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ABSTRACT

Neural networks trained by gradient descent (GD) have exhibited a number of sur-
prising generalization behaviors. First, they can achieve a perfect fit to noisy train-
ing data and still generalize near-optimally, showing that overfitting can sometimes
be benign. Second, they can undergo a period of classical, harmful overfitting—
achieving a perfect fit to training data with near-random performance on test
data—before transitioning (“grokking”) to near-optimal generalization later in
training. In this work, we show that both of these phenomena provably occur in
two-layer ReLU networks trained by GD on XOR cluster data where a constant
fraction of the training labels are flipped. In this setting, we show that after the
first step of GD, the network achieves 100% training accuracy, perfectly fitting
the noisy labels in the training data, but achieves near-random test accuracy. At
a later training step, the network achieves near-optimal test accuracy while still
fitting the random labels in the training data, exhibiting a “grokking” phenomenon.
This provides the first theoretical result of benign overfitting in neural network
classification when the data distribution is not linearly separable. Our proofs rely
on analyzing the feature learning process under GD, which reveals that the network
implements a non-generalizable linear classifier after one step and gradually learns
generalizable features in later steps.

1 INTRODUCTION

Classical wisdom in machine learning regards overfitting to noisy training data as harmful for
generalization, and regularization techniques such as early stopping have been developed to prevent
overfitting. However, modern neural networks can exhibit a number of counterintuitive phenomena
that contravene this classical wisdom. Two intriguing phenomena that have attracted significant
attention in recent years are benign overfitting (Bartlett et al., 2020) and grokking (Power et al., 2022):

• Benign overfitting: A model perfectly fits noisily labeled training data, but still achieves
near-optimal test error.

• Grokking: A model initially achieves perfect training accuracy but no generalization (i.e.
no better than a random predictor), and upon further training, transitions to almost perfect
generalization.

Recent theoretical work has established benign overfitting in a variety of settings, including linear
regression (Hastie et al., 2019; Bartlett et al., 2020), linear classification (Chatterji & Long, 2021a;
Wang & Thrampoulidis, 2021), kernel methods (Belkin et al., 2019; Liang & Rakhlin, 2020), and
neural network classification (Frei et al., 2022b; Kou et al., 2023). However, existing results of
benign overfitting in neural network classification settings are restricted to linearly separable data
distributions, leaving open the question of how benign overfitting can occur in fully non-linear
settings. For grokking, several recent papers (Nanda et al., 2023; Gromov, 2023; Varma et al., 2023)
have proposed explanations, but to the best of our knowledge, no prior work has established a rigorous
proof of grokking in a neural network setting.

In this work, we characterize a setting in which both benign overfitting and grokking provably occur.
We consider a two-layer ReLU network trained by gradient descent on a binary classification task
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Figure 1: Comparing train and test accuracies of a two-layer neural network (2.1) trained on noisily
labeled XOR data over 100 independent runs. Left/right panel shows benign overfitting and grokking
when the step size is larger/smaller compared to the weight initialization scale. For plotting the x-axis,
we add 1 to time so that the initialization t = 0 can be shown in log scale. See Appendix A.7 for
details of the experimental setup.
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Figure 2: Left four panels: 2-dimensional projection of the noisily labeled XOR cluster data (Defini-
tion 2.1) and the decision boundary of the neural network (2.1) classifier restricted to the subspace
spanned by the cluster means at times t = 0, 1 and 15. Right two panels: 2-dimensional projection of
the neuron weights plotted at times t = 1 and 15.

defined by an XOR cluster data distribution (Figure 2). Specifically, datapoints from the positive class
are drawn from a mixture of two high-dimensional Gaussian distributions 1

2N(µ1, I) +
1
2N(−µ1, I),

and datapoints from the negative class are drawn from 1
2N(µ2, I) +

1
2N(−µ2, I), where µ1 and µ2

are orthogonal vectors. We then allow a constant fraction of the labels to be flipped. In this setting,
we rigorously prove the following results: (i) One-step catastrophic overfitting: After one gradient
descent step, the network perfectly fits every single training datapoint (no matter if it has a clean or
flipped label), but has test accuracy close to 50%, performing no better than random guessing. (ii)
Grokking and benign overfitting: After training for more steps, the network undergoes a “grokking”
period from catastrophic to benign overfitting—it eventually reaches near 100% test accuracy, while
maintaining 100% training accuracy the whole time. This behavior can be seen in Figure 1, where
we also see that with a smaller step size the same grokking phenomenon occurs but with a delayed
time for both overfitting and generalization.

Our results provide the first theoretical characterization of benign overfitting in a truly non-linear
setting involving training a neural network on a non-linearly separable distribution. Interestingly,
prior work on benign overfitting in neural networks for linearly separable distributions (Frei et al.,
2022b; Cao et al., 2022; Xu & Gu, 2023; Kou et al., 2023) have not shown a time separation between
catastrophic overfitting and generalization, which suggests that the XOR cluster data setting is
fundamentally different.

Our proofs rely on analyzing the feature learning behavior of individual neurons over the gradient
descent trajectory. After one training step, we prove that the network approximately implements a
linear classifier over the underlying data distribution, which is able to overfit all the training datapoints
but unable to generalize. Upon further training, the neurons gradually align with the core features
±µ1 and ±µ2, which is sufficient for generalization. See Figure 2 for visualizations of the network’s
decision boundary and neuron weights at different time steps, which confirm our theory.

1.1 ADDITONAL RELATED WORK

Benign overfitting. The literature on benign overfitting (also known as harmless interpolation)
is now immense; for a general overview, we refer the readers to the surveys Bartlett et al. (2021);
Belkin (2021); Dar et al. (2021). We focus here on those works on benign overfitting in neural
networks. Frei et al. (2022b) showed that two-layer networks with smooth leaky ReLU activations
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trained by gradient descent (GD) exhibit benign overfitting when trained on a high-dimensional
binary cluster distribution. Xu & Gu (2023) extended their results to more general activations like
ReLU. Cao et al. (2022) showed that two-layer convolutional networks with polynomial-ReLU
activations trained by GD exhibit benign overfitting for image-patch data; Kou et al. (2023) extended
their results to allow for label-flipping noise and standard ReLU activations. Each of these works used
a trajectory-based analysis and none of them identified a grokking phenomenon. Frei et al. (2023a);
Kornowski et al. (2023) showed how stationary points of margin-maximization problems associated
with homogeneous neural network training problems can exhibit benign overfitting. Finally, Mallinar
et al. (2022) proposed a taxonomy of overfitting behaviors in neural networks, whereby overfitting is
“catastrophic” if test-time performance is comparable to a random guess, “benign” if it is near-optimal,
and “tempered” if it lies between catastrophic and benign.

Grokking. The phenomenon of grokking was first identified by Power et al. (2022) in decoder-
only transformers trained on algorithmic datasets. Liu et al. (2022) provided an effective theory
of representation learning to understand grokking. Thilak et al. (2022) attributed grokking to the
slingshot mechanism, which can be measured by the cyclic phase transitions between stable and
unstable training regimes. Žunkovič & Ilievski (2022) showed a time separation between achieving
zero training error and zero test error in a binary classification task on a linearly separable distribution.
Liu et al. (2023) identified a large initialization scale together with weight decay as a mechanism for
grokking. Barak et al. (2022); Nanda et al. (2023) proposed progress metrics to measure the progress
towards generalization during training. Davies et al. (2023) hypothesized a pattern-learning model
for grokking and first reported a model-wise grokking phenomenon. Merrill et al. (2023) studied the
learning dynamics in a two-layer neural network on a sparse parity task, attributing grokking to the
competition between dense and sparse subnetworks. Varma et al. (2023) utilized circuit efficiency to
interpret grokking and discovered two novel phenomena called ungrokking and semi-grokking.

Feature learning for XOR distributions. The behavior of neural networks trained on the XOR
cluster distribution we consider here, or its variants like the sparse parity problem, have been
extensively studied in recent years. Wei et al. (2019) showed that neural networks in the mean-field
regime, where neural networks can learn features, have better sample complexity guarantees than
neural networks in the neural tangent kernel (NTK) regime in this setting. Barak et al. (2022);
Telgarsky (2023) examined the sample complexity of learning sparse parities on the hypercube for
neural networks trained by SGD. Most related to this work, Frei et al. (2022a) characterized the
dynamics of GD in ReLU networks in the same distributional setting we consider here, namely
the XOR cluster with label-flipping noise. They showed that by early-stopping, the neural network
achieves perfect (clean) test accuracy although the training error is close to the label noise rate; in
particular, their network achieved optimal generalization without overfitting, which is fundamentally
different from our result. By contrast, we show that the network first exhibits catastrophic overfitting
before transitioning to benign overfitting later in training.1

2 PRELIMINARIES

2.1 NOTATION

For a vector x, denote its Euclidean norm by ∥x∥. For a matrix X , denote its Frobenius norm by
∥X∥F and its spectral norm by ∥X∥. Denote the indicator function by I(·). Denote the sign of a
scalar x by sgn(x). Denote the cosine similarity of two vectors u, v by cossim(u, v) := ⟨u,v⟩

∥u∥∥v∥ .
Denote a multivariate Gaussian distribution with mean vector µ and covariance matrix Σ by N(µ,Σ).
Denote by

∑
j qjN(µj ,Σj) a mixture of Gaussian distributions, namely, with probability qj , the

sample is generated from N(µj ,Σj). Let Ip be the p×p identity matrix. For a finite set A = {ai}ni=1,
denote the uniform distribution on A by UnifA. For a random variable X , denote its expectation
by E[X]. For an integer d ≥ 1, denote the set {1, · · · , d} by [d]. For a finite set A, let |A| be its
cardinality. We use {±µ} to represent the set {+µ,−µ}. For two positive sequences {xn}, {yn},
we say xn = O(yn) (respectively xn = Ω(yn)), if there exists a universal constant C > 0 such

1The reason for the different behaviors between our work and Frei et al. (2022a) is because they work in a
setting with a larger signal-to-noise ratio (i.e., the norm of the cluster means is larger than the one we consider).
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that xn ≤ Cyn (respectively xn ≥ Cyn) for all n, and say xn = o(yn) if limn→∞
xn

yn
= 0. We say

xn = Θ(yn) if xn = O(yn) and yn = O(xn).

2.2 DATA GENERATION SETTING

Let µ1, µ2 ∈ Rp be two orthogonal vectors, i.e. µ⊤
1 µ2 = 0.2 Let η ∈ [0, 1/2) be the label flipping

probability.

Definition 2.1 (XOR cluster data). Define Pclean as the distribution over the space Rp × {±1} of
labelled data such that a datapoint (x, ỹ) ∼ Pclean is generated according to the following procedure:
First, sample the label ỹ ∼ Unif{±1}. Second, generate x as follows:

(1) If ỹ = 1, then x ∼ 1
2N(+µ1, Ip) +

1
2N(−µ1, Ip);

(2) If ỹ = −1, then x ∼ 1
2N(+µ2, Ip) +

1
2N(−µ2, Ip).

Define P to be the distribution over Rp × {±1} which is the η-noise-corrupted version of Pclean,
namely: to generate a sample (x, y) ∼ P , first generate (x, ỹ) ∼ Pclean, and then let y = ỹ with
probability 1− η, and y = −ỹ with probability η.

We consider n training datapoints {(xi, yi)}ni=1 generated i.i.d from the distribution P . We assume
the sample size n to be sufficiently large (i.e., larger than any universal constant appearing in
this paper). Note the xi’s are from a mixture of four Gaussians centered at ±µ1 and ±µ2. We
denote centers := {±µ1,±µ2} for convenience. For simplicity, we assume ∥µ1∥ = ∥µ2∥, omit the
subscripts and denote them by ∥µ∥.

2.3 NEURAL NETWORK, LOSS FUNCTION, AND TRAINING PROCEDURE

We consider a two-layer neural network of width m of the form

f(x;W ) :=

m∑
j=1

ajϕ(⟨wj , x⟩), (2.1)

where w1, . . . , wm ∈ Rp are the first-layer weights, a1, . . . , am ∈ R are the second-layer weights,
and the activation ϕ(z) := max{0, z} is the ReLU function. We denote W = [w1, . . . , wm] ∈ Rp×m

and a = [a1, . . . , am]⊤ ∈ Rm. We assume the second-layer weights are sampled according to
aj

i.i.d.∼ Unif{± 1√
m
} and are fixed during the training process.

We define the empirical risk using the logistic loss function ℓ(z) = log(1 + exp(−z)): L̂(W ) :=
1
n

∑n
i=1 ℓ(yif(xi;W )). We use gradient descent (GD) W (t+1) = W (t) − α∇L̂

(
W (t)

)
to update

the first-layer weight matrix W , where α is the step size. Specifically, at time t = 0 we randomly
initialize the weights by

w
(0)
j

i.i.d.∼ N
(
0, ω2

init Ip
)
, j ∈ [m],

where ω2
init is the initialization variance; at each time step t = 0, 1, 2, . . ., the GD update can be

calculated as

w
(t+1)
j − w

(t)
j = −α

∂L̂(W (t))

∂wj
=

αaj
n

n∑
i=1

g
(t)
i ϕ′(⟨w(t)

j , xi⟩)yixi, j ∈ [m], (2.2)

where g
(t)
i := −ℓ′(yif(xi;W

(t))).

3 MAIN RESULTS

Given a large enough universal constant C, we make the following assumptions:

2Our results hold when µ1 and µ2 are near-orthogonal. We assume exact orthogonality for ease of presenta-
tion.
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(A1) The norm of the mean satisfies ∥µ∥2 ≥ Cn0.51√p.

(A2) The dimension of the feature space satisfies p ≥ Cn2∥µ∥2.

(A3) The noise rate satisfies η ≤ 1/C.

(A4) The step size satisfies α ≤ 1/(Cnp).

(A5) The initialization variance satisfies ωinit nm
3/2p ≤ α∥µ∥2.

(A6) The number of neurons satisfies m ≥ Cn0.02.

Assumption (A1) concerns the signal-to-noise ratio (SNR) in the distribution, where the order 0.51
can be extended to any constant strictly larger than 1

2 . The assumption of high-dimensionality (A2) is
important for enabling benign overfitting, and implies that the training datapoints are near-orthogonal.
For a given n, these two assumptions are simultaneously satisfied if ∥µ∥ = Θ(pβ) where β ∈ ( 14 ,

1
2 )

and p is a sufficiently large polynomial in n. Assumption (A3) ensures that the label noise rate is at
most a constant. While Assumption (A4) ensures the step size is small enough to allow for a variant
of smoothness between different steps, Assumption (A5) ensures that the step size is large relative to
the initialization scale so that the behavior of the network after a single step of GD is significantly
different from that at random initialization. Assumption (A6) ensures the number of neurons is large
enough to allow for concentration arguments at random initialization.

With these assumptions in place, we can state our main theorem which characterizes the training
error and test error of the neural network at different times during the training trajectory.

Theorem 3.1. Suppose that Assumptions (A1)-(A6) hold. With probability at least 1 − n−Ω(1) −
O(1/

√
m) over the random data generation and initialization of the weights, we have:

• The classifier sgn(f(x;W (t))) can correctly classify all training datapoints for 1 ≤ t ≤
√
n:

yi = sgn(f(xi;W
(t))), ∀i ∈ [n].

• The classifier sgn(f(x;W (t))) has near-random test error at t = 1:

1
2 (1− n−Ω(1)) ≤ P(x,y)∼Pclean(y ̸= sgn(f(x;W (1)))) ≤ 1

2 (1 + n−Ω(1)).

• The classifier sgn(f(x;W (t))) generalizes when Cn0.01 ≤ t ≤
√
n:

P(x,y)∼Pclean(y ̸= sgn(f(x;W (t)))) ≤ exp(−Ω(n0.99∥µ∥4/p)) = exp(−Ω(n2.01)).

Theorem 3.1 shows that at time t = 1, the network achieves 100% training accuracy despite the
constant fraction of flipped labels in the training data. The second part of the theorem shows that this
overfitting is catastrophic as the test error is close to that of a random guess. On the other hand, by the
first and third parts of the theorem, as long as the time step t satisfies Cn0.01 ≤ t ≤

√
n, the network

continues to overfit to the training data while simultaneously achieving test error exp(−Ω(n2.01)),
which guarantees a near-zero test error for large n. In particular, the network exhibits benign
overfitting, and it achieves this by grokking. Notably, Theorem 3.1 is the first guarantee for benign
overfitting in neural network classification for a nonlinear data distribution, in contrast to prior works
which required linearly separable distributions (Frei et al., 2022b; 2023a; Cao et al., 2022; Xu & Gu,
2023; Kou et al., 2023; Kornowski et al., 2023).

We note that Theorem 3.1 requires an upper bound on the number of iterations of gradient descent,
i.e. it does not provide a guarantee as t → ∞. At a technical level, this is needed so that we can

guarantee that the ratio of the sigmoid losses between all samples r(t) := maxi,j∈[n]
g
(t)
i

g
(t)
j

is close to

1, and we show that this holds if t ≤
√
n. This property prevents the training data with flipped labels

from having an out-sized influence on the feature learning dynamics. Prior works in other settings
have shown that r(t) is at most a large constant for any step t for a similar purpose (Frei et al., 2022b;
Xu & Gu, 2023), however the dynamics of learning in the XOR setting are more intricate and require
a tighter bound on r(t). We leave the question of generalizing our results to longer training times for
future work. In Section 4, we provide an overview of the key ingredients to the proof of Theorem 3.1.
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4 PROOF SKETCH

We first introduce some additional notation. For i ∈ [n], let x̄i ∈ centers = {±µ1,±µ2} be
the mean of the Gaussian from which the sample (xi, yi) is drawn. For each ν ∈ centers, define
Iν = {i ∈ [n] : x̄i = ν}, i.e., the set of indices i such that xi belongs to the cluster centered
at ν. Thus, {Iν}ν∈centers is a partition of [n]. Moreover, define C = {i ∈ [n] : yi = ỹi} and
N = {i ∈ [n] : yi ̸= ỹi} to be the set of clean and noisy samples, respectively. Further we define for
each ν ∈ centers the following sets:

Cν := C ∩ Iν and Nν := N ∩ Iν .

Let cν = |Cν | and nν = |Nν |. Define the training input data matrix X = [x1, . . . , xn]
⊤. Let

ε ∈ (0, 10−3/4) be a universal constant.

In Section 4.1, we present several properties satisfied with high probability by the training data and
random initialization, which are crucial in our proof. In Section 4.2, we outline the major steps in the
proof of Theorem 3.1.

4.1 PROPERTIES OF THE TRAINING DATA AND RANDOM INITIALIZATION

Lemma 4.1 (Properties of training data). Suppose Assumptions (A1) and (A2) hold. Let the training
data {(xi, yi)}ni=1 be sampled i.i.d from P as in Definition 2.1. With probability at least 1−O(n−ε)
the training data satisfy properties (B1)-(B4) defined below.

(B1) For all k ∈ [n], max
ν∈centers

⟨xk−x̄k, ν⟩ ≤ 10
√
log n∥µ∥ and |∥xk∥2−p−∥µ∥2| ≤ 10

√
p log n.

(B2) For each i, k ∈ [n] such that i ̸= k, we have |⟨xi, xk⟩ − ⟨x̄i, x̄k⟩| ≤ 10
√
p log n.

(B3) For ν ∈ centers, we have |cν+nν−n/4| ≤
√
εn log n and |nν−η(cν+nν)| ≤

√
εηn log n.

(B4) For ν ∈ centers, we have |cν + nν − c−ν − n−ν | ≥ n1/2−ε and |nν − n−ν | ≥ ηn1/2−ε.

Denote by Gdata the set of training data satisfying conditions (B1)-(B4). Thus, the result can be stated
succinctly as P(X ∈ Gdata) ≥ 1−O(n−ε).

The proof of Lemma 4.1 can be found in Appendix A.2.1. Conditions (B1) and (B2) are essentially
the same as Frei et al. (2022b, Lemma 4.3) or Chatterji & Long (2021b, Lemma 10). Conditions
(B3) and (B4) concern the number of clean and noisy examples in each cluster, and can be proved by
concentration and anti-concentration arguments, respectively.

Lemma 4.1 has an important corollary.

Corollary 4.2 (Near-orthogonality of training data). Suppose Assumptions (A1), (A2), and Conditions
(B1), (B2) from Lemma 4.1 all hold. Then for all 1 ≤ i ̸= k ≤ n,

|cossim(xi, xk)| ≤
2

Cn2
.

This near-orthogonality comes from the high dimensionality of the feature space (i.e., Assump-
tion (A2)) and will be crucially used throughout the proofs on optimization and generalization of the
network. The proof of Corollary 4.2 can be found in Appendix A.2.1.

Next, we divide the neuron indices into two sets according to the sign of the corresponding second-
layer weight:

JPos := {j ∈ [m] : aj > 0}; JNeg := {j ∈ [m] : aj < 0}.
We will conveniently call them positive and negative neurons. Our next lemma shows that some
properties of the random initialization hold with a large probability. The proof details can be found in
Appendix A.3.1.

Lemma 4.3 (Properties of the random weight initialization). Suppose Assumptions (A1), (A2) and
(A6) hold. All conditions below simultaneously hold with probability at least 1−O(n−ε) over the
random initialization:
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(C1)
∥∥W (0)

∥∥2
F
≤ 3

2ω
2
init mp.

(C2) |JPos| ≥ m/3 and |JNeg| ≥ m/3.

The result can be stated equivalently as follows: Denote the set of W (0) satisfying condition (C1)
by GW . Denote the set of a = (aj)

m
j=1 satisfying condition (C2) by GA. Then P(a ∈ GA,W

(0) ∈
GW ) ≥ 1−O(n−ε).

We say that the sample i activates neuron j at time t if ⟨w(t)
j , xi⟩ > 0. Now, for each neuron j ∈ [m],

time t ≥ 0 and ν ∈ centers, define the set of indices i of samples xi with clean (resp. noisy) labels
from the cluster centered at ν that activates neuron j at time t:

C(t)
ν,j := {i ∈ Cν : ⟨w(t)

j , xi⟩ > 0} (resp. N (t)
ν,j := {i ∈ Nν : ⟨w(t)

j , xi⟩ > 0}). (4.1)

Moreover, we define

d
(t)
ν,j := |C(t)

ν,j | − |N (t)
ν,j |, and D

(t)
ν,j := d

(t)
ν,j − d

(t)
−ν,j .

For κ ∈ [0, 1/2) and ν ∈ centers, a neuron j is said to be (ν, κ)-aligned if

D
(0)
ν,j > n1/2−κ, and max{d(0)−ν,j , d

(0)
ν,j} < min{cν , c−ν} − 2(n+ν + n−ν)−

√
n (4.2)

The first condition ensures that at initialization, there are at least n1/2−κ many more samples from
cluster ν activating the j-th neuron than from cluster −ν after accounting for cancellations from the
noisy labels. The second is a technical condition necessary for trajectory analysis. A neuron j is said
to be (±ν, κ)-aligned if it is either (ν, κ)-aligned or (−ν, κ)-aligned.
Lemma 4.4 (Properties of the interaction between training data and initial weights). Suppose
Assumptions (A1)-(A3) and (A6) hold. Given a ∈ GA (defined in Lemma 4.3) and X ∈ Gdata
(defined in Lemma 4.1), the followings hold with probability at least 1−O(n−ε) over the random
initialization W (0):

(D1) For all i ∈ [n], the sample xi activates a large proportion of positive and negative neurons,
i.e., |{j ∈ JPos : ⟨w(0)

j , xi⟩ > 0}| ≥ m/7 and |{j ∈ JNeg : ⟨w(0)
j , xi⟩ > 0}| ≥ m/7 both

hold.

(D2) For all ν ∈ centers and κ ∈ [0, 1
2 ), both |{j ∈ JPos : j is (ν, κ)-aligned}| ≥ mn−10ε, and

|{j ∈ JNeg : j is (ν, κ)-aligned}| ≥ mn−10ε.

(D3) For all ν ∈ centers, we have
∣∣{j ∈ JPos : j is (±ν, 20ε)-aligned}

∣∣ ≥ (1− 10n−20ε)|JPos|.
Moreover, the same statement holds if “JPos” is replaced with “JNeg” everywhere.

(D4) For all ν ∈ centers and κ ∈ [0, 1
2 ), let J κ

ν,Pos := {j ∈ JPos : j is (ν, κ)-aligned}. Then∑
j∈J κ

ν,Pos
(cν − nν − d

(0)
−ν,j) ≥ n

10 |J
κ
ν,Pos|. Moreover, the same statement holds if “JPos” is

replaced with “JNeg” everywhere.

Condition (D1) makes sure that the neurons spread uniformly at initialization so that each datapoint
activates at least a constant fraction of positive and negative neurons. Condition (D2) guarantees
that for each ν ∈ centers, there are a fraction of neurons aligning with ν more than −ν. Condition
(D3) shows that most neurons will somewhat align with either ν or −ν. Condition (D4) is a technical
concentration result. For proof details, see Appendix A.3.2.

Define the set Ggood as

Ggood := {(a,W (0), X) : a ∈ GA, X ∈ Gdata,W
(0) ∈ GW and conditions (D1)-(D4) hold},

whose probability is lower bounded by P((a,W (0), X) ∈ Ggood) ≥ 1 − O(n−ε). This is a conse-
quence of Lemmas 4.1, 4.3 and 4.4 (see Appendix A.3.3).

Definition 4.5. If the training data X and the initialization a,W (0) belong to Ggood, we define this
circumstance as a “good run.”
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Figure 3: Histograms of inner products between positive neurons and µ1 or µ2 pooled over 100
independent runs under the same setting as in Figure 1. Top (resp. bottom) row: Inner products
between positive neurons and µ1 (resp. µ2). While the distributions of the projections of positive
neurons w

(t)
j onto the µ1 and µ2 directions are nearly the same at times t = 0, 1, they become

significantly more aligned with ±µ1 over time. See Appendix A.7 for details of the experimental
setup.

4.2 PROOF SKETCH FOR THEOREM 3.1

In order for the network to learn a generalizable solution for the XOR cluster distribution, we would
like positive neurons’ (i.e., those with aj > 0) weights wj to align with ±µ1, and negative neurons’
weights to align with ±µ2; we prove that this is satisfied for t ∈ [Cn0.01,

√
n]. However, for t = 1,

we show that the network only approximates a linear classifier, which can fit the training data in high
dimension but has trivial test error. Figure 3 plots the evolution of the distribution of positive neurons’
projections onto both µ1 and µ2, confirming that these neurons are much more aligned with ±µ1 at a
later training time, while they cannot distinguish ±µ1 and ±µ2 at t = 1.

Below we give a sketch of the proofs, and details are in Appendix A.5.

4.2.1 ONE-STEP CATASTROPHIC OVERFITTING

Under a good run, we have the following approximation for each neuron after the first iteration:

w
(1)
j ≈ αaj

2n

n∑
i=1

I(⟨w(0)
j , xi⟩ > 0)yixi, j ∈ [m].

For details of this approximation, see Appendix A.4.

Let sij := I(⟨w(0)
j , xi⟩ > 0). Then, for sufficiently large m, we can approximate the neural network

output at t = 1 as
m∑
j=1

ajϕ(⟨w(1)
j , x⟩) ≈ α

2n

m∑
j=1

ajϕ(aj⟨
n∑

i=1

sijyixi, x⟩)

a.s.→ α

4n
⟨

n∑
i=1

E[sij ]yixi, x⟩ =
α

8n
⟨

n∑
i=1

yixi, x⟩.
(4.3)

This convergence is ensured by the strong law of large numbers, given the independence of the
first-layer and second-layer weights at initialization. This implies that the neural network classifier
sgn(f(·;W (1))) behaves similarly to the linear classifier sgn(⟨

∑n
i=1 yixi, ·⟩). It can be shown

that this linear classifier achieves 100% training accuracy whenever the training data are near
orthogonal (Frei et al., 2023b, Appendix D), but because each class has two clusters with opposing
means, linear classifiers only achieve 50% test error for the XOR cluster distribution. Thus at time
t = 1, the network is able to fit the training data but is not capable of generalizing.
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4.2.2 MULTI-STEP GENERALIZATION

Next, we show that positive (resp. negative) neurons gradually align with one of ±µ1 (resp. ±µ2),
and forget both of ±µ2 (resp. ±µ1), making the network generalizable. Taking the direction +µ1 as
an example, we define sets of neurons

J1 = {j ∈ JPos : j is (+µ1, 20ε)-aligned}; J2 = {j ∈ JNeg : j is (±µ1, 20ε)-aligned}.

We have by conditions (D2)-(D3) of Lemma 4.4 that under a good run,

|J1| ≥ mn−10ε, |J2| ≥ (1− 10n−20ε)|JNeg|,

which implies that J1 contains a certain proportion of JPos and J2 covers most of JNeg. The next
lemma shows that neurons in J1 will keep aligning with +µ1, but neurons in J2 will gradually forget
+µ1.
Lemma 4.6. Suppose that Assumptions (A1)-(A6) hold. Under a good run, we have that for
1 ≤ t ≤

√
n,

1

|J1|
∑
j∈J1

⟨w(t)
j ,+µ1⟩ = Ω

(
α∥µ∥2√

m
t

)
;

1

|J2|
∑
j∈J2

|⟨w(t)
j , µ1⟩| = O

(
α∥µ∥2√

m
+

α∥µ∥2
√

log(n)√
mn

t

)
.

We can see that when t is large,
∑

j∈J2
|⟨w(t)

j , µ1⟩|/|J2| = o(
∑

j∈J1
⟨w(t)

j ,+µ1⟩/|J1|), thus for
x ∼ N(+µ1, Ip), neurons with j ∈ J1 will dominate the output of f(x;W (t)). For the other
three clusters centered at −µ1,+µ2,−µ2 we have similar results, which then lead the model to
generalization. Formally, we have the following theorem on generalization.
Theorem 4.7. Suppose that Assumptions (A1)-(A6) hold. Under a good run, for Cn10ε ≤ t ≤

√
n,

the generalization error of classifier sgn(f(x,W (t))) has an upper bound

P(x,y)∼Pclean(y ̸= sgn(f(x;W (t)))) ≤ exp

(
−Ω

(
n1−20ε∥µ∥4

p

))
.

5 DISCUSSION

We have shown that two-layer neural networks trained on XOR cluster data with random label noise
by GD reveal a number of interesting phenomena. First, early in training, the network interpolates all
of the training data but fails to generalize to test data better than random chance, displaying a familiar
form of (catastrophic) overfitting. Later in training, the network continues to achieve a perfect fit to
the noisy training data but groks useful features so that it can achieve near-zero error on test data, thus
exhibiting both grokking and benign overfitting simultaneously. Notably, this provides an example of
benign overfitting in neural network classification for a distribution which is not linearly separable.

In contrast to prior works on grokking which found the usage of weight decay to be crucial for
grokking (Liu et al., 2022; 2023), we observe grokking without any explicit forms of regularization,
revealing the significance of the implicit regularization of GD. In our setting, the catastrophic
overfitting stage of grokking occurs because early in training, the network behaves similarly to a linear
classifier. This linear classifier is capable of fitting the training data due to the high-dimensionality of
the feature space but fails to generalize as linear classifiers are not complex enough to achieve test
performance above random chance for the XOR cluster. Later in training, the network groks useful
features, corresponding to the cluster means, which allow for good generalization.

There are a few natural questions for future research. First, our analysis requires an upper bound on
the number of training steps due to technical reasons; it is intriguing to understand the generalization
behavior as time grows to infinity. Second, our proof crucially relies upon the assumption that the
training data are nearly-orthogonal which requires that the ambient dimension is large relative to the
number of samples. Prior work has shown with experiments that overfitting is less benign in this
setting when the dimension is small relative to the number of samples (Frei et al., 2022a, Fig. 2); a
precise characterization of the effect of high-dimensional data on generalization remains open.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

YW acknowledges support from the Eric and Wendy Schmidt AI in Science Postdoctoral Fellowship,
a Schmidt Futures program. GV acknowledges support from the NSF and the Simons Foundation via
the Collaboration on the Theoretical Foundations of Deep Learning. WH acknowledges support from
the Google Research Scholar program.

REFERENCES

Boaz Barak, Benjamin L. Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang.
Hidden progress in deep learning: Sgd learns parities near the computational limit. In Advances in
Neural Information Processing Systems (NeurIPS), 2022.
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A.1 ADDITIONAL NOTATION

Denote the c.d.f of standard normal distribution by Φ(·) and the p.d.f. of standard normal distribution
by Φ′(·). Denote Φ̄(·) = 1− Φ(·). Denote the Bernoulli distribution which takes 1 with probability
p ∈ (0, 1) by Bern(p). Denote the Binomial distribution with size n and probability p by B(n, p).
For a random variable X , denote its variance by Var(X); and its absolute third central moment by
ρ(X).

A.2 PROPERTIES OF THE TRAINING DATA

A.2.1 PROOF OF LEMMA 4.1

Lemma 4.1 (Properties of training data). Suppose Assumptions (A1) and (A2) hold. Let the training
data {(xi, yi)}ni=1 be sampled i.i.d from P as in Definition 2.1. With probability at least 1−O(n−ε)
the training data satisfy properties (B1)-(B4) defined below.

(B1) For all k ∈ [n], max
ν∈centers

⟨xk−x̄k, ν⟩ ≤ 10
√
log n∥µ∥ and |∥xk∥2−p−∥µ∥2| ≤ 10

√
p log n.

(B2) For each i, k ∈ [n] such that i ̸= k, we have |⟨xi, xk⟩ − ⟨x̄i, x̄k⟩| ≤ 10
√
p log n.

(B3) For ν ∈ centers, we have |cν+nν−n/4| ≤
√
εn log n and |nν−η(cν+nν)| ≤

√
εηn log n.
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(B4) For ν ∈ centers, we have |cν + nν − c−ν − n−ν | ≥ n1/2−ε and |nν − n−ν | ≥ ηn1/2−ε.

Denote by Gdata the set of training data satisfying conditions (B1)-(B4). Thus, the result can be stated
succinctly as P(X ∈ Gdata) ≥ 1−O(n−ε).

Proof. Before proceeding with the proof, we recall that centers = {±µ1,±µ2}. We first show that
(B1) holds with large probability. To this end, fix k ∈ [n]. We have by the construction of xk in
Section 2.2 that xk ∼ N(x̄k, Ip) for some x̄k ∈ {±µ1,±µ2}. Let ξk = xk − x̄k. By Lemma A.17,
we have

P
(
∥ξk∥ >

√
p(t+ 1)

)
≤ P

(∣∣∥ξk∥2 − p
∣∣ > pt

)
≤ 2 exp(−pt2/8), ∀t ∈ (0, 1). (A.1)

Note that for any fixed non-zero vector ν ∈ Rp, we have ⟨ν, ξk⟩ ∼ N(0, ∥ν∥2). Therefore, again by
Lemma A.17, we have

P(|⟨ν, ξk⟩| > t∥ν∥) ≤ exp(−t2/2), ∀t ≥ 1 (A.2)

where the parameter t in both inequality will be chosen later. To show that the first inequality of
(B1) holds w.h.p, we show the complement event Fk := {maxν∈centers⟨ξk, ν⟩ > t∥µ∥} has low
probability. Applying the union bound,

P(Fk) ≤
∑

ν∈{±µ1,±µ2}

P(|⟨ξk, ν⟩| > t∥µ∥) ∵ Union bound

≤ 4 exp(−t2/2) ∵ Inequality (A.2).

Let δ := n−ε. Picking t =
√
2 log(16n/δ) in inequality (A.2) and applying the union bound again,

we have
P(
⋃n

k=1 Fk) ≤ 4n exp(−t2/2) ≤ δ/4. (A.3)
Next, fix t1 ∈ (0, 1) and t2 ≥ 1 arbitrary. To show that the second inequality of (B1) holds w.h.p, we
first prove an intermediate step: the complement event Ek := {|∥xk∥2 − p−∥µ∥2| > pt1 +2∥µ∥t2}
has low probability. Towards this, first note that since

∥xk∥2 = ∥x̄k∥2 + ∥ξk∥2 + 2⟨x̄k, ξk⟩ = ∥µ∥2 + ∥ξk∥2 + 2⟨x̄k, ξk⟩

we have the alternative characterization of Ek as

Ek = {|∥ξk∥2 − p+ 2⟨x̄k, ξk⟩| > pt1 + 2∥µ∥t2}.

Next, recall the fact: if X,Y ∈ R are random variables and a, b ∈ R are constants, then

P(|X + Y | > a+ b) ≤ P(|X| > a) + P(|Y | > b). (A.4)

To see this, first note that |X + Y | ≤ |X|+ |Y | by the triangle inequality. From this we deduce that
P(|X + Y | > a+ b) ≤ P(|X|+ |Y | > a+ b). Now, by the union bound, we have

P(|X|+ |Y | > a+ b) ≤ P({|X| > a} ∪ {|Y | > b}) ≤ P(|X| > a) + P(|Y | > b)

which proves (A.4). Now, to upper bound P(Ek), note that

P(Ek) = P(|∥ξk∥2 − p+ 2⟨x̄k, ξk⟩| > pt1 + 2∥µ∥t2)
≤ P

(∣∣∥ξk∥2 − p
∣∣ > pt1

)
+ P(|⟨x̄k, ξk⟩| > t2∥µ∥) ∵ Inequality (A.4)

≤ 2 exp(−pt21/8) + exp(−t22/2). ∵ Inequalities (A.1) and (A.2) (A.5)

Inequality (A.5) is the crucial intermediate step to proving the second inequality of (B1). It will be
convenient to complete the proof of the second inequality of (B1) simultaneously with that of (B2).
To this end, we next prove an analogous intermediate step to (B2).

Fix s1, s2 ≥ 1 to be chosen later. Define the event Eij := {|⟨xi, xj⟩−⟨x̄i, x̄j⟩| > s1
√
p+2t2∥µ∥} for

each pair i, j ∈ [n] such that 1 ≤ i ̸= j ≤ n. We upper bound P(Eij) in similar fashion as in (A.5). To
this end, fix i, j ∈ [n] such that i ̸= j. Note that the identity ⟨xi, xj⟩ = ξ⊤i ξj + x̄⊤

i x̄j + ξ⊤i x̄j + ξ⊤j x̄i
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implies that |⟨xi, xj⟩ − ⟨x̄i, x̄j⟩| = |ξ⊤i ξj + ξ⊤i x̄j + ξ⊤j x̄i|. Now, we claim that

P(Eij) = P(|ξ⊤i ξj + ξ⊤i x̄j + ξ⊤j x̄i| ≥ s1
√
p+ 2t2∥µ∥)

≤ P(|ξ⊤i ξj | > s1
√
p) + P(|ξ⊤i x̄j | > t2∥µ∥) + P(|ξ⊤j x̄i| > t2∥µ∥)

≤ exp(−s21/2s2) + 2 exp(−p(s2 − 1)2/8) + 2 exp(−t22/2), (A.6)

The first inequality simply follows from applying (A.4) twice. Moreover, P(|ξ⊤i x̄j | > t2∥µ∥) and
P(|ξ⊤j x̄i| > t2∥µ∥) ≤ exp(−t22/2) follows from (A.2). To prove the claim, it remains to prove

P(|⟨ξi, ξj⟩| > s1
√
p)

≤ P
(
|⟨ξi, ξj⟩| > s1

√
p
∣∣ ∥ξj∥ ≤ √

s2p
)
+ P(∥ξj∥ >

√
s2p) ∵ law of total expectation

≤ exp(−s21/2s2) + 2 exp(−p(s2 − 1)2/8). (A.7)

To prove the inequality at (A.7), first we get P(∥ξj∥ >
√
s2p) ≤ 2 exp(−p(s2 − 1)2/8) by applying

(A.1) to upper bounds the second summand of the left-hand side of (A.7). For upper bounding the
first summand, first let P

(
|⟨ξi, ξj⟩| > s1

√
p
∣∣ ξj) be the conditional probability conditioned on a

realization of ξj (while ξi remains random). Then by definition

P
(
|⟨ξi, ξj⟩| > s1

√
p
∣∣ ∥ξj∥ ≤ √

s2p
)
= Eξj [P

(
|⟨ξi, ξj⟩| > s1

√
p
∣∣ ξj) ∣∣ ∥ξj∥ ≤ √

s2p ]. (A.8)

For fixed ξj such that ∥ξj∥ ≤ √
s2p, we have by (A.2) that

P
(
|⟨ξi, ξj⟩| > s1

√
p
∣∣ ξj) = P

(
|⟨ξi, ξj⟩| > ∥ξj∥(s1

√
p/∥ξj∥)

∣∣ ξj) ≤ exp(−(s1
√
p/∥ξj∥)2/2).

Continue to assume fixed ξj such that ∥ξj∥ ≤ √
s2p, note that s1

√
p/∥ξj∥ ≥ s1

√
p/

√
s2p = s1/

√
s2

implies
exp(−(s1

√
p/∥ξj∥)2/2) ≤ exp(−(s1/

√
s2)

2/2).

Hence, P
(
|⟨ξi, ξj⟩| > s1

√
p
∣∣ ξj) ≤ exp(−s21/2s2). Applying Eξj [ ·

∣∣ ∥ξj∥ ≤ √
s2p ] to both side

of the preceding inequality, we get P
(
|⟨ξi, ξj⟩| > s1

√
p
∣∣ ∥ξj∥ ≤ √

s2p
)
≤ exp(−s21/2s2) which

upper bounds the first summand of the left-hand side of (A.7). We now choose the values for t1 =√
8 log(16n/δ)/p, t2 =

√
2 log(16n2/δ), s1 = 2

√
log(8n2/δ), and s2 = 1 +

√
8 log(16n2/δ)/p.

Recall that δ = n−ε and n is sufficiently large, then we have√
log(16n2/δ)/p =

√
log(16n2+ε)/p ≤

√
3 log(16n)/p ≤ 1

by Assumptions (A1) and (A2). Combining (A.5) and (A.6) then applying the union bound, we have

P((∪n
k=1Ek) ∪ (∪i,j∈[n]:i ̸=jEij)) ≤

∑n
k=1 P(Ek) +

∑
i,j∈[n]:i ̸=j P(Eij)

≤ 2n exp(−pt21
8 ) + n2[2 exp(− t22

2 ) + exp(− s21
2s2

) + 2 exp(−p(s2−1)2

8 )] ≤ δ.
(A.9)

Moreover, plugging the above values of t1, t2 and s1 into the definition of Ek and Eij , we see that
(B1) and (B2) are satisfied since they contain the complement of the event in (A.9).

Next, show that (B3) holds with large probability. We prove the inequality involving |cν + nν − n/4|
portion of (B3). Proofs for the rest of the inequalities in (B3) follow analogously using the same
technique below. Recall from the data generation model, for each k ∈ [n], x̄k is sampled i.i.d ∼
Unif{±µ1,±µ2}. Define the following indicator random variable:

Iν(k) =
{
1 if x̄k = ν

0 otherwise,
for each k ∈ [n], and ν ∈ {±µ1,±µ2}

Then we have
∑

ν Iµ(k) = 1 for each k, and E[Iν(k)] = n/4 for each ν. Applying Hoeffding’s
inequality (Lemma A.18), we obtain

P(|
∑n

k=1 Iν(k)− n/4| > t
√
n) ≤ 2 exp(−2t2).

Applying the union bound, we have

P(maxν |
∑n

k=1 Iν(k)− n/4| > t
√
n) ≤ 8 exp(−2t2). (A.10)
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Thus we can bound the above tail probability by O(δ) by letting t =
√
log(1/δ)/2, and the upper

bound t
√
n ≤

√
n log(1/δ) =

√
nε log(n).

Next, show that (B4) holds with large probability. We prove the inequality involving |cν + nν −
c−ν − n−ν | portion of (B4). Proofs for the rest of the inequalities in (B4) follow analogously using
the same technique below. Note that for each k,

E[Iν(k)− I−ν(k)] = 0; E[|Iν(k)− I−ν(k)|l] =
1

4
for any l ≥ 1.

It yields that
ρ(Iν(k)− I−ν(k))/Var(Iν(k)− I−ν(k))

3/2 = 2.

Applying the Berry-Esseen theorem (Lemma A.19), we have

P(|cν + nν − c−ν − n−ν | > t
√
n) = P(|

n∑
k=1

(Iν(k)− I−ν(k))| > t
√
n) ≥ 2Φ̄(2t)− 12√

n
.

Let t = n−ε. By Φ(t) ≤ 1/2 + Φ′(0)t, we have

P(|
n∑

k=1

(Iν(k)− I−ν(k))| > t
√
n) ≥ 1− 4√

2πnε
− 12√

n
= 1−O(δ). (A.11)

Combining (A.3), (A.9)-(A.11), we prove that conditions (B1)-(B4) hold with probability at least
1−O(δ) over the randomness of the training data. As a consequence of (B1), we have

p/2 ≤ p+ ∥µ∥2 − 10
√
p log(n) ≤ ∥xk∥2 ≤ p+ ∥µ∥2 + 10

√
p log(n) ≤ 2p

by Assumption (A1) and (A2).

A.2.2 PROOF OF COROLLARY 4.2

Corollary 4.2 (Near-orthogonality of training data). Suppose Assumptions (A1), (A2), and Conditions
(B1), (B2) from Lemma 4.1 all hold. Then for all 1 ≤ i ̸= k ≤ n,

|cossim(xi, xk)| ≤
2

Cn2
.

Proof. By Lemma 4.1, we have that under (B1) and (B2), when i ̸= j,

|⟨xi, xj⟩|
∥xi∥ · ∥xj∥

≤
∥µ∥2 + 10

√
p log(n)

p+ ∥µ∥2 − 10
√

p log(n)
≤ 2∥µ∥2

p
≤ 2

Cn2
,

for sufficiently large p. Here the second inequality comes from Assumption (A1); and the last
inequality comes from Assumption (A2).

A.3 PROPERTIES OF THE INITIAL WEIGHTS AND ACTIVATION PATTERNS

We begin with additional notations that is used for the proofs of Lemmas 4.3 and 4.4. Following the
notations in Xu & Gu (2023), we simplify the notation of JPos and JNeg defined in Section 4 as

JP := JPos = {j ∈ [m] : aj > 0}; JN := JNeg = {j ∈ [m] : aj < 0}.

Active neurons/samples. We denote the set A(t) of all sample-neuron pairs of indices (i, j) ∈
[n]× [m] such that the neuron j is active with respect to the sample xi at time t. In other words, we
define

A(t) := {(i, j) ∈ [n]× [m] : ⟨w(t)
j , xi⟩ > 0}.

Next, for a fixed time index t ≥ 0, define for each sample index i ∈ [n] the subset Ai,(t) ⊆ [m]:

Ai,(t) := {j ∈ [m] : ⟨w(t)
j , xi⟩ > 0},
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Likewise, for each neuron index j ∈ [m], define the subset A(t)
j ⊆ [n]:

A(t)
j := {i ∈ [n] : ⟨w(t)

j , xi⟩ > 0}.

Note that Ai,(t) (resp. A(t)
j ) is the set of neurons (resp. samples) that is active w.r.t sample i (resp.

neuron j) at time t. Next, we define the set of positive (resp. negative) neurons that is active w.r.t
sample i at time t:

J i,(t)
P := JP ∩ Ai,(t); J i,(t)

N := JN ∩ Ai,(t). (A.12)
Likewise, we define the set of clean (resp. noisy) samples that is active w.r.t neuron j at time t:

C(t)
ν,j := Cν ∩ A(t)

j ; N (t)
ν,j := Nν ∩ A(t)

j , for j ∈ [m], ν ∈ centers. (A.13)

Note that the above definitions in (A.13) are equivalent to that of (4.1) from the main text. Finally,
define the notational shorthand n±ν := nν + n−ν .

(ν, κ)-aligned neurons. For each ν ∈ centers and parameter κ ∈ [0, 1
2 ), we denote the sets of neuron

indices j ∈ [n] of corresponding to (ν, κ)-aligned neurons3 by:

J κ
ν := {j ∈ [m] : D

(0)
ν,j > n1/2−κ, and max{d(0)+ν,j , d

(0)
−ν,j} < min{cν , c−ν} − 2n±ν −

√
n}.

In other words, we have the following identity between sets of neuron indices:

J κ
ν = {j ∈ [m] : neuron j is (ν, κ)-aligned}

Finally, we define the subsets of positive (resp. negative) (ν, κ)-aligned neurons:

J κ
ν,P = JP ∩ J κ

ν ; J κ
ν,N = JN ∩ J κ

ν . (A.14)

A.3.1 PROOF OF LEMMA 4.3

Lemma 4.3 (Properties of the random weight initialization). Suppose Assumptions (A1), (A2) and
(A6) hold. All conditions below simultaneously hold with probability at least 1−O(n−ε) over the
random initialization:

(C1)
∥∥W (0)

∥∥2
F
≤ 3

2ω
2
init mp.

(C2) |JPos| ≥ m/3 and |JNeg| ≥ m/3.

The result can be stated equivalently as follows: Denote the set of W (0) satisfying condition (C1)
by GW . Denote the set of a = (aj)

m
j=1 satisfying condition (C2) by GA. Then P(a ∈ GA,W

(0) ∈
GW ) ≥ 1−O(n−ε).

Proof. Recall earlier for simplicity, we defined for simplicity JP = JPos and JN = JNeg. Let
δ = n−ε. Then (C1) is proved to hold with probability 1 − O(δ) in the Lemma 4.2 of Frei et al.
(2022b). For (C2), since |JP| and |JN| both follow the binomial distribution4 B(m, 1/2), it suffices
to show that P(|JP| ≥ m/3) ≥ 1− δ. Applying Hoeffding’s inequality (Lemma A.18), we have

P(|JP| ≤ m/3) = P(|JP| −m/2 ≤ −m/6) ≤ exp(−m/18) ≤ δ,

where the last inequality comes from Assumption (A6).

A.3.2 PROOF OF LEMMA 4.4

Lemma 4.4 (Properties of the interaction between training data and initial weights). Suppose
Assumptions (A1)-(A3) and (A6) hold. Given a ∈ GA (defined in Lemma 4.3) and X ∈ Gdata
(defined in Lemma 4.1), the followings hold with probability at least 1−O(n−ε) over the random
initialization W (0):

3See (4.2) in the main text for the definition of (ν, κ)-aligned neurons
4See Section A.1 for details on the notation
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(D1) For all i ∈ [n], the sample xi activates a large proportion of positive and negative neurons,
i.e., |{j ∈ JPos : ⟨w(0)

j , xi⟩ > 0}| ≥ m/7 and |{j ∈ JNeg : ⟨w(0)
j , xi⟩ > 0}| ≥ m/7 both

hold.

(D2) For all ν ∈ centers and κ ∈ [0, 1
2 ), both |{j ∈ JPos : j is (ν, κ)-aligned}| ≥ mn−10ε, and

|{j ∈ JNeg : j is (ν, κ)-aligned}| ≥ mn−10ε.

(D3) For all ν ∈ centers, we have
∣∣{j ∈ JPos : j is (±ν, 20ε)-aligned}

∣∣ ≥ (1− 10n−20ε)|JPos|.
Moreover, the same statement holds if “JPos” is replaced with “JNeg” everywhere.

(D4) For all ν ∈ centers and κ ∈ [0, 1
2 ), let J κ

ν,Pos := {j ∈ JPos : j is (ν, κ)-aligned}. Then∑
j∈J κ

ν,Pos
(cν − nν − d

(0)
−ν,j) ≥ n

10 |J
κ
ν,Pos|. Moreover, the same statement holds if “JPos” is

replaced with “JNeg” everywhere.

Before we proceed with the proof of Lemma 4.4, we consider the following restatements of (D1)
through (D4):

(D’1) For each i ∈ [n], xi activates a constant fraction of neurons initially, i.e. for each i ∈ [n] the
sets J i,(0)

P and J i,(0)
N defined at (A.12) satisfy

|J i,(0)
P | ≥ m/7 and |J i,(0)

N | ≥ m/7.

(D’2) For ν ∈ centers and κ ∈ [0, 1/2), we have min{|J κ
ν,P|, |J κ

ν,N|} ≥ mn−10ε.

(D’3) For ν ∈ centers, we have
∣∣J 20ε

ν,P ∪ J 20ε
−ν,P

∣∣ ≥ (1 − 10n−20ε)|JP| and
∣∣J 20ε

ν,N ∪ J 20ε
−ν,N

∣∣ ≥
(1− 10n−20ε)|JN|.

(D’4) For ν ∈ centers and κ ∈ [0, 1
2 ), we have

∑
j∈J (cν−d

(0)
−ν,j) ≥ n

10 |J |, where J ∈ {J κ
ν,P,J κ

ν,N}.

Unwinding the definitions, we note that the (D’1) through (D’4) are equivalent to the (D1) through
(D4) of Lemma 4.4

Proof. Let δ = n−ε. Throughout this proof, we implicitly condition on the fixed {aj} ∈ GA and
{xi} ∈ Gdata, i.e., when writing a probability and expectation we write P( · ) and E[ · ] to denote
P( · |{aj}, {xi}) and E[ · |{aj}, {xi}] respectively.

Proof of condition (D1): Define the following events for each i ∈ [n]:

Pi := {|J i,(0)
P | ≥ m/7}; Ni := {|J i,(0)

N | ≥ m/7}.

We first show that ∩n
i=1(Pi ∩ Ni) occurs with large probability. To this end, applying the union

bound, we have

P
(
∩n
i=1 (Pi ∩Ni)

)
= 1− P

(
∪n
i=1 (Pc

i ∪N c
i )
)
≥ 1−

n∑
i=1

(
P
(
Pc
i

)
+ P

(
N c

i

))
.

Note that Pi and Ni are defined completely analogously corresponding to when aj > 0 and aj < 0,
respectively. Thus, to prove (D1), it suffices to show that P(Pc

i ) ≤ δ/(4n) for each i, or equivalently,

P
( ∑
j∈JP

Uj ≤
m

7

)
≤ δ

2n

holds for each i ∈ [n], where Uj := I(⟨w(0)
j , xi⟩ > 0). Note that given xi and JP, {Uj}j∈JP

are i.i.d
Bernoulli random variables with mean 1/2, thus we have

P
( ∑
j∈JP

Uj ≤
m

7

)
≤ P

( ∑
j∈JP

(Uj −
1

2
) ≤ (

1

7
− 1

6
)m
)
≤ exp(−2m(

1

6
− 1

7
)2) ≤ δ

2n
,
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where the first inequality uses |JP| ≥ m/3; the second inequality comes from Hoeffding’s inequality
(Lemma A.18); and the third inequality uses Assumption (A6). Now we have proved that (D1) holds
with probability at least 1− δ.

Proof of condition (D2): Without loss of generality, we only prove the results for J κ
ν,P. Note that

J κ1
ν,P ⊆ J κ2

ν,P for κ1 < κ2. Thus we only consider the case κ = 0. It suffices to show that for each
j ∈ [m],

P(D(0)
ν,j >

√
n) ≥ 8n−10ε and P(d(0)µ,j ≥ min{cν , c−ν} − 2n±ν −

√
n) ≤ n−10ε, µ ∈ {±ν}.

(A.15)
Suppose (A.15) holds for any ν ∈ {±µ1,±µ2}. Applying the inequality P (A ∩B) ≥ 1− P (Ac)−
P (Bc), we have

P(D(0)
ν,j >

√
n, d

(0)
µ,j < min{cν , c−ν} − 2n±ν −

√
n, µ ∈ {±ν}) ≥ 8n−10ε − 2n−10ε = 6n−10ε.

Then we have
E[|Jν,P|] ≥ 6n−10ε|JP| ≥

2m

n10ε
,

where the last inequality uses min{|JP|, |JN|} ≥ m/3, which comes from the definition of GA. Note
that given {aj} and {xi}, |Jν,P| is the summation of i.i.d Bernoulli random variables. Applying
Hoeffding’s inequality (Lemma A.18), we obtain

P(|Jν,P| ≤
m

n10ε
) ≤ P(|Jν,P| − E[|Jν,P|] ≤ − m

n10ε
) ≤ exp(− 2m2

n20ε|JP|
) ≤ n−ε,

where the last inequality uses |JP| = m − |JN| ≤ 2m/3, 20ε ≤ 0.01, and Assumption (A6).
Applying the union bound, we have

P(∩ν∈{±µ1,±µ2}{|Jν,P| > m/n10ε}) ≥ 1− 4n−ε.

Thus it remains to show (A.15). Without loss of generality, we will only prove (A.15) for ν = +µ1,
which can be easily extended to other ν’s. Recall that X = [x1, . . . , xn]

⊤ is the given training data.
Let V = Xw

(0)
j , then V ∼ N(0, XX⊤). Let Z = [z1, · · · , zn]⊤, zi = vi/∥xi∥, i ∈ [n]. Denote

Σ = Cov(Z). Then Z ∼ N(0,Σ). By Corollary 4.2, we have

Σii = 1; |Σij | ≤
2

Cn2

for 1 ≤ i ̸= j ≤ n. Denote

A1 = C+µ1
∪N−µ1

; A2 = C−µ1
∪N+µ1

.

By the definition of Gdata and (B3) in Lemma 4.1, we have

||A1| − |A2|| ≤ |c+µ1
− c−µ1

|+ |n+µ1
− n−µ1

| ≤ (1 + η)
√
nε log(n); (A.16)

|A1|+ |A2| = c+µ1
+ n+µ1

+ c−µ1
+ n−µ1

≥ n

2
− 2
√
nε log(n) =

n

2
− o(n) (A.17)

for sufficiently large n. Note that equivalently, we can rewrite D
(0)
+µ1,j

as∑
i∈A1

I(zi > 0)−
∑
i∈A2

I(zi > 0). (A.18)

Since we want to give a lower bound for D(0)
+µ1,j

, below we only consider the case when |A1| < |A2|.
With the new expression of D(0)

+µ1,j
, we have

P(D(0)
+µ1,j

>
√
n) =

⌊|A1|−
√
n⌋∑

k=0

∑
B2⊆A2

|B2|=k

∑
B1⊆A1

|B1|>k+
√
n

E
[ ∏
i∈B1∪B2

I(zi > 0)·
∏

i∈(A1\B1)∪(A2\B2)

I(zi ≤ 0)
]
.

(A.19)
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By Lemma A.16, we have

E
[ ∏
i∈B1∪B2

I(zi > 0) ·
∏

i∈(A1\B1)∪(A2\B2)

I(zi ≤ 0)
]
≥ γ|A1|+|A2|, (A.20)

where γ = 1/2 − 4/(Cn). Let Z ′ = [z′1, · · · , z′n]⊤ ∼ N(0, In). Denote ∆j :=
∑

i∈A1
I(z′i >

0)−
∑

i∈A2
I(z′i > 0), and n∆ = |A1|+ |A2|. Then we have ∆j ∼ B(|A1|, 1/2)−B(|A2|, 1/2),

E[∆j ] = (|A1| − |A2|)/2, and

E[∆j ]√
n∆

≥
−(1 + η)

√
nε log(n)

2
√

n/2− o(n)
≥ −

√
nε log(n) (A.21)

by (A.16) and (A.17). Here the last inequality comes from Assumption (A3). Combining (A.19) and
(A.20), we have

P(D(0)
+µ1,j

>
√
n) ≥

⌊|A1|−
√
n⌋∑

k=0

∑
B2⊆A2

|B2|=k

∑
B1⊆A1

|B1|>k+
√
n

γ|A1|+|A2|

= (2γ)|A1|+|A2|
⌊|A1|−

√
n⌋∑

k=0

∑
B2⊆A2

|B2|=k

∑
B1⊆A1

|B1|>k+
√
n

(
1

2
)|A1|+|A2|

= (2γ)|A1|+|A2|P(∆j >
√
n)

≥ (1− 8

Cn
)nP(∆j >

√
n) ≥ (1− 8

C
)P(∆j >

√
n),

(A.22)

where the second equation uses the decomposition of P(∆j >
√
n); the second inequality uses

|A1|+ |A2| ≤ n; and the last inequality uses f(n) = (1− 8/(Cn))n is a monotonically increasing
function for n ≥ 1. Note that

P(∆j >
√
n) = P

(∆j − E[∆j ]√
n∆/2

>

√
n− E[∆j ]√
n∆/2

)
≥ Φ̄

(√n− E[∆j ]√
n∆/2

)
−O(

1√
n
) ≥ Φ̄(2(

√
3 +

√
ε log(n)))−O(

1√
n
),

where the first inequality uses Berry-Esseen theorem (Lemma A.19), and the second inequality is
from (A.17) and (A.21). If

√
ε log(n) ≤

√
3, then Φ̄(2(

√
3 +

√
ε log(n))) − O(1/

√
n) = Ω(1),

which gives a constant lower bound for P(∆j >
√
n). If

√
ε log(n) >

√
3, we have

Φ̄(2(
√
3 +

√
ε log(n))) ≥ Φ̄(4

√
ε log(n)) ≥ 1

8
√

2πε log(n)
exp(−8ε log(n))

=
1

8
√
2πε log(n)n8ε

≥ 17

n10ε
,

for sufficiently large n. Here the second inequality uses Φ̄(x) ≥ Φ′(x)/(2x) for x ≥ 1. Combining
both situations, we have

P(∆j >
√
n) ≥ 17

n10ε
− CBE√

n/3
≥ 16

n10ε
(A.23)

for sufficiently large n. Combining (A.22) and (A.23), we have

P(D(0)
+µ1,j

>
√
n) ≥ (1− 8

C
)
16

n10ε
≥ 8

n10ε

for C ≥ 16. It remains to prove

P(d(0)µ,j ≥ min{c+µ1 , c−µ1} − 2n±µ1 −
√
n) ≤ 1

n10ε
, µ ∈ {±µ1}.
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Without loss of generality, below we prove it for µ = +µ1. According to condition (B3) in Lemma
4.1, we have

min{c+µ1
, c−µ1

} − 2n±µ1
−
√
n ≥ (

1

4
− 5η)n− 6

√
nε log(n)−

√
n ≥ (

1

5
− 5

C
)n ≥ n

6
(A.24)

for C ≥ 150 and sufficiently large n. Here the second inequality is from Assumption (A3). Thus it
suffices to prove P(d(0)+µ1,j

≥ n/6) ≤ n−10ε. Note that

d
(0)
+µ1,j

=
∑

i∈C+µ1

I(zi > 0)−
∑

i∈N+µ1

I(zi > 0).

Denote
∆′

j :=
∑

i∈C+µ1

I(z′i > 0)−
∑

i∈N+µ1

I(z′i > 0).

Following the same proof procedure for the anti-concentration result of D(0)
+µ1,j

, we have

P(d(0)+µ1,j
≥ n

6
) ≤ (2γ2)

c+µ1+n+µ1P(∆′
j ≥

n

6
),

where γ2 = 1/2 + 4/(Cn). According to condition (B3) in Lemma 4.1, we have c+µ1
− n+µ1

≤
(1/4− 2η)n+ 2

√
nε log(n). It yields that

E[∆′
j ] =

c+µ1
− n+µ1

2
≤ (1/8− η)n+

√
nε log(n) ≤ n/7.

Applying Hoeffding’s inequality (Lemma A.18), we have

P(∆′
j ≥ n/6) ≤ P(∆′

j − E[∆′
j ] ≥ n/42) ≤ exp(−Ω(n)).

Combining the inequalities above, we have

P(d(0)+µ1,j
≥ n/6) ≤ (1 +

8

Cn
)c+µ1+n+µ1P(∆′

j ≥ n/6) = exp(−Ω(n)) ≤ 1

n10ε
, (A.25)

where the equation uses (1 + 8/(Cn))c+µ1
+n+µ1 ≤ (1 + 8/(Cn))n ≤ exp(8/C). Now we have

completed the proof for (D2).

Proof of condition (D3): Without loss of generality, we only prove the results for J 20ε
+µ1,P ∪ J 20ε

−µ1,P.
By Berry-Essen theorem, we have

P(|∆j | ≤ n1/2−20ε) = P
(∆j − E[∆j ]√

n∆/2
∈ [− E[∆j ]√

n∆/2
− 2

n20ε
,− E[∆j ]√

n∆/2
+

2

n20ε
]
)

≤ 2[Φ(
2

n20ε
)− Φ(0)] +O(

1√
n
) ≤ 4n−20ε,

where the first inequality uses Φ(b)−Φ(a) ≤ 2(Φ((b− a)/2)−Φ(0)), b ≥ a; the second inequality
uses Φ(x)− Φ(0) ≤ Φ′(0)x, x ≥ 0 and 20ε < 1/2. It yields that

P(|D(0)
+µ1,j

| ≤ n1/2−20ε) ≤ 2P(|∆j | ≤ n1/2−20ε) ≤ 8n−20ε,

where the first inequality is from Lemma A.15. Combined with (A.24) and (A.25), we have

P(|D(0)
ν,j | > n1/2−20ε, d

(0)
ν,j < min{cν , c−ν} − 2n±ν −

√
n, ν ∈ {±µ1})

≥ P(|D(0)
ν,j | > n1/2−20ε, d

(0)
ν,j < n/6, ν ∈ {±µ1})

≥ 1− 8n−20ε − 2 exp(−Ω(n)) ≥ 1− 9n−20ε,

where the second inequality uses D
(0)
ν,j = −D

(0)
−ν,j and P(∩n

i=1Ai) = 1 − P(∪n
i=1A

c
i ) ≥ 1 −∑n

i=1 P(Ac
i ). Note that given {aj} and {xi}, |Jν,P∪J−ν,P| is the summation of i.i.d Bernoulli random

variables with expectation larger than 1− 9n−20ε. Applying Hoeffding’s inequality (Lemma A.18),
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we obtain

P(|J 20ε
+µ1,P ∪ J 20ε

−µ1,P| < |JP|(1− 10n−20ε))

≤ P(|J 20ε
+µ1,P ∪ J 20ε

−µ1,P| − E[|J 20ε
+µ1,P ∪ J 20ε

−µ1,P|] < −|JP|n−20ε)

≤ exp(−2|JP|n−40ε) ≤ n−ε,

where the first inequality uses E[|J 20ε
+µ1,P ∪ J−µ1,P|] ≥ |J 20ε

P |(1− 9n−20ε) and the last inequality is
from Assumption (A6) and 40ε < 0.01.

Proof of condition (D4): Lastly we show that (D4) also holds with probability at least 1−O(n−ε).
Without loss of generality, we only prove it for J κ

+µ1,P. Referring back to the definition of J κ
+µ1,P in

equation (A.14), it is crucial to note that it solely imposes upper bounds on d
(0)
−µ1,j

. Consequently,

the average of d(0)−µ1,j
in J κ

+µ1,P is no more than the average of d(0)−µ1,j
in JP, which imposes no

constraints on d
(0)
−µ1,j

. Armed with this understanding, when |J κ
+µ1,P| > 0, we have that with

probability 1,

1

|J κ
+µ1,P|

∑
j∈J κ

+µ1,P

(c+µ1
− n+µ1

− d
(0)
−µ1,j

) ≥ 1

|JP|
∑
j∈JP

(c+µ1
− n+µ1

− d
(0)
−µ1,j

).

Thus it suffices to show that
1

|JP|
∑
j∈JP

(c+µ1 − n+µ1 − d
(0)
−µ1,j

) ≥ n

10
(A.26)

with probability at least 1−O(δ). Note that given the training data X , {d(0)−µ1,j
}mj=1 are i.i.d random

variables with E[d(0)−µ1,j
] = (c−µ1 − n−µ1)/2, which comes from the symmetry of the distribution of

w
(0)
j . Then we have

E[c+µ1 − n+µ1 − d
(0)
−µ1,j

] = c+µ1 − n+µ1(c−µ1 − n−µ1)/2 ≥ (
1

8
− 5η)n− 5

√
nε log(n) ≥ n

9
.

(A.27)
Here the first inequality uses (B3) in Lemma 4.1 and the second inequality uses Assumption (A3).
Applying Hoeffding’s inequality (Lemma A.18), we obtain

P
( 1

|JP|
∑
j∈JP

(c+µ1
− n+µ1

− d
(0)
−µ1,j

) <
n

10

)
= P

( ∑
j∈JP

(d
(0)
−µ1,j

− E[d(0)−µ1,j
]) >

(
c+µ1

− n+µ1
− n

10
− E[d(0)−µ1,j

]
)
|JP|

)
≤ P

( ∑
j∈JP

(d
(0)
−µ1,j

− E[d(0)−µ1,j
]) >

n

90
|JP|

)
≤ exp

(
− n2|JP|

4050(c−µ1
+ n−µ1

)2

)
≤ δ,

where the first inequality uses (A.27), the second inequality uses Hoeffding’s inequality (Lemma A.18)
and the bounds of d(0)−µ1,j

, i.e. −n−µ1
≤ d

(0)
−µ1,j

≤ c−µ1
, and the last inequality uses Assumption

(A6). It proves (A.26).

Remark A.1. In the proof of (D2), note that when Σ = In, zi are independent with each other. Then
(A.15) can be proved by applying Hoeffding’s inequality (Lemma A.18). In our setting, Σ is close
to the identity matrix, which means that {zi} are weakly dependent and inspires us to prove similar
results.
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A.3.3 PROOF OF THE PROBABILITY BOUND OF THE “GOOD RUN” EVENT

Combining the probability lower bound parts of Lemma 4.1,4.3 and 4.4, we have

P((a,W (0), X) ∈ Ggood)

≥ P(a ∈ GA, X ∈ Gdata, (D1)-(D4) are satisfied)− P(W (0) /∈ GW )

≥ P((D1)-(D4) are satisfied | a ∈ GA, X ∈ Gdata)P(a ∈ GA, X ∈ Gdata)−O(n−ε)

≥ (1−O(n−ε))(1−O(n−ε))−O(n−ε) = 1−O(n−ε),

as desired.

A.4 TRAJECTORY ANALYSIS OF THE NEURONS

Let t ≥ 0 be an arbitrary step. Denote z
(t)
i := yif(xi;W

(t)), and h
(t)
i := g

(t)
i − 1/2. Then we can

decompose (2.2) as

w
(t+1)
j − w

(t)
j =

αaj

2n

∑n
i=1 ϕ

′(⟨w(t)
j , xi⟩)yixi +

αaj

n

∑n
i=1 h

(t)
i ϕ′(⟨w(t)

j , xi⟩)yixi. (A.28)

Remark A.2. When |z(t)i | is sufficiently small, we can use 1/2 as an approximation for the negative
derivative of the logistic loss by first-order Taylor’s expansion and we will show that the training
dynamics is nearly the same in the first O(p) steps.

Lemma A.3. Suppose that Assumptions (A1)-(A6) hold. Under a good run, for 0 ≤ t ≤ 1/(
√
npα)−

2, we have maxi∈[n] |h
(t)
i | ≤ 2/n3/2.

Lemma A.4. Suppose that Assumptions (A1)-(A6) hold. Under a good run, for 0 ≤ t ≤ 1/(
√
npα)−

2, we have that for each k ∈ [n],∣∣∣⟨w(t+1)
j − w

(t)
j , xk⟩ −

αaj
2n

[
ykϕ

′(⟨w(t)
j , xk⟩)p+ yx̄k

D
(t)
x̄k,j

∥µ∥2
]∣∣∣

≤ 4α

n5/2
√
m

[
ϕ′(⟨w(t)

j , xk⟩)p+
Cnn

1.99∥µ∥2

3C

]
, and (A.29)∣∣∣⟨w(t+1)

j − w
(t)
j , ν⟩ − αaj

2n
yνD

(t)
ν,j∥µ∥

2
∣∣∣ ≤ 5α

n3/2
√
m
∥µ∥2. (A.30)

where Cn := 10
√
log(n), x̄k ∈ centers is defined as the cluster mean for sample (xk, yk), and yν

is defined as the clean label for cluster centered at ν (i.e. yν = 1 for ν ∈ {±µ1}, yν = −1 for
ν ∈ {±µ2}).

Taking a closer look at (A.29), we see that if ajyk > 0, and xk activates neuron wj at time s, then xk

will activate neuron w
(t)
j for any t ∈ [s, 1/(

√
npα) − 2]. Moreover, if ajyk < 0, and xk activates

neuron wj at time s, then xk will not activate neuron wj at time s+ 1, which implies that there is an
upper bound for the inner product ⟨w(t)

j , xk⟩. These observations are stated as the corollary below:

Corollary A.5. Suppose that Assumptions (A1)-(A6) hold. Under a good run, for any pair (j, k) ∈
[m]× [n], the following is true:

(E1) When ajyk > 0, if there exists some 0 ≤ s < 1/(
√
npα)− 2 such that ⟨w(s)

j , xk⟩ > 0, then

for any s ≤ t ≤ 1/(
√
npα)− 2, we have ⟨w(t)

j , xk⟩ > 0.

(E2) When ajyk < 0, for any 0 ≤ t ≤ 1/(
√
npα)− 2, we have that ⟨w(t)

j , xk⟩ ≤ α√
m
∥µ∥2.

(E3) When ajyk < 0, for any 0 ≤ t ≤ 1/(
√
npα) − 3, we have that ⟨w(t)

j , xk⟩ > 0 implies

⟨w(t+1)
j , xk⟩ < 0.

22



Published as a conference paper at ICLR 2024

A.4.1 PROOF OF LEMMA A.3

Lemma A.3. Suppose that Assumptions (A1)-(A6) hold. Under a good run, for 0 ≤ t ≤ 1/(
√
npα)−

2, we have maxi∈[n] |h
(t)
i | ≤ 2/n3/2.

Proof. It suffices to show that for 0 ≤ t ≤ 1/(
√
npα)− 2,

max
i∈[n]

|h(t)
i | ≤ 2αp

n
(t+ 2).

We prove the result by an induction on t. Denote

P (t) : max
i∈[n]

|h(τ)
i | ≤ 2αp

n
(t+ 2), ∀τ ≤ t.

When t = 0, we have

|h(0)
i | ≤ pωinit

√
3m

2
≤

√
3α∥µ∥2

4nm
≤ 4αp

n

by Lemma A.10, Assumption (A2) and (A5). Thus P (0) holds. Suppose P (t) holds and t ≤
1/(

√
npα)− 3, then we have

|h(τ)
i | ≤ 2αp√

n
(τ + 2) ≤ 2√

n
;

1

2
− 2√

n
≤ g

(τ)
i ≤ 1

2
+

2√
n
, ∀τ ≤ t,

which yields that maxi∈[n] g
(τ)
i ≤ 1. Further we have that for each pair (j, k) ∈ [m]× [n],

|⟨w(τ+1)
j − w

(τ)
j , xk⟩| =

∣∣αaj
n

n∑
i=1

g
(τ)
i ϕ′(⟨w(τ)

j , xi⟩)yi⟨xi, xk⟩
∣∣

≤ α

n
√
m

max
i∈[n]

g
(τ)
i (2p+ 2n∥µ∥2) ≤ 4αp

n
√
m
,

where the first inequality uses ∥xi∥2 ≤ 2p, |⟨xi, xj⟩| ≤ 2µ2, which comes from Lemma 4.1, and the
second inequality uses Assumption (A2). It yields that for each pair (j, k) ∈ [m]× [n],

|⟨w(t+1)
j , xk⟩| ≤

t∑
τ=0

|⟨w(τ+1)
j −w

(τ)
j , xk⟩|+|⟨w(0)

j , xk⟩| ≤
4αp

n
√
m
(t+1)+

√
2p∥w(0)

j ∥ ≤ 4αp

n
√
m
(t+2),

where the last inequality uses Lemma 4.3 and Assumption (A5). Then we have that for each k ∈ [n],

|f(xk;W
(t+1))| ≤

m∑
j=1

|aj⟨w(t+1)
j , xk⟩| ≤

√
m max

j∈[m]
|⟨w(t+1)

j , xk⟩| ≤
4αp

n
(t+ 2).

By |1/(1 + exp(z))− 1/2| ≤ |z|/2,∀z, we have for each i ∈ [n],

|h(t+1)
i | ≤ 1

2
|z(t+1)

i | = 1

2
|f(xi;W

(t+1))| ≤ 2αp

n
(t+ 2).

Thus P (t+ 1) is proved.

As a consequence of Lemma A.3, we have g
(t)
i ∈ [1/4, 1] for 0 ≤ t ≤ 1/(

√
npα)− 2.
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A.4.2 PROOF OF LEMMA A.4

Lemma A.4. Suppose that Assumptions (A1)-(A6) hold. Under a good run, for 0 ≤ t ≤ 1/(
√
npα)−

2, we have that for each k ∈ [n],∣∣∣⟨w(t+1)
j − w

(t)
j , xk⟩ −

αaj
2n

[
ykϕ

′(⟨w(t)
j , xk⟩)p+ yx̄k

D
(t)
x̄k,j

∥µ∥2
]∣∣∣

≤ 4α

n5/2
√
m

[
ϕ′(⟨w(t)

j , xk⟩)p+
Cnn

1.99∥µ∥2

3C

]
, and (A.29)∣∣∣⟨w(t+1)

j − w
(t)
j , ν⟩ − αaj

2n
yνD

(t)
ν,j∥µ∥

2
∣∣∣ ≤ 5α

n3/2
√
m
∥µ∥2. (A.30)

where Cn := 10
√
log(n), x̄k ∈ centers is defined as the cluster mean for sample (xk, yk), and yν

is defined as the clean label for cluster centered at ν (i.e. yν = 1 for ν ∈ {±µ1}, yν = −1 for
ν ∈ {±µ2}).

Proof. First we have∣∣∣αaj
n

n∑
i=1

h
(t)
i ϕ′(⟨w(t)

j , xi⟩)yi⟨xi, xk⟩
∣∣∣ ≤ 2α

n5/2
√
m

n∑
i=1

ϕ′(⟨w(t)
j , xi⟩)|⟨xi, xk⟩|

≤ 2α

n5/2
√
m

[
ϕ′(⟨w(t)

j , xk⟩)∥xk∥2 +
∑
i ̸=k

|⟨xi, xk⟩|
]

≤ 4α

n5/2
√
m

[
ϕ′(⟨w(t)

j , xk⟩)p+ n∥µ∥2
]
,

(A.31)

where the first inequality uses maxi h
(t)
i ≤ 2n−3/2, which is from Lemma A.3; the third inequality

uses ∥xk∥2 ≤ 2p, |⟨xi, xk⟩| ≤ 2∥µ∥2, which is induced by Lemma 4.1. Next we have the following
decomposition:

n∑
i=1

ϕ′(⟨w(t)
j , xi⟩)⟨yixi, xk⟩

=ykϕ
′(⟨w(t)

j , xk⟩)(∥xk∥2 − p− ∥µ∥2) +
∑
i ̸=k

ϕ′(⟨w(t)
j , xi⟩)yi(⟨xi, xk⟩ − ⟨x̄i, x̄k⟩)

+ ykϕ
′(⟨w(t)

j , xk⟩)(p+ ∥µ∥2) +
∑
i̸=k

ϕ′(⟨w(t)
j , xi⟩)yi⟨x̄i, x̄k⟩

=ykϕ
′(⟨w(t)

j , xk⟩)(∥xk∥2 − p− ∥µ∥2) +
∑
i ̸=k

ϕ′(⟨w(t)
j , xi⟩)yi(⟨xi, xk⟩ − ⟨x̄i, x̄k⟩)

+ ykϕ
′(⟨w(t)

j , xk⟩)p+ yx̄k
D

(t)
x̄k,j

∥µ∥2 +
∑

i:x̄i /∈{±x̄k}

ϕ′(⟨w(t)
j , xi⟩)yi⟨x̄i, x̄k⟩,

(A.32)

where the second equation uses the definition of D(t)
ν,j . Recall that Cn = 10

√
log(n). Combining

with results in Lemma 4.1, (A.32) yields that∣∣∣ n∑
i=1

ϕ′(⟨w(t)
j , xi⟩)⟨yixi, xk⟩−

[
ykϕ

′(⟨w(t)
j , xk⟩)p+yx̄k

D
(t)
x̄k,j

∥µ∥2
]∣∣∣ ≤ nCn

√
p+2n∥µ∥ ≤ 2nCn

√
p,

(A.33)
where the first inequality uses (B1) and (B2) in Lemma 4.1 and the second inequality uses Assumption
(A2). Recall the decomposition (A.28) of the gradient descent update, we have

⟨w(t+1)
j − w

(t)
j , xk⟩ =

αaj
2n

n∑
i=1

ϕ′(⟨w(t)
j , xi⟩)⟨yixi, xk⟩+

αaj
n

n∑
i=1

h
(t)
i ϕ′(⟨w(t)

j , xi⟩)⟨yixi, xk⟩

(A.34)
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Then combining (A.31), (A.33), and (A.34), we have∣∣∣⟨w(t+1)
j − w

(t)
j , xk⟩ −

αaj
2n

[
ykϕ

′(⟨w(t)
j , xk⟩)p+ yx̄k

D
(t)
x̄k,j

∥µ∥2
]∣∣∣

≤ 4α

n5/2
√
m

[
ϕ′(⟨w(t)

j , xk⟩)p+ n∥µ∥2
]
+

αCn
√
p

√
m

≤ 4α

n5/2
√
m

[
ϕ′(⟨w(t)

j , xk⟩)p+ n∥µ∥2 + Cnn
2−0.01∥µ∥2

4C

]
≤ 4α

n5/2
√
m

[
ϕ′(⟨w(t)

j , xk⟩)p+
Cnn

2−0.01∥µ∥2

3C

]
,

where the second inequality uses Assumption (A1) and the last inequality holds for large enough n.

Now we turn to prove (A.30). Similar to (A.34), we have a decomposition for ⟨w(t+1)
j − w

(t)
j , ν⟩:

⟨w(t+1)
j − w

(t)
j , ν⟩ = αaj

2n

n∑
i=1

ϕ′(⟨w(t)
j , xi⟩)⟨yixi, ν⟩+

αaj
n

n∑
i=1

h
(t)
i ϕ′(⟨w(t)

j , xi⟩)⟨yixi, ν⟩.

Similar to (A.31), we have∣∣∣αaj
n

n∑
i=1

h
(t)
i ϕ′(⟨w(t)

j , xi⟩)yi⟨xi, ν⟩
∣∣∣ ≤ 4α

n3/2
√
m
∥µ∥2

by Lemma A.3 and |⟨xi, ν⟩| ≤ 2∥µ∥2, which induced by (B1) in Lemma 4.1. Similar to (A.33), we
have∣∣∣ n∑

i=1

ϕ′(⟨w(t)
j , xi⟩)⟨yixi, ν⟩ − yνD

(t)
ν,j∥µ∥

2
∣∣∣ = ∣∣∣ n∑

i=1

ϕ′(⟨w(t)
j , xi⟩)yi⟨xi − x̄i, ν⟩

∣∣∣ ≤ nCn∥µ∥

(A.35)
by (B1) in Lemma 4.1. Combining the inequalities above, we have∣∣∣⟨w(t+1)

j − w
(t)
j , ν⟩ − αaj

2n
yνD

(t)
ν,j∥µ∥

2
∣∣∣ ≤ 4α

n3/2
√
m
∥µ∥2 + αCn

2
√
m
∥µ∥ ≤ 5α

n3/2
√
m
∥µ∥2

for large enough n. Here the last inequality uses

∥µ∥2 ≥ Cn0.51√p ≥ C3/2n1.51∥µ∥,

which comes from Assumptions (A1)-(A2).

A.4.3 PROOF OF COROLLARY A.5

Corollary A.5. Suppose that Assumptions (A1)-(A6) hold. Under a good run, for any pair (j, k) ∈
[m]× [n], the following is true:

(E1) When ajyk > 0, if there exists some 0 ≤ s < 1/(
√
npα)− 2 such that ⟨w(s)

j , xk⟩ > 0, then

for any s ≤ t ≤ 1/(
√
npα)− 2, we have ⟨w(t)

j , xk⟩ > 0.

(E2) When ajyk < 0, for any 0 ≤ t ≤ 1/(
√
npα)− 2, we have that ⟨w(t)

j , xk⟩ ≤ α√
m
∥µ∥2.

(E3) When ajyk < 0, for any 0 ≤ t ≤ 1/(
√
npα) − 3, we have that ⟨w(t)

j , xk⟩ > 0 implies

⟨w(t+1)
j , xk⟩ < 0.

Proof. (E1): It suffices to show the result holds for t = s+ 1, then by induction we can prove it for
all s ≤ t ≤ 1/(

√
npα)− 2. Note that ajyk = 1/

√
m and ⟨w(s)

j , xk⟩ > 0, by (A.29), we have

⟨w(s+1)
j −w

(s)
j , xk⟩ ≥

α

2n
√
m
(p−n∥µ∥2)− 4α

n5/2
√
m

[
p+

Cnn
1.99∥µ∥2

3C

]
≥ αp

4n
√
m

> 0, (A.36)
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where the second inequality uses Assumption (A2).

(E2): We prove (E2) by induction. Denote

Q(t) : ⟨w(t)
j , xk⟩ ≤

α√
m
∥µ∥2.

When t = 0, by the definition of a good run, we have

|⟨w(0)
j , xk⟩| ≤ ∥w(0)

j ∥ · ∥xk∥ ≤ ∥W (0)∥F ·
√

2p ≤ ωinitp
√
3m ≤ α

Cn
√
m
∥µ∥2, (A.37)

where the second inequality uses Lemma 4.1; the third inequality uses Lemma 4.3; and the last
inequality is from Assumption (A5). Thus Q(0) holds. Suppose Q(t) holds and t ≤ 1/(

√
npα)− 3.

If ⟨w(t)
j , xk⟩ < 0, we have

⟨w(t+1)
j , xk⟩ ≤ ⟨w(t+1)

j − w
(t)
j , xk⟩ ≤

αajyx̄k

2n
D

(t)
x̄k,j

∥µ∥2 + 4αCn

3Cn0.51
√
m
∥µ∥2 ≤ α√

m
∥µ∥2,

where the second inequality uses (A.29) and ϕ′(⟨w(t)
j , xk⟩) = 0; and the third inequality uses

D
(t)
ν,j ≤ n and n is large enough. If ⟨w(t)

j , xk⟩ > 0, we have

⟨w(t+1)
j − w

(t)
j , xk⟩ ≤ − α

2n
√
m
(p− n∥µ∥2) + 4α

n5/2
√
m

[
p+

Cnn
1.99∥µ∥2

3C

]
≤ − α

2n
√
m
(p− n∥µ∥2) + 8αp

n5/2
√
m
,

where the first inequality uses (A.29) and ϕ′(⟨w(t)
j , xk⟩) = 1; and the second inequality uses

Assumption (A2). Combined with the inductive hypothesis, we have

⟨w(t+1)
j , xk⟩ = ⟨w(t)

j , xk⟩+⟨w(t+1)
j −w

(t)
j , xk⟩ ≤

α√
m
∥µ∥2− α

2n
√
m
(p−n∥µ∥2)+ 8αp

n5/2
√
m

< 0

by Assumption (A2). Thus Q(t+ 1) holds. And (E3) is also proved by the last inequality.

A.4.4 PROOF OF LEMMA A.6

Since the analysis on one cluster can be similarly replicated on other clusters, below we will focus
on analyzing the cluster centered at +µ1. Given the training set, D(0)

+µ1,j
is a function of the random

initialization w
(0)
j . D

(0)
+µ1,j

plays an important role in determining the direction that w(t)
j , t ≥ 1

aligns with and the sign of the inner product ⟨w(t)
j , xk⟩. For x̄k ∈ {±µ1}, yx̄k

= 1. Then for each
t ≤ 1/(

√
npα)− 2, (A.29) is simplified to∣∣∣⟨w(t+1)

j − w
(t)
j , xk⟩ −

αajykp

2n

∣∣∣ ≤ 4αp

n5/2
√
m

+
α

2
√
m
∥µ∥2, when ⟨w(t)

j , xk⟩ > 0; (A.38)

∣∣∣⟨w(t+1)
j − w

(t)
j , xk⟩ −

αaj
2n

D
(t)
x̄k,j

∥µ∥2
∣∣∣ ≤ 4αCn

3Cn0.01
√
mn

∥µ∥2, when ⟨w(t)
j , xk⟩ ≤ 0. (A.39)

Here Cn = 10
√
log(n) is defined in Lemma A.4. We will elaborate on the outcomes for neurons

with aj > 0 and aj < 0 separately in the following lemmas.

Lemma A.6. Suppose that Assumptions (A1)-(A6) hold. Under a good run, we have that for any
j ∈ J 20ε

+µ1,P (or equivalently, for any neuron j ∈ JPos that is (µ1, 20ε)-aligned) ), the followings hold
for 1 ≤ t ≤ 1/(

√
npα)− 2:

(F1)

C(t)
+µ1,j

= C+µ1
; C(t)

−µ1,j
= C(0)

−µ1,j
; N (t)

−µ1,j
= ∅; D

(t)
+µ1,j

> c+µ1
− n+µ1

− d
(0)
−µ1,j

.
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(F2)
⟨w(t)

j − w
(t−1)
j , µ1⟩ ≥

α

4n
√
m
D

(t−1)
+µ1,j

∥µ∥2.

Proof. Given j ∈ J 20ε
+µ1,P, when t = 0, for xk ∈ C(0)

+µ1,j
, we have ajyk > 0. Thus by Corollary A.5,

we have
xk ∈ C(t)

+µ1,j
, 0 ≤ t ≤ 1/(

√
npα)− 2. (A.40)

Similarly we have that for xk ∈ C(0)
−µ1,j

,

xk ∈ C(t)
−µ1,j

, 0 ≤ t ≤ 1/(
√
npα)− 2; (A.41)

and for xk ∈ N (0)
−µ1,j

, xk /∈ N (1)
−µ1,j

since ajyk < 0.

Next for xk ∈ C+µ1
\C(0)

+µ1,j
, we have

⟨w(1)
j − w

(0)
j , xk⟩ ≥

αaj
2n

D
(0)
+µ1,j

∥µ∥2 − 4αCn

3Cn0.01
√
mn

∥µ∥2

≥ α

2n20ε
√
mn

∥µ∥2 − 4αCn

3Cn0.01
√
mn

∥µ∥2 ≥ α

4n20ε
√
mn

∥µ∥2,
(A.42)

where the first inequality is from (A.39); the second inequality uses D(0)
+µ1,j

> n1/2−20ε, which is
from j ∈ J 20ε

+µ1,P; and the last inequality uses 40ε < 0.01. It yields that

⟨w(1)
j , xk⟩ ≥ ⟨w(1)

j −w
(0)
j , xk⟩ − ∥w(0)

j ∥ · ∥xk∥ ≥ α

4n20ε
√
mn

∥µ∥2 − α

Cn
√
m
∥µ∥2 > 0, (A.43)

where the second inequality uses (A.37). Thus we have

C+µ1\C
(0)
+µ1,j

⊆ C(1)
+µ1,j

.

Combined with (A.40), we obtain C(1)
+µ1,j

= C+µ1
. Then by Corollary A.5, we have

C(t)
+µ1,j

= C+µ1 , 0 ≤ t ≤ 1/(
√
npα)− 2.

For xk ∈
(
C−µ1

\C(0)
−µ1,j

)
∪
(
N−µ1

\N (0)
−µ1,j

)
, Following similar analysis of (A.43), we have

⟨w(1)
j , xk⟩ ≤ ⟨w(1)

j −w
(0)
j , xk⟩+∥w(0)

j ∥·∥xk∥ ≤ −(
α

4n20ε
√
mn

∥µ∥2− α

Cn
√
m
∥µ∥2) < 0. (A.44)

Thus we have C−µ1
\C(0)

−µ1,j
/∈ C(1)

−µ1,j
, and N−µ1

\N (0)
−µ1,j

/∈ N (1)
−µ1,j

. Combined with (A.41) and

N (0)
−µ1,j

/∈ N (1)
−µ1,j

, we obtain

C(1)
−µ1,j

= C(0)
−µ1,j

; N (1)
−µ1,j

= ∅.

It yields that

D
(1)
+µ1,j

= c+µ1
− |N (1)

+µ1,j
| − |C(0)

−µ1,j
| > c+µ1

− n+µ1
− d

(0)
−µ1,j

>
√
n,

where the last inequality uses d(0)+µ1,j
< min{c+µ1

, c−µ1
} − 2n±µ1

−
√
n and

c+µ1 − n+µ1 − d
(0)
−µ1,j

>
√
n+ d

(0)
+µ1,j

− d
(0)
−µ1,j

>
√
n.

Thus (F1) holds for t = 1. Then (F1) is proved by replicating the same analysis and employing
induction.

For the inner product with the cluster mean +µ1, by (A.30) we have

⟨w(t+1)
j − w

(t)
j , µ1⟩ ≥

α

2n
√
m
D

(t)
+µ1,j

∥µ∥2 − 5Cnα

n3/2
√
m
∥µ∥2 ≥ α

4n
√
m
D

(t)
+µ1,j

∥µ∥2,
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where the last inequality uses D(t)
+µ1,j

> 0.

A.4.5 PROOF OF LEMMA A.7

Lemma A.7. Suppose that Assumptions (A1)-(A6) hold. Under a good run, for any j ∈ J 20ε
+µ1,N ∪

J 20ε
−µ1,N (or equivalently, for any neuron j ∈ JNeg that is (±µ1, 20ε)-aligned), the followings hold for

2 ≤ t ≤ 1/(
√
npα)− 2.

N (t)
+µ1,j

= N+µ1 ,N
(t)
−µ1,j

= N−µ1 ; (A.45)

−n−∆µ1
(t− 2) ≤

t∑
s=0

D
(s)
ν,j ≤ n+∆µ1

(t− 2), ν ∈ {±µ1}, (A.46)

where ∆µ1 := |n+µ1 − n−µ1 |+
√
n.

Proof. For a given ν ∈ {±µ1}, suppose j ∈ J 20ε
ν,N . Then we have

aj < 0; D
(0)
ν,j > n1/2−20ε; d

(0)
ν,j ≤ min{cν , c−ν − 2n±ν −

√
n} (A.47)

according to the definition (A.14). Note that we study the same data as in Lemma A.6 and only
sgn(aj) is flipped in the trajectory analysis compared to the setting in Lemma A.6, our analysis in
the first two iterations follows similar procedures in Lemma A.6. For xk ∈ C(0)

ν,j ∪ C(0)
−ν,j , ajyk < 0,

by Corollary A.5, we have
⟨w(1)

j , xk⟩ < 0. (A.48)

For xk ∈ N (0)
ν,j ∪N (0)

−ν,j , ajyk > 0, by Corollary A.5, we have

⟨w(t)
j , xk⟩ > 0 (A.49)

for any t ≤ 1/(
√
npα)− 2. For xk ∈

(
Cν\C(0)

ν,j

)
∪
(
Nν\N (0)

ν,j

)
, similar to (A.42), we have

⟨w(1)
j − w

(0)
j , xk⟩ ≤ −

(αaj
2n

D
(0)
+µ1,j

∥µ∥2 − 4αCn

3Cn0.01
√
mn

∥µ∥2
)
≤ − α

4n20ε
√
mn

∥µ∥2 < 0,

then similar to (A.43), we have

⟨w(1)
j , xk⟩ ≤ −⟨w(1)

j −w
(0)
j , xk⟩+∥w(0)

j ∥·∥xk∥ ≤ − α

4n20ε
√
mn

∥µ∥2+ α

Cn
√
m
∥µ∥2 < 0. (A.50)

For xk ∈
(
C−ν\C(0)

−ν,j

)
∪
(
N−ν\N (0)

−ν,j

)
, similar to (A.44), we have

⟨w(1)
j , xk⟩ ≥ ⟨w(1)

j −w
(0)
j , xk⟩ − ∥w(0)

j ∥ · ∥xk∥ ≥ α

4n20ε
√
mn

∥µ∥2 − α

Cn
√
m
∥µ∥2 > 0. (A.51)

Combining (A.48)-(A.51), we have

C(1)
ν,j = ∅; C(1)

−ν,j = C−ν\C(0)
−ν,j ; N (1)

ν,j = N (0)
ν,j ; N (1)

−ν,j = N−ν . (A.52)

Thus by the definition of D(1)
ν,j , we have

D
(1)
ν,j = −|N (0)

ν,j | − c−ν + |C(0)
−ν,j |+ n−ν ≤ −|N (0)

ν,j | − c−ν + d
(0)
−ν,j + 2n−ν . (A.53)

It further yields that

D
(1)
ν,j +D

(0)
ν,j ≤ −|N (0)

ν,j | − c−ν + 2n−ν + d
(0)
ν,j ≤ −c−ν + 2n−ν + d

(0)
ν,j < −

√
n,

where the first inequality uses (A.53) and the definition of D(0)
ν,j , and the third inequality uses (A.47).
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After the second iteration, for xk ∈ Nν\N (1)
ν,j , ⟨w(0)

j , xk⟩ < 0, ⟨w(1)
j , xk⟩ < 0. Then we have

⟨w(2)
j − w

(0)
j , xk⟩ ≥ − α

2n
√
m
(D

(0)
ν,j +D

(1)
ν,j )∥µ∥

2 − 4αCn

3Cn0.01
√
mn

∥µ∥2

>
α

2
√
mn

∥µ∥2 − 4αCn

3Cn0.01
√
mn

∥µ∥2,

where the first inequality uses (A.39), and the second inequality uses D(1)
ν,j +D

(0)
ν,j < −

√
n. It further

yields that

⟨w(2)
j , xk⟩ ≥ ⟨w(2)

j −w
(0)
j , xk⟩−∥w(0)

j ∥·∥xk∥ ≥ α

2
√
mn

∥µ∥2− 4αCn

3Cn0.01
√
mn

∥µ∥2− α

Cn
√
m
∥µ∥2 > 0.

(A.54)
For xk ∈ N (1)

ν,j ∪ N−ν , note that ajyk > 0. Then by Corollary A.5, we have ⟨w(2)
j , xk⟩ > 0.

Combined with (A.54), we obtain N (2)
ν,j = Nν ,N (2)

−ν,j = N−ν . Again by Corollary A.5, we have that
for 2 ≤ t ≤ 1/(

√
npα)− 2,

N (t)
ν,j = Nν , N (t)

−ν,j = N−ν , (A.55)

i.e. for t ≥ 2, neurons with j ∈ J 20ε
ν,N ∪ J 20ε

−ν,N are active for all noisy points in N±µ1 , which proves
(A.45).

For xk ∈ C(1)
−ν,j , note that ajyk < 0 and ⟨w(1)

j , xk⟩ > 0. Then by Corollary A.5, we have

⟨w(2)
j , xk⟩ < 0. For xk ∈ C−ν\C(1)

−ν,j , by (A.52) we have ⟨w(0)
j , xk⟩ > 0, ⟨w(1)

j , xk⟩ < 0. It
yields that

⟨w(2)
j −w

(0)
j , xk⟩ ≤ − α

2n
√
m
(p+D

(1)
ν,j∥µ∥

2)+
4αp

n5/2
√
m
+

α

2
√
m
∥µ∥2+ 4αCn

3Cn0.01
√
mn

∥µ∥2 ≤ − αp

4n
√
m
,

where the first inequality uses (A.38) and (A.39), and the second inequality uses Assumption (A2). It
further yields that

⟨w(2)
j , xk⟩ < ⟨w(2)

j − w
(0)
j , xk⟩+ ∥w(0)

j ∥ · ∥xk∥ ≤ − αp

4n
√
m

+
α

Cn
√
m
∥µ∥2 < 0 (A.56)

by Assumption (A2). Thus we have C(2)
−ν,j = ∅.

For xk ∈ C(0)
ν,j , ⟨w(0)

j , xk⟩ > 0, ⟨w(1)
j , xk⟩ < 0, which is similar to the setting of C−ν\C(1)

−ν,j .
Repeating the analysis above, we have

⟨w(2)
j , xk⟩ < 0.

For xk ∈ Cν\C(0)
ν,j , note that ⟨w(0)

j , xk⟩ < 0, ⟨w(1)
j , xk⟩ < 0, then we have

⟨w(2)
j − w

(0)
j , xk⟩ ≥ − α

2n
√
m
(D

(0)
ν,j +D

(1)
ν,j )∥µ∥

2 − 4αCn

3Cn0.01
√
mn

∥µ∥2

>
α

2
√
mn

∥µ∥2 − 4αCn

3Cn0.01
√
mn

∥µ∥2 > 0,

where the first inequality uses (A.39) and the second inequality uses (A.53). Combining the inequali-
ties above, we obtain

C(2)
ν,j = Cν\C(0)

ν,j ; C(2)
−ν,j = ∅; N (2)

ν,j = Nν ; N (2)
−ν,j = N−ν . (A.57)

Combining (A.52) and (A.57), we have

2∑
s=0

D
(s)
ν,j = cν − c−ν − nν + 3n−ν − 2|N (0)

ν |,
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and it yields that

cν − c−ν − 3nν + 3n−ν ≤
2∑

s=0

D
(s)
ν,j ≤ cν − c−ν + 3n−ν − nν .

It remains to prove (A.46). It suffices to prove

cν−2c−ν−4nν+3n−ν−∆µ1
(t−2) ≤

t∑
s=0

D
(s)
ν,j ≤ (2cν−c−ν+4n−ν−nν)+∆µ1

(t−2), ν ∈ {±µ1},

since 2cν − c−ν + 4n−ν − nν ≤ n and cν − 2c−ν − 4nν + 3n−ν ≥ −n by Lemma 4.1. Without
loss of generality, below we only show the proof of the right-hand side. Denote T = {t ∈ [T ], t ≥
3, D

(t)
ν,j > ∆µ1

} = {ti}Ki=1, t1 < t2 < · · · < tK . To prove the right-hand side of (A.46), it suffices
to show that the followings hold

s∑
t=ti

D
(t)
ν,j ≤ cν + n−ν +∆µ1(s− ti); (A.58)

ti+1−1∑
t=ti

D
(t)
ν,j ≤ ∆µ1

(ti+1 − ti) (A.59)

for any i ∈ [K] and all s ∈ [ti, ti+1 − 2]. (A.58) directly follows from the definition of the set T and
the fact that D(t)

ν,j ≤ cν + n−ν for any j, t. For a given ti, ti ∈ T , we have D
(ti)
ν,j > ∆µ1

≥
√
n. By

(A.39), we have that for any xk ∈ Cν\C(ti)
ν (j),

⟨w(ti+1)
j , xk⟩ ≤ ⟨w(ti+1)

j − w
(ti)
j , xk⟩ ≤ − α

2n
√
m
D

(ti)
ν,j ∥µ∥

2 +
4αCn

3Cn0.01
√
mn

∥µ∥2

≤ − α

4n
√
m
D

(ti)
ν,j ∥µ∥

2 < 0, (A.60)

which implies that w(ti+1)
j is still inactive for those xk that didn’t activate w

(ti)
j . For any xk ∈ C(ti)

ν,j ,
since ajyk < 0, by Corollary A.5, we have

⟨w(ti)
j , xk⟩ ≤

α∥µ∥2√
m

.

Combined with (A.38), we have

⟨w(ti+1)
j , xk⟩ = ⟨w(ti+1)

j − w
(ti)
j , xk⟩+ ⟨w(ti)

j , xk⟩

≤ − αp

2n
√
m

+
4αp

n5/2
√
m

+
3α

2
√
m
∥µ∥2 ≤ − αp

4n
√
m

< 0
(A.61)

where the second inequality uses Assumption (A2). Combining (A.60) and (A.61), we have C(ti+1)
ν,j =

∅, and

⟨w(ti+1)
j , xk⟩ ≤ − α

2n
√
m
D

(ti)
ν,j ∥µ∥

2 +
4αCn

3Cn0.01
√
mn

∥µ∥2 (A.62)

for all xk ∈ Cν . It yields that

D
(ti+1)
ν,j = |C(ti+1)

ν,j | − |C(ti+1)
−ν,j |+ n−ν − nν = −|C(ti+1)

−ν,j |+ n−ν − nν ≤ |n+µ1
− n−µ1

|,

where the first equation uses (A.45). It implies that ti+1 − ti > 1. Let t⋆i = min{t ∈ N : ti + 1 <

t ≤ ti+1, C(t)
ν (j) ̸= ∅}. We claim that t⋆i is well-defined for each i, because C(ti+1)

ν (j) ̸= ∅.
Otherwise we have D

(ti+1)
ν,j ≤ |n+µ1

− n−µ1
| < ∆µ1

, which contradicts to the definition of the set

T . Thus t⋆i always exists. Choose one point from the set C(t⋆i )
ν,j and denote it as x⋆

k. Note that for any
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t ∈ [ti + 1, t⋆i − 1], we have C(t)
ν (j) = ∅, D(t)

ν,j ≤ |n+µ1
− n−µ1

|, and by (A.39),

⟨w(t+1)
j − w

(t)
j , x⋆

k⟩ ≤ − α

2n
√
m
D

(t)
ν,j∥µ∥

2 +
4αCn

3Cn0.01
√
mn

∥µ∥2.

Combined with (A.62), it yields that

0 ≤ ⟨w(t⋆i )
j , x⋆

k⟩ =
t⋆i −1∑

t=ti+1

⟨w(t+1)
j − w

(t)
j , x⋆

k⟩+ ⟨w(ti+1)
j , x⋆

k⟩

≤ −α∥µ∥2

2n
√
m

(
D

(ti)
ν,j +

t⋆i −1∑
t=ti+1

D
(t)
ν,j −

4
√
nCn

3Cn0.01
(t⋆i − ti)

)
.

It further yields that
t⋆i −1∑
t=ti

D
(t)
ν,j ≤

4
√
nCn

3Cn0.01
(t⋆i − ti) ≤

√
n(t⋆i − ti).

If t⋆i = ti+1, then we’ve proved (A.59). If t⋆i < ti+1, then we have

ti+1−1∑
t=ti

D
(t)
ν,j =

t⋆i −1∑
t=ti

D
(t)
ν,j +

ti+1−1∑
t=t⋆

D
(t)
ν,j ≤

√
n(t⋆ − ti) + ∆µ1

(ti+1 − t⋆) ≤ ∆µ1
(ti+1 − ti),

which proves the right side. For the left side, similarly we denote T− = {t ∈ [T ], t ≥ 3, D
(t)
ν,j <

−∆µ1
} = {ti}Ki=1, t1 < t2 < · · · < tK . Following the same analysis, we can prove that the

followings hold

s∑
t=ti

D
(t)
ν,j ≥ −c−ν − nν −∆µ1

(s− ti);

ti+1−1∑
t=ti

D
(t)
ν,j ≥ −∆µ1

(ti+1 − ti)

for any i ∈ [K] and all s ∈ [ti, ti+1 − 2]. It proves the left-hand side of (A.46).

A.5 PROOF OF THE MAIN THEOREM

We rigorously prove Theorem 3.1 in this section. The upper bound of t in the theorems below is
1/(

√
npα)− 2, which by Assumption (A4), is larger than

√
n, the upper bound of t in Theorem 3.1.

A.5.1 PROOF OF THEOREM A.8: 1-STEP OVERFITTING

Theorem A.8. Suppose that Assumptions (A1)-(A6) hold. Under a good run, the classifier
sgn(f(x,W (t))) can correctly classify all training datapoints for 1 ≤ t ≤ 1/(

√
npα)− 2.

Proof. Without loss of generality, we only consider datapoints in the cluster C+µ1
∪N+µ1

. According
to (D1) in Lemma 4.4, we have that under a good run, |J i,(0)

P | ≥ m/7, |J i,(0)
N | ≥ m/7 for each

i ∈ [n]. For xk ∈ C+µ1
, by Corollary A.5, we have

⟨w(s)
j , xk⟩ > 0

for all j ∈ J k,(0)
P and 0 ≤ s ≤ 1/(

√
npα)− 2; and

⟨w(s)
j , xk⟩ ≤

α√
m
∥µ∥2
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for all j ∈ JN and 0 ≤ s ≤ 1/(
√
npα)− 2. Then for 1 ≤ t ≤ 1/(

√
npα)− 2, we have

m∑
j=1

ajϕ(⟨w(t)
j , xk⟩) ≥

∑
j∈J k,(0)

P

1√
m
ϕ(⟨w(t)

j , xk⟩)−
∑

j:aj<0

1√
m
ϕ(⟨w(t)

j , xk⟩)

≥
∑

j∈J k,(0)
P

t−1∑
s=0

1√
m
⟨w(s+1)

j − w
(s)
j , xk⟩ −

∑
j:aj<0

α

m
∥µ∥2

≥ αpt

4nm
|J k,(0)

P | − α|JN|
m

∥µ∥2

≥ αpt

28n
− α∥µ∥2 > 0,

where the first inequality uses ϕ(x) ≥ 0,∀x; the second inequality uses the definition of J k,(0)
P and

(E2) in Corollary A.5; the third inequality uses (A.36) in Corollary A.5; and the last inequality is
from Assumption (A2). For xk ∈ N+µ1

, similarly we have
m∑
j=1

ajϕ(⟨w(t)
j , xk⟩) ≤ −

∑
j∈J k,(0)

N

1√
m
ϕ(⟨w(t)

j , xk⟩) +
∑

j:aj>0

1√
m
ϕ(⟨w(t)

j , xk⟩)

≤ −
∑

j∈J k,(0)
N

t∑
s=1

1√
m
⟨w(s)

j − w
(s−1)
j , xk⟩+

∑
j:aj>0

α√
m
∥µ∥2

≤ −(
αpt

28n
− α∥µ∥2) < 0.

Thus our classifier can correctly classify all training datapoints for 1 ≤ t ≤ 1/(
√
npα)− 2.

A.5.2 PROOF OF THEOREM 4.7: GENERALIZATION

Before proceeding with the proof of Theorem 4.7, we first state a technical lemma:

Lemma A.9. Suppose that ∥W∥ > 0. Then there exists a constant c > 0 such that

P(x,ỹ)∼Pclean(ỹ ̸= sgn(f(x;W ))) ≤ max
ν∈centers

2 exp

(
−c

(Ex∼N(ν,Ip)[f(x;W )]

∥W∥F

)2
)
.

Proof. It suffices to prove that for each ν ∈ centers,

Px∼N(ν,Ip)(yνf(x;W ) < 0) ≤ 2 exp

(
−c

(Ex∼N(ν,Ip)[f(x;W )]

∥W∥F

)2
)
. (A.63)

Then applying the law of total expectation, we have

P(x,ỹ)∼Pclean(ỹ ̸= sgn(f(x;W ))) =
1

4

∑
ν∈centers

Px∼N(ν,Ip)(yν ̸= sgn(f(x;W )))

≤ 1

2

∑
ν∈centers

exp

(
−c

(Ex∼N(ν,Ip)[f(x;W )]

∥W∥F

)2
)

≤ max
ν∈centers

2 exp

(
−c

(Ex∼N(ν,Ip)[f(x;W )]

∥W∥F

)2
)
.

Since for each ν, N(ν, Ip) is 1-strongly log-concave, we plug in λ = 1 in the proof of Lemma 4.1 in
Frei et al. (2022b). Then (A.63) is obtained.
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Our next theorem shows that the generalization risk is small for large t. Recall the definition of J1

and J2, we equivalently write them as

J1 = J 20ε
+µ1,P = {j ∈ [m] : aj > 0, D

(0)
+µ1,j

> n1/2−20ε, d
(0)
+µ1,j

< min{c+µ1 , c−µ1} − 2n±µ1 −
√
n};

J2 = J 20ε
+µ1,N ∪ J 20ε

−µ1,N = {j ∈ [m] : aj < 0, D
(0)
ν,j > n1/2−20ε,

d
(0)
ν,j < min{cν , c−ν} − 2n±µ1 −

√
n, ν ∈ {±µ1}}.

Here J 20ε
+µ1,P,J

20ε
+µ1,N, and J 20ε

−µ1,N are defined in (A.14). By Lemma 4.4, we know that under a good
run,

|J1| ≥
m

n10ε
, |J2| ≥ (1− 10

n20ε
)|JN|. (A.64)

Theorem 4.7. Suppose that Assumptions (A1)-(A6) hold. Under a good run, for Cn10ε ≤ t ≤
√
n,

the generalization error of classifier sgn(f(x,W (t))) has an upper bound

P(x,y)∼Pclean(y ̸= sgn(f(x;W (t)))) ≤ exp

(
−Ω

(
n1−20ε∥µ∥4

p

))
.

Proof. Without loss of generality, we consider x follows N(+µ1, Ip). Then we have

Ex[yf(x,W
(t))] =

m∑
j=1

ajEx[ϕ(⟨w(t)
j , x⟩)]

≥ 1√
m

[ ∑
j:aj>0

ϕ
(
⟨w(t)

j ,E[x]⟩
)
−
∑

j:aj<0

Ex[ϕ(⟨w(t)
j , x⟩)

]
≥ 1√

m

∑
j:j∈J1

ϕ
(
⟨w(t)

j , µ1⟩
)
− 1√

m

∑
j:aj<0

Ex[ϕ(⟨w(t)
j , x⟩)],

(A.65)

where the first inequality uses Jensen’s inequality. By Lemma A.6, we have that for j ∈ J1,

⟨w(t)
j , µ1⟩ =

t−1∑
s=0

⟨w(s+1)
j − w

(s)
j , µ1⟩+ ⟨w(0)

j , µ1⟩

≥ α

4n
√
m

t−1∑
s=0

D
(s)
+µ1,j

∥µ∥2 − ωinit
√
3mp/2∥µ∥

≥ α∥µ∥2

4n
√
m

[
n1/2−20ε + (c+µ1

− n+µ1
− d

(0)
−µ1,j

)(t− 1)
]
− ωinit

√
3mp/2∥µ∥

≥ α∥µ∥2

4n
√
m
(c+µ1

− n+µ1
− d

(0)
−µ1,j

)(t− 1) > 0,

(A.66)

where the first inequality is from Lemma A.6 and (C1) in Lemma 4.3; the second inequality uses the
property that for j ∈ J1, D(s)

+µ1,j
≥ c+µ1

− n+µ1
− d

(0)
−µ1

(j), s ≥ 1, which is also from Lemma A.6;
and the third inequality uses Assumption (A5). It yields that∑

j:j∈J1

ϕ
(
⟨w(t)

j , µ1⟩
)
≥ α∥µ∥2(t− 1)

4n
√
m

∑
j∈J1

(
c+µ1

− d
(0)
−µ1

(j)− n+µ1

)
≥ α∥µ∥2(t− 1)

40
√
m

|J1|,

(A.67)
where the last inequality uses (D4) in Lemma 4.4. For the second term in (A.65), note that we have
ϕ(λx) = λϕ(x),∀λ > 0, and by Jensen’s inequality, ϕ(x1 + x2) ≤ ϕ(x1) + ϕ(x2),∀x1, x2 ∈ R.
Then we have

Ex[ϕ(⟨w, x⟩)] ≤ ϕ(⟨w, µ1⟩) + Ex[ϕ(⟨w, x− µ1⟩)] = ϕ(⟨w, µ1⟩) +
√

1

2π
∥w∥, (A.68)
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where the last equation uses the expectation of half-normal distribution. By Lemma A.3, we have
g
(t)
i ≤ 1, and

∥w(t+1)
j − w

(t)
j ∥ =

∥∥αaj
n

n∑
i=1

g
(t)
i ϕ′(⟨w(t)

j , xi⟩)yixi

∥∥
≤ α

n
√
m

max
i∈[n]

g
(t)
i

√√√√ n∑
i=1

∥xi∥2 +
∑
i ̸=j

|⟨xi, xj⟩| ≤
2α

√
p

√
mn

, 0 ≤ t ≤ 1/(
√
npα)− 2,

where the last inequality uses ∥xi∥2 ≤ 2p, |⟨xi, xj⟩| ≤ 2µ2, which comes from Lemma 4.1, and
Assumption (A2). It yields that for each j ∈ [m],

∥w(t)
j ∥ ≤

t−1∑
τ=0

∥w(τ+1)
j − w

(τ)
j ∥+ ∥w(0)

j ∥ ≤
2α

√
pt

√
nm

+ ∥w(0)
j ∥ ≤

3α
√
pt

√
mn

, (A.69)

where the last inequality uses Lemma 4.3. Then we consider the decomposition of∑
j:aj<0 ϕ(⟨w

(t)
j , µ1⟩):∑
j:aj<0

ϕ(⟨w(t)
j , µ1⟩) =

∑
j∈J2

ϕ(⟨w(t)
j , µ1⟩) +

∑
j∈JN,j /∈J2

ϕ(⟨w(t)
j , µ1⟩).

For the first term, we have∑
j∈J2

ϕ(⟨w(t)
j , µ1⟩) ≤

∑
j∈J2

|⟨w(t)
j , µ1⟩|

≤
∑
j∈J2

[∣∣∣ t−1∑
s=0

⟨w(s+1)
j − w

(s)
j , µ1⟩

∣∣∣+ |⟨w(0)
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]

≤
∑
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(α∥µ∥2
2n

√
m
D

(s)
+µ1,j

+
5α∥µ∥2

n
√
mn

)∣∣∣+ ωinit
√

3mp/2∥µ∥
]

≤
∑
j∈J2

[α∥µ∥2
2n

√
m
(n+∆µ1

(t− 2)) +
5α∥µ∥2t
n
√
mn

+ ωinit
√
3mp/2∥µ∥

]
=
∑
j∈J2

α∥µ∥2

2n
√
m
[n+ 1 + (∆µ1

+ 1)(t− 2)] ≤ α∥µ∥2

2n
√
m
[n+ 1 + (∆µ1

+ 1)(t− 2)]|J2|,

(A.70)

where the third inequality uses (A.30) in Lemma A.4; the fourth inequality uses Lemma A.7; and the
fiveth inequality uses Assumptions (A1) and (A5). For the second term, we have∑

j∈JN,j /∈J2

ϕ(⟨w(t)
j , µ1⟩)

≤
∑

j∈JN,j /∈J2

[ t−1∑
s=0

|⟨w(s+1)
j − w

(s)
j , µ1⟩|+ |⟨w(0)

j , µ1⟩|
]

≤
∑

j∈JN,j /∈J2

[ t−1∑
s=0

(α∥µ∥2
2n

√
m
|D(s)

+µ1,j
|+ 5α∥µ∥2

n
√
mn

)
+ ωinit

√
3mp/2∥µ∥

]
≤

∑
j∈JN,j /∈J2

αt(maxν∈{±µ1}{cν + n−ν}+ 1)∥µ∥2

n
√
m

≤ αtn∥µ∥2

n
√
m

(|JN| − |J2|) ≤
10αt∥µ∥2

n20ε
√
m

|JN|,

(A.71)
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where the second inequality uses (A.30) in Lemma A.4; the third inequality uses Assumption (A5)
and |D(t)

ν,j | ≤ max{cν + n−ν , c−ν + nν}, which comes from the definition of D(t)
ν,j ; the fourth

inequality uses cν +n−ν +1 ≤ n for all ν ∈ centers, and the last inequality uses (A.64). Combining
(A.68), (A.69), (A.70), and (A.71), we have∑

j:aj<0

Ex[ϕ(⟨w(t)
j , x⟩)] ≤

∑
j:aj<0

ϕ(⟨w(t)
j , µ1⟩) +

√
1

2π

∑
j:aj<0

∥w(t)
j ∥

=
∑
j∈J2

ϕ(⟨w(t)
j , µ1⟩) +

∑
j∈JN,j /∈J2

ϕ(⟨w(t)
j , µ1⟩) +

√
1

2π

∑
j:aj<0

∥w(t)
j ∥

≤ α∥µ∥2t
√
m

2n

[n+ 1

t
+ (∆µ1

+ 1) +
20n

n20ε
+

3
√
2np√

π∥µ∥2
]
.

It follows that

Ex∼N(+µ1,Ip)[yf(x,W
(t))]

≥ α∥µ∥2(t− 1)

40m
|J1| −

α∥µ∥2t
2n

[n+ 1

t
+ (∆µ1 + 1) +

20n

n20ε
+

3
√
2np√

π∥µ∥2
]

≥ α∥µ∥2t
2

[ 1

20n10ε
(1− 1

t
)− 2

t
− ∆µ1 + 1

n
− 20

n20ε
−

6
√
p

√
2πn∥µ∥2

]
≥ α∥µ∥2t

2

[ 1

20n10ε
(1− 1

t
)− 2

t
−

2η
√

nε log(n) + 1

n
− 20

n20ε
− 6√

2πCn

]
≥ α∥µ∥2t

80n10ε

(A.72)

for t ≥ Cn10ε when C is large enough. Here the second inequality uses |J1| ≥ mn−10ε; the third
inequality uses (B3) in Lemma 4.1 and Assumption (A1); and the last inequality uses ε < 0.01. By
(A.69), it follows that ∥W (t)∥F ≤ 3αt

√
p/n. Thus we have

Ex∼N(+µ1,Ip)[yf(x,W
(t))]

∥W (t)∥F
≥

√
n∥µ∥2

240
√
pn10ε

.

This lower bound for the normalized margin can be easily extended to the other ν’s. Applying Lemma
A.9, we have

P(x,y)∼Pclean(y ̸= sgn(f(x;W (t)))) ≤ 2 exp

(
−cn1−20ε∥µ∥4

2402p

)
= exp

(
− Ω(

n1−20ε∥µ∥4

p
)
)
.

Lemma 4.6. Suppose that Assumptions (A1)-(A6) hold. Under a good run, we have that for
1 ≤ t ≤

√
n,

1

|J1|
∑
j∈J1

⟨w(t)
j ,+µ1⟩ = Ω

(
α∥µ∥2√

m
t

)
;

1

|J2|
∑
j∈J2

|⟨w(t)
j , µ1⟩| = O

(
α∥µ∥2√

m
+

α∥µ∥2
√

log(n)√
mn

t

)
.

Proof. This lemma is essentially implied by the proof of Lemma 4.7. By (A.66), we know that for
all j ∈ J1,

⟨w(t)
j ,+µ1⟩ > 0.

Then note that ⟨w(t)
j ,+µ1⟩ = ϕ(⟨w(t)

j ,+µ1⟩). From this we have

1

|J1|
∑

j:j∈J1

⟨w(t)
j ,+µ1⟩ =

1

|J1|
∑
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ϕ(⟨w(t)
j ,+µ1⟩) ≥

α∥µ∥2(t− 1)

40
√
m

= Ω
(α∥µ∥2t√

m

)
,
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where the first inequality comes from (A.67). Recall that in Lemma A.7, ∆µ1
is defined as |n+µ1

−
n−µ1

|+
√
n. Applying (B3) in Lemma 4.1, we have

|n+µ1
− n−µ1

| ≤|n+µ1
− η(n+µ1

+ c+µ1
)|+ |η(n+µ1

+ c+µ1
− n/4)|

+ |η(n−µ1 + c−µ1 − n/4)|+ |n−µ1 − η(n−µ1 + c−µ1)|

≤4
√

εn log(n).

Then ∆µ1 is upper bounded by

∆µ1 ≤
√
n+ 4

√
εn log(n) = O(

√
n log(n)).

Combining the inequality above with equation (A.70), we have

1

|J2|
∑
j∈J2

|⟨w(t)
j , µ1⟩| ≤

α∥µ∥2

2n
√
m
[n+ 1 + (∆µ1

+ 1)(t− 2)] = O
(α∥µ∥2√

m
+

α∥µ∥2
√

log(n)t√
mn

)
.

A.5.3 PROOF OF THEOREM A.13: 1-STEP TEST ACCURACY

Before stating the proof, we begin with the necessary definitions and a preliminary result. Recall that
h
(t)
i = g

(t)
i − 1/2 and the decomposition (A.28). When t = 0, we denote

w
(1)
j,T := w

(0)
j +

αaj
2n

n∑
i=1

ϕ′(⟨w(0)
j , xi⟩)yixi, j ∈ [m] (A.73)

and W
(1)
T := [w

(1)
1,T , · · · , w

(1)
m,T]

⊤. Next lemma shows that W (1)
T is a good approximation of W (1)

with a large probability.
Lemma A.10. Suppose Assumptions (A1) and (A2) hold. Given {xi} ∈ Gdata and W (0) ∈ GW , we
have

|h(0)
i | ≤ pωinit

√
3m/2;

∥W (1)
T −W (1)∥F =

√√√√ m∑
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∥w(1)
j,T − w

(1)
j ∥2 ≤ αωinitp

3/2
√
3m√

n
.

Proof. Let z(t)i = yif(xi;W
(t)). Note that ℓ′(z) = −1/(1 + exp(z)), we have | − ℓ′(z)− 1/2| ≤

|z|/2. It yields that
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pωinit

√
3m,

(A.74)

where the first inequality uses h(t)
i = g

(t)
i − 1/2 and g

(t)
i := −ℓ′(z

(t)
i ); the second inequality uses

triangle inequality; the third inequality uses Cauchy-Schwarz inequality; and the last inequality uses
(B1) in Lemma 4.1 and (C1) in Lemma 4.3. Denote hmax = maxi∈[n] |h

(0)
i |. Then we have

∥w(1)
j,T − w
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,
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where the second inequality uses ∥xi∥2 ≤ 2p and p ≥ Cn2∥µ∥2, which come from (B1) and (B2) in
Lemma 4.1 and Assumption (A2) respectively, and the third inequality uses (A.74). Further we have

∥W (1)
T −W (1)∥F =

√√√√ m∑
j=1

∥w(1)
j,T − w

(1)
j ∥2 ≤ αωinitp

3/2
√
3m√

n
.

Lemma A.11. Suppose that Assumptions (A1)-(A6) hold. Given X ∈ Gdata, for each j ∈ [m], we
have

n/24 ≤ Var(D(0)
+µ1,j

) ≤ n/2;

E
[∣∣D(0)

+µ1,j
)− E[D(0)

+µ1,j
)]
∣∣3] ≤ n3/2.

Proof. Recall that A1 = C+µ1
∪N−µ1

, A2 = C−µ1
∪N+µ1

. According to equation (A.18), we have

D
(0)
+µ1,j

=
∑
i∈A1

I(zi > 0)−
∑
i∈A2

I(zi > 0). (A.75)

According to Lemma A.15, we have

Var(D(0)
+µ1,j

) = EB [f1(b1, · · · , bn)] ≥
1

2
EB′ [f1(b

′
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8
≥ n

24
,

where f1(b1, · · · , bn) := (
∑

i∈A1
bi −

∑
i∈A2

bi − (|A1| − |A2|)/2)2 ≥ 0, and b′i are i.i.d Bernoulli
random variables defined in Lemma A.15, and the last inequality is from (A.17). On the other side,
similarly we have

Var(D(0)
+µ1,j

) ≤ 2EB′ [f1(b
′
1, · · · , b′n)] = (|A1|+ |A2|)/2 ≤ n/2, (A.76)

where the last inequality is from (B3) in Lemma 4.1. Denote f2(b1, · · · , bn) := (
∑

i∈A1
bi −∑

i∈A2
bi − (|A1| − |A2|)/2)4 ≥ 0, then we have
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≤ 4(|A1|2 + |A2|2) ≤ n2,

(A.77)

where the first inequality uses Lemma A.15; the second inequality uses (a + b)4 ≤ 8(a4 + b4);
the third inequality uses the formula of the fourth central moment of a binomial distribution with
parameter equal to 1/2, i.e. µ4(B(n, 1/2)) = n(1 + (3n− 6)/4)/4 ≤ n2/4; and the last inequality
is from (B3) in Lemma 4.1. Combining (A.76) and (A.77), we have

E
[∣∣D(0)

+µ1,j
)− E[D(0)

+µ1,j
)]
∣∣3] ≤√Var(D(0)

+µ1,j
)E[|D(0)

+µ1,j
− E[D(0)

+µ1,j
]|4] ≤ n3/2

by applying the Cauchy-Schwarz inequality.

Lemma A.12. Suppose that Assumptions (A1)-(A6) hold. Given X = [x1, · · · , xn]
⊤ ∈ Gdata, we

have

P(
∣∣∣ m∑
j=1

ajϕ(ajD
(0)
+µ1,j

)− 1

2
E[D(0)

+µ1,j
]
∣∣∣ > t) ≤ 2Φ̄

( t
√
m

3Cn
√
nε

)
+

C√
m
;
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P(
∣∣∣ m∑
j=1

aj |ajD(0)
+µ1,j

|
∣∣∣ > t) ≤ 2Φ̄

( t
√
m

3Cn
√
nε

)
+

C√
m
.

Proof. In this proof, by convention all P(·),E[·],Var(·), ρ(·) are implicitly conditioned on a fixed X .
Denote the expectation of D(0)

+µ1,j
by e+µ1

. Note that conditioning on X , {ajϕ(ajD(0)
+µ1,j

)}j≥1 are

i.i.d, and the expectation of D(0)
+µ1,j

is

e+µ1
= (c+µ1

− n+µ1
− c−µ1

+ n−µ1
)/2 ≤ 2Cn

√
nε, (A.78)

where the inequality uses (B3) in Lemma 4.1. By Lemma A.11, we have
n

24
≤ Var

(
D

(0)
+µ1,j

)
≤ n

2
; ρ(D

(0)
+µ1,j

) ≤ n3/2. (A.79)

Denote
σ2
+µ1

= Var
(
majϕ(ajD

(0)
+µ1,j

)
)
; ρ+µ1 = ρ(majϕ(ajD

(0)
+µ1,j

)).

Combining (A.79) and results in Lemma A.14, we have

E[majϕ(ajD
(0)
+µ1,j

)] =
e+µ1

2
; max{ n

48
,
e2+µ1

4
} ≤ σ2

+µ1
≤ max{n

2
,
e2+µ1

2
}; ρ+µ1 ≤ 32max{n3/2, |e+µ1 |3}.

(A.80)
Applying Berry-Esseen theorem, we have

P(
∣∣∣ m∑
j=1

ajϕ(ajD
(0)
+µ1,j

)− 1

2
e+µ1

∣∣∣ > t) ≤ 2Φ̄
( t√m

σ+µ1

)
+

CBEρ+µ1

σ3
+µ1

√
m

≤ 2Φ̄
( t

√
m√

n+ 2Cn
√
nε

)
+

C√
m

for some universal constant C > 0. Here the second inequality uses σ2
+µ1

≤ (
√
n+ |e+µ1 |)2, which

comes from (A.80), and the last inequality uses (A.78). By the symmetry of aj , we have

E[maj |ajD(0)
+µ1,j

|] = 0; Var(maj |ajD(0)
+µ1,j

|) = E[(D(0)
+µ1,j

)2]; ρ(maj |ajD(0)
+µ1,j

|) = E[|D(0)
+µ1,j

|3].

By (A.79), we have
n

24
+e2+µ1

≤ E[(D(0)
+µ1,j

)2] ≤ n

2
+e2+µ1

; E[|D(0)
+µ1,j

|3] ≤ 8(ρ(D
(0)
+µ1,j

)+|e+µ1 |3) ≤ 8(n3/2+|e+µ1 |3).
(A.81)

Similarly, applying Berry-Esseen theorem, we have

P(
∣∣∣ m∑
j=1

aj |ajD(0)
+µ1,j

|
∣∣∣ > t) ≤ 2Φ̄

( t
√
m√

n+ 2Cn
√
nε

)
+

C√
m
,

where the inequality uses Var(maj |ajD(0)
+µ1,j

|) ≤ (
√
n+ |e+µ1 |)2 and (A.78). Then the results of

this lemma are proved by noting that Cn
√
ε ≥ 1 for large enough n.

Theorem A.13. Suppose that Assumptions (A1)-(A6) hold. With probability at least 1−O(1/
√
m)−

O(n−ε) over the initialization of the weights and the generation of training data, after one iteration,
the classifier sgn(f(x,W (1))) exhibits a generalization risk with the following bounds:

1
2 (1− n−ε) ≤ P(x,y)∼Pclean(y ̸= sgn(f(x;W (1)))) ≤ 1

2 (1 + n−ε).

Proof. For any given training data X ∈ Gdata, denote the expectation of D(0)
ν,j by eν , i.e.

eν := E[D(0)
ν,j |X] = (cν − nν − c−ν + n−ν)/2, ν ∈ {±µ1,±µ2}, (A.82)
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and a set of parameters GX :

GX :=
{
(a,W (0)) :|

m∑
j=1

ajϕ(ajD
(0)
ν,j )− eν/2| ≤ 3Cn

√
nε/m log(m),

∣∣ m∑
j=1

aj |ajD(0)
ν,j |
∣∣ ≤ 3Cn

√
nε/m log(m), a ∈ GA,W

(0) ∈ GW

}
.

Applying the union bound, we have

P(GX |X ∈ Gdata) ≥ 1− exp(−Ω(log2(m)))− 2C√
m

− n−ε

by Lemma A.12 and 4.3. Further we have

P((a,W (0)) ∈ GX , X ∈ Gdata) ≥ P(GX |X ∈ Gdata)P(X ∈ Gdata)

≥ 1− exp(− log2(m)/2)− 2C√
m

− 2n−ε

≥ 1− 3C√
m

− 2n−ε.

Define events Ftest,ν for test data:

Ftest,ν = {x ∈ Rp :|∥x∥2 − p− ∥µ∥2| ≤ 10
√
p log(n);

|⟨x, xi⟩ − ⟨ν, x̄i⟩| ≤ 10
√

p log(n) for all i ∈ [n]}, ν ∈ {±µ1,±µ2}.

Treat {x} ∪ {xi}ni=1 as a new ‘training’ set with n+ 1 datapoints. Following the proof procedure
in Lemma 4.1, we can show that Px∼N(ν,Ip)(x ∈ Ftest|X ∈ Gdata) ≥ 1 − n−ε, where Ftest :=
∪ν∈{±µ1,±µ2}Ftest,ν . And Ftest is a symmetric set for x, i.e., if x ∈ Ftest, then −x also belongs
to Ftest. In the remaining proof, by convention all probabilities and expectations are implicitly
conditioned on fixed X ∈ Gdata and a,W (0) ∈ GX . Therefore, to simplify notation, we write P( · )
and E[ · ] to denote P( · |a,W (0), {xi}) and E[ · |a,W (0), {xi}], respectively. In other words, the
randomness is over the test data (x, y), conditioned on a fixed initialization and training data. We
first look at the clusters centered at ±µ1, i.e. x ∼ N(±µ1, Ip), y = 1. Then we have

Px∼N(±µ1,Ip)(y ̸= sgn(f(x,W (1)))) = Px∼N(±µ1,Ip)(f(x,W
(1)) ≤ 0)

=
1

2
Px∼N(µ1,Ip)(f(x,W

(1)) ≤ 0) +
1

2
Px∼N(µ1,Ip)(f(−x,W (1)) ≤ 0).

(A.83)

Note that given W (0) and X , we have with probability 1 that

|f(x;W (1))− f(x;W (1) −W (0))| =
∣∣∣ m∑
j=1

aj [ϕ(⟨w(1)
j , x⟩)− ϕ(⟨w(1)

j − w
(0)
j , x⟩)]

∣∣∣
≤

m∑
j=1

|aj⟨w(0)
j , x⟩| ≤

√√√√ m∑
j=1

a2j

m∑
j=1

∥w(0)
j ∥2 · ∥x∥2

= ∥W (0)∥F · ∥x∥ ≤ ωinit
√

3mp/2∥x∥,

(A.84)

where the first inequality comes from the 1-Lipschitz continuity of ϕ(·); the second inequality uses
Cauchy-Schwarz inequality; and the last inequality uses Lemma 4.3. Next, recall that WT is defined
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as in (A.73). By the same argument above, we have

|f(x;W (1) −W (0))− f(x;W
(1)
T −W (0))|

=
∣∣∣ m∑
j=1

aj [ϕ(⟨w(1)
j − w

(0)
j , x⟩)− ϕ(⟨w(1)

j,T − w
(0)
j , x⟩)]

∣∣∣
≤

m∑
j=1

|aj⟨w(1)
j − w

(1)
j,T , x⟩| ≤

√√√√ m∑
j=1

a2j

m∑
j=1

∥w(1)
j − w

(1)
j,T ∥2 · ∥x∥2 = ∥W (1) −W

(1)
T ∥F · ∥x∥

≤ αωinitp
√

3mp/n∥x∥ ≤ ωinit
√
3mp/n∥x∥, (A.85)

where the first inequality comes from the 1-Lipschitz continuity of ϕ(·); the second inequality uses
Cauchy-Schwarz inequality; the third inequality uses Lemma A.10; and the last inequality uses
Assumption (A3). Using (A.84) and (A.85), we have by the triangle inequality that

|f(x;W (1))− f(x;W
(1)
T −W (0))| ≤ 2ωinit

√
mp∥x∥ =: ϵx, that for any x ∈ Rp. (A.86)

Recall that

⟨w(1)
j,T − w

(0)
j , x⟩ = αaj

2n

n∑
i=1

ϕ′(⟨w(0)
j , xi⟩)⟨yixi, x⟩.

Then under a good run, for x ∈ Ftest, we have that with probability 1,∣∣∣⟨w(1)
j,T − w

(0)
j , x⟩ − αaj

2n
D

(0)
+µ1,j

∥µ∥2
∣∣∣ ≤ α√

m
Cn

√
p,

where Cn = 10
√

log(n) and the inequality uses the definition of Ftest. It yields that∣∣∣f(x;W (1)
T −W (0))−

m∑
j=1

αaj
2n

ϕ(ajD
(0)
+µ1,j

)∥µ∥2
∣∣∣ ≤ αCn

√
p. (A.87)

According to the definition of GX , we have∣∣∣ m∑
j=1

αaj
2n

ϕ(ajD
(0)
+µ1,j

)∥µ∥2 − α∥µ∥2

4n
e+µ1

∣∣∣ ≤ 3αCn
√
ε log(m)

2
√
mn

∥µ∥2. (A.88)

Combining (A.86)-(A.88), we have∣∣∣f(x;W (1))− α∥µ∥2

4n
e+µ1

∣∣∣ ≤ ϵx + αCn
√
p+

3αCn
√
ε log(m)

2
√
mn

∥µ∥2. (A.89)

The above inequality immediately implies that

P(f(x;W (1)) ≤ 0|Ftest) ≥ P(
α∥µ∥2

2n
e+µ1

≤ −ϵx − αCn
√
p− 3αCn

√
ε log(m)

2
√
mn

∥µ∥2|Ftest).

(A.90)
Similar to (A.89), for −x ∼ N(−µ1, Ip), we have∣∣∣f(−x;W (1))− α∥µ∥2

2n
e−µ1

∣∣∣ ≤ ϵx + αCn
√
p+

3αCn
√
ε log(m)

2
√
mn

∥µ∥2.

Note that by definition, e−µ1 = −e+µ1 , the above inequality immediately implies that

P(f(−x;W (1)) ≤ 0|Ftest) ≥ P(
α∥µ∥2

2n
e+µ1

≥ ϵx + αCn
√
p+

3αCn
√
ε log(m)

2
√
mn

∥µ∥2|Ftest).

(A.91)
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According to the definition of Gtest, we have ϵx ≤ 4ωinit
√
mp3/2. According to the definition of Gdata,

we have

|cν − nν − c−ν + n−ν | ≥ |cν − c−ν | − |nν − n−ν | ≥ |cν + nν − c−ν − n−ν | − 2|nν − n−ν |
≥ (1− 2η)n1/2−ε ≥ n1/2−ε/2.

Thus we have |e+µ1
| ≥ n1/2−ε/4. It yields that

α∥µ∥2

2n
|e+µ1

| − ϵx − αCn
√
p− 3αCn

√
ε log(m)

2
√
mn

∥µ∥2

≥ α∥µ∥2√
n

( 1

8nε
− 4

√
mnp3/2

ωinit

α∥µ∥2
− Cn

√
np

∥µ∥4
− 3Cn

√
ε log(m)

2
√
m

)
≥ α∥µ∥2√

n

( 1

8nε
− 2

m
√
n
− Cn

3Cn0.01
− 3Cn

2
√
Cn0.01

)
> 0,

(A.92)

where the first inequality uses |e+µ1 | ≥ n1/2−ε/4 and ϵx ≤ 4ωinit
√
mp3/2; the second inequality

uses Assumption (A5), (A1) and (A6); and the last inequality uses n is large enough. Combining
(A.90)-(A.92), we have

P(f(x;W (1)) ≤ 0|Ftest) + P(f(−x;W (1)) ≤ 0|Ftest)

≥P(
α∥µ∥2

2n
|e+µ1 | ≥ ϵx + αCn

√
p+

3αCn
√
ε log(m)

2
√
mn

∥µ∥2|Ftest) = 1,
(A.93)

where the inequality uses ϵx ≥ 0. Following a similar procedure, for the other side, we have

P(f(x;W (1)) ≤ 0|Ftest) + P(f(−x;W (1)) ≤ 0|Ftest)

≤P(
α∥µ∥2

2n
|e+µ1

| ≥ −ϵx − αCn
√
p− 3αCn

√
ε log(m)

2
√
mn

∥µ∥2|Ftest) = 1.
(A.94)

Combining (A.93) and (A.94), we have

P(f(x;W (1)) ≤ 0|Ftest) + P(f(−x;W (1)) ≤ 0|Ftest) = 1.

Following the same procedure, we have that for any ν ∈ {±µ1,±µ2},

Px∼N(ν,Ip)(yf(x;W
(1)) ≤ 0|Ftest) + Px∼N(ν,Ip)(yf(−x;W (1)) ≤ 0|Ftest) = 1.

Then for (x, y) ∼ Pclean, we have

P(x,y)∼Pclean(yf(x;W
(1)) ≤ 0) ≥ P(yf(x;W (1)) ≤ 0|Ftest)P(Ftest) ≥

1

2
(1− n−ε);

P(x,y)∼Pclean(yf(x;W
(1)) ≤ 0) ≤ P(yf(x;W (1)) ≤ 0|Ftest)P(Ftest) + P(Fc

test) ≤
1

2
(1 + n−ε).

A.6 PROBABILITY LEMMAS

Lemma A.14. Suppose we have a random variable g that has finite L3 norm and a Rademacher
variable a that is independent with g. Then we have

max{1
2

Var(g),
1

4
(E[g])2} ≤ Var(aϕ(ag)) ≤ max{Var(g),

1

2
(E[g])2}; (A.95)

E
[∣∣aϕ(ag)− E[aϕ(ag))]

∣∣3] ≤ 32max{E[|g − E[g]|3], |E[g]|3}. (A.96)

Proof. The expectation of the random variable aϕ(ag) is

E[aϕ(ag)] =
1

2
E[ϕ(g)− ϕ(−g)] =

1

2
E[g], (A.97)
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where the first equation uses the law of expectation, and the second equation uses ϕ(x)−ϕ(−x) = x.
The second moment of aϕ(ag) is

E[(aϕ(ag))2] = E[ϕ(ag)2] =
1

2
E[ϕ(g)2 + ϕ(−g)2] =

1

2
E[g2], (A.98)

where the last equation uses ϕ(x)2 + ϕ(−x)2 = x2. Combining (A.97) and (A.98), we have

Var(aϕ(ag)) =
1

2
E[g2]− 1

4
(E[g])2 =

1

2
Var(g) +

1

4
(E[g])2,

which implies (A.95). Moreover, for a random variable X that has finite L3 norm, we have

∥X − E[X]∥3 ≤ ∥X∥3 + ∥E[X]∥3 ≤ ∥X∥3 + E[|X|] ≤ 2∥X∥3,

where the second inequality is due to ∥E[X]∥3 = |E[X]| and the last inequality is due to ∥X∥1 ≤
∥X∥3. Thus we have

E
[∣∣aϕ(ag)− 1

2
E[g]

∣∣3] ≤ 8E[|aϕ(ag)|3] = 4E[ϕ(g)3 + ϕ(−g)3] = 4E[|g|3],

where the last equation is due to ϕ(x)3 + ϕ(−x)3 = |x|3. Then by ∥g∥3 ≤ ∥g −E[g]∥3 + |E[g]|, we
have

E
[∣∣aϕ(ag)− 1

2
E[g]

∣∣3] ≤ 4
(
∥g − E[g]∥3 + |E[g]|

)3 ≤ 32max{E[|g − E[g]|3], |E[g]|3}.

Lemma A.15. Suppose Z = [z1, · · · , zn]⊤ ∼ N(0,Σ), where Σii = 1, and |Σij | ≤ 1/(Cn2), 1 ≤
i ̸= j ≤ n. And Z ′ = [z′1, · · · , z′n]⊤ ∼ N(0, In). Let bi = I(zi > 0) and b′i = I(z′i > 0), i ∈ [n] be
Bernoulli random variables. Let B = [b1, · · · , bn]⊤ and B′ = [b′1, · · · , b′n]⊤. Then we have that for
any non-negative function f : Rn → R+ ∪ {0},

1

2
EB′ [f(b′1, · · · , b′n)] ≤ EB [f(b1, · · · , bn)] ≤ 2EB′ [f(b′1, · · · , b′n)].

Proof. Note that for any fixed value (b1, · · · , bn) ∈ {0, 1}n, PB′(b′1, · · · , b′n) = (1/2)n. Then we
have

EB [f(b1, · · · , bn)] =
∑

b1,··· ,bn

f(b1, · · · , bn)PB(b1, · · · , bn)

≥ (2γ1)
n
∑

b1,··· ,bn

f(b1, · · · , bn)PB′(b1, · · · , bn)

= (2γ1)
nEB′ [f(b1, · · · , bn)],

(A.99)

where the inequality comes from Lemma A.16. On the other side, similarly we have

EB [f(b1, · · · , bn)] ≤ (2γ2)
nEB′ [f(b1, · · · , bn)]. (A.100)

By C > 8, we have (2γ1)n = (1−4/(Cn))n ≥ 1−4/(Cn) ≥ 1/2 and (2γ2)
n = (1+4/(Cn))n ≤

exp(4/C) ≤ exp(1/2) ≤ 2. Combining these results with (A.99) and (A.100), we have

1

2
EB′ [f(b′1, · · · , b′n)] ≤ EB [f(b1, · · · , bn)] ≤ 2EB′ [f(b′1, · · · , b′n)].

Lemma A.16. Suppose Z = [z1, · · · , zn]⊤ ∼ N(0,Σ), where Σii = 1, and |Σij | ≤ 1/(Cn2), 1 ≤
i ̸= j ≤ n. Then we have that for any subset A ⊆ [n],

γn
1 ≤ E[

∏
i∈A

I(zi > 0) ·
∏

i∈[n]\A

I(zi < 0)] ≤ γn
2

for γ1 = 1/2− 2/(Cn) and γ2 = 1/2 + 2/(Cn).
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Proof. We first prove the result for A = [n]. Note that

P(z1 > 0, · · · , zn > 0) = P(z1 > 0)

n∏
k=2

P(zk > 0|zk−1 > 0, · · · , z1 > 0). (A.101)

Let Zk−1 = [z1, · · · , zk−1]
⊤ and denote the covariance matrix of [z1, · · · , zk] as[

Σk−1 ϵk
ϵ⊤k 1

]
,

where Σk−1 = Cov(Zk−1) and ϵk = Cov(Zk−1, zk). Then |ϵkj | ≤ 1/(Cn2) for j ∈ [k − 1], and
the conditional distribution of zk|Zk−1 is N(ϵ⊤k Σ

−1
k−1Zk−1, 1− ϵ⊤k Σ

−1
k−1ϵk). By Gershgorin circle

theorem, we have

1− 1

Cn
≤ λmin(Σk−1) ≤ λmax(Σk−1) ≤ 1 +

1

Cn
.

Denote fk−1(·) as the density function of Zk−1. Then we have

P(zk > 0|zk−1 > 0, · · · , z1 > 0) =

∫ ∞

0

· · ·
∫ ∞

0

fk−1(Zk−1)Φ̄
( −ϵ⊤k Σ

−1
k−1Zk−1√

1− ϵ⊤k Σ
−1
k−1ϵk

)
dz1 · · · dzk−1

≥
∫
∥Σ−1/2

k−1 Zk−1∥≤2
√
n

fk−1(Zk−1)Φ̄
( −ϵkΣ

−1
k−1Zk−1√

1− ϵ⊤k Σ
−1
k−1ϵk

)
dz1 · · · dzk−1

≥
(1
2
−

∥Σ−1/2
k−1 ϵk∥ · 2

√
n√

2π(1− ϵ⊤k Σ
−1
k−1ϵk)

)
P(∥Σ−1/2

k−1 Zk−1∥ ≤ 2
√
n)

≥
(1
2
− 2

√
2

nC
√
π

)
P(∥Σ−1/2

k−1 Zk−1∥ ≤ 2
√
n)

≥
(1
2
− 2

√
2

nC
√
π

)
(1− exp(−n)) ≥ 1

2
− 2

Cn
(A.102)

for sufficiently large n. Here the second inequality uses |Φ(x) − Φ(0)| ≤ Φ′(0)|x| and Cauchy-
Schwarz inequality; the third inequality uses σmin(Σk−1) = λmin(Σk−1) ≥ 1/2 and ∥Σ−1/2

k−1 ϵk∥ ≤√
2∥ϵk∥ ≤

√
2n−3/2/C; and the fourth inequality uses the concentration inequality for chi-square

random variables in Lemma A.17. Then the result is proved by combining (A.101) and (A.102). On
the other side, we have

P(zk > 0|zk−1 > 0, · · · , z1 > 0) ≤
∫
∥Σ−1/2

k−1 Zk−1∥≤2
√
n

fk−1(Zk−1)Φ̄
( −ϵkΣ

−1
k−1Zk−1√

1− ϵ⊤k Σ
−1
k−1ϵk

)
dz1 · · · dzk−1

+ P(∥Σ−1/2
k−1 Zk−1∥ > 2

√
n)

≤
(1
2
+

∥Σ−1/2
k−1 ϵk∥ · 2

√
n√

2π(1− ϵ⊤k Σ
−1
k−1ϵk)

)
+ P(∥Σ−1/2

k−1 Zk−1∥ > 2
√
n)

≤ 1

2
+

2
√
2

nC
√
π
+ exp(−n) ≤ 1

2
+

2

Cn
.

Note that our proof does not use any information related to A, thus we can extend the result for any
subset A ⊆ [n].

Lemma A.17. For Xk i.i.d ∼ N(0, σ2), 1 ≤ k ≤ n, we have

Φ′(t)/t ≤ P(|X1| ≥ tσ) ≤ exp(−t2/2), ∀t ≥ 1;
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P(
∣∣ 1

nσ2

n∑
k=1

X2
k − 1

∣∣ ≥ t) ≤ 2 exp(−nt2/8), ∀t ∈ (0, 1).

Proof. For the first inequality, we note that

Φ̄(t) =

∫ +∞

t

x√
2πx

exp(−1

2
x2)dx ≤

∫ +∞

t

1

2
√
2πt

exp(−1

2
x2)dx2 =

Φ′(t)

t
.

It yields that for any t ≥ 1,

P(|X1| ≥ tσ) = 2Φ̄(t) ≤ 2Φ′(t)/t ≤ exp(−t2/2).

On the other side, we have

Φ̄(t) ≥
∫ +∞

t

1+x2

x2√
2π 1+t2

t2

exp(−1

2
x2)dx =

1√
2π

t2

1 + t2

(
−

exp(−x2

2 )

x

)∣∣∣+∞

x=t
=

t

1 + t2
Φ′(t).

When t ≥ 1, it further yields that Φ̄(t) ≥ Φ′(t)/(2t). Thus we have

P(|X1| ≥ tσ) = 2Φ̄(t) ≥ Φ′(t)/t.

The second inequality is Example 2.11 in Wainwright (2019)

Lemma A.18 (Hoeffding’s inequality, Equation (2.11) in Wainwright (2019)). Let Xk, 1 ≤ k ≤ n
be a series of independent random variables with Xk ∈ [a, b]. Then

P(
n∑

k=1

(Xk − E[Xk]) ≥ t) ≤ exp
(
− 2t2

n(b− a)2

)
, ∀t ≥ 0.

Lemma A.19. [Berry-Esseen Theorem, Theorem 3.4.17 in Durrett (2019)] Let X1, · · · , Xn are
i.i.d. random variables with E[Xi] = 0,Var(Xi) = σ2, and E[|Xi|3] = ρ < ∞. If Fn(x) is the
distribution of

∑n
i=1 Xi/(σ

√
n), then

|Fn(x)− Φ(x)| ≤ 3ρ

σ3
√
n
.

A.7 EXPERIMENTAL DETAILS

In our experiments, dimension p = 40000, number of train/test samples n = 200 µ = 2.5
√

p/n,
number of neurons m = 1000, label noise rate η = 0.05, and initial weight scale ωinit = 10−15. For
Figure 3, 2, and 1-left, the step size α = 10−12. For Figure 4 and 1-right, α = 10−16.
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Figure 4: Histograms of inner products between positive neurons and µ’s pooled over 100 independent
runs under the same setting as in Figure 1 but with a smaller step size. Top (resp. bottom) row: Inner
products between positive neurons and µ1 (resp. µ2). While the projections of positive neurons w(t)

j
onto the µ1 and µ2 directions have nearly the same distribution when the network cannot generalize,
they become much more aligned with ±µ1 when the network can generalize.

44



Published as a conference paper at ICLR 2024

A.8 ADDITIONAL EXPERIMENTS

In this section, we show additional experiments with setups that are variations on that of Figure 1.
See Appendix A.7 for details of the setup of the experiments in Figure 1.
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Figure 5: More samples hurt generalization. Same experimental setup as in Figure 1 (Left) except
that the sample size n = 2000 is 10 times larger. Even running over 10× number of steps, the median
test accuracy remains near 90%, while in Figure 1 the median test accuracy is 100%.

Figure 6: Larger initial weight scale. Same experimental setup as in Figure 1 except that the initial
weight scale ωinit are larger. (Recall that ωinit = 10−15 in Figure 1). Moreover, the experiments
corresponding to ωinit = 10−12 (resp. ωinit = 10−11) are ran with 10× (resp. 100×) number of steps.

Figure 7: Train both layers. Same experimental setup as in Figure 1 except that the outer layer
weights are also trained. The accuracy dynamics is similar to that of Figure 1.
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