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Abstract: If we want to train robots in simulation before deploying them in real-
ity, it seems natural and almost self-evident to presume that reducing the sim2real
gap involves creating simulators of increasing fidelity (since reality is what it is).
We challenge this assumption and present a contrary hypothesis – sim2real trans-
fer of robots may be improved with lower (not higher) fidelity simulation. We
conduct a systematic large-scale evaluation of this hypothesis on the problem of
visual navigation – in the real world, and on 2 different simulators (Habitat and
iGibson) using 3 different robots (A1, AlienGo, Spot). Our results show that, con-
trary to expectation, adding fidelity does not help with learning; performance is
poor due to slow simulation speed (preventing large-scale learning) and overfit-
ting to inaccuracies in simulation physics. Instead, building simple models of the
robot motion using real-world data can improve learning and generalization.
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1 Introduction

The sim2real paradigm consists of training robots in simulation (potentially for billions of simula-
tion steps corresponding to decades of experience [1]) before deploying them in reality. The last
few years have seen significant investments – the development of new simulators [2–12], curation
and annotation of 3D scans and assets [13–15], and development of techniques for overcoming the
sim2real gap [16–19] – resulting in a number of successful demonstrations of sim2real transfer [20–
25]. However, no simulator is a perfect replica of reality and the main challenge in this paradigm is
overcoming the sim2real gap, defined as the drop in a robot’s performance in the real-world (com-
pared to simulation). It seems natural and almost self-evident to presume that reducing this sim2real
gap involves creating simulators of increasing physics fidelity, and this sometimes forms the default
operating hypothesis of the field.

We challenge this convention and present a counter-intuitive idea – sim2real transfer of robots may
be improved not by increasing but by decreasing simulation fidelity. Specifically, we propose that
instead of training robots entirely in simulation, we use classical ideas from hierarchical robot con-
trol [26] to decompose the policy into a ‘high-level policy’ (that is trained solely in simulation) and
a ‘low-level controller’ (that is designed entirely on hardware and may even be a black-box con-
troller shipped by a manufacturer). This decomposition means that the simulator does not need to
model low-level dynamics, which can save both simulation time (since there is no need to simulate
expensive low-level controllers), and developer time spent building and designing these controllers.

We conduct a systematic large-scale evaluation of our hypothesis on the task of PointGoal (visual)
Navigation [27] in unknown environments – using 2 simulators (Habitat and iGibson) and 3 different
robots (A1, AlienGo, Spot). We train policies using two physics fidelities – kinematic and dynamic.
Kinematic simulation uses abstracted physics and ‘teleports’ the robot to the next state using Euler
integration; kinematic policies command robot center-of-mass (CoM) linear and angular velocities.
Dynamic simulation consists of rigid-body mechanics and simulates contact dynamics (via Bullet
[12]); dynamic policies command CoM linear and angular velocities, which are converted to robot
joint-torques by a low-level controller operating at 240 Hz. We find that across all robots, a kinemat-
ically trained policy outperforms dynamic policies, even when evaluated using dynamic simulation
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Figure 1: Left: We train visual navigation policies at two levels of fidelity – kinematic and dynamic. In
kinematic control (top), the robot is ‘teleported’ to the next state using Euler integration. In dynamic control
(bottom), the robot’s velocity commands are converted to leg joint-torques and rigid-body physics is simulated
at 240Hz. Right: We evaluate the kinematic and dynamic trained policies in simulation (top) and the real-world
(bottom) across 5 identical episodes. The kinematic policy achieves a 100% success rate in all 5 episodes, and
the robot takes similar paths in both simulation and the real-world. On the other hand, the dynamic policy
achieves a 20-60% success rate, and the trajectories taken in simulation and the real-world do not correlate,
pointing towards a larger sim2real gap.

and control. Additionally, we show that the trained kinematic policy can be transferred to a real
Spot robot, which ships with manufacturer-provided ‘black-box’ low-level controllers that cannot
be accurately simulated. In contrast, dynamic policies fail to achieve efficient navigation behavior
on Spot, due to the sim2real gap and less simulation experience.

The reasons for these improvements are perhaps unsurprising in hindsight – learning-based methods
overfit to simulators, and present-day physics simulators have approximations and imperfections
that do not transfer to the real-world. A second equally significant mechanism is also in play –
lower fidelity simulation is typically faster, enabling policies to be trained with more experience
under a fixed wall-clock budget. Even when the kinematic policies were trained for 2.3× less wall-
clock time than the dynamic policies (with the same compute), the kinematic policies were able to
learn from 10× the amount of data. While our results are presented on legged locomotion and visual
navigation, the underlying principle – of architecting hierarchical policies and only training the high-
level policy in an abstracted simulation – is broadly applicable. We hope that our work leads to a
rethink in how the research community pursues sim2real and in how we develop the simulators of
tomorrow. Specifically, our findings suggest that instead of investing in higher-fidelity physics, the
field should prioritize simulation speed for tasks that can be represented with abstract action spaces.

2 Related Work

Visual Navigation. Recent works have shown that large-scale indoor environments and simulators
like Habitat [2, 3] and iGibson [4] can enable end-to-end learning of navigation policies from large
amounts of agent- or expert-generated data [28–30] on simple, wheeled systems. This is in contrast
to the typical mapping and planning paradigm used in classical robotics, which can suffer when the
quality of maps is low [31] or requires expensive equipment like LiDAR [32]. In this work, we show
that such end-to-end learning is also possible for complex, legged robots.
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Sim2real for Legged Robots. Sim2real quadrupedal locomotion has been widely studied in the
past several decades [22, 33–36], with most learning low-level skills in simulation and transferring
them to hardware [37], or adapting them online to reduce the sim2real gap [38, 39]. However, these
policies are typically blind, and use only proprioceptive sensors on the robot to determine actions
[23, 25]. In contrast, an autonomous robot needs to respond to its environment, and take visual
input into account. Some works have proposed learning visual policies in simulation and applying
them to the real-world [22, 24, 40], and other works leverage expensive LiDAR sensors for external
sensing [41]. These works use learned or hand-designed physically simulated low-level controllers;
we show that physics simulations can be detrimental to learning high-performing sim2real policies,
even for complex legged robots. Work from [42] also utilize similar simulator simplifications to
increase simulation speed in training navigation policies for 1 robot in a single room, but does not
discuss how this formulation affects sim2real transfer. In our work we present a rigorous (multi-
robot, multi-simulator) study of the effect of different simulation fidelities on visual navigation.

Abstracted Task-space Learning. Abstracted (hierarchical, high-level) action spaces are com-
mon in robotics literature. Examples include task and motion planning for manipulation [43–45],
legged locomotion [46, 47], navigation [20], etc. Several works reason over symbolic actions like
pick and place, or hierarchical policies with discrete/continuous attributes [33–35, 48, 49], or even
abstracted dynamics models [36]. While the ideas of abstracted/hierarchical policies are fairly com-
mon, typically both the high- and low-level policies are learned in simulation and transferred to
reality [33, 34, 36], often augmented with techniques like domain randomization [37] and real-word
adaption [18]. Instead, we use an abstracted simulator, which does not model low-level physics, and
learn high-level policies that are transferred to the real-world in a zero-shot manner.

3 Experimental Setup

Task: PointGoal Navigation. In the task of PointGoal Navigation [27], a robot is initialized in an
unknown environment and is tasked with navigating to a goal coordinate without access to a pre-built
map of the environment. The goal is specified relative to the robot’s starting location for the episode
(i.e., “go to ∆x, ∆y”). The robot has access to an egocentric depth sensor and an egomotion sensor
(sometimes referred to as GPS+Compass in this literature) from which the robot derives the goal
location relative to its current pose. An episode is considered successful when the robot reaches the
goal position within a success radius (typically half of the robot’s body length). The robot operates
within constraints of maximum number of steps per episode (150 for Spot) and velocity limits (± 0.5
m/s for linear and± 0.3 rad/s for angular velocities on Spot). We linearly scale the linear and angular
velocity limits for A1 and Aliengo to be proportional to the length of each robot’s leg, and inversely
scale the maximum number of steps allowed. In effect, smaller robots have a smaller maximum
allowed velocity to improve stability during execution, but are allowed more steps to reach the goal.
The exact parameters used for each robot is described in the appendix. For evaluation, we report the
success rate (SR), and Success inversely weighted by Path Length (SPL) [27], which measures the
efficiency of the trajectory taken with respect to the ground-truth shortest path.

Robot Platforms. We study visual navigation for 3 quadrupedal robots – A1 and Aliengo from
Unitree [50], and Spot from Boston Dynamics (BD) [51] in simulation. In the real-world, we show
sim2real transfer of the learned navigation policies to Spot. To have a consistent camera setup
across all the robots, we attach an Intel RealSense D435 camera to Spot in the real-world, and use
this camera for visual inputs to the policy. In our hardware experiments, we want to measure how
often our sim2real policies lead to collisions without jeopardizing safety. We achieve this balance
as follows: the BD collision-avoidance capability is kept turned on, set to trigger at a tight threshold
of 0.10m. Next, we track the number of times the robot comes within 0.20m of any obstacle (as
measured by any of the 5 onboard depth cameras). This gap (between 0.20m and 0.10m) allows
us to record possible collisions while preventing actual ones. While the BD API allows for high-
level navigation without access to a map, it cannot navigate around obstacles autonomously, without
a map. In our work, we consider complex, long-range navigation paths (up to 30m) in cluttered
environments with many obstacles; the goals are unreachable with the just BD navigation API.

Simulation Environments. We use two simulation platforms – Habitat [2, 3] and iGibson [4] for
training and evaluation. Both simulators support rendering of photorealistic environments; Habitat
uses a low-level (C++) integration with the Bullet physics engine [12], while iGibson leverages Py-
Bullet, the Python-based integration of Bullet. Thus, while the underlying physics engines between

3
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Figure 2: Robots used for training and evaluation.

the two are the same, Habitat runs ∼ 1200% faster than iGibson [3]. This allows us to train policies
faster with Habitat than with iGibson even when using identical policies and compute.

Dataset. For training and evaluation, we use a combination of the Habitat-Matterport (HM3D) [13]
and Gibson [52] 3D datasets. The two datasets combined consist of over 1000 high-resolution 3D
scans of real-world indoors environments, and consists of realistic clutter. We generate training
and evaluation episodes compatible with our robots for the HM3D and Gibson scenes following the
procedure described in [2]. Specifically, we restrict the geodesic distance from the start and positions
to be between 1 and 30m, and increase navigation complexity by rejecting paths that consist of near-
straight lines, with few obstacles. As described in [2], both of these heuristics result in complex, but
navigable paths. Additionally, we check for collisions along the sampled paths using the URDF of
the largest robot (Spot) to ensure that all paths are navigable.

Figure 3: The real-world testing environment is a part of
a large commercial building and contains clutter from
furniture such as tables, bookshelves, and couches.

Real-World Test Environment. The real-
world evaluation environment, LAB, is a
325m2 lobby in a commercial office building.
The lobby contains furniture such a couches,
cushions, bookshelves and tables. We specify a
set of 5 waypoints as the start and end locations
for the navigation episodes in LAB with an av-
erage episode length of 10m. We match the
furniture layout to the position captured in the
3D scan (Figure 3) to run identical evaluation
experiments in both simulation and the real-
world. The scan of LAB is not part of training.

4 Kinematic and Dynamic Control for Visual Navigation

As illustrated in Figure 4, our proposed approach is hierarchical, with (1) a high-level visual navi-
gation policy that commands desired center of mass (CoM) motion at 1Hz, and (2) a low-level con-
troller that follows this desired motion. We consider controllers at two levels of abstraction – ‘kine-
matic’ and ‘dynamic’. The kinematic controller simply integrates the desired velocity and outputs a
CoM position at 1Hz; kinematic simulation then teleports the robot to the desired state. The dynamic
controller uses a low-level controller that commands joint torques at 240Hz; dynamic simulation
models rigid-body and contact dynamics via Bullet (with a physics step-size of 1/240 sec). We pro-
vide details of all three of these pieces (high-level policy, kinematic and dynamic controllers) next.

High-level Visual Navigation Policies. The high-level policy takes as input an egocentric depth
image, and the goal location relative to the robot’s current pose. The output of the policy is
a 3-dimensional vector, representing the desired CoM forward, lateral, and angular velocities
(Vx, Vy, ω). The neural network architecture consists of a ResNet-18 visual encoder and a 2-layer
LSTM policy. Using a recurrent policy allows the policy to learn temporal dependencies through the
hidden state. The final layer of the policy parameterizes a Gaussian action distribution from which
the action is sampled. The policy is trained using DD-PPO [1], a distributed reinforcement learning
method, in both the Habitat and iGibson simulators. Our reward function is derived from [22], with
an added penalty for backward velocities, which can lead to collisions and hurts performance.

Kinematic Control and Simulation. In kinematic control, the final state of the robot is calculated
by integrating the desired CoM velocity commanded by the high-level navigation policy at 1Hz. The
robot is directly moved to the desired pose, without running a physics simulation. In both Habitat
and iGibson, the robot is kept in place if being at the new desired state would result in a collision.
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Figure 4: Our architecture for PointGoal Navigation on a legged robot. A high-level visual navigation policy
predicts CoM linear and angular velocities. The velocities are passed into either a kinematic or dynamic low-
level controller to step the robot in simulation. In the real-world, we directly send the velocity commands from
the high-level policy to the robot, and uses the low-level controller from Boston Dynamics for movement.

The objective of the kinematic control is to abstract away the low-level physics interactions between
the robot and its environment. This has two advantages: (1) it avoids the need to accurately model
low-level controllers, especially for closed-source robots like Spot; (2) it enables faster simulation
speed by avoiding high-frequency physics integration, conducive to model-free RL that requires
large amounts of experience. On the other hand, teleporting the robot to the desired state might
remove necessary dynamics, such as poor tracking of low-level controllers. In Section 5, we propose
how to incorporate such low-level characteristics into a kinematic simulation using real-world data.

Dynamic Control in Simulation and Hardware. We experiment with two different low-level dy-
namic controllers for quadruped robots. The first is an expert-designed Raibert-style controller from
[22], which consists of a footstep generator and an inverse kinematic solver that commands desired
joint angles from CoM velocities. The joint angles are converted to joint torques using a linear feed-
back controller, and applied to the simulation. This controller was shown to achieve sim2real transfer
for A1 [22]. However, on other robots in our experiments, it shows relatively poor tracking of high-
level commands. Thus, we also experiment with another model-predictive control (MPC) dynamic
controller from [38], which commands joint torques directly. This controller has been applied to
real-world A1 robot [53, 54] and shows better tracking of desired velocities for our test robots, as
compared to the Raibert controller from [22]. However, MPC is prohibitively slow and cannot be
used for training RL policies. Thus, we use Raibert for training dynamic policies, but evaluate using
MPC. 1 This difference in train and evaluation dynamics controllers has multiple purposes: (1) the
evaluation using MPC improves performance of most policies, including dynamic policies, due to its
better ability to track high-level commands; (2) the difference between the two dynamic controllers
in simulation is also a proxy for the difference between our low-level controllers and closed-source
controllers from Spot. If a dynamic policy cannot transfer from Raibert to MPC, it has a low chance
of transfer to Spot which has black box BD controllers, or even other robots in the real-world.

Both dynamic controllers model the low-level physics interactions between the robot and the en-
vironment. This makes them considerably slower than the kinematic controller, making training
RL policies challenging. Moreover, for Spot, the low-level controller implementation is not openly
available, making it hard to reproduce the low-level controller in simulation. For commercial legged
robots that come with black-box controllers, kinematic simulations are the ideal fidelity for learning
navigation policies. Our experiments in Section 5 show that the added fidelity of dynamic controllers
does not benefit policy learning, or sim2real transfer.

Impact of Low-level Controllers on Policy Learning. The low-level controller used in dynamic
simulations can have a significant impact on the learned policy. Low-level controllers both in sim
and real are biased, and the status quo is to make them biased in the same way, as the policy learns
to compensate for the bias error. For example, [55] add learned actuation noise to their simulation,
while [37] measure hardware characteristics and add them to the simulation. However, given the
high-dimensional nature of low-level physics, it is very difficult to ensure that the biases incorporated
in simulation actually hold for a larger range of motions that the data was collected on. Thus, there
are several iterations of data-collection, bias updates, training and deployment needed for good

1Evaluation using Raibert [22] can be found in the appendix.
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performance. Instead, kinematic controllers are unbiased by design, and can easily incorporate
hardware bias through low-dimensional CoM motion noise models created from a small amount of
real-world data, as shown in our experiments in Section 5.

5 Results and Analysis

In this section, we first study generalization of visual navigation policies across simulators (trained
in one sim, tested in another) and across controllers (trained with one controller, tested with another).
This shows the importance of fast simulation for learning high-level policies by comparing perfor-
mance of kinematic and dynamic policies trained for the same wall-clock time. Next, we examine
the performance of the different policies at zero-shot sim2real transfer on the Spot robot.

How large is the sim2sim gap? High for dynamic, and low for kinematic policies. We
exhaustively study the combinatorial space of experiments – policies trained under 2 training
conditions (with kinematic and dynamic simulation) × 2 evaluation conditions (kinematic and
dynamic simulation) × 2 simulators (Habitat and iGibson) × 3 robots (A1, Aliengo, Spot). For
each condition, we train and report results with 3 random seeds. Each policy is trained using 8
GPUs for 3 days, resulting in a cumulative training budget of 6,912 GPU-hours (288 GPU-days).
The average success rates are presented in Figure 5. Rows represent the evaluation conditions as
tuples (simulator, fidelity), while columns represent the training conditions. We evaluate all policies
across 1,100 episodes from 110 unique scenes in the HM3D + Gibson validation split.

Figure 5: Average success rates for sim2sim and kinematic2dynamic transfer for A1, Aliengo and Spot. We
see that the kinematic trained policies perform the best overall (red quadrants), and also often outperform the
dynamic trained policies, even when evaluated using dynamic control (green quadrants vs. orange quadrants).

We make two key observations here:

1. Kinematic-trained policies perform best overall, for all robots. In all cases, kinematic policies
outperform the dynamic policies, even when evaluated using dynamic control, e.g. 62.1% SR for A1
in (iGibson, Kinematic) vs. 24.2% SR in (iGibson, Dynamic), Fig. 5, left. This is a surprising result
because the kinematic policies are being evaluated in an out-of-distribution setting, which was never
seen or accounted for during training. On the other hand, the dynamic policies are being evaluated
in the domain that they were trained in, hence do not require control-related generalization.

2. Dynamic policies are not robust to different dynamic simulations. The dynamic policies from
the two simulations observe significant performance drops when evaluated in the other dynamic sim-
ulation. This points to the dynamic policies overfitting to the simulator dynamics during training,
failing to generalize to a new setting, see e.g. column 3, rows 3 and 4; 49.8% SR for A1 in (Habitat,
Dynamic) vs. 22.3% SR in (iGibson, Dynamic). (iGibson, Dynamic) shows poor performance in
both iGibson and Habitat, with slightly poorer performance in Habitat. This sensitivity to simulation
makes training dynamics policies difficult, especially when the controller for the real-world robot is
unknown. Even if the real-world controller is known, simulation physics and real-world are differ-
ent, and sim2real transfer of the learned policy can suffer (as evidenced by low sim2sim transfer).
On the other hand, kinematic policies, that have been trained with no physics, can generalize to
the different dynamic controllers. Both of these results go to show that not only kinematic trained
policies are able to learn the task well, they have learned to reason without overfitting to simulation
physics, making their chances of successful sim2real transfer high.

Why do kinematic-trained policies outperform dynamic ones? Scale. We plot the evaluation
performance of both policies in Habitat kinematic and dynamic simulation in Figure 6. We train
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both policies to convergence– 3 days for the kinematic policies, and 7 days for the dynamic poli-
cies. While the kinematic policies are trained for 2.3× less wall-clock time, they still outperform
the longer trained dynamic policies, even when evaluated out-of-distribution using dynamic con-
trol (+12% SR). Kinematic training is much faster than training dynamically (right, Fig. 6); with
kinematic training, the robot is able to learn from approximately 10× more steps of experience
(500M steps vs. 50M steps). This increased experience allows the kinematic policies to learn in-
telligent high-level reasoning. We contend that for any computational budget, there will always be
more complex tasks that are bottlenecked by that budget. Wall-clock time is the true limitation for
learning-based sim2real approaches (not experience, as different simulators have different speeds).

Figure 6: Success rate of PointNav policies with A1 trained and evaluated in Habitat with kinematic or dynamic
control. Left: Kinematic policies outperform the dynamic trained policies (+12% SR), even when evaluated
using dynamic control. Right: Using kinematic control, we can train our robot for 10× more steps of experience
than with dynamic control under identical compute budgets, despite training for 2.3× less wall-clock time.

How large is the sim2real gap for kinematic and dynamic trained policies? We evaluate the
kinematic and dynamic policies on a Spot robot in the novel LAB environment described in Section
3. Note that scans of LAB were not part of training. We evaluate 3 seeds of each policy over 5
episodes in the real-world and report the average success rate (SR) and Success weighted by Path
Length (SPL) [27] in Table 1 (reported as a percentage for readability). Each control type is tested
in 15 real-world episodes; one run of the Spot robot navigating LAB is shown in Figure 7. Success
in the real-world is measured by computing final distance from the goal position using egomotion
estimates provided by the Boston Dynamics SDK.

Train Simulation Reality Sim2Real Gap

Simulator Control Noise SR SPL SR SPL # Act. # Coll. SR SPL

Habitat Dynamic - 60.0 38.7 40.0 28.2 107.9 41.2 20.0 10.5
iGibson Dynamic - 20.0 14.0 67.7 46.6 76.8 12.9 -47.7 32.6
Habitat Kinematic - 93.3 76.9 100.0 82.7 26.4 3.1 -6.7 -5.8
iGibson Kinematic - 100.0 90.6 100.0 83.2 33.1 4.5 0.0 7.4

Habitat Kinematic Decoupled 80.0 72.0 100.0 87.8 27.1 2.5 -20.0 -15.8
Habitat Kinematic Coupled 80.0 74.1 100.0 88.8 22.7 2.8 -20.0 -14.7

Table 1: Zero-shot sim2real transfer performance for the visual navigation policies. Success rate (SR) and path
efficiency (SPL) are high for kinematic policies, while dynamic policies have lower performance due to the
dynamics gap between the low-level control in training and the controller on the robot in the real-world.

As reported in Table 1, all kinematic policies achieve a high success rate of 100% and SPL of 82-
83% (rows 3 and 4). On the other hand, the success rate drops to 40-67% for the dynamic policies
(rows 1 and 2). We notice that the dynamic policies typically commanded lower velocities, and often
get stuck around obstacles (Figure 8). This is shown in the higher number of actions commanded
and higher collision count for both dynamic policies; on average, a dynamic policy trained in Habitat
took 107.9 actions, and collided 41.2 times (row 1, columns 8 and 9), whereas a kinematic policy
also trained in Habitat took 26.4 actions, and collided 3.1 times (row 3, columns 8 and 9). We
attribute this to the impoverished experience of the dynamic policies; the policies did not learn
robust navigation policies that could avoid obstacles during navigation. Additionally, they overfit to
the low-level behavior, which can be unstable at high velocities in sim, but not on hardware. Figure
8 (left) shows that the kinematic policy commands higher forward velocities, while the dynamic
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Figure 7: One run of the Spot robot navigating the real-world LAB environment using a kinematically trained
policy from AI Habitat. The robot successfully navigates a hallway, moves around furniture and turns into the
next hallway before stopping. In contrast, the native BD controllers without a map can only reach visible goals.

policy commands slower velocities (right), which are often not achieved by the robot likely due to
an obstacle. 2 Successfully executed commands appear on the diagonal.

To improve kinematic simulation fidelity, we model actuation noise (difference between
commanded and true velocity) on Spot and use it during kinematic training, similar to
[16]. We collect 6,000 samples of decoupled (linear and angular velocities are actu-
ated separately) and coupled (linear and angular velocities are actuated together) actua-
tion noise. The parameters for noise in each dimension, and details about data collec-
tion and modeling can be found in the appendix. During training, we sample from the
Gaussian distribution for each dimension, and add it to the policy’s predicted velocity.

Figure 8: Commanded vs. resultant velocities during
real-world trajectory rollouts for dynamically and kine-
matically trained policies.

We see that policies trained with noise also
achieve 100% success in the real-world (rows 5
and 6), and are able to increase path efficiency
(SPL) (4.6% using decoupled (row 4 vs. 5),
and 5.6% using coupled actuation noise (row
4 vs. 6)). The number of collisions and com-
manded actions are also lower for these poli-
cies, compared to kinematic policies trained
with no noise (22.7 actions and 2.8 collisions
vs. 26.4 actions and 3.1 collisions). These im-
provements are due to the added robustness that
training with noise provides – uncertainty during training forces the policy to take less risky actions
resulting in fewer collisions in the real-world.

6 Conclusion, Limitations, and Future Work
In this work, we study the role of simulation fidelity for sim2real of visual navigation policies on
three simulated and one real legged robot. Contrary to expectations, we find that higher simulation
fidelity does not enable learning better high-level visual navigation policies. Dynamic policies tend
to overfit to low-level simulation details, resulting in poor transfer to the real-world. On the other
hand, kinematic policies are able to generalize well. These results raise important questions about
the need for simulation fidelity for sim2real, especially in abstracted action spaces.

One limitation of this work is that we assume access to a robust ‘black box’ controller on hardware.
While most robots come shipped with manufacturer-provided controllers, the level of accuracy may
differ between robots, and more robust noise modeling may be needed to better characterize the
actuation noise. In the future, we plan to improve the modeling of real-world actuation noise by
using a neural network conditioned on previous states and actions of the robot. Another limitation
of this work is that we specifically address only tasks that can be abstracted with high-level actions,
like navigation or object rearrangement (pick, place, open, close). We agree that there are many tasks
that cannot be learned in a kinematic simulation – e.g. tasks that require reasoning about low-level
interactions with the environment, like dexterous manipulation, or low-level walking controllers. It
is essential to create high-fidelity simulators for sim2real on such tasks.

2Actual velocity is measured using the Boston Dynamics SDK.
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Integrated task and motion planning. Annual review of control, robotics, and autonomous
systems, 4:265–293, 2021.
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