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ABSTRACT

In topological data analysis, multi-parameter persistence homology is a framework
for extracting topological information for point cloud datasets equipped with multi-
ple filtrations. However, existing algorithms become computationally expensive
for large datasets, limiting their applicability. In the single-parameter case, sub-
sampling algorithms have been used to reduce the time complexity of computing
persistence homology. Convergence properties of the persistence barcodes have
also been established in this setting. We extend these results to the multiparam-
eter persistence homology, and develop subsampling algorithms can be used to
approximate the fibered barcode in this setting. We conduct experiments on the
point cloud dataset ModelNet to demonstrate the efficiency of these algorithms.

1 INTRODUCTION

Topological data analysis is an rapidly growing field that producing statistical summaries of datasets
by leveraging their underlying topological structure, inspired by the theory of homology from
algebraic topology. Notable applications include identifying biological datasets [21] and image
segmentation [19].

One-parameter persistent homology ([13], [25]) extracts topological information from a dataset by
constructing a family of simplicial complexes, and studying how the homology varies. The resulting
statistical summary is presented as a persistence barcode. In many real-world applications, there
are multiple parameters attached to the dataset and it is important to incorporate this additional
information. However, the entire combinatorial structure of the multi-parameter persistence module
cannot be encoded in a simple diagram analogous to the persistence barcode ([4]). The fibered barcode
([5]) is a statistical summary that can be associated to a dataset equipped with a multi-parameter
filtration. While it is not an invariant, it does captures much of the interesting topological information.

These algorithms are computationally expensive for large datasets, and it is desirable to have ef-
ficient methods of approximating the statistical summaries. An approach proposed by [8] in the
one-parameter setting is to choose several subsamples from the dataset, compute their persistence
landscapes and combine the information to produce an approximation. These subsampling algorithms
build on earlier work [9] establishing convergence properties of the persistence homology for samples
drawn from a measure on a compact metric space, and use the language of persistence landscapes
(following [3]). The key technical step required is the stability of the persistence barcode with respect
to the Haussdorff distance.

Our contributions. In the present work, we study subsampling algorithms for multiparameter
persistence homology and analyze their performance. We focus on two common multiparameter
filtrations - the multi-level set filtration, and the degree-RIPS filtration. First we study the convergence
properties of the fibered barcode for samples drawn from a measure µ on a compact metric space M ,
extending the main results of [9] to both of these filtrations.

Outline. Section 2 gives an overview of the background needed on multiparameter persistence
homology, and the stability results. Section 3 establishes convergence results for the fibered barcode
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of finite samples drawn from a measure on a compact metric space, with respect to the matching
distance. Section 4 presents the subsampling algorithms, and analyzes their theoretical performance.
Section 5 provides experimental results on a synthetic dataset, and on the point cloud dataset
ModelNet. All proofs are given in the Appendix.

2 BACKGROUND MATERIAL

This section introduces the notations that will be used throughout the paper, and gives an expository
overview of the results about persistence homology that will be needed. None of the results in this
section are new.

Let M be a finite metric space. In this paper we focus on two-parameter persistence homology
using the language of bi-filtered simplicial complexes. A bi-filtered simplicial complex built on M
is a family of simplicial complexes {Ks,t}s,t≥0, equipped with inclusions Ks,t → Ks′,t′ if s ≤ s′

and t ≤ t′ (these inclusions satisfy the natural compatibilities). First we recall the definition of the
fibered barcode for multi-parameter filtrations, following Section 1.5 of [20] (see Appendix A for an
exposition of persistence barcodes in the single-parameter setting).
Definition 2.1. Let L be the space of all affine lines in R2 with non-negative slope. Given L ∈ L
with equation y = l1x+ l2, define

Ks,L := Ks,l1s+l2

Denote by βL(K) the persistence barcode of the filtered simplicial complex {Ks,L}s≥0. The fibered
barcode β(K) is the function with domain L that sends L to βL(K).

Now recall the following of the matching distance between two fibered barcodes, following [5] (see
also Section 3 of [16]):
Definition 2.2. Given two fibered barcodes β1 and β2, the matching distance dM (β1, β2) between
them is defined as follows (here L ∈ L as above, and w(l) is its “weight”):

w(L) =
1√

1 + max(l1, 1
l1
)2

dM (β1, β2) := supL∈Lw(L)db(β1,L, β2,L)

We now define a multi-level set filtration as follows. Our input datum consists of a finite metric space
M with distance function dM : M×M→ R, and a continuous functional f : M→ R.
Definition 2.3. We define a two-parameter filtration as follows. Given a finite subset U ⊂ M, let the
Vietoris-Rips complex Ripsfα,β(U) consist of all simplicies [x1, · · · , xk] such that dM (xi, xj) ≤ α

and f(xi) ≤ β for all 1 ≤ i, j ≤ k. Let βf (M) denote its fibered barcode.

Given two subsets M1,M2 of M, recall that the Haussdorff distance can be defined as follows. These
definitions can be extended to compact metric spaces M; see Appendix A for more details.

dH(M1,M2) = max{ sup
m1∈M1

inf
m2∈M2

d(m1,m2),

sup
m2∈M2

inf
m1∈M1

d(m1,m2)}

3 SUBSAMPLING ALGORITHMS FOR TWO-PARAMETER PERSISTENCE
HOMOLOGY

In this section we present algorithms for approximating the fibered barcode by subsampling. We
are primarily interested in the following scenario: suppose we have a dataset X consisting of N
points, and we seek to compute its fibered barcode. Computing it precisely is often infeasible when
N is large, so instead we proceed by drawing smaller subsamples. We present two algorithms for
subsampling, extending the techniques from [8] in the single-parameter setting.

Keeping the notation from the previous section, we now describe two algorithms for approximating
the fibered barcode βf (X) obtained from a finite dataset X, and a function f : X→ R. Algorithm
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Algorithm 1 Closest subsample algorithm for multi-level set filtrations
Input: dataset X, function f : X→ R,m, n
for i = 0 to m− 1 do

Let X[i] be a randomly chosen sample of X with size n; let di = dH(X[i],f ,Xf )
end for
j = arg min

1≤i≤m
dH(X,Xi);X′ = Xj ; ε = dH(X,X′)

Output: subset X′, such that |X′| = m and dM (βf (X), βf (X′)) < 2ε

1 is an extension of the closest subsample approach from [8]. The Haussdorff distance between
finite metric spaces can be computed efficiently (for instance, using the SciPy “directed Haussdorff”
package). Experimental results from Section 4.1 indicate that for some real-world datasets, Algorithm
2 is more effective.

Algorithm 2 Haussdorff subsampling algorithm
Input: finite metric space M, error threshold ε > 0
Let M′ = ∅, V = X
while V 6= ∅ do

Pick x ∈ V randomly.
Let M′ = M′ ∪ x
for y ∈ V : do

if d(y, x) < ε: then
V ← V − {y}

end if
end for

end while
Output: subset X′, such that |X′| = m and dM (βf (X), βf (X′)) < 2ε

4 EXPERIMENTS

In this section, we present experiments that illustrate the practicality of the subsampling algorithm
from the previous section on both synthetic and real datasets. In both cases, the subsampling algorithm
in the previous section can be used to quickly approximate the fibered barcode, within a reasonable
margin of error. All experiments in this section were performed using the package Gudhi on Google
CoLab Pro with a V100 GPU and 25GB RAM.

4.1 3D POINT CLOUD DATASETS

ModelNet10 is a 3D point cloud classification datasets consists of 3991 training samples and 908
test instances belonging to 10 classes of objects (see [24]). We select one poses from three different
classes: “Toilet”, “Chair” and “Bed”. For 0 ≤ i ≤ 2, let Xi consist of a N = 1000 points chosen
from the training samples. The following example illustrates the efficacy of Algorithm 2 in this
context (specifically in approximating the longest intervals of the persistent barcodes of βf (Xi)
restricted to the line y = x). It is unclear if the topological information obtained in this manner can
discriminate between classes in ModelNet10.
Example 4.1. First we rescale the data points so that they are centered at zero, and each of the
three components has unit variance. Let f : Xi → R be the function defined by f(x) = ||x||

10 for
each point x ∈ Xi. Consider the bi-filtered simplicial complex on Xi arising from the multi-level
set construction, and let βf (Xi) denote its fibered barcode. Our objective in this example is to use
the algorithms in Section 3 to approximate βf (Xi), queried along a line L: y = x. Computing these
persistence barcode βf,L(Xi) exactly requires more than 310 seconds for each of the three point
clouds; see Figure 1 for diagrams of the barcodes obtained. When using Algorithm 1, with m = 100
subsamples of n = 400 points, we found that the approximate barcodes obtained are too coarse to
retain much useful information. When we use the Haussdorff subsampling algorithm with ε = 0.2,
we found that the longest intervals of the barcodes βf,L(X ′i) closely resemble those of βf,L(Xi)

3



Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

Table 1: Results of the subsampling algorithm for ModelNet. The “Class” column specifies which
of the three point clouds are being used. The “Intervals” column lists all intervals in the persistent
barcode βf,L(Xi) of length at least 0.4. The “Intervals (Sample)” column lists all intervals in the
persistent barcode βf,L(X ′i) of length at least 0.4, where X ′i is the subsample computed using Algo-
rithm 2. The “Time” column specifies the number of seconds needed for both of these computations
(the number in brackets refers to the number of points in the subsample).

CLASS INTERVALS INTERVALS TIME
(SAMPLE)

TOILET [0.349, 0.750] [0.361, 0.810] 27S (486 PTS)
311S (1000 PTS)

CHAIR [0.681 1.21] [0.714 1.26] 5S (284 PTS)
[0.339 1.71] [0.486 1.76] 312S (1000 PTS)

BED [0.353 0.768] [0.436 0.845] 19S (434 PTS)
[0.350 1.076] [0.4 1.08] 312S (1000 PTS)

(specifically, the intervals whose length is at least 0.4). The results are presented in Table 1. Note
however that most of the shorter intervals in βf,L(Xi) cannot be reconstructed by subsampling in
this fashion.

Figure 1: Point clouds from ModelNet.

5 DISCUSSION AND CONCLUSION

In this work, we developed statistical techniques for analyzing multiparameter persistence homology.
In particular, we establish convergence results the fibered barcode for a dataset (equipped with a
multi-level set filtration) and analyze subsampling algorithms for efficiently approximating this
quantity. This extends earlier work of [9] and [8] in the one-parameter setting. In future work,
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we will investigate improvements to the subsampling algorithms using multiparameter persistence
landscapes.
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A SINGLE-PARAMETER PERSISTENCE HOMOLOGY

Let M be a compact metric space with distance function dM : M ×M → R. In practice, M will
usually be a finite subset of Euclidean space Rn, but the results here are stated in more generality.
The definition of persistence homology uses the language of simplicial complexes. Here we outline
the key concepts, and refer the reader to [7] for a detailed treatment and [18] for an introduction to
simplicial homology. See also [13] and [25] for the original papers in the setting where M is a finite
set.

A simplicial complex C is a set of simplexes (i.e. points, lines, triangles, and their higher-dimensional
counterparts) such that any face of a simplex in C is also in C, and the intersection of two simplices
in C is either empty or a face of both simplices. The simplicial complexes that are of interest to us
are the Vietoris-Rips complexes Ripss(M), defined for a metric space M and s ≥ 0. A simplex
[m0, · · · ,mk] ∈ Ripss(M) if dM (mi,mj) ≤ s for 0 ≤ i ≤ k. Note that if s ≤ s′, then there
is an inclusion from Ripss(M) to Ripss′(M); we refer to the family {Ripss(M)}s≥0 as a filtered
simplicial complex.

The persistent barcode βi(M) of this filtered simplicial complex is obtained by considering the
homology groups of the simplicial complexes,Hi(Ripss(M)). These are vector spaces equipped with
linear maps Hi(Ripss(M)) → Hi(Ripss′(M)) coming from the above inclusions. The persistent
barcode βi(M) is a statistical summary consisting of intervals {[bk, dk]}1≤k≤n. The bottleneck
distance db between two persistent barcodes is the smallest ε such that there is an ε-matching between
the two barcodes (i.e. any interval [bk, dk] from one barcode of length more than ε must be matched
to an interval [b′j , d

′
j ] from the other barcode, with the Cartesian distance between the two points in

R2 being less than ε).

B CONVERGENCE OF THE FIBERED BARCODE FOR TWO-PARAMETER
PERSISTENCE HOMOLOGY

B.1 STABILITY RESULTS FOR PERSISTENCE HOMOLOGY

One of the most important properties of persistence barcodes is their stability with respect to the
Haussdorff distance, which was established in [11] and [7]. Given two subsets M1,M2 of a compact
metric space M , recall that the Haussdorff distance:

dH(M1,M2) = max{ sup
m1∈M1

inf
m2∈M2

d(m1,m2),

sup
m2∈M2

inf
m1∈M1

d(m1,m2)}

The stability property is the following:

db(βi(M1), βi(M2)) ≤ 2dH(M1,M2)

This statement is often phrased using the Gromov-Haussdorff distance instead, but we will not need
that level of generality here. Now we state extensions of these results to the multi-parameter setting,
specifically for the multi-level set filtration and the Degree-Rips filtration.
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Definition B.1. Let f̂ :M →M × R be the embedding defined by f̂(m) = (m, f(m)). Given any
subset S ⊂M , let Sf ⊂M × R be its image under the map f̂ .
Proposition B.2. Let M be a compact metric space equipped with a function f : M → R. Given
subsets S, S′ of M:

dM (βf (S), βf (S
′)) ≤ 2dH(Sf , S

′
f )

See Appendix A for a more detailed statement and proof.

B.2 MULTIPARAMETER SUBLEVEL-SET FILTRATIONS

Let M be a compact metric space, and f :M → R is a continuous function. Denote by βf (M) its
fibered barcode, as defined in Section ??. Suppose that we observe a sample X = {X1, · · · , Xn}
drawn from an unknown measure µ on M , and the values f(Xi) for 1 ≤ i ≤ n. In this section we
analyze the performance of the quantity βf (X) as an estimator of βf (M). First we extend Theorem
3.1 from [15] to this setting.
Theorem B.3. Let X1, X2, · · · be i.i.d valued random variables chosen from the measure µ on M ,
which is supported on a compact subset Xµ. Let Xn = {X1, · · · , Xn}. The following holds almost
surely:

βf (Xµ) = lim
n→∞

βf (Xn)

Next we study the convergence rate for the above result with respect to the matching distance on
fibered barcodes, extending Corollary 3 of [9]. Let Mf ⊂ M × R be as defined in Definition B.1,
and if :M →Mf be the natural map. Let µf = if∗µ be the pushforward measure on Mf .

Assumption 1. Suppose that the induced measure µf satisfies the (a, b)-standard assumption, for
some fixed constants a, b > 0: given any x ∈M × R and r > 0, µ(B(x, r)) ≥ min{arb, 1}.
Theorem B.4. Suppose that we have a sample of n points Xn = {X1, · · · , Xn} drawn from an
unknown measure µ.

P(dM (βf (Xµ), βf (Xn)) > ε) <
2b

aεb
exp(−naεb)

The above theorem can be used to construct confidence sets for the fibered barcode, following Section
3.4 in [9].

Proposition B.5. Let α ∈ (0, 1) be chosen arbitrarily. Suppose c satisfies e−c

c < α
n2b

. The following
is a confidence interval for βf (Xµ) with level 1− α:

BdM

(
β(Xn), b

√
c

na

)
B.3 RISK ANALYSIS OF THE CLOSEST SUBSAMPLE FOR MULTI-LEVEL SET FILTRATIONS

We return to the setting from Sections B.2. Assume that M = X is a finite metric space, equipped
with a function f : X→ R and let µ be the discrete uniform distribution centered on X. In particular,
we assume that the induced measure µf satisfies the (a, b)-standard assumption. Let X[1], · · · ,X[m]

be m independent subsamples of size n chosen from µ.
Definition B.6. Define the closest subsample as follows (here H denotes the Haussdorff distance
between the finite metric spaces X and Xi, and the notation X[i],f was introduced in Definition B.1):

X̂(m)
n = arg min

1≤i≤m
dH(Xf ,X[i],f )

The following proposition follows from Theorem B.4.
Proposition B.7.

P(dM (βf (X̂(m)
n ), βf (X)) > ε) ≤

[
2b

aεb
exp(−naεb)

]m
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C PROOFS

C.1 STABILITY OF MATCHING DISTANCE FOR MULTI-PARAMETER PERSISTENCE FILTRATIONS

In this subsection we prove Proposition 2.6, and establish that the fibered code βf (M) is well-defined
for any compact metric space M (in Section 2.2.1, βf (M) was defined for finite metric spaces M ).

First we establish Proposition 2.6 in the setting where M is a finite metric space, keeping the notation
from Section 2.2.1. In particular, recall that d :M ×M → R is the distance function, L is the space
of all affine lines in R2 with non-negative slope, and L ∈ L is a line y = l1x+ l2.

Proposition 2.6
dM (βf (S), βf (S

′)) ≤ 2dH(Sf , S
′
f )

Proof of Proposition 2.6, when M is finite. By definition of the multiparameter interleaving distance,
the above statement is equivalent to the below inequality. Here RipsfL(S) = {RipsfL,a(S)}a∈R
is the filtered simplicial complex defined via RipsfL,a(S) = Ripsft1(a),t2(a)(S) where t1(a) =

a√
l21+1

, t2(a) =
l1a+l2√
l21+1

.

w(L)dB(RipsfL(S),RipsfL(S
′)) ≤ 2dH(Sf , S

′
f )

To prove this, we follow the approach used in Lemma 4.3 of [7] to prove the analogous result in the
the one-parameter setting, and start by recalling the definitions.

Definition C.1. Let S = (Sa)a∈R and T = (Ta)a∈R be filtered simplicial complexes with vertex sets
X and Y . A multivalued map C : X � Y is ε-simplicial if for any σ ∈ Sa and a ∈ R, every finite
subset of C(σ) is a simplex of Ta+ε.

Proposition 4.2 of [7] states that if C : X � Y is a multi-valued map with an inverse CT , then if C
and CT are both ε-simplicial, then the persistence modules H(S) and H(T ) are ε-interleaved. Now
it suffices to show that the filtered complexes RipsfL(S) and RipsfL(S

′) are ε-interleaved, when ε >
2

w(l)dH(Sf , S
′
f ). Consider the subset X ⊂ S×S′ of points (u, u′) such that d(u, u′) ≤ dH(Sf , S

′
f ),

and let C be the corresponding multi-valued map.

Given a simplex σ ∈ RipsfL(S)a, we must show that any finite subset τ ∈ C(σ) lies in RipsfL(S
′)a+ε.

Given any two points u′1 = (m′1, f
′
1), u

′
2 = (m′2, f

′
2) ∈ C(σ), suppose u′1 ∈ C(u1), u′2 ∈ C(u2) for

u1 = (m1, f1), u2 = (m2, f2) ∈ σ. Then for i = 1, 2:

d(m1,m2) ≤
a√
l21 + 1

; fi ≤
l1a+ l2√
l21 + 1

d(m′1,m
′
2) ≤ d(m1,m2) + d(m1,m

′
1) + d(m′2,m2)

≤ a√
l21 + 1

+ 2dH(U,U ′) ≤ a√
l21 + 1

+ w(l)ε

≤ a+ ε√
l21 + 1

f ′i ≤
l1a+ l2√
l21 + 1

+ |f ′i − fi| ≤
l1a+ l2√
l21 + 1

+ εw(L)

≤ l1a+ l2√
l21 + 1

+ ε
l1√
l21 + 1

=
l1(a+ ε) + l2√

l21 + 1

It now follows that τ ∈ C(σ) lies in Ripsl(U)a+ε, completing the proof.

For the rest of this section, M will be a compact metric space. Now we will show that βf (M) can be
defined in this level of generality, and that Proposition 2.6 holds in this setting. Both of these follow
from Proposition C.4 below, which we will establish following the approach in Section 2.4 of [15].
Definition C.2. Let F (M) denote the set of finite non-empty subsets of the metric space M . Let
K(M) denote the set of compact subsets of the metric space M .
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Definition C.3. Denote by Bf∞ the space of all fibered barcodes, viewed as a metric space with the
distance given by the matching distance between two fibered barcodes. Let B̂f∞ be the completion of
this metric space.

Proposition C.4. There is a unique continuous extension K(M)→ B̂f∞ of the map βf : F (M)→
Bf∞, which we denote by the same symbol. This extended map is also Lipschitz continuous with
Lipschitz constant 2.

Proof. Given a compact subset K ⊂ M , let X = {X1, X2, · · · } be i.i.d random variables chosen
from the uniform distribution on K, and for each positive integer n let Xn = {X1, X2, · · · , Xn}.
Given ε > 0, it is well-known that the following statements hold almost surely: for n � 0,
dH(K,Xn) < ε (see Lemma 5.1 above for the statement and Lemma 3.2 of [15] for the proof). It
then follows from that the sequence {βf (Xn)}n∈Z converges for a suitable choice of X, so βf (K)
can be defined as its limit. It is easy to check that it does not depend on the choice of X, and that
Lipschitz continuity is satisfied.

C.2 PROOF OF KEY RESULTS

Now we prove the key results in Sections 3 and 4.

Proof of Theorem B.3. This follows immediately from Proposition B.2 combined with Lemma 3.2 in
[15].

Proof of Theorem B.4. This follows from Proposition B.2, combined with Theorem 2 of [9]. Recall
that the notation Xµ,f was introduced in Definition B.1.

P(dM (βf (Xµ), βf (Xn)) > ε) < P(dH(Xµ,f ,Xn,f ) > 2ε)

<
2b

aεb
exp(−naεb)

Proof of Theorem B.5. This follows immediately from Theorem B.4. If ε = b
√

c
na , then naεb = c

and the conclusion follows:

dM (βf (Xµ), βf (Xn)) > ε) <
2b

aεb
exp(−naεb) < α

Proof of Theorem B.7. This follows from Proposition B.4, combined with Proposition B.2 above:

P(dM (βf (X̂(m)
n ), βf (X)) > ε) ≤ P(dH(X̂(m)

n,f ,Xf )) > 2ε)

= P(dH(X[1],f ,Xf )) > 2ε)m

≤
[
2b

aεb
exp(−naεb)

]m
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