29 ,
12
29 ,

21
29}, i.e., 3 constraints. For all algorithms, we ran a “full-batch” version (i.e., with

exact objective gradients employed) and a “mini-batch” version, where in each iteration of the latter
version only half of the ODE-residual data points were used. For consistency in the experiments,
rather than employ the step-size rule in Algorithm 1, we employed the same two fixed learning rates
(i.e., value of αk for all k ∈ N) for each algorithm: 5× 10−4 and 1× 10−4.

Results are provided in Figures 1 and 2. The plots in Figure 1 show that P-Adam(con) yielded
lower objective values (loss) more quickly and achieved better accuracy (i.e., lower mean-squared
error for the objective terms) after the training budget expired. They also show that P-Adam(con)
achieved more comparable results for the two learning rates, whereas the other algorithms performed
worse for the smaller learning rate. Results for a wider range of learning rate tuning can be found
in Figure 11a in Appendix B. Appendix A also compares the robustness of the three methods on
smaller and larger neural network sizes. Our results here demonstrate that P-Adam(con) requires
less hyperparameter tuning. The plots in Figure 2 show that the difference in performance can be
seen clearly in the predictions that one obtains. Appendix F compares the ODE residuals of the
three methods and demonstrates that P-Adam(con) achieves the smallest ODE residuals across the
entire time window. Appendix E provides additional results for varying hard constraints.

Figure 1: 1D Spring losses over epochs. For the mini-batch runs, the solid lines indicate means over
5 runs while the shaded regions indicate values within one standard deviation of the means.

4.2 CHEMICAL ENGINEERING PROBLEM

This problem models the reaction system of 1-butene isomerization when cracked on an acidic
zeolite (Gupta et al., 2016). The system is reformulated as an ordinary linear differential equation by
scaling the kinetic parameters of the true model so that the equations are more flexible. The ODE is

du(t)

dt
=


−(c(1) + c(2) + c(4))u(1)(t) + c(3)u(3)(t) + c(5)u(4)(t)

2c(1)u(1)(t)
c(2)u(1)(t)− c(3)u(3)(t)
c(4)u(1)(t)− c(5)u(4)(t)

 ,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 2: Predicted trajectories. Left to right: Adam(unc) (mini-batch, αk = 0.0005),
P-Adam(con) (mini-batch, 0.0005), Adam(unc) (mini-batch, 0.0001), and P-Adam(con)
(mini-batch, 0.0001). Axes are time t ∈ [0, 1] (horizontal) and true/predicted u(t) (vertical). Green
dots indicate times at which the ODE-residual terms are defined; orange dots indicate data-fitting
values; the gray line indicates the true solution; and the blue line indicates the predicted solution.
Code from Moseley (2018) (available under the MIT License) is used to generate the plots.

where c = [4.283, 1.191, 5.743, 10.219, 1.535]T . Our aim was to train a neural network with the

known ODE and mass-balance condition (namely, du(1)(t)
dt + 0.5du(2)(t)

dt + du(3)(t)
dt + du(4)(t)

dt = 0)
over various initial conditions near a nominal initial condition, where the nominal one is u0 =
[14.5467, 16.335, 25.947, 23.525]. In this manner, the trained network can be used to predict u(t)
at any t (we use the range t ∈ [0, 10]) for any initial condition near the nominal one.

We used a fully connected neural network with 5 input neurons (corresponding to initial condition
in R4 and t ∈ R), 3 hidden layers with 64 neurons each and hyperbolic tangent activation, and 4
output neurons (corresponding to u(t) ∈ R4). The training problems involved three objective terms:
ODE-residual (weighted by 10−2), mass-balance (weighted by 10−2), and data-fitting (weighted
by 1) terms. Training data was generated by solving the ODE over 1000 initial conditions (of the
form u0 + ξ, where ξ was a random vector with each element drawn from a uniform distribution over
[−1, 1]) using odeint from the scipy library (Virtanen et al., 2020) (BSD licensed). Specifically,
solution values were obtained over 64 evenly spaced times in [0, 10], which over the 1000 initial
conditions led to 64000 training points. The ODE-residual and mass-balance terms involved all 64000
training points, whereas the data-fitting term involved only 20% of these points chosen at random
with equal probability. The runs for Adam(unc) used only these objective terms, whereas the
runs for Adam(con) and P-Adam(con) considered in addition to 10 constraints on mass-balance
residuals, the points for which were chosen uniformly at random over all initial conditions and times.
The mini-batch size was 20% of all samples. We tested learning rates for all algorithms: 5× 10−4

and 1× 10−4. The results in Figures 3 and 4 show that P-Adam(con) performed best.

Figure 3: Chem. eng. problem losses over epochs. For the mini-batch runs, solid lines indicate means
over 5 runs while the shaded regions indicate values within one standard deviation of the means.

Figure 4: True/predicted solutions for the setting (full batch, αk = 0.0001) after 30000 epochs for an
initial condition not in the training set. Left to right: true solution (first), prediction by Adam(unc)
(second), prediction by Adam(con) (third), and prediction by P-Adam(con) (fourth). Inspection
reveals that the P-Adam(con) prediction is closer to the true solution even at this stage in training.
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4.3 1D BURGERS’ EQUATION

Burgers’ equation is a partial differential equation often used to describe the behavior of certain types
of nonlinear waves (Wang et al., 2021; Négiar et al., 2023). With respect to a spatial domain [0, 1],
time domain [0, 1], and viscosity parameter ν = 0.01, we used the equation, initial condition, and
(periodic) boundary condition

∂u(x,t)
∂t + u(x, t)∂u(x,t)∂x = ν ∂2u(x,t)

∂x2 , x ∈ (0, 1), t ∈ [0, 1];

u(x, 0) = u0(x), x ∈ [0, 1];

u(x, t) = u(x+ 1, t), x ∈ [0, 1], t ∈ [0, 1].

Our aim was to train a neural network with the known PDE and boundary condition over various
initial conditions near a nominal initial condition. In this manner, for any (x, t) and initial condition
near the nominal one, the trained network can predict u(x, t).

We used a fully-connected neural network with 34 input neurons (corresponding to x, t, and a
discretization of u0 over 32 evenly spaced points), 3 hidden layers with 64 neurons each and
hyperbolic tangent activation, and 1 output neuron (corresponding to u(x, t)). The training problems
involve three objective terms: PDE-residual (weighted by 10−3), boundary-residual (weighted by
10−3), and data-fitting (weighted by 1) terms. Training data was generated by solving the PDE over
100 initial conditions (of the form u0(x) = sin(2πx+ξπ), where for each instance ξ was chosen from
a uniform distribution over [0, 0.2]) using the odeint solver, as in the previous section. Specifically,
solution values were obtained over 32 evenly spaced points each in the spatial and time domains,
which over the 100 initial conditions led to 102,400 training points. For each initial condition, the
PDE-residual and boundary-residual terms involved all relevant generated training points, whereas the
data-fitting term involved only 200 points chosen at random with equal probability. The Adam(unc)
used only these objective terms, whereas Adam(con) and P-Adam(con) considered in addition
to 10 constraints on PDE residuals, the points for which were chosen uniformly at random over all
initial conditions and spatio-temporal points. The mini-batch was 20% of all samples. We tested
learning rates: 10−3 and 5× 10−4. One finds in Figure 5 that the results obtained by Adam(unc)
and P-Adam(con) were in fact comparable, although the performance by the projection-less Adam
approach (Adam(con)) was inferior. Figure 6 shows that a prediction by the model obtained by
P-Adam(con) is indeed close to the true solution. Additional numerical results obtained when
tuning the learning rate over a wider range along with different neural network sizes can be found
in 11b in Appendix B and Appendix A, respectively. The main take-away from these results is the
superior performance of P-Adam(con) over Adam(con).

Figure 5: Burgers’ losses over epochs. For mini-batch runs, solid lines indicate means over 5 runs
while the shaded regions (not very visible) indicate values within one standard deviation of the means.

Figure 6: Burgers’ true/predicted solu-
tions for initial condition not seen in train-
ing. Predicted solution by P-Adam(con)
(mini-batch, αk = 0.0005).

Figure 7: Darcy flow diffusion coefficient ν and
true/predicted solution, where diffusion coefficient
ν not seen in training. Predicted solution by
P-Adam(con) (mini-batch, αk = 0.005).
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4.4 2D DARCY FLOW

The steady-state 2D Darcy flow equations model the flow of a fluid through a porous medium (Négiar
et al., 2023; Takamoto et al., 2023). With respect to the spatial domain [0, 1]2, a forcing function f ,
and a diffusion coefficient ν, we used

−∇ · (ν(x)∇u(x)) = f(x), x ∈ (0, 1)2; u(x) = 0, x ∈ ∂[0, 1]2.

Our aim was to train a neural network with the known PDE and boundary condition over various
diffusion coefficients such that, for any x ∈ [0, 1]2 and ν, it could be used to predict u(x).

We used the Fourier Neural Operator (FNO) architecture imported from the neuralop library (Ko-
vachki et al., 2023; Li et al., 2021) (MIT License). The inputs were given in three channels, one for ν,
one for a horizontal position embedding and one for a vertical position embedding. Each channel
had dimension 16× 16. We used 4 hidden layers (the default). The output was a single channel of
dimension 16 × 16 (corresponding to u(x)). The training problems involve three objective terms:
PDE-residual (weighted by 10−2), boundary-residual (weighted by 10−2), and data-fitting (weighted
by 1) terms. Training data was generated by solving the PDE over 1000 ν values, the values and
corresponding solutions of which were obtained by neuralop using default settings. For each ν
value, the PDE-residual and boundary-residual terms involved all relevant generated training points,
whereas the data-fitting term involved only 20% of the points chosen at random with equal probability.
The runs for Adam(unc) used only these objective terms, whereas the runs for Adam(con) and
P-Adam(con) considered the same objective in addition to 50 constraints on PDE residuals, the
points for which were chosen uniformly at random over all initial conditions and spatial points. We
ran full-batch and mini-batch settings, where the mini-batch was dictated by 20% of the ν values. We
tested using the same learning rates for all algorithms: 5× 10−3 and 5× 10−4. For these problems,
plots of losses make it harder to distinguish between the algorithms. Therefore, in Figure 8, we plot
PDE-residual loss values only, the results of which show preferable performance by P-Adam(con)
over the other methods. Figure 7 shows that a prediction by the model obtained by P-Adam(con)
is close to the true solution.

Figure 8: Darcy flow losses over epochs. For mini-batch runs, solid lines indicate means over 5 runs
while the shaded regions indicate values within one standard deviation of the means.

5 CONCLUSION AND FUTURE WORK

We proposed a method for informed learning that is stochastic-gradient-based, handles hard con-
straints, and employs a novel projection-based Adam diagonal scaling. The method’s per-iteration
cost is comparable to an unconstrained (soft-constrained) approach that also uses diagonal scaling.
Numerical experiments reveal practical benefits of the proposed scheme, which we conjecture would
also be witnessed when training larger and more sophisticated neural networks for informed learning.

Future work includes proving that the theoretical convergence guarantees of the stochastic SQP
method extend when our P-Adam(con) strategy is used. The analysis could be based on conver-
gence guarantees of the Adam method that have been established in recent years (e.g., in Zhang
et al. (2022)). The recent two stepsize SQP method in O’Neill (2024) is also a way to accumulate
the momentum of a step only in the null space of the constraint Jacobian. Comparisons of the
performance of that method with P-Adam(con) would also be relevant for future work.
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A EXPERIMENTS WITH DIFFERENT NEURAL NETWORK DEPTHS AND WIDTHS

To show that our proposed method (P-Adam(con)) is easier to tune over different neural network
sizes, we conducted experiments on the 1D spring and 1D Burgers’ equation problems to compare the
obtained losses over different neural network depths and widths. The results are shown in Figures 9
and 10. The results show that, among the three methods, P-Adam(con) is usually the most robust
one to different neural network depths and widths, and always achieves the best performance.

(a) 1D Spring losses over 16, 32, and 64 neurons each hidden layer. The remaining settings are the same as in
Figure 1 (full batch, learning rate 5× 10−4).

(b) Burgers’ losses over 32, 64, and 128 neurons each hidden layer. The remaining settings are the same as in
Figure 5 (full batch, learning rate 10−3).

Figure 9: Losses over different neural network widths.

(a) 1D Spring losses over 1, 3, and 5 hidden layers. The remaining settings are the same as in Figure 1 (full
batch, learning rate 5× 10−4)

(b) Burgers’ losses over 1, 3, and 5 hidden layers. The remaining settings are the same as in Figure 5 (full batch,
learning rate 10−3).

Figure 10: Losses over different neural network depths.

B EXPERIMENTS WITH DIFFERENT LEARNING RATES

In this section, we exhibit the robustness of our method to the learning rate through experiments
on the 1D spring and 1D Burgers’ equation problems. We tested learning rates in a wide range
of {10−2, 5 × 10−3, 10−3, 5 × 10−4, 10−4} for these two problems. The results are shown in
Figure 11. Similar to the robustness to the neural network size as shown in Appendix A, the results
here demonstrate the impressive robustness of P-Adam(con) with respect to the learning rate.
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Moreover, P-Adam(con) usually converges faster than other two methods across all five learning
rates. In contrast, Adam(con) even fails to converge with the largest learning rate 10−2 when
applied to the Spring problem.

(a) 1D Spring losses over learning rates: 10−2, 5× 10−3, 10−3, 5× 10−4, 10−4. The remaining settings are
the same as in Figure 1 (full batch).

(b) Burgers’ losses over learning rates: 10−2, 5× 10−3, 10−3, 5× 10−4, 10−4. The remaining settings are the
same as in Figure 5 (full batch).

Figure 11: Losses over different learning rates.

C RUNNING TIME

We ran the three methods for all problems with full batch and learning rate 5 × 10−4 for a fixed
number of epochs (iterations) on a Colab L4 GPU python 3 node. Running time statistics are shown
in the Table 1.

We have several observations from the table. First, Adam(con) and P-Adam(con) exhibit
similar running times. This is expected since the primary difference between the two methods is
that P-Adam(con) requires projecting the stochastic gradient onto Range(∇c(wk)), which is not
more computationally expensive since both methods need to compute the projection of c(wk) onto
Range(∇c(wk)) when computing the v component of the step. Second, for problems with either 3
or 10 constraints, the running time of Adam(con) and P-Adam(con) is approximately double
that of Adam(unc). For the problem with 50 constraints, the running time is roughly three times
that of Adam(unc). This is also expected, as Adam(con) and P-Adam(con) need to solve two
linear systems when computing the v and u steps, with the size of the linear system matrix being the
number of constraints by the number of trainable parameters. However, it is worth noting that the
computation time for Adam(con) and P-Adam(con) could be improved by using a more efficient
linear system solver, such as minres. Currently, we are using torch.linalg.solve(A, b)
from PyTorch. While PyTorch does not support the minres solver, other libraries, such as SciPy,
do. Nevertheless, improving the efficiency of solving linear systems is not our focus in this work,
so we opted for the straightforward approach available in PyTorch. Still, even though our proposed
method has a higher per-iteration cost, one can see through all of the experiments in the paper and
these appendices that, in many cases, our proposed method yields a better trained model if one were
to have a computational time budget.

Table 1: Running time(s) per iteration

1D Spring Chem. eng. 1D Burgers 2D Darcy flow

Running time (s) Adam(unc) 0.009 0.024 0.042 0.852
Running time (s) Adam(con) 0.019 0.055 0.059 2.568
Running time (s) P-Adam(con) 0.020 0.053 0.060 2.533

# constraints for Adan(con) and P-Adan(con) 3 10 10 50
# trainable parameters 2209 8964 10625 22101
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D PERFORMANCE OF ALGORITHM 1

In our experiments, Algorithm 1 converges more slowly than Algorithm 2, which utilizes the
momentum of the projected gradient. Figure 12 shows the performance of the 1D Spring problem in
the mini-batch setting, where Algorithm 1 is represented as SGD(unc) or SGD(con), depending
on the presence of hard constraints. Notably, the difference is evident even in the unconstrained
setting, as seen when comparing Adam(unc) with SGD(unc). This observation motivated us to
develop momentum methods.

Figure 12: Comparison of the performance of Algorithm 1 and Algorithm 2 on the 1D Spring problem.
The learning rate for Adam(unc), Adam(con), and P-Adam(con) are 5 × 10−4 while for
SGD(unc) and SGD(con) are 10−2 (after tuned).

E EFFECTS ON DIFFERENT NUMBER OF HARD CONSTRAINTS

One may wonder about the effects of changing the number of hard constraints in our method. For
example, when we use a selection of ODE/PDE residuals as hard constraints, we can define a hard
constraint for each ODE/PDE input by using the residual at that input. In this case, the number of
hard constraints equals the number of selected inputs. Alternatively, we can aggregate the residuals
from multiple inputs to define a single hard constraint.

In this section, we test the performance of our method when varying the number of hard constraints
and when define hard constraints by aggregating over multiple inputs. As an example, we use the
1D Spring problem in the mini-batch setting with a step size of 0.0005. The results are shown in
Figure 13.

Our results show that: (1) Increasing the number of hard constraints by selecting more inputs improves
the training loss performance, as seen when comparing the green and purple curves. However, this
comes at the cost of increased computational effort.(2) Using the same number of hard constraints but
aggregating the residuals over more inputs does not significantly change the computational cost. It
may lead to faster convergence, but the training loss after convergence may not improve, as observed
when comparing the green and red curves.

F SPRING PROBLEM ODE RESIDUAL VISUALIZATION

We present Figure 14 and Figure 15 to visualize the ODE residual over the time window [0, 1] for
the 1D Spring problem discussed in Section 4.1. The ODE residual here is defined as md2u(t)

dt2 +

µdu(t)
dt + ku(t). Figure 14 shows the distribution of residuals over five random runs at each discrete

time, while Figure 15 illustrates the average absolute residuals. The results demonstrate the following:
(1) our method P-Adam(con) achieves the smallest ODE residual across all discretized times. As
shown in Figure 14, the boxes in the third plot are closest to zero at all times compared to the first
and second plots. (2) The Adam(unc), as a soft-constrained method, exhibits larger ODE residuals

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 13: Training loss comparison for varying hard constraints. Adam(unc), Adam(con), and
P-Adam(con) correspond to the settings in Section 4.1 and Figure 1, using three hard constraints.
Both P-Adam(con)-avg-3-3-constr and P-Adam(con)-9-constr use input times at
3, 4, 6, 7, 12, 15, 20, 21, 22/29. P-Adam(con)-avg-3-3-constr averages residuals over three
consecutive times and as a result uses three hard constraints, while P-Adam(con)-9-constr uses
nine hard constraints at the specified times. For 30000 epochs, P-Adam(con) runs in 1,230 seconds,
P-Adam(con)-avg-3-3-constr in 1,300 seconds, and P-Adam(con)-9-constr in 2,300
seconds.

than the hard-constrained methods. (3) The ODE residuals are significantly reduced at and near the
times treated as hard constraints, i.e., { 4

29 ,
12
29 ,

21
29}, when comparing the soft-constrained method

(Adam(unc)) to the hard-constrained methods.

Figure 14: Spring problem ODE residuals over time window [0, 1]. From top to bottom, the plots
correspond to Adam(unc), Adam(con), and P-Adam(con), respectively. All results are based
on the (mini-batch, step size = 0.0005) setting. Each box represents the terminated ODE residual
over 5 random runs at the corresponding time. Green boxes indicate times treated as soft constraints,
while red boxes correspond to times treated as hard constraints, specifically { 4

29 ,
12
29 ,

21
29} as described

in Section 4.1.
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Figure 15: Spring problem average ODE residuals of 5 random runs over time window [0, 1]. The
experiment setting is the same as for Figure 14.
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