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ABSTRACT

Recently, there has been increasing interest in applying Transformers to offline
reinforcement learning (RL). Existing methods typically frame offline RL as a se-
quence modeling problem and learn actions via Supervised learning (RvS). How-
ever, RvS-trained Transformers struggle to align actual returns with desired tar-
get returns, especially when dealing with underrepresented returns in the dataset
(interpolation) or missed higher returns that could be achieved by stitching sub-
optimal trajectories (extrapolation). In this work, we propose a novel method that
Double Checks the Transformer with value validation for Offline RL (Doctor).
Doctor integrates the strengths of supervised learning (SL) and temporal differ-
ence (TD) learning by jointly optimizing the action prediction and value func-
tion. SL stabilizes the prediction of actions conditioned on target returns, while
TD learning adds stitching capability to the Transformer. During inference, we
introduce a double-check mechanism. We sample actions around desired target
returns and validate them with value functions. This mechanism ensures better
alignment between the predicted action and the desired target return and is ben-
eficial for further online exploration and fine-tuning. We evaluate Doctor on the
D4RL benchmark in both offline and offline-to-online settings, demonstrating that
Doctor does much better in return alignment, either within the dataset or beyond
the dataset. Furthermore, Doctor performs on par with or outperforms existing
RvS-based and TD-based offline RL methods on the final performance.

1 INTRODUCTION
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Figure 1: The achieved actual returns of Doctor
and Decision Transformer (DT) conditioned on a
wide range of target returns on the Hopper-Medium-
Replay dataset. Doctor achieves much better align-
ment from the well-supported returns in the dataset
to returns beyond the dataset.

Transformer models (Vaswani, 2017) have
dominated data-driven tasks such as natural
language processing (Devlin, 2018; Brown,
2020; Achiam et al., 2023) and computer
vision (Dosovitskiy, 2020; He et al., 2022)
due to their ability to capture long-term de-
pendencies and their effective scaling with
data and compute (Kaplan et al., 2020; Rae
et al., 2021). In recent years, there has been
a growing interest in applying Transformers
to reinforcement learning (RL) tasks, espe-
cially in the offline setting (Levine et al.,
2020), where the agent learns from a fixed
dataset of trajectories. To improve decision-
making with Transformers, recent efforts
have abstracted offline RL as a sequence
modeling problem similar to large-scale lan-
guage modeling, and have learned a policy
via supervised learning. This approach is
called reinforcement learning via supervised
learning (RvS) (Emmons et al., 2021).

RvS leverages the inherent stability and scalability of supervised learning to learn actions for each
state based on the history trajectory, including the target returns. By specifying the policy’s expertise
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through the target return, the learned Transformer is expected to output actions that achieve the
desired return (Chen et al., 2021; Janner et al., 2021). However, Transformers trained with RvS
tend to struggle to align the actual return with the desired target return. As shown in Fig. 1, the
Decision Transformer (DT) (Chen et al., 2021) learned by RvS can only achieve alignment within
well-supported returns in the dataset. It fails to interpolate between underrepresented returns in
the dataset (left side of the dashed red line) and to stitch information from multiple sub-optimal
trajectories to achieve higher returns (right side of the dashed red line). This indicates that training
a Transformer model with RvS is not sufficient to learn a policy with perfect alignment between
the actual return and the target return. The use of supervised learning limits the policy’s scope, and
it lacks the capability to interpolate between underrepresented returns in the dataset, and to stitch
information from multiple sub-optimal trajectories into a better one.

In this work, we propose a novel method that Double Checks the Transformer with value validation
for Offline RL (Doctor). Doctor integrates the strengths of supervised learning and TD learning by
jointly predicting the actions and value functions. Supervised learning stabilizes the prediction of
actions conditioned on target returns, while TD learning adds stitching capability to the Transformer
and plays a critical role in aligning the actions with the target returns. At inference time, we intro-
duce a double-check mechanism to first sample actions around target returns and then validate them
with value functions. This mechanism ensures accurate alignment between the predicted action and
the target return, enabling the extraction of policies with varying performance levels. Achieving this
is valuable in scenarios like game AI, where NPCs with diverse skill levels are essential for balanced
gameplay (Tanaka et al., 2024). Additionally, it enhances the model’s ability to fine-tune its perfor-
mance through ongoing online exploration. We evaluate our method on the D4RL benchmark (Fu
et al., 2020) in both offline and offline-to-online settings, demonstrating that Doctor achieves much
better return alignment, either within the dataset (interpolation) or beyond the dataset (extrapola-
tion). Furthermore, Doctor performs on par with or outperforms existing RvS-based and TD-based
offline RL methods on the final performance. Our contributions are summarized as follows:

• We propose a novel method, Doctor, that integrates the strengths of supervised learning
and TD learning in a Transformer for offline RL. We jointly optimize the action prediction
and value function to enhance the model’s sequence modeling and stitching capabilities.

• Doctor introduces a double-check mechanism at inference time. We first sample actions
around desired target returns and validate them with value functions to ensure accurate
alignment. This mechanism allows the model to interpolate and extrapolate from the dataset
and is beneficial for further online exploration and fine-tuning.

• We evaluate Doctor on the D4RL benchmark in both offline setting and online fine-tuning.
We show that Doctor achieves much better return alignment either within the dataset or
beyond the dataset, which is desired in return-conditioned models. Furthermore, Doctor
also performs on par with or outperforms existing RvS-based and TD-based offline RL
methods on the final performance.

2 PRELIMINARIES

2.1 REINFORCEMENT LEARNING

Reinforcement learning (RL) (Sutton & Barto, 2018) is a paradigm of agent learning via interaction.
It can be modeled as a Markov Decision Process (MDP), a 5-tupleM = (S,A,R, P, γ). S denotes
the state space, A denotes the action space, P (s′|s, a) : S × A × S → [0, 1] is the environment
dynamics,R(s, a) : S ×A → R is the reward function which is bounded, γ ∈ [0, 1] is the discount
factor. Consider the finite horizon setting, the agent interacts with the environment for T steps.
Denote the state, action and reward at timestep t as st, at and rt, a trajectory is a sequence of states,
actions and rewards τ := (s0, a0, r0, s1, a1, r1, . . . , sT , aT , rT ). The return at timestep t is defined
as Rt =

∑T
i=t γ

i−tri. The goal of an RL agent is to learn an optimal policy π that maximizes the
expected return R0 = Eπ[

∑T
i=0 γ

iri].

In offline RL, instead of interacting with the environment, the agent learns from a static dataset of
trajectoriesD := {τj} such as the D4RL benchmark (Fu et al., 2020). The dataset is collected by an
unknown behavior policy or policies, and the agent’s goal is to learn a policy based on the dataset that
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Figure 2: An overview of Doctor. (Left) The training involves reconstructing the original trajectory
and estimating the action-value from a partial, randomly masked trajectory. Returns, states and
actions are fed into modality-specific embeddings and then processed by the Transformers. The
value heads estimate the action-value at each timestep. (Right) At inference time, Doctor samples
actions around the target return and validates them with the value head outputs to ensure alignment.

performs well in the environment. This setting eliminates the need for online exploration which is
practical in scenarios where exploration is expensive or dangerous, but it also introduces challenges
as it removes the access to additional feedback from the environment (Levine et al., 2020).

2.2 TRANSFORMERS

The Transformer model (Vaswani, 2017) is a sequence-to-sequence model that uses self-attention
mechanism to capture long-range dependencies in sequential data. The self-attention mechanism
projects the input sequence into three vectors: query Q, key K and value V , and computes the
attention weights as

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V, (1)

where dk is the dimension of the key vector. Transformers consist of multiple layers of multi-head
self-attention and feed-forward neural networks. The model is trained with a masked language
modeling objective, where the model predicts the next token in the sequence given the previous
tokens. Transformers have shown remarkable success in various tasks such as natural language
processing and computer vision.

Decision Transformer (DT) (Chen et al., 2021) applies Transformers to offline RL. Different from
offline RL methods based on temporal difference learning, DT models the offline RL problem as
a sequence modeling problem and learns a policy autoregressively by predicting the next action
given the history trajectory conditioned on a target return. This set of approaches abstract offline
RL as a sequence modeling problem and learns a policy via supervised learning (RvS) (Emmons
et al., 2021). These approaches (Ghosh et al., 2021; Lee et al., 2022; Liu & Abbeel, 2023; Wu
et al., 2023b) commonly condition on goals or target returns and expect the derived policy could be
improved when feeding a high goal or target return. However, these methods struggle to align the
actual return with the desired target return, especially when dealing with underrepresented returns
in the dataset or missed higher returns that could be achieved by stitching sub-optimal trajectories.

3 METHOD

We outlined the limitations of RvS in the previous discussion. In this section, we introduce our
method, Doctor, that integrates the strengths of supervised learning and TD learning in a Trans-
former for offline RL. Doctor aims to enhance the Transformer’s stitching capabilities and improve
the alignment between actual returns and desired target returns by leveraging value functions to
double check predicted actions. We first introduce our model architecture in Section 3.1. Next,
we describe how the model is jointly trained to predict actions and value functions in Section 3.2.
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In Section 3.3, we introduce a double-check mechanism at inference time to improve alignment,
which can also be used for online exploration and fine-tuning. Fig. 2 illustrates our method.

3.1 MODEL ARCHITECTURE

Following the common practice in prior work (Chen et al., 2021; Janner et al., 2021), we treat the
offline RL as a sequence modeling problem. The trajectory τ consists of three modalities:

τ = (R0, s0, a0, R1, s1, a1, · · · , RT , sT , aT ), (2)

where Rt is the (discounted) return at time step t, st is the state, and at is the action.

Our model adopts an encoder-decoder architecture as a universal representation extractor. Both the
encoder and decoder are bidirectional transformers, which are adept at capturing dependencies in
sequential data. The task is based on sequence reconstruction from masked views (He et al., 2022),
where a random subset of the sequence is masked and the model is tasked with reconstructing the
original trajectory. This approach encourages the model to learn representations that capture the
environment’s dynamics and improves its ability to model the data. We apply random mask M to
certain elements of the sequence,

M(τ) = (R0, , a0, R1, s1, , · · · , , sT , aT ), (3)

where the masked elements are denoted as . Each type of element is embedded into a shared
representation space using independent learnable linear embeddings. The masked sequence M(τ) is
then fed into the encoder-decoder architecture E and D to obtain the last layer’s latent representation
τz = D(E(M(τ))). A linear layer for each modality is applied to the latent representation τz to
predict the return, state, and action at each timestep. The encoder-decoder processes the (masked)
full sequence of latent representations and is trained to recover the original trajectory sequence τ .

In addition to reconstructing the trajectory, the latent representation τz is also used to predict the
action-value qt. τz integrates the information from several timestep, which is beneficial for partial
observability in RL tasks. And the action-value qt endows the model with the ability to evaluate
the return and stitch sub-optimal trajectories for policy improvement. At inference time, we fed the
unmasked full trajectory into the model to obtain the predicted actions and action-values.

3.2 TRAINING

Our training consists of two purposes: (1) reconstructing the original trajectory sequence from the
masked input trajectory, which is a self-supervised learning task, and (2) learning the action-value
qt to enable the model for stitching and to improve the alignment, which is TD learning. We jointly
optimize the model to minimize the reconstruction error and the TD error.

Self-Supervised Learning. The self-supervised learning task reconstructs the original trajectory
sequence from the randomly masked input trajectory. Denoting the learnable parameters of em-
beddings and the encoder-decoder as θ, inducing conditional probabilities as Pθ, the objective is to
minimize the negative log-likelihood of the original trajectory sequence given the masked input:

Lrecon(θ) = −
T∑

t=0

(logPθ(Rt|M(τ)) + logPθ(st|M(τ)) + logPθ(at|M(τ))). (4)

Here, we take the summation over the whole trajectory sequence, but due to the complexity of self-
attention (Vaswani, 2017; Kitaev et al., 2020), we sample minibatches of sequence length K in
practice for training efficiency.

TD Learning. Besides reconstructing the trajectory, the model is trained to predict the action-
value qt at each timestep t. The Q-value function takes the latent trajectory representation τz as
input and outputs the action-value estimates. This allows the Q-value function to share the rich
representations learned by the reconstruction task. The goal of the Q-value function is to learn an
optimal Q function within the dataset, which benefits the model’s stitching capability and alignment
with the target returns.

To avoid querying the learned Q-value function on out-of-sample actions, we utilize the asymmetric
least squares loss function (Kostrikov et al., 2022). Denote the learnable parameters of the Q-value
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function as ϕ, the loss function is defined as:

LTD(ϕ) =

T−1∑
t=0

Lν
2 (rt + γQϕ,t+1(τ

z, at+1)−Qϕ,t(τ
z, at)) , (5)

where rt is the reward, γ is the discount factor, Qϕ,t and Qϕ,t+1 are the Q-value functions at time
step t and t + 1, respectively. Lν

2(u) = |ν − 1(u < 0)|u2 is the asymmetric least squares loss
function. For ν = 0.5, the loss function is equivalent to the standard mean squared error loss. For
ν > 0.5, the loss function is asymmetric, which down-weights the contributions of values smaller
than zero (Newey & Powell, 1987; Kostrikov et al., 2022).

We initialize Q-value functions Qϕ and train them jointly with the Transformers. The overall objec-
tive is to minimize the sum of the reconstruction loss and the TD loss:

L(θ, ϕ) = Lrecon(θ) + LTD(ϕ). (6)

Unlike previous methods Yamagata et al. (2023); Wang et al. (2024) that learn the value functions
beforehand and train the SL model separately afterward, our approach jointly trains the entire model.
This joint training allows the model to learn a more accurate representation of the data and facilitates
the integration of the two learning paradigms.

3.3 INFERENCE TIME ALIGNMENT

Due to the different purposes of supervised learning and TD learning, given a tuple (Rt, st, at, qt),
the return Rt represents the expected return in the dataset when taking action at at state st, while the
action-value qt reflects the expected best return after stitching. We should expect that qt ≥ Rt and
there could be a gap between them. This gap presents the difference between policy evaluation of
the unknown behavior policy that collected the dataset and the best possible policy after policy im-
provement by stitching. This motivates us to introduce a double-check mechanism during inference
to ensure alignment between the predicted action and the target return.

Offline Evaluation. Formally, given the current state st, denote Rt as the desired target return at
timestep t. We define δ(Rt) := {R : |R − Rt| ≤ δ} as the set of returns within a distance δ from
Rt. We randomly sample N returns,

{Rt,1, Rt,2, · · · , Rt,N} ∼ Sample(δ(Rt), N), (7)

and construct N trajectories by replacing Rt with Rt,i in the original trajectory. We then input these
N trajectories into the model and obtain N predicted actions {at,1, at,2, · · · , at,N} and action-
values {qt,1, qt,2, · · · , qt,N}. To ensure alignment, we select the action with the nearest action-value
to Rt as the final action:

at,i = argmin
i
|qt,i −Rt|. (8)

After taking action at,i and obtaining the reward rt, we updates the desired target return Rt+1 to
(Rt−rt)/γ and repeat the process for the next timestep. This double-check mechanism first ensures
that the actions are sampled based on the desired target returns and then validates them with the value
functions to ensure alignment. This mechanism allows the model to interpolate/extrapolate between
underrepresented or missing returns in the dataset.

To achieve high returns, we can set an aggressive target return that even exceeds the best possible
return. The model will sample actions based on the desired target returns and validate them with
value functions, selecting the action with the highest value. Conversely, to obtain a specific moderate
return, we can set that return as the target. The model will then double-check the predicted action
and select the action with the nearest value to the target return, helping avoid policy collapse.

Online Fine-tuning. Furthermore, this double-check mechanism can be utilized for online explo-
ration and fine-tuning. During online exploration, we can sample actions based on the desired target
returns, indicating the area we wish to explore. The value functions then evaluate these actions,
providing prior knowledge about the expected returns. For example, we can take actions from the
Boltzmann distribution based on the value functions,

π(at|st) =
exp(βqt(at,i))∑
i exp(βqt(at,i))

, (9)
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where β is a temperature parameter that controls the sharpness of the distribution. This resulting
in an effective exploration strategy that integrates prior knowledge from the value functions and the
desired target returns. The method for Doctor is summarized in Algorithm 1.

Algorithm 1 Double Checks the Transformer with value validation for Offline RL (Doctor)
1: Initialize sequence buffer D, Transformer models with weights θ, networks Q with weights ϕ
2: // Training Phase
3: for number of training steps c = 0 to C do
4: Sample a batch of length K trajectories (. . . , Rt, st, at, rt) from sequence buffer D
5: Update the sum of Self-SL loss and TD Learning loss L(θ, ϕ) via Eq. (6)
6: end for
7: // Inference Phase
8: for environment steps t = 0 to T do
9: Initialize the environment s0 ← Env

10: Randomly sample N returns via Eq. (7), and construct N trajectories
11: Select the action with the nearest action-value to Rt according to Eq. (8)
12: if online fine-tuning then Select action from Boltzmann distribution via Eq. (9)
13: end if
14: Execute the action at in the environment and observe the reward rt and next state st+1

15: end for

4 EXPERIMENTS

In this section, we present experimental results to evaluate the performance of Doctor on the D4RL
benchmark (Fu et al., 2020). We first introduce the benchmark datasets and baselines in Section 4.1.
We then demonstrate the superiority of Doctor in return alignment in Section 4.2. Finally, we
evaluate the performance of Doctor in offline RL settings and online fine-tuning in Section 4.3.

4.1 SETUP

Testbeds. We evaluate Doctor on the D4RL benchmark (Fu et al., 2020), which consists of vari-
ous environments and datasets leveraging the MuJoCo simulator (Todorov et al., 2012). For offline
training, we focus on Gym locomotion V2 tasks with dense rewards, specifically Walker2D, Hopper,
and HalfCheetah. Each task is configured with three levels of dataset difficulty: Medium-Replay,
Medium, and Medium-Expert. The Medium dataset corresponds to policies performing at approxi-
mately one-third of expert-level performance, while the Medium-Replay dataset contains the replay
buffer from an agent trained to medium-level performance. The Medium-Expert dataset combines
trajectories generated by both medium and expert policies. We follow prior work to report the nor-
malized scores, with a score of 100 representing expert-level performance (Fu et al., 2020).

Baselines. Our baselines are selected to cover a wide range of offline RL methods, we divide them
into three categories:

• RvS-based methods. We consider RvS-R (Emmons et al., 2021), DT (Chen et al., 2021),
MTM (Wu et al., 2023a) and ODT (Zheng et al., 2022). RvS-R uses an MLP with two
fully connected layers to predict actions. The DT policy is trained using a GPT-based
architecture with an autoregressive mask. MTM employs a BERT-like architecture with a
combination of random and autoregressive masks. ODT is a DT-based variant trained with
sequence-level entropy regularization for offline-to-online fine-tuning.

• TD learning-based methods. We compare Doctor with CQL (Kumar et al., 2020), an offline
RL method that adopts pessimistic action estimation, and IQL (Kostrikov et al., 2022), an
in-sample multi-step dynamic programming approach.

• Combination of RvS and TD learning. We include EDT (Wu et al., 2023b) and QDT (Yam-
agata et al., 2023), both aiming to improve RvS-trained Transformer-based policies through
trajectory stitching.

6
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Figure 3: We evaluate the alignment ability of Doctor on the hopper-medium-replay-v2 with the top
X% returns of trajectories removed. The dashed red line presents the highest return in the dataset,
and the dashed black lines denote the ideal alignment. Doctor achieves much better alignment across
a wide range of target returns compared to DT and MTM.

4.2 THE SUPERIORITY OF Doctor IN RETURN ALIGNMENT

One of the key advantages of Doctor is its ability to achieve a wide range of desired target re-
turns. This is the expected behavior for return-conditioned models that most existing methods fail to
achieve. We evaluate the alignment ability of Doctor on the hopper-medium-replay-v2 dataset with
varying levels of suboptimality. We remove trajectories with the top X% returns from the dataset
and test the model across a wide range of target returns. As X% increases, the maximum returns
of the trajectories in the dataset progressively decrease, moving the dataset further away from the
optimal trajectory. We perform 250,000 gradient updates during training, and evaluate the model by
rolling out 10 episodes. we set N = 300 and δ is small value fluctuating based on the maximum
return in the dataset. Specifically, we choose δ = 5% × Rmax. We report the final results over five
random seeds.
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Figure 4: The effect of the number of samples N
in Doctor. As N increases, Doctor achieves better
alignment with the given target return.

We compare Doctor with DT and MTM,
Fig. 3 shows the results. The x-axis rep-
resents the target return, the y-axis repre-
sents the actual return achieved in the en-
vironment. The dashed red line marks the
99% percentile return in the dataset. The
dashed black lines denote the ideal line that
perfectly aligns with the target return. Com-
pared to DT and MTM, Doctor achieves
much better alignment with the target re-
turn, even when the target return exceeds
the maximum return to some extend in the
dataset. This indicates that the integration of
TD learning for target return alignment not
only enables the transformer to interpolate
more effectively within the dataset but also
helps with extrapolation, achieving target re-
turns more accurately even beyond those ob-
served in the training data.

We further analyze the impact of the number of samples N on the performance of Doctor in Fig. 4.
We test N with increasing values from {2, 5, 10, 100, 300}, each generating a corresponding number
of candidate actions. When N = 2, the model performs poorly, indicating that the target return
alone is insufficient to ensure alignment. As N increases, the model achieves better alignment,
highlighting the importance of multiple samples for target return alignment. This demonstrates the
effectiveness of the double-check mechanism in ensuring alignment between the predicted action
and the target return.
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Environment Dataset RvS CQL IQL DT MTM QDT EDT Doctor

HalfCheetah Medium-Replay 38.0 45.5 44.2 36.3 43.0 35.6 37.8 42.5
Hopper Medium-Replay 73.5 95.0 94.7 82.7 92.9 52.1 89.0 93.2
Walker2d Medium-Replay 60.6 77.2 73.9 66.6 77.3 58.2 74.8 79.9

HalfCheetah Medium 41.6 44.0 47.4 42.0 43.6 42.3 42.5 43.5
Hopper Medium 60.2 58.5 66.3 67.6 64.1 66.5 63.5 71.4
Walker2d Medium 71.7 72.5 78.3 74.0 70.4 67.1 72.8 72.1

HalfCheetah Medium-Expert 92.2 91.6 86.7 86.8 94.7 - - 95.1
Hopper Medium-Expert 101.7 105.4 91.5 107.6 112.4 - - 112.7
Walker2d Medium-Expert 106.0 108.8 109.6 108.1 110.2 - - 109.3

Sum 645.5 698.5 692.6 671.7 708.6 - - 719.7

Table 1: Offline results on the D4RL benchmark. Doctor outperforms RvS-based methods like RvS,
MTM, and DT in medium-level datasets such as Medium and Medium-Replay, and surpasses TD
learning-based methods like IQL and CQL in expert-level datasets such as Medium-Expert. The
highest scores among all methods are highlighted in bold.

4.3 OFFLINE AND ONLINE FINE-TUNING PERFORMANCE

To evaluate the final performance of Doctor, we compare it with baselines on the D4RL bench-
mark in both offline and online fine-tuning settings. We report the final results over five random
seeds. Results for baseline methods are taken from the original papers. A detailed list of Doctor’s
hyperparameters is summarized in Appendix D.2.

Offline Results. As shown in Table 1, Doctor achieves the strongest results in 4 out of 9 tasks
and remains competitive in the remaining tasks. Doctor integrates both supervised learning and
TD learning, allowing us to benefit from the strengths of both paradigms. In datasets with expert-
level trajectories such as Medium-Expert, Doctor performs better than TD learning-based methods
like IQL and CQL, demonstrating its ability of sequence modeling. In datasets with medium-level
trajectories such as Medium and Medium-Replay, Doctor outperforms RvS-based methods like RvS,
MTM, and DT, which indicates the stitching capability due to the value functions. This suggests that
Doctor effectively integrates the advantages of both approaches, achieving superior performance
with both low-return and high-return datasets. Due to space limit, we report the standard deviation
of the results in Appendix D.2.

Online Fine-tuning Results. For online fine-tuning, we aim to test whether the model can further
improve after interacting with the environment. We maintain the top 5% of the trajectories in the
dataset and further interact with the environment for 200k steps, which corresponds to approximately
200 episodes. We sample actions based on Eq. (9) and set target returns as the maximum return Rmax
in the dataset and δ = 2Rmax, β = 100. Each time after rolling out for one episode, we perform 200
gradient updates based on the collected data. The performance of ODT and IQL is taken from the
ODT paper (Zheng et al., 2022)

As shown in Table 2, we observe a clear performance improvement when incorporating additional
online interaction data. Doctor outperforms ODT and IQL on several tasks, with notable improve-

Environment Dataset IQL ODT Doctor

HalfCheetah Medium-Replay 44.1 → 44.1 40.0 → 40.4 42.5 → 42.3
Hopper Medium-Replay 92.1 → 96.2 86.6 → 88.9 93.2 → 97.1
Walker2d Medium-Replay 73.7 → 70.5 68.9 → 76.9 79.9 → 81.4

HalfCheetah Medium 47.4 → 47.4 42.7 → 42.2 43.5 → 43.8
Hopper Medium 63.8 → 66.8 66.9 → 97.5 71.4 → 82.7
Walker2d Medium 79.9 → 80.3 72.2 → 76.8 72.1 → 80.5

Sum 401.0 → 405.3 377.3 → 422.7 402.6 → 427.8

Table 2: Online fine-tuning results. We report the average returns after 200k online interactions.
Doctor observes notable improvements on Hopper and Walker.
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ments in performance on Hopper and Walker. This demonstrates the double-check mechanism’s
effectiveness in online fine-tuning, allowing the model to explore more effectively.

5 RELATED WORK

Offline reinforcement learning (Levine et al., 2020) only uses existing data collected by unknown
policies without additional online data collection. They aim to extract best possible policy from
the existing dataset. One line of work is based on temporal difference (TD) learning (Zhang & Yu,
2020; Fujimoto et al., 2019; Wu et al., 2019; Kumar et al., 2019). To constrain the distance between
the learned policy and the behavior policy to avoid distributional shift, they use a conservative value
function to estimate the value of actions either by adding a regularization term in TD learning (Wu
et al., 2019; Nair et al., 2020; Fujimoto & Gu, 2021; Wu et al., 2022), or updating the value function
in an in-sample manner (Zhou et al., 2021; Kostrikov et al., 2022; Zhang et al., 2023; Xiao et al.,
2023). CQL (Kumar et al., 2020) augments the standard Bellman error objective with a simple
Q-value regularizer, such that the expected value of a policy under the learned Q-function lower-
bounds its true value. Implicit Q-Learning (IQL) (Kostrikov et al., 2022) estimates the value of the
best available action at a given state with expectile regression, without ever directly querying the
Q function for unseen actions. However, these methods are challenging to train and often require
intricate hyperparameter tuning and various tricks to ensure stability and optimal performance across
tasks (Sutton & Barto, 2018; Dong et al., 2020).

Another line of work is doing Reinforcement Learning via Supervised Learning (RvS) (Emmons
et al., 2021). These method cast offline RL as a conditional sequence modeling problem and learn a
policy autoregressively by predicting the next action by supervised learning (SL). Benefit from the
inherent stability and scalability of SL, these methods bypasses the need for bootstrapping for long
term credit assignment and avoids the “deadly triad” (Sutton & Barto, 2018) known to destabilize
RL. These approaches (Janner et al., 2021; Ghosh et al., 2021; Lee et al., 2022; Liu & Abbeel, 2023;
Wu et al., 2023b; Ma et al., 2024) commonly condition on goals or target returns and expect the de-
rived policy derived could be improved when feeding a high goal or target return. DT (Chen et al.,
2021) train a Transformer to autoregressively predict action sequences based on desired return and
past trajectory. MTM (Wu et al., 2023a) applies masked prediction (Devlin, 2018; He et al., 2022)
to learn a generic and versatile model for prediction, representation, and control. RADT (Tanaka
et al., 2024) achieves precise alignment between actual returns and target returns by separating re-
turn and state-action sequences and introducing specialized aligners, which overcomes the attention
allocation limitations of prior methods like DT. Although RvS tends to be stable, and scales well
with compute and data, it fails to achieve one of the desired properties of offline RL agents, stitching.
This property is an ability to combine parts of sub-optimal trajectories and produce an optimal one.

To enhance Transformers with stitching ability in offline RL, QDT (Yamagata et al., 2023) utilises
the Dynamic Programming results to relabel the return-to-go in the training data to then train the
DT (Chen et al., 2021) with the relabelled data. EDT (Wu et al., 2023b) optimizes the trajectory
by retaining a longer history when the previous trajectory is optimal and a shorter one when it is
sub-optimal, enabling it to stitch with a more optimal trajectory. QT (Hu et al., 2024) combines the
trajectory modeling capabilities of Transformers with the predictive strengths of dynamic program-
ming (DP) methods. Results on D4RL benchmarks show QT achieves state-of-the-art performance
in offline RL. Our work aims to learn an accurate return-conditioned model, which require the model
to extrapolate the return in the low-data regime, and also to stitch the trajectory to produce a more
optimal one in the absence of the optimal trajectory.

6 CONCLUSION

In this work, we propose a novel method that Double Checks the Transformer with value validation
for Offline RL (Doctor). Doctor integrates supervised learning and TD learning based on a Trans-
former architecture. Our method leverages the strengths of Transformers for sequence modeling
and the joint optimization of Q-value functions enhances the model’s ability of return alignment and
stitching. At inference time, we introduce a double-check mechanism to sample actions based on
desired target returns and validate them with value functions to ensure alignment. The double-check
mechanism allows the model to interpolate and extrapolate from the dataset, and is also suitable for
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online exploration and fine-tuning. Experiments on the D4RL benchmark demonstrate that Doc-
tor achieves state-of-the-art performance compared to existing RvS-based and TD-based offline RL
methods. We show that Doctor can effectively interpolate between underrepresented returns in the
dataset and stitch information from multiple sub-optimal trajectories and produce a better one. Fur-
thermore, Doctor demonstrates superior final performance both in offline RL settings and online
fine-tuning, highlighting its effectiveness in a wide range of tasks.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

G Brockman. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Hao Dong, Zihan Ding, and Shanghang Zhang. Deep Reinforcement Learning: Fundamentals,
Research and Applications. Springer Nature, 2020.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for
offline rl via supervised learning? arXiv preprint arXiv:2112.10751, 2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062. PMLR, 2019.

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Benjamin Eysenbach, and
Sergey Levine. Learning to reach goals via iterated supervised learning. In 9th International
Conference on Learning Representations, ICLR 2021, 2021.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Shengchao Hu, Li Shen, Ya Zhang, and Dacheng Tao. Graph decision transformer. arXiv preprint
arXiv:2303.03747, 2023.

Shengchao Hu, Ziqing Fan, Chaoqin Huang, Li Shen, Ya Zhang, Yanfeng Wang, and Dacheng
Tao. Q-value regularized transformer for offline reinforcement learning. arXiv preprint
arXiv:2405.17098, 2024.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=rkgNKkHtvB.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations, 2022. URL https://
openreview.net/forum?id=68n2s9ZJWF8.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy q-
learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio Guadar-
rama, Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision trans-
formers. Advances in Neural Information Processing Systems, 35:27921–27936, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Hao Liu and Pieter Abbeel. Emergent agentic transformer from chain of hindsight experience. In
International Conference on Machine Learning, pp. 21362–21374. PMLR, 2023.

Yi Ma, Jianye HAO, Hebin Liang, and Chenjun Xiao. Rethinking decision transformer via hier-
archical reinforcement learning. In Forty-first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?id=WsM4TVsZpJ.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. Advances in Neural Information Processing Systems, 36, 2024.

Whitney K Newey and James L Powell. Asymmetric least squares estimation and testing. Econo-
metrica: Journal of the Econometric Society, pp. 819–847, 1987.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Tsunehiko Tanaka, Kenshi Abe, Kaito Ariu, Tetsuro Morimura, and Edgar Simo-Serra. Return-
aligned decision transformer. arXiv preprint arXiv:2402.03923, 2024.

Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov.
Corl: Research-oriented deep offline reinforcement learning library. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

11

https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=WsM4TVsZpJ


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yuanfu Wang, Chao Yang, Ying Wen, Yu Liu, and Yu Qiao. Critic-guided decision transformer for
offline reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 15706–15714, 2024.

Jialong Wu, Haixu Wu, Zihan Qiu, Jianmin Wang, and Mingsheng Long. Supported policy opti-
mization for offline reinforcement learning. Advances in Neural Information Processing Systems,
35:31278–31291, 2022.

Philipp Wu, Arjun Majumdar, Kevin Stone, Yixin Lin, Igor Mordatch, Pieter Abbeel, and Aravind
Rajeswaran. Masked trajectory models for prediction, representation, and control. In Interna-
tional Conference on Machine Learning, pp. 37607–37623. PMLR, 2023a.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. Elastic decision transformer. In Proceed-
ings of the 37th International Conference on Neural Information Processing Systems, pp. 18532–
18550, 2023b.

Chenjun Xiao, Han Wang, Yangchen Pan, Adam White, and Martha White. The in-sample soft-
max for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=u-RuvyDYqCM.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline rl. In Inter-
national Conference on Machine Learning, pp. 38989–39007. PMLR, 2023.

Hongming Zhang and Tianyang Yu. Taxonomy of reinforcement learning algorithms. Deep rein-
forcement learning: Fundamentals, research and applications, pp. 125–133, 2020.

Hongming Zhang, Chenjun Xiao, Han Wang, Jun Jin, bo xu, and Martin Müller. Replay memory as
an empirical MDP: Combining conservative estimation with experience replay. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=SjzFVSJUt8S.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In international
conference on machine learning, pp. 27042–27059. PMLR, 2022.

Wenxuan Zhou, Sujay Bajracharya, and David Held. Plas: Latent action space for offline reinforce-
ment learning. In Conference on Robot Learning, pp. 1719–1735. PMLR, 2021.

12

https://openreview.net/forum?id=u-RuvyDYqCM
https://openreview.net/forum?id=SjzFVSJUt8S
https://openreview.net/forum?id=SjzFVSJUt8S


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A ADDITIONAL JUSTIFICATION OF VALUE VALIDATION

Assume our action-value function is optimal, Q = Q∗. We select the action at that minimizes the
absolute difference between the predicted action-value and the desired return:

at = argmin
a
|Q∗ (st, a)−Rt|

We show that this action selection aligns the expected return with Rt, achieving return alignment.

Case 1: Rt > R (desired return exceeds achievable return)

The desired return Rt is greater than the maximum possible return R = V ∗ (st), where:

V ∗ (st) = max
a

Q∗ (st, a)

Since Q∗ (st, a) ≤ V ∗ (st) for all actions a, we have:

Q∗ (st, a)−Rt ≤ V ∗ (st)−Rt < 0

The absolute difference |Q∗ (st, a)−Rt| is minimized when Q∗ (st, a) is maximized. The optimal
action a∗ is:

a∗ = argmax
a

Q∗ (st, a)

Selecting at = a∗ minimizes |Q∗ (st, a)−Rt|. Even when Rt is unattainable, the method selects
the action that yields the highest possible return.

Case 2: Rt < R (desired return less than achievable return)

The desired return Rt is less than the maximum possible return R = V ∗ (st). There may exist
actions a such that Q∗ (st, a) ≈ Rt. By minimizing |Q∗ (st, a)−Rt|, we may select an action at
where Q∗ (st, at) ≥ Rt but potentially less than V ∗ (st). This action aligns the expected return with
Rt without necessarily maximizing it and allows for controlled performance, achieving the desired
return.

B ADDITIONAL ENVIRONMENT DETAILS

D4RL Gym Locomotion. The D4RL Gym locomotion benchmark (Fu et al., 2020) includes
environments provided by OpenAI Gym (Brockman, 2016), specifically Walker2d, Hopper, and
HalfCheetah. These environments are widely used for evaluating reinforcement learning algorithms.
For expample, Walker2d environment simulates a robot tasked with walking as fast and as stably as
possible. The robot must coordinate its two legs to achieve efficient locomotion without falling
over. These environments are designed to test an agent’s ability to learn complex motor skills and
optimize control strategies.

Adroit (Rajeswaran et al., 2017). Adroit is a suite of dexterous manipulation tasks designed to
simulate the control of a five-fingered robotic hand. Our experiments focus on three tasks from
this suite: Pen, Door, and Hammer. For example, the Pen task involves rotating a pen to a specific
orientation using the robotic hand’s dexterous manipulation skills. The ’cloned’ tasks used in our
experiment collect a 50-50 split of demonstration data and 2500 trajectories sampled from a behavior
cloning policy.

Maze2D. Maze2D is a navigation task where the agent is required to reach a fixed target posi-
tion. These tasks are designed to evaluate the ability of offline reinforcement learning algorithms to
’stitch’ together different trajectory fragments (Fu et al., 2020). We use three environments included
in Maze2D, umaze, medium, and large, with complexity and path length to the target increasing se-
quentially.
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C ADDITIONAL EXPERIMENTAL RESULTS

C.1 OFFLINE RESULTS

Gym Tasks RvS CQL IQL DT MTM QDT EDT RADT QT Doctor

HalfCheetah-MR 38.0 45.5 44.2 36.3 43.0 35.6 37.8 41.3 44.7 42.5±0.3

Hopper-MR 73.5 95.0 94.7 82.7 92.9 52.1 89.0 95.7 95.3 93.2±3.6

Walker2d-MR 60.6 77.2 73.9 66.6 77.3 58.2 74.8 75.9 91.5 79.9±2.2

HalfCheetah-M 41.6 44.0 47.4 42.0 43.6 42.3 42.5 42.8 45.3 43.5±0.8

Hopper-M 60.2 58.5 66.3 67.6 64.1 66.5 63.5 90.0 85.8 71.4±8.1

Walker2d-M 71.7 72.5 78.3 74.0 70.4 67.1 72.8 75.6 84.6 72.1±7.2

HalfCheetah-ME 92.2 91.6 86.7 86.8 94.7 - - 93.1 92.0 95.1±0.3

Hopper-ME 101.7 105.4 91.5 107.6 112.4 - - 110.4 111.5 112.7±0.4

Walker2d-ME 106.0 108.8 109.6 108.1 110.2 - - 109.7 109.9 109.3±1.5

Sum 645.5 698.5 692.6 671.7 708.6 - - 734.5 760.6 719.7

Maze2D Tasks BC CQL IQL DT MTM BCQ BEAR TD3+BC QDT Doctor

maze2d-umaze-v1 88.9 94.7 42.1 31.0 58.0 49.1 65.7 14.8 57.3 117.2±12.3

maze2d-medium-v1 38.3 41.8 34.9 8.2 52.9 17.1 25.0 62.1 13.3 84.3±7.6

maze2d-large-v1 1.5 49.6 61.7 2.3 24.2 30.8 81.0 88.6 31.0 47.5±3.1

Sum 128.7 186.1 138.7 41.5 135.1 97.0 171.7 165.5 101.6 249.0

Adroit Tasks BC CQL IQL DT MTM BCQ BEAR GDT TD3+BC Doctor

pen-cloned-v1 37.0 39.2 37.3 75.8 80.5 50.9 26.5 86.2 5.1 98.4±15.5

hammer-cloned-v1 0.6 2.1 2.1 3.0 5.3 0.4 0.3 8.9 -0.3 5.9±3.1

door-cloned-v1 0.0 0.4 1.6 16.3 17.4 0.0 -0.1 19.8 0.2 24.2±8.7

Sum 37.6 41.7 41.0 95.1 103.2 51.3 26.7 114.9 5.0 128.5

Table 3: Results on the D4RL benchmarks, Maze2D tasks, and Adroit tasks. Standard deviations
are shown in smaller font to improve readability.

In the offline experiments, we introduce Maze2D and Adroit as additional test environments, as
shown in Table 3. For the Gym tasks, we added RADT (Tanaka et al., 2024) and QT (Hu et al., 2024)
as baselines. RADT addresses target return alignment. QT is the state-of-the-art method, which
enhances stitching capability by incorporating the TD method. We implemented QT using their
official code. For Maze2D and Adroit, we also added BCQ (Fujimoto et al., 2019), BEAR (Kumar
et al., 2019), TD3+BC (Fujimoto & Gu, 2021), and GDT (Hu et al., 2023) as comparison baselines.

Notably, Doctor significantly outperforms other baselines on Maze2D, demonstrating its stitching
capability. The Maze2D dataset consists of suboptimal trajectories and is specifically designed to
evaluate stitching ability. It can be observed that supervised learning based method like DT, strug-
gles when faced with suboptimal trajectories. Doctor improves performance by leveraging tempral
difference learing. Furthermore, on the complex control tasks in the Adroit cloned environment,
Doctor also achieves clear improvements compaired with other baselines.

C.2 OFFLINE TO ONLINE RESULTS

In the offline-to-online experiments, we evaluate ODT and Doctor with 20k and 100k interaction
data. The results are reported in Table 4 Doctor shows greater performance improvements with
100k interaction data compared to 20k. We also test Doctor on Adroit tasks, where offline-to-online
methods are often used for evaluation on these tasks. Clear improvements were observed in online
fine-tuning experiments on adroit. We include Cal-QL (Nakamoto et al., 2024), AWAC (Nair et al.,
2020), and SPOT Wu et al. (2022) as baselines for comparison. The number for these baselines on
adroit is reported from CORL Tarasov et al. (2024).

C.3 ADDITIONAL VISUALIZATION FOR VALUE ALIGNMENT

We additionally visualize the effect of value alignment as shown in Fig. 5, showing 1x to 3x the
maximum returns in the dataset, following the approach of DT (Chen et al., 2021).
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Gym Tasks IQL (0.2m) ODT (0.2m) Doctor (0.2m) AWAC (1m) ODT (1m) Doctor (1m)

HalfCheetah-MR 44.1 → 44.1 40.0 → 40.4 42.5 → 42.3±2.3 – 40.0 → 41.2 42.5 → 42.7±1.6

Hopper-MR 92.1 → 96.2 86.6 → 88.9 93.2 → 97.1±2.4 – 86.6 → 91.3 93.2 → 97.9±3.3

Walker2d-MR 73.7 → 70.5 68.9 → 76.9 79.9 → 81.4±4.7 – 68.9 → 78.4 79.9 → 84.2±5.6

HalfCheetah-M 47.4 → 47.4 42.7 → 42.2 43.5 → 43.8±1.7 37.4 → 41.4 42.7 → 43.6 43.5 → 42.5±2.1

Hopper-M 63.8 → 66.8 66.9 → 97.5 71.4 → 82.7±10.5 72.0 → 91.0 66.9 → 98.1 71.4 → 88.5±9.1

Walker2d-M 79.9 → 80.3 72.2 → 76.8 72.1 → 80.5±3.2 30.1 → 79.1 72.2 → 77.0 72.1 → 80.7±5.9

Sum 401.0 → 405.3 377.3 → 422.7 402.6 → 427.8 – 377.3 → 429.6 402.6 → 436.5

Adroit Tasks AWAC CQL IQL SPOT Cal-QL Doctor

pen-cloned-v1 88.7 → 86.8 -2.8 → -1.3 84.2 → 102.0 6.2 → 43.6 -2.7 → -2.7 98.4→110.5±18.5

door-cloned-v1 0.9 → 0.0 -0.3 → -0.3 1.2 → 20.3 -0.2 → 0.0 -0.3 → -0.3 24.2→24.7±9.9

hammer-cloned-v1 1.8 → 0.2 0.6 → 2.9 1.4 → 57.3 4.0 → 3.7 0.3 → 0.2 5.9 → 46.8±28.9

Sum 92.4 → 87.0 -2.8 → 1.0 86.8 → 179.9 9.8 → 47.1 -3.0 → -3.1 128.5→182

Table 4: Results of Gym and Adroit tasks for online fine-tuning. The arrow indicates the change in
performance.

Return alignment cannot be solved merely by using high target returns. Figures Fig. 5 demonstrate
this clearly: when using target returns beyond the maximum return in the dataset (e.g., 1.0x to
3.0x maximum return), we observe that supervised learning based model’s performance gradually
saturates, failing to achieve the same level of alignment as Doctor.
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Figure 5: We visualize the effect of value alignment, showing 1x to 3x the maximum returns in the
dataset. Doctor achieves much better alignment across a range of target returns compared to DT and
MTM.

D MODEL AND TRAINING DETAILS

D.1 TRAINING DETAILS

We provide implementation details regarding Doctor. The Transformers include a bidirectional
transformer encoder and a bidirectional transformer decoder. Before inputting the sequence data into
the model, each input modality is projected into the embedding space through independent embed-
encodings. The output of the decoder is connected to a 2-layer MLP with layer normalization, which
is used to reconstruct the trajectory sequence. The Transformer is trained with a randomly sampled
series of mask ratios similar to (Wu et al., 2023a): mask ratios = [0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 1.0].
For data sampling, we adopt a two-step sampling method similar to that used in DT (Chen et al.,
2021), where we first sample a single trajectory and then uniformly sample sub-trajectories of a
certain sequence length.

For offline training, we initialize the AdamW optimizer for the Transformer model and the Adam
optimizer for the Q-value head, employing both warmup and decay schedules. The Q-value head
consists of a single 512-dimensional MLP layer, which connects to the output of the Transformer
decoder. All hyperparameters are summarized in Table 5.

During the fine-tuning stage, we initialize the replay buffer with the top 5% highest-return trajec-
tories from the offline dataset. Each time we interact with the environment, we fully roll out one
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episode using the current policy and add it to the replay buffer. We then update the policy and roll
out again, following a process similar to (Zheng et al., 2022).

D.2 MODEL HYPERPARAMETERS

Table 5: Hyperparameters
Bidirectional Transformer Value
Encoder layers 2
Decoder layers 1
Activation function GeLu
Number of attention heads 4
Embedding dimension 512
layers of decoding head 2
Dropout 0.10
Positional encoding Yes
Dropout 0.1
Learning rate 0.0001
Weight decay 0.005
betas [0.9,0.999]
Learning rate warmup steps 40000

Value function head Q Value
Number of layers 1
Activation function ReLu
Embedding dimension 512
tau 0.7 for gym tasks, 0.9 for maze2d and 0.8 for adroit
Learning rate 0.0001
Weight decay 5e-4

General Value
Eval episodes 10
Input trajectory length 4 for Gym tasks, 10 for maze2d and 12 for adroit
Trainning steps 140000
Batch size 1024
Discount factor 0.99

D.3 INFERENCE AND COMPUTATION OVERHEAD

Table 6: Comparison of Time Complexity for Different Algorithms
Time Complexity DT MTM QT Doctor
Inference (seconds) 0.01 0.056 0.016 0.065
Training (seconds) 2.13 1.27 2.51 1.34

We evaluate the inference and training time of different algorithms as follows. For training, we
use a batch of size 2048 as input to all four algorithms and measure the time required to train one
batch. For inference, we calculate the Frames Per Second (FPS) by running 1000 environment
interaction steps, measuring the total time taken, and then dividing by 1000. The reported values are
the averages of several test runs as shown in Table 6.

It can be observed that Doctor’s computation overhead does not significantly increase. During in-
ference, Doctor processes one batch at a time and leverages a unified architecture to generate both
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action predictions and value estimates simultaneously, allowing for fully parallel computation. Doc-
tor leverages a Q-function trained with the transformer-based representation, and compared to the
computational cost of the transformer itself, the additional cost of Q-function computation is rela-
tively low
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