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Figure 1: We introduce L4Dog, the first large-scale BEV perception dataset for quadruped robots in
complex urban scenes. Featuring long-range perception in challenging scenarios, L4Dog provides
high-quality manually annotated 3D ground truth and establishes benchmarks for multi-task BEV
perception and occupancy prediction in 360°surrounding view.

ABSTRACT

Embodied intelligence in quadruped robots faces significant challenges in com-
plex urban environments due to the limitations of traditional perception systems
and the lack of comprehensive datasets for exteroceptive 3D perception. To ad-
dress this, we introduce L4Dog, the first large-scale exteroceptive 3D perception
dataset tailored for quadruped robots in open urban scenarios. L4Dog provides
high-quality 360-degree surround-view sensor data and manual annotations, cov-
ering diverse urban scenes such as traffic-light intersections, open roads, subway
station, etc. By formulating perception tasks as bird’s-eye-view (BEV) space per-
ception problems, we establish a multi-benchmark framework for BEV detection,
tracking, trajectory prediction, and 3D traversable space occupancy estimation.
The OmniBEV4D baseline method is proposed to unify multi-task perception
(detection, tracking, prediction, and occupancy prediction) through shared tem-
poral BEV features, enabling efficient and robust processing of dynamic urban
environments. This work bridges the gap between current research and real-world
deployment needs, offering a foundational resource for advancing autonomous
navigation and decision-making in complex urban settings. The dataset will be
made publicly available upon acceptance of this work.

INTRODUCTION

Embodied intelligence, as a pivotal research direction in artificial intelligence, is accelerating the de-
ployment of advanced Al technologies on robotic platforms. Among these, quadruped robots have
emerged as ideal mobile platforms due to their exceptional terrain adaptability, high mobility, and
flexibility, demonstrating broad application potential in scenarios such as visually impaired assis-
tance, elderly mobility support, and last-mile delivery services. However, their practical deployment
in open urban road environments faces significant challenges: unlike controlled indoor or campus
settings, real-world urban roads feature complex environments with diverse road types and heteroge-
neous traffic participants (including pedestrians, vehicles, cyclists, static obstacles, etc.). Particularly
under conditions of unpredictable traffic behaviors and highly dynamic environments, quadruped
robots face heightened requirements for navigation planning, obstacle avoidance decisions, and in-
teractive capabilities. Traditional forward-looking perception paradigms prove insufficient (Shah|

et al.| [2021} 2022} Hirose et al) 2023)), necessitating 360-degree surround-view and long-range
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perception capabilities to identify fast-moving objects and enable evasive maneuvers; robustness
in densely crowded pedestrian scenarios and occluded visibility conditions within complex urban
areas must be enhanced; and critical advancements are required in establishing three-dimensional
semantic traversability understanding to address challenges posed by road surfaces, curbs, tactile
paving, and unknown obstacles.

As the core foundation for autonomous navigation and decision-making, perception systems in
quadruped robots are typically divided into two categories: proprioceptive and exteroceptive per-
ception (Miki et al., 2022). Proprioceptive perception focuses on processing sensor data from limb
joints, foot contacts, and inertial measurement units (IMUs) — such as joint encoders and foot con-
tact sensors — to estimate robot pose and control locomotion. Exteroceptive perception involves
acquiring and interpreting external environmental information for object recognition and interac-
tion. While extensive research in quadruped robotics has concentrated on terrain traversability op-
timization through proprioceptive enhancements (e.g., adaptability to varied terrains and parkour
capabilities) (Miki et al., 2022; Hoeller et al., [2024} |Cheng et al., 2024; [Fink & Semini, 2020; |San-
tana et al.| 2024} [Lin et al.l 2023} [Lee et al.l 2020; [Shi et al., [2023), exteroceptive perception in
open-road scenarios remains critically underdeveloped: existing datasets are predominantly limited
to small-scale or indoor/campus environments with low complexity and insufficient data quality to
meet real-world urban road demands (Carlevaris et al., 2016; [Yan et al., 2018; 2020; [Hirose et al.,
2018; [Martin et al., [2021}; [Karnan et al., [2022}; Hirose et al., 2023 Wang et al.l 2024} Zhang et al.,
2024; Luo et al.L|2025)). This pronounced gap between current research and future deployment needs
highlights the urgency of establishing exteroceptive perception benchmarks tailored for complex
urban environments.

Addressing this challenge, we present L4Dog, the first large-scale exteroceptive 3D perception
dataset for quadruped robots in complex urban scenarios. The “L4” designation borrows from
autonomous driving terminology, signifying level-4 autonomy in complex urban environments.
Equipped with high-specification sensors enabling full 360-degree surround-view coverage, L4Dog
surpasses existing quadruped datasets by encompassing challenging urban scenes including traffic-
light intersections, open roads, subway stations, and tactile paving areas, featuring complex human-
machine interaction scenarios with dense vehicle flows, pedestrians, and cyclists. We pioneer the
formulation of outdoor quadruped perception tasks as surround-view bird’s-eye-view (BEV) per-
ception tasks, emphasizing three-dimensional BEV space perception for advanced autonomous nav-
igation and decision-making. Our dataset provides high-quality 3D manual annotations, establishing
multiple benchmark tasks including BEV detection, BEV tracking, and trajectory prediction. Fur-
thermore, we introduce the first occupancy grid representation for 3D traversable space in quadruped
robotics, with manual annotations of 360-degree occupancy grids surrounding the robot, thereby
proposing the inaugural occupancy benchmark in exteroceptive perception for quadruped platforms.
For multi-task perception (detection, tracking, prediction, occupancy prediction), we propose the
OmniBEV4D baseline method, which formalizes exteroceptive tasks as BEV perception tasks and
supports multi-task perception capabilities.

Our core contributions are summarized as follows:

1) We introduce L4Dog, the first BEV perception dataset for quadruped robots in open complex
urban scenarios, featuring high-quality manual annotations. This work pioneers the formulation of
quadruped exteroceptive 3D perception as a fused BEV-space perception task.

2) We establish a multi-benchmark framework for BEV environmental perception in quadruped
robots, encompassing challenging tasks in BEV object detection, multi-target tracking, and trajec-
tory prediction.

3) We propose the first occupancy network prediction framework for 360-degree 3D traversable
space in quadruped robots, accompanied by high-quality occupancy annotations.

4) We develop the OmniBEV4D perception framework, which leverages shared temporal BEV fea-
tures through a multi-task architecture to simultaneously enable BEV perception, tracking, trajectory
prediction, and occupancy estimation, serving as the baseline method for L4Dog benchmark tasks.

The remainder of this paper is organized as follows: Section 2 reviews related datasets and perception
methodologies in quadruped robotics; Section 3 details the L4Dog dataset; Section 4 presents the
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multi-perception benchmarks and the OmniBEV4D baseline; Section 5 concludes with future work
perspectives.

2 RELATED WORK

2.1 QUADRUPED ROBOT PERCEPTION DATASETS

Quadruped robot perception datasets can be categorized into proprioception (locomotion-focused)
and exteroception (environmental understanding) types (Miki et al., 2022)). This work focuses on
exteroception, typically employing optical sensors such as RGB cameras, RGB-D cameras, and
LiDAR. Notable datasets include SCAND (Karnan et al., 2022), which equipped ClearPath Jackal
and Spot robots with 16-beam LiDAR and stereo RGB cameras to collect teleoperated traversal
data for social navigation; NCLT (Carlevaris et al., [2016), which provides long-term campus data
with 32-beam LiDAR and omnidirectional cameras for mapping applications; and RECON (Shah
et all 2021)), ViKing (Shah et al 2022)), and GND (Liang et al.| 2024)), which serve as general-
purpose mapping datasets. Specialized traversability datasets include ForestTrav (Ruetz et al.,|2024),
TRIP (Oh et al., [2024)), and GoStanford (Hirose et al., 2018) for outdoor and indoor environments.
Crucially, none of these datasets include explicit object recognition (e.g., pedestrian detection) or
provide supervised annotations.

For explicit quadruped perception, FLOBOT (Yan et al.l |2020) provides indoor pedestrian annota-
tions using 16-beam LiDAR and stereo RGB-D cameras, while L-CAS (Yan et al.| 2018) offers 3D
pedestrian annotations in office environments with 16-beam LiDAR. QuadTrack (Luo et al., [2025]))
focuses on 2D multi-frame pedestrian tracking with panoramic cameras, and TBD Pedestrian (Wang
et al.,|2024) provides indoor pedestrian tracking with 3D annotations from single-beam LiDAR. Re-
cent large-scale pedestrian datasets include JRDB (Martin et al., 2021), SiT (Bae et al., 2023), and
CODa (Zhang et al.| 2024), which feature varying sensor configurations with extensive 3D annota-
tions.

Our work (L4Dog) belongs to explicit supervised quadruped perception, sharing similarities with
(Bae et al.} 2023), (Martin et al., 2021), and (Zhang et al., [2024)) but introducing five key innova-
tions. First, it represents the largest 3D-annotated quadruped exteroception dataset, being an order
of magnitude larger than JRDB/CODa. Second, it captures Level 4 complex urban environments
with high object density. Third, it pioneers the formulation of quadruped exteroception as 360°BEV
perception. Fourth, it provides additional 3D occupancy annotations for traversable space. Please
refer to Table|l|for a comprehensive comparison of exteroception datasets.

2.2 QUADRUPED ROBOT PERCEPTION METHODS

As stated, this work focuses on quadruped exteroception tasks; proprioceptive methods for loco-
motion are omitted. Exteroceptive methods primarily evaluate environmental traversability for nav-
igation and interaction, divided into terrain recognition and object recognition. Terrain recognition
classifies ground surfaces to assess traversability, while object recognition detects obstacles (e.g.,
pedestrians, traffic cones) in 2D/3D space. Representative approaches include FLOBOT’s SVM
and Bayesian tracking (Yan et al.l 2020), TBD Pedestrian’s ByteTrack-based 2D tracking (Wang
et al.l 2024), L-CAS’s LiDAR clustering with UKF tracking and SVM classification (Yan et al.,
2018)), JRDB’s YoloV3/RetinaNet for 2D detection and Frustum PointNet for 3D detection (Mar-
tin et al., [2021), and SiT/CODa’s LiDAR-based detectors (FCOS3D/PointPillar/CenterPoint) (Bae
et al.| 2023; Zhang et al.| 2024)).

Given L4Dog’s focus on exteroception in complex urban roads with dense traffic, we adopt au-
tonomous driving paradigms by formulating quadruped exteroception as Bird’s-Eye-View (BEV)
perception. Our technical approach combines whitelist-based BEV recognition and non-whitelist
occupancy recognition methods.

2.3 BEV PERCEPTION IN AUTONOMOUS DRIVING

BEV perception has experienced significant advancements in the field of autonomous driving in re-
cent years. The core concept involves mapping multi-sensor data through coordinate transformation
to unify features in the BEV space for representation and learning. Representative works for BEV
detection include LSS (Philion & Fidler, 2020), BEVFormer (Li et al., 2022), BEVDet (Huang
et al., 2021), and BEVFusion (Liu et al., [2022)). Occupancy Prediction, a novel benchmarking task
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Table 1: Comparison of exteroception datasets for (quadruped) robots. L4Dog supports 360-degree
panoramic sensor fusion recognition, outperforming SOTA benchmarks in data scale, 3D object
annotation capacity, and object density. L4Dog enables multi-modal external perception tasks in-
cluding BEV perception, trajectory prediction, and occupancy prediction.

360° L+C/ .
Dataset Published Nugﬁg&pges/ Scene Obg[]))elésily/ Exte{ggﬁ]:tlon Sensors
3D objs
NCLT JRR N/A indoor 32&2-beam LiDAR
Carlevaris et al.|(2016) IF 5.0 349h 85‘;:‘1181(1)2 N(/)A N/A 360° Camera
L-CAS IROS 28,002 indoor 1 )f 2 Human Detection 16-Beam LiDAR
Yan et al.|(2018) 0.82h office 6140 & Tracking N/A
GoStanford IROS 10,560 indoor N)/(A 2D Traversable N/A
Hirose et al.|(2018) N/A office 0 Probability 360° RGB Camera
FLOBOT ISR 16,570 indoor Noa Human Detection 16-Beam & 2D-LiDAR
Yan et al.|(2020) IF4.3 0.46 h airport etc. 968 & Tracking RGB-D Stereo
RECON - 5,000 outdoor X 2D LiDAR
Shah et al.|(2021) arXiv N/A 9 sites N(/)A Nia Stereo Camera
JRDB TPAMI 60,000 Indoor % Human Detection 2x 16-Beam LiDAR
Martin et al.|(2021) IF 20.8 1.07h campus 1.8 million & Tracking Stereo & Fisheye Camera
SCAND RA-L N/A indoor A N/A 16-Beam LiDAR
Karnan et al|(2022) IF53 8.7h QAmpus 0 RGB-D & surround RGB
Seattle N/A outdoor X LiDAR Semantic :
Shaban et al.|(2022) CoRL lh offroad N(/)A segmentation 64-Beam LiDAR
VIiKiNG N/A outdoor X N/A
Shah et al(2022) RSS 12h  sidewalks/parks  NJA N/A 170° RGB Camera
SACSoN RA-L N/A indoor N)/‘ A N/A 2D LiDAR
Hirose et al.|(2023) IF5.3 75h office 0 Spherical RGBD
SiT 12,000 indoor Fuman Detection, 2x 16-Beam LIDAR
Bac ot al.|(2023) NeurIP$ 0.33h Op%?lt%%g;es 0.322r6rii7lli on Tracking, Prediction 5x Camera
ForestTrav IEEE Access N/A outdoor N‘//A probabilistic 3D 16-Beam LiDAR/
Ruetz et al.|(2024) IF3.6 N/A forest 0 voxel map 4x RGB Camera
CEAR RA-L N/A indoor A N/A 16-Beam LiDAR/
7hu et al.|(2024) IF53 N/A outdoor 0 Event&RGBD Camera
TBD Pedestrian RA N/A indoor v an Tracki 3D-LiDAR/
Wang et al.|(2024) IF 4.55 355h Mall III\U7A16 Human Tracking 360°&Stereo Camera
CODa T-RO 34,800 indoor 4 LiDAR 3D 128-Beam LiDAR/
Zhang et al|(2024) IF 10.5 lh 8}“}11&% 1.3 million Detection 2xRGB&RGBD Camera
QuadTrack 19,000 td N/A/
Luo et al.|(2025) CVPR 05h ggml(’)l(l)g 0. 199i1§;)llion 2D mot Panoramic Camera
v BEYV Detction & Tracking .
L4Dog(ours) 2025 360000 omoyidoor, . 487 Trajectory Prediction 32-Beam LiDAR/
P 17.5 million ~ Occupancy Prediction

introduced in autonomous driving, addresses the challenge of detecting non-standard obstacles by
representing 3D space through a voxelized grid. Notable approaches include Occ3D (Tian et al.|
2023)), OpenOcc (Tong et al., 2023)), SparseOcc (Liu et al.l 2023), FBOcc (Li et al.| 2023}, and
FlashOcc (Yu et al., 2023)). This work builds on autonomous driving’s BEV paradigm by introduc-
ing the first first-person BEV perception methodology for quadrupedal robots. The data distribu-
tion, scene complexity, and object representation challenges in this context differ significantly from
autonomous driving, offering unique value for quadrupedal robotics. Beyond BEV detection and
occupancy prediction, we propose BEV tracking and trajectory prediction tasks, introducing four
novel external perception benchmarks tailored for quadrupedal robots. Finally, we introduce the first
multi-task BEV recognition framework integrating all four benchmarks.

3 DATASET

3.1 PLATFORM & SENSORS

We selected a quadruped robotic dog as our data acquisition platform. Compared to alternative mo-
bile robotic platforms (e.g., Clear Path robots), legged systems offer superior terrain adaptability,
enhanced mobility, and greater commercialization potential. Specifically, to address diverse urban
scenarios including sidewalks, roadways, and tactile paving (Section 3.3), we employed the wheeled
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Lidar Cameras
Hesai XT32 AR0231C

Table 2: Sensor Specifications. We utilize 5
x cameras and 1 x LiDAR deployed in a
360°configuration. IMU uses the built-in IMU
of the robotic dog.

Sensor Num Specifications

RGB image @ 1920x1080

X-axis | S Camera 5 .
— Vaxis 0 = E;ea'“ et resolution, 10Hz, FOV=150°.
® DowntoY: E 150° Camera

Spinning, 32 beams, 10Hz,
Figure 2: Sensor Setup on Unitree Go2. One 32- | . -, . 360°x 31FOV @ 0.18°x 1 resolution,
beam LiDAR and five 150°-FOV cameras. Blue: 0.05-120m range @ 3-0.5cm accuracy,
camera FoV; brown dots: LiDAR coverage. with up to 6.4M points per second.

quadruped Unitree Go2 (Unitreel[2025-07-27) as the L4Dog acquisition platform. This hybrid loco-
motion system enables wheeled movement on flat surfaces and legged locomotion on uneven terrain
(e.g., tactile paving) and elevation changes (curbs), demonstrating exceptional terrain traversal ca-
pabilities. For obstacle avoidance (vehicles, motorcycles, pedestrians, static obstacles) during urban
navigation, precise 3D object recognition is essential.

Consequently, a high-performance 360° perception system was implemented, comprising one 32-
beam LiDAR and five RGB cameras to provide fused point cloud and visual data. Compared to
16-beam LiDARs (Table m), the 32-beam configuration yields higher point density and extended de-
tection range. Unlike RGB-D or stereo cameras, the multi-camera panoramic system delivers com-
prehensive 360° visual coverage that spatially aligns with LiDAR point clouds, enriching 3D data
with semantic information. Relative to panoramic cameras, this multi-camera configuration achieves
superior detection range and reduced image distortion. The 360° LiDAR-camera fusion approach
follows autonomous driving paradigms (nuScenes (Caesar et al., 2020), nuPlan (Caesar et al.,|2021)),
Waymo (Sun et al.,[2020), PandaSet (Xiao et al.,2021)), Argoverse (Wilson et al.,|2023))), addressing
L4 perception challenges in complex pedestrian/vehicle environments while supporting BEV per-
ception formulations. Wide-angle RGB cameras were mounted vertically (90° rotation) to maintain
360° coverage while expanding vertical perception. This configuration ensures full-body imaging of
nearby pedestrians (0.4m). Sensor specifications are listed in Table[2]

3.2 COORDINATES, CALIBRATION AND SYNCHRONIZATION
3.2.1 COORDINATE SYSTEMS

The L4Dog platform employs five coordinate systems for spatial perception and sensor fusion Fig-
ure[2] including image UV coordinates for 2D pixel representation in vision data, camera coordinates
as a 3D frame centered at the optical axis for geometric transformations, IMU coordinates aligned
with inertial sensor axes for motion state estimation, LiDAR coordinates for high-resolution 3D
point cloud mapping, and robot coordinates as a body-fixed frame for navigation and control. These
coordinate systems are synergistically integrated through transformation matrices, with cross-sensor
calibration achieved via the following methods.

3.2.2 CALIBRATION PROCEDURES

» Cameras: Calibrated using checkerboard patterns and pinhole camera models to establish
image-to-camera coordinate transformations (Zhang, |1999).

* Camera-to-LiDAR: Extrinsic calibration performed pairwise, with projection matrices op-
timized until static point cloud projections achieved pixel-level alignment.

* IMU-to-Robot: Transformation derived from measured installation offsets and angles.

* LiDAR Motion Compensation: IMU motion estimates applied for dynamic point cloud
distortion correction.

* LiDAR-to-IMU: LiDAR-to-IMU calibration is initialized using CAD drawings and on-
site installation measurements, and further refined via the LI-Init calibration method (Zhu
et al.,[2022).
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Table 3: Data collection scenes statistics.

Scene ID Scene Clips Annotated Objects Features

S001 Subway 363 1.93M dense pedestrians

$002 ﬁ:f‘:gclt‘lﬁzts 1798 10.3M complex traffic flow
S003 Open Road 1081 3.5M mix of pedestrians and vehicles
S004 Tactile Paving 358 1.75M narrowly passable

3.2.3 SYNCHRONIZATION

All sensors were synchronized via a high-precision Precision Time Protocol (PTP) server, with
timestamps referenced to the LiDAR’s timestamp. Camera exposure triggers were initiated at Li-
DAR scan center alignment, defining camera timestamps. LiDAR timestamps marked completion
of full rotational scans, with motion compensation applied using localization data to account for
scan duration.

3.3 DATA COLLECTION SCENES AND COLLECTION PLANS

L4Dog focuses on first-person 3D perception datasets for quadruped robots operating in complex
urban environments. The data was collected during peak hours in four distinct urban scenarios (Ta-
ble [3): 1) Subway stations, characterized by high pedestrian density and dynamic interactions be-
tween people and non-motorized vehicles; 2)Traffic light intersections involving complex interac-
tions between vehicles and pedestrians; 3) Open roads with mixed vehicle/non-motorized traffic; 4)
Tactile paving areas with narrow space, requiring specialized navigation for assistive applications.
Representative annotated samples are visualized in Figure 4]

3.4 GROUND TRUTH FORMATS AND ANNOTATION

As previously formulated, perception tasks are structured as BEV problems comprising: 1) BEV 3D
detection ground truth for whitelisted objects; and 2) 3D traversability (occupancy) ground truth for
non-whitelisted entities.
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Figure 3: L4Dog Dataset Statistics: (a) 360° heatmap of object distribution relative to the ego robot.
(b) Object category distribution by distance from the ego robot. (c) Ego robot speed distribution.
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distribution by distance from the ego robot. (f) Occupancy grid distance distribution. Note “child”
and “leg” are treated as interchangeable terms for the same category.
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3.4.1 BEV 3D OBJECT ANNOTATION

Each sensor frame was manually annotated for whitelisted objects within 50m. Annotations include
3D bounding boxes parameterized as (id, cls, x, y, z, w, 1, h, yaw), where: id denotes unique object
identifiers enabling tracking/prediction across 10Hz frames (100ms intervals); cls indicates object
category € {car, bus/truck, pedestrian, cyclist, static obstacle, legs/child}; (x, y, z) specifies robot-
centric coordinates (meters); (w, 1, h) defines physical dimensions (meters); and yaw defines the
heading angle. Notably, ’legs’ category denotes pedestrians within 0.4m where upper-body occlu-
sion prevents full-body detection. Annotations were performed using a custom LiDAR-RGB fusion
tool, primarily labeling 3D boxes in point clouds with image projection validation. All annotations
underwent secondary quality assurance, achieving > 98% accuracy.

3.4.2 3D OCCUPANCY GRID ANNOTATION

Beyond dynamic object perception, L4Dog addresses non-whitelisted object recognition and 3D
traversability estimation (e.g., curb negotiation, obstacle avoidance). Departing from elevation map
representations ( 2022)), we formulate this as 3D occupancy estimation, encoded as cls,
X, Y, z, grid_size to resolve traversability and open-set recognition.

Occupancy ground truth generation adapts autonomous driving methodologies (Tian et al., 2023
2023): 1) Dynamic objects (Section 3.4.1 annotations) are transformed to object-centric

coordinates for multi-frame point cloud accumulation; 2) After temporal reconstruction and motion
compensation, static backgrounds are processed via multi-frame point cloud fusion and mesh recon-
struction; 3) Ground planes (relative traversable surfaces) are segmented and removed; 4) Remain-
ing point clouds are voxelized (grid_size=0.2m) within a cylindrical volume (radius=50m, height=[-
1m,4m], robot-centric), into 8 categories (besides bbox categories, add free space and unknown).
The ground truth labels underwent a final round of manual quality control and refinement. Occu-
pancy representations are illustrated in Figure [T}

3.5 STATISTICAL ANALYSIS

Dataset statistics are presented in Figure [3] where we analyze the distribution of objects and occu-
pancy grids under the ego robot. The analysis includes heat map distributions, category distributions
within 10-meter intervals, distance distributions, and velocity distributions during robot data col-
lection. As shown in the figure, L4Dog exhibits characteristics such as complex multi-class object
distributions, long-range objects, and high-density occupancy grids.

camera_4_right front  camera_7_right_back _camera_5_back camera_6_left_back camera_3_left_front
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i
S g

S003-Open Road

e =

busfruck
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Figure 4: More collection scenes and GT illustration samples for each scene. For S002 traffic-light
intersection please refer to Figure[T} From left to right: Cameras, LIDAR, Occupancy. We showcase
detection & tracking frame in SO01 and S004, motion frame in S003.

3.6 PRIVACY PROTECTION

All human faces and license plates in image data were anonymized using mosaic blurring to ensure
privacy and data security.
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4 BENCHMARKING & BASELINES

We introduce two core benchmarks on the L4Dog dataset: BEV Object Recognition (Section 4.1)
and Occupancy Prediction (Section 4.2). The BEV Object Recognition benchmark encompasses
three subtasks: BEV Object Detection (Section 4.1.1), BEV Object Tracking (Section 4.1.2), and
Object Trajectory Prediction (Section 4.1.3). Furthermore, we propose a multitask baseline frame-
work that enables simultaneous performance of all four perception tasks through a unified neural
network architecture (Section 4.3). Notably, L4Dog represents the first and only work in quadruped
robotics perception research to systematically establish benchmarks for both BEV object recognition
and occupancy prediction.

4.1 BEV OBJECT RECOGNITION

4.1.1 BEV OBJECT DETECTION

Task Description: Analogous to BEV detection in autonomous driving research, L4Dog’s BEV
object detection aims to identify object categories, positions, orientations, and dimensions within
the robot’s 360° surroundings using LiDAR and surround-view images. Distinct from auto-
motive applications, L.4Dog presents algorithmic challenges including dense non-rigid objects,
severe pedestrian occlusion, and partial observation of pedestrians (leg categories) from the
robot’s low vantage point. The formulation is expressed as:(cls, conf, z, y, z, w, [, h, yaw) =
F((Iy, I, Iz, I3, 1), L, t) where I; denotes JPEG images from five cameras, L represents Li-
DAR point clouds (PCD format), and ¢ indicates the temporal component (optional for single-frame
detection; required for 4D multi-frame detection). The outputs include object class (cls), confidence
(conf), position (z,y, z), bounding box dimensions (w, !, h), and yaw angle. For evaluation, we

employ widely used mAP as the metric: mAP = & 5™ (1—11 > 001,10} max;ZTpc(f)).

4.1.2 BEV OBJECT TRACKING

Task Description: This task focuses on associating unique IDs to detected objects across consecutive

frames. By integrating object detection,

motion modeling, and data association

techniques, it ad%resses challenges such ®6E -
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Performance is evaluated using MOTA:
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tations may follow either two-stage Figure 5: OmniBEV4D: Multitasking Baseline Method
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Task Description: This task predicts 3D spatial occupancy within the robot’s sensing range to deter-
mine navigable areas. We discretize a cylindrical volume (radius: 50m; height: [-1m, 4m]) centered
on the robot into grids (grid_size = 0.2m). Similar to autonomous driving formulations, each grid
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is characterized by {cls, conf, x, y, z, occupied}, where cls denotes category, conf indicates confi-
dence, (z,y, z) represents robot-centric coordinates, and occupied is a binary occupancy flag. We
utilize mloU (Tian et al., 2023) and RayloU (Liu et al., 2023) as metrics. mloU measures voxel-
wise overlap between predicted and ground-truth occupancies, while RayloU evaluates occupancy
consistency along sensor rays by comparing predicted and actual ray termination points.

4.3 METHOD & EXPERIMENTS

4.3.1 BASELINE METHOD: OMNIBEV4D

A naive baseline approach would apply classical methods (e.g., BEVDet (Huang et al., 2021) for
detection, ByteTrack (Zhang et al., [2022) for tracking) independently to each task. However, we
contend that such single-task baselines offer limited value for L4Dog’s complex scenarios, as no
individual task suffices for quadruped robots’ navigation requirements.

Moreover, combining four separate baselines incurs significant computational redundancy, preclud-
ing real-time deployment. Therefore, we propose OmniBEV4D—a strong multitasking baseline for
L4Dog perception. As illustrated in Figure 5] this LIDAR-camera fusion network maximizes com-
putational sharing through: 1) joint feature extraction from heterogeneous sensors, 2) unified feature
fusion, and 3) shared 4D memory buffer. Task-specific heads then branch for BEV detection, track-
ing, trajectory prediction, and occupancy estimation.

4.3.2 L4D0OG EXPERIMENTS & ABLATIONS

We conduct quantitative evaluations of OmniBEV4D on the L4Dog dataset, presenting compara-
tive results against classical quadruped exteroceptive methods across the proposed tasks (see Ta-
ble [d). As demonstrated, OmniBEV4D achieves state-of-the-art performance while handling mul-
tiple tasks. Furthermore, we conducted ablation studies by training OmniBEV4D on nuScenes and
CODa datasets, followed by evaluation on L4Dog. The performance degradation observed highlights
the distinct distribution and complexity characteristics of our proposed L4Dog dataset.

Table 4: Quantitative Evaluation on L4Dog.

BEVDet BEVTrk  TrajPred OccPred
mAPt MOTAT ADE/FDE| mloU/RayloUt

PointPillar (Lang et al.|2019)  58.4% — — —
BEVFusion (Liu et al.|[2022) 70.1% — — —

Methods

ByteTrack (Zhang et al.|[2023) — 57.9% — —

GANet (Wang et al.|[2022) — — 1.24/2.16 —
FBOcc (L1 et al.|[2023) — — — 48.5%143.2%
OmniBEV4D-nuScenes 52.4% 58.3% 1.45/1.98 33.2%/36.4%

OmniBEV4D-CODa 60.3% — — —
OmniBEV4D (ours) 70.4% 65.4% 1.24/1.76 45.6%152.4%

5 CONCLUSION & FUTURE WORK

We present L4Dog, the largest and most complex exteroceptive perception dataset to date in
quadruped robotics research. L4Dog encompasses temporally continuous multi-modal sensor data
and human-annotated ground truth across complex urban scenarios including subway stations, traf-
fic intersections, and open roads. This work pioneers the formulation of quadruped robotic per-
ception as BEV tasks, establishing comprehensive benchmarks for BEV detection, BEV tracking,
and trajectory prediction. Furthermore, we introduce the first occupancy prediction benchmark with
corresponding ground truth for quadruped robots.

To address the multitasking requirements of practical autonomous navigation, we propose Om-
niBEV4D—a unified framework that simultaneously generates inference results for all perception
tasks through shared spatiotemporal feature computation. Quantitative evaluations on the L4Dog
dataset validate the effectiveness of the OmniBEV4D approach, with ablation studies highlighting
the dataset’s value.

Future work will incorporate natural language annotations to support Vision-Language Models
(VLM) and Visual Question Answering (VQA) research, navigation trajectory recordings for Vision-
and-Language Navigation (VLN) studies, and low-level control signal acquisition to enable Vision-
Language-Action (VLA) research.
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