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Abstract

While Large Language Models (LLMs) have001
shown great promise as agents in interactive002
tasks, their high computational costs limit their003
utility, especially for long-horizon tasks. We004
propose a method for transferring the perfor-005
mance of an LLM with billions of parameters006
to a much smaller language model (770M pa-007
rameters). Specifically, we develop a hierar-008
chical agent composed of a planning module009
that learns via Knowledge Distillation from an010
LLM to generate sub-goals and an execution011
module that learns to achieve sub-goals with012
elementary actions. Because neither module013
relies on online access to an LLM at inference,014
our method has a fixed cost of LLM interac-015
tions all happening during training. In Science-016
World – a challenging interactive text environ-017
ment – our approach outperforms standard imi-018
tation learning on elementary actions alone by019
16.7% (absolute). Our analysis underscores our020
method’s efficiency with respect to other LLM-021
based methods. We release our code and data022
for distillation at anon_url.com.023

1 Introduction024

Recently, Large Language Models (LLMs) have025

found applications in various fields, including an-026

swering questions, summarizing documents, trans-027

lating languages, completing sentences, and serv-028

ing as search assistants. They showcase a remark-029

able ability to make predictions based on input,030

enabling their use in generative AI applications to031

produce content based on input prompts (Devlin032

et al., 2018; Brown et al., 2020; Rae et al., 2021;033

Chowdhery et al., 2023; Scao et al., 2022; Patel034

and Pavlick, 2021; Han et al., 2021; Bommasani035

et al., 2021).036

The promising advantage of LLMs is attributed037

to their training on extensive text datasets, resulting038

in impressive capabilities. This prior knowledge039

can be leveraged for action planning to solve tasks040

in robotics and reinforcement learning (Huang041

et al., 2022b; Brohan et al., 2023; Liang et al., 042

2023). Recent works have utilized in-context learn- 043

ing with LLMs to provide actions in autonomous 044

decision-making agents and interactive environ- 045

ments (Mahowald et al., 2023; Yao et al., 2022; 046

Schick et al., 2023; Shen et al., 2023; Nakano et al., 047

2021; Park et al., 2023; Lin et al., 2023; Brohan 048

et al., 2023). 049

However, the extreme size of LLMs makes 050

them computationally unaffordable for many ap- 051

plications. Moreover, closed-source models like 052

ChatGPT (OpenAI, 2022) and GPT-4 (OpenAI, 053

2023) limit accessibility and reproducibility. Con- 054

sequently, there is an increasing demand to find 055

approaches that are less computationally intensive 056

while still capitalizing on the knowledge embed- 057

ded in LLMs. One prevalent technique is the use 058

of Knowledge Distillation (KD) (Buciluǎ et al., 059

2006; Hinton et al., 2015), wherein a smaller 060

model is trained with guidance from a larger model. 061

Through this approach, we can leverage the knowl- 062

edge in an LLM to train a more compact model 063

with a reduced number of parameters. 064

Distilling knowledge from LLMs offers signif- 065

icant advantages, allowing for the training of spe- 066

cialized local models rather than depending on an 067

LLM as a general model. This approach not only 068

enhances privacy, particularly for systems with 069

security-sensitive considerations like co-pilot mod- 070

els, but also provides greater flexibility in tailoring 071

models for specific tasks. Additionally, the use of 072

a smaller model offers the advantage of versatility 073

across diverse applications without size constraints, 074

including device models and mobile apps. Another 075

challenge with LLMs is their susceptibility to hallu- 076

cinations. This tendency poses a hindrance to their 077

effective execution of long-tail planning, especially 078

in interactive decision-making scenarios. 079

In our research, we leverage the knowledge of 080

LLMs to train an autonomous agent for effective 081

decision-making in complex interactive text envi- 082
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ronments, utilizing simple language models as our083

policy. Knowledge Distillation facilitates the train-084

ing of smaller policies, allowing seamless integra-085

tion of LLM knowledge. To address the challenges086

at hand, adopting a two-level planning approach087

proves beneficial for reducing hallucination – one088

for high-level reasoning to formulate sub-goals and089

another for low-level action planning to execute090

each sub-goal.091

Fig. 1 illustrates this concept in the task of092

freezing water from ScienceWorld (Wang et al.,093

2022a). The agent’s subtasks involve navigating to094

the kitchen, finding a thermometer and a metal pot,095

pouring water into the pot, placing it in the freezer,096

and continuously monitoring its temperature until097

frozen. These constitute sub-goals generated by a098

high-level model, with each sub-goal subsequently099

executed by a low-level model. The generation of100

sub-goals empowers an autonomous agent to expe-101

dite learning for the current task and reuse similar102

sub-goals in various tasks to have more generaliza-103

tion.104

The contributions in this work are:105

• We employ Knowledge Distillation from an106

LLM to train a high-level policy capable of107

generating sub-goals without making assump-108

tions about the specific set of sub-goals. No-109

tably, these sub-goals remain flexible, accom-110

modating various sequences of actions.111

• We demonstrate that employing Knowledge112

Distillation with hierarchical policies sur-113

passes the performance achieved by both stan-114

dalone imitation learning and its combination115

with in-context learning.116

• We illustrate that this approach is more cost-117

effective in terms of the number of calls to118

an LLM compared to other methods utilizing119

in-context learning.120

2 Related Work121

Using LLMs for Action Planning Recent works122

have demonstrated the ability of LLMs to perform123

action planning for interactive decision making pro-124

cess without any additional training (Huang et al.,125

2022a). ReAct (Yao et al., 2022) proposes a way126

of prompting an LLM with interleave reasoning127

step and action taking step. That led the resolu-128

tion of a variety of language-based reasoning and129

decision-making tasks. This approach empowers130

Navigate_to(kitchen) 
     open door to kitchen
     go to kitchen
Pick_up(thermometer)
     pick up thermometer
Find(metal pot)
     open cupboard
     pick up metal pot
Fill(metal pot, water)
     move metal pot to sink
     activate sink
     deactivate sink
     pick up metal pot
Focus_on(substance in metal pot
     focus on substance in metal pot
Freeze(water, metal pot)
     pour metal pot into metal pot
     pick up metal pot
     open freezer
     move metal pot to freezer
Monitor_temperature(metal pot, freeze)
     examine substance in metal pot

Annotated Trajectory

Task Description: 
Your task is to change the state of matter of 
water. First, focus on the substance. Then, 
take actions that will cause it to change its 
state of matter.

Figure 1: Example of annotating an expert trajectory
with sub-goals for a particular variation of task 1-4
(change-the-state-of-matter-of ). Looking only at the
original trajectory (i.e., ignoring the red rows), we
gather the expert ended up changing the state of water
to be frozen. The expert had to navigate to the kitchen,
find a thermometer and a metal pot, pour water into
the pot, place it in the freezer, and continually monitor
its temperature until frozen. Each of those milestones
(highlighted in red) can be considered a sub-goal, en-
compassing a sequence of actions. Sub-goals can be
shared across different tasks, facilitating generalization.
We opted for a format that looks like function calls to
encourage reusability (e.g., fill(metal pot, water)).

the model to construct high-level plans for effective 131

action. Reflexion (Shinn et al., 2023) draws inspi- 132

ration from reinforcement learning, employing a 133

framework to reinforce language agents through 134

linguistic feedback. At the end of each trial, it uses 135

self-reflection to determine what went wrong with 136

the task and keeps it in a memory. Then it leverages 137

this information for the next trial. 138
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Some works use a programmatic LLM prompt139

structure with available actions and objects in an140

environment to translate natural language com-141

mands into robot policy code via few-shot exam-142

ples (Liang et al., 2023; Singh et al., 2023). Khot143

et al. (2022) introduced a decomposed prompt-144

ing approach wherein a task is broken down into145

simpler sub-tasks, allowing for recursive handling.146

Subsequently, these sub-tasks are assigned to sub-147

task-specific LLMs, with both the decomposer148

and the sub-task LLMs with their own few-shot149

prompts. Sun et al. (2023) uses three steps, action150

mining, plan formulation, and plan execution to151

decompose a question into a sequence of actions152

by few-shot prompting of LLMs. In Prasad et al.153

(2023) tasks are decomposed explicitly by a sepa-154

rate LLM through prompting when an executor is155

unable to execute a given sub-task.156

Imitation learning Some works employ imita-157

tion learning to train a language model as the158

agent’s policy, as seen in offline decision trans-159

formers (Torabi et al., 2018). The inputs consist160

of states, actions, and reward-to-go values, which161

are fed into a transformer. This transformer then162

predicts actions in an autoregressive manner, utiliz-163

ing a causal self-attention mask (Chen et al., 2021).164

Contextual Action Language Model (CALM) (Yao165

et al., 2020) is another work which uses a fine-166

tuned language model with oracle data to generate167

a set of candidate actions which are then passed to168

a policy network to select the best one. In Nakano169

et al. (2021), the authors fine-tune GPT-3 to ad-170

dress long-form questions within a web-browsing171

context. Human feedback is employed as a direct172

optimization measure for enhancing the quality of173

answers generated by the model.174

Knowledge Distillation: Knowledge Distillation175

(KD) typically falls into two categories: black-box176

KD and white-box KD. In black-box KD, only177

the teacher’s predictions are available for guid-178

ance, while in white-box KD, we have access to179

the teacher’s parameters (Gou et al., 2021). Re-180

cently, black-box KD has gained widespread use181

for fine-tuning original models using self-instruct182

techniques, as proposed by Wang et al. (2022b), em-183

ploying self-generated instructions or for smaller184

models (Taori et al., 2023; Chiang et al., 2023;185

Peng et al., 2023) through the utilization of prompt-186

response pairs generated by LLMs APIs. West187

et al. (2021) introduces symbolic KD from text188

rather than logits. This process involves the trans-189

fer of knowledge from a large, general model to a 190

more compact commonsense model, facilitated by 191

a commonsense corpus, yielding a commonsense 192

knowledge graph and model. 193

Complex interactive text environments In text- 194

based games, an agent interacts with the environ- 195

ment by reading and writing text while aiming to- 196

wards the end game or solving a given task. Out of 197

the recent frameworks that deals with generating 198

and interfacing text-based games (Côté et al., 2018; 199

Hausknecht et al., 2019; Shridhar et al., 2021; Mu- 200

rugesan et al., 2021), we use ScienceWorld (Wang 201

et al., 2022a) which is very complicated by having 202

a large set of objects, actions, and tasks. 203

3 Model 204

In this paper, we propose to train a hierarchical 205

policy by combining KD from an LLM and imita- 206

tion learning from expert trajectories. This section 207

describes both modules in detail and we refer the 208

reader to Fig. 2 for a schematic view. We first 209

formulate the problem as a POMDP (Section 3.1). 210

Next, we describe what knowledge we are distilling 211

from an LLM to guide the agent in accomplishing 212

tasks (Section 3.2). Then, we detail how both the 213

high-level and low-level policies of the hierarchical 214

policy are trained (Section 3.3). 215

3.1 Problem Formulation 216

ScienceWorld (Wang et al., 2022a) can be defined 217

as a partially observable Markov decision process 218

(POMDP), where observations provide information 219

solely on environmental changes induced by the 220

current action. ScienceWorld is an interactive text 221

environment meaning all task instructions, obser- 222

vations and actions are expressed in textual form. 223

Importantly, both observations and rewards in this 224

environment are conditioned by the ongoing task. 225

Given a language vocabulary V and an arbitrary 226

maximum number of tokens N , an observation is 227

defined such as o ∈ Ω ⊂ V N , a reward such as 228

r ∈ R and an action as a ∈ A ⊂ V N . Finally, a 229

task or goal description is shown by g ∈ G ⊂ V N . 230

We formalize the problem as a goal-augmented 231

POMDP M = (S, V,A,Ω, G, T,R,O, γ) with 232

S the state space, A ⊂ V N the action space, 233

Ω ⊂ V N the observation space, G ⊂ V N the goal 234

space, T : S × A×G → S the goal-conditioned 235

transition function, R : S ×A×G → R the goal- 236

conditioned reward function, O : S → V N an 237

(unknown) observation function mapping a state to 238
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Action generator

Sub-goal generator
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to
ry observation/score

action

su
b-
go
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Action generatorSub-goal generator

Your task is to boil water … ; Time: 1; Score: 0; Completed subtasks 
are: navigate_to(kitchen), … ; The current subtask is heat(water, metal 
pot); Action history: activate sink --> The sink is now activated, … ; 
Current environment: This room is called the kitchen. In it, you see: … 
; Current inventory: a thermometer, … ; Visited rooms: hallway, … ; 
What action should you do next?

Next actionSub-goal

Figure 2: On the left, a schematic view of our approach is shown. There are two modules: the sub-goal generator
and action generator. The sub-goal generator provides a sub-goal for the action generator, which predicts the next
action given the current sub-goal and history. On the right, the inputs and outputs of both modules are illustrated.
The input comprises different parts including task description, completed sub-goal, current sub-goal, a history of
recent actions-observations, and more, each highlighted in a distinct color.

a textual description and γ the discount factor. We239

assume γ = 1 in our experiments.240

3.2 Distilling Knowledge from an LLM241

The initial step in training our policies is creating242

a dataset. This dataset should include sub-goals243

along with their corresponding aligned sequences244

of actions for each task.245

To generate this dataset, we assume access to a246

list of expert trajectories which we will augment.247

Specifically, each trajectory will be segmented and248

each segment will be annotated with a textual sub-249

goal. To achieve this, we prompt an LLM with two250

in-context examples. Each example is composed251

of a task description and an expert trajectory for a252

similar task as the one we wish to annotate. The253

example also contains the expected response which254

corresponds to a set of sub-goals, accompanied by255

sequences of actions linked to each sub-goal.256

Given the two in-context examples, the LLM is257

then instructed to generate a response for a new258

task description and its expert trajectory. It is im-259

portant to note that these responses are collected260

only for the training tasks for which we assume261

having access to expert trajectories.262

Fig. 3 illustrates the prompt examples for task263

1− 1 which is boiling a given substance. To ensure264

more uniform sub-goals that can generalize across265

tasks, we opted for a format that looks like function266

calls. Since that format was shown in the in-context267

examples, the LLM-generated sub-goals mimic this268

format as well making them easier to parse.269

Given expert trajectories for some tasks can be270

long (+100 actions), the generated sub-sequence271

of actions corresponding to each sub-goal may not272

align exactly with the expert trajectory. Sometimes,273

it might miss certain actions, while in other in-274

stances, it might include additional actions, espe- 275

cially when there are repeated actions in the trajec- 276

tory. To address this challenge, we use dynamic 277

programming to determine the minimal number 278

of actions that need to be added to or removed 279

from the generated trajectory. So, if we need to 280

remove some actions, we simply take them out of 281

the generated trajectory. However, when some ac- 282

tions should be added, we ask the LLM to provide 283

sub-goals for the actions missed in the generated 284

trajectory. Then, we add them to the generated 285

trajectory. By that, we make sure the generated tra- 286

jectories remain in line with the expert data (see Ap- 287

pendix A.3). 288

In the resulting annotated dataset, each data point 289

follows the same format as used by Lin et al. (2023) 290

but with the added mention of completed sub-goals 291

and the current sub-goal. Precisely, it corresponds 292

to: 293

• Input: task description, number of steps, 294

current score, completed sub-goal, current 295

sub-goal, a history of 10 recent actions- 296

observations, current items in the room, in- 297

ventory, and the visited rooms. 298

• Target: next action, next sub-goal. 299

3.3 Hierarchical Imitation Learning 300

With the dataset obtained from distilling knowledge 301

from an LLM, we can now focus on training the 302

policies. 303

Low-level policy: The low-level policy is a lan- 304

guage model (LM) which is trained through imita- 305

tion learning using the annotated dataset. The goal 306

is to have a model much smaller than an LLM so it 307

can fit on a single machine and run faster, ideally 308
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[Example 1] [Task description] Your task is to boil water. … [Expert 
trajectory] Here is the goal path to achieve to the goal:open door to 
kitchen, go to kitchen, … provide me with the functional format of 
high-level sub-tasks to complete this task and their correspondings 
actions.
[sub-goals] 1- navigate_to(kitchen) : {'open door to kitchen', 'go to 
kitchen'} 2- pick_up(thermometer):{'pick up thermometer'} 3- 
find(metal pot):{'open cupboard', 'pick up metal pot'} … 

[Example 2] … 

[Current task] [Task description] Your task is to boil chocolate. … 
[Expert trajectory] Here is the goal path to achieve to the goal: 'open 
door to hallway', 'go to hallway', 'open door to kitchen', 'go to 
kitchen', … provide me with the functional format of high-level 
sub-tasks to complete this task and their correspondings actions.

Does the actions 
sequence match 
with the oracle 

path?If some actions are missed, use them in the prompt.

If more actions are added mistakenly, remove them.

Finish!

Yes 

No 

Prompt Generated sub-goals

LLM

1- navigate_to(hallway) : {'open door to hallway', 'go to hallway'} 
2- navigate_to(kitchen) : {'open door to kitchen', 'go to kitchen'} 
3- pick_up(thermometer):{'pick up thermometer'} 
4- find(metal pot):{'open cupboard', 'pick up metal pot'} 
5- find(chocolate):{'open oven', 'open freezer', 'open drawer in cupboard', 
'open glass jar', 'open drawer in counter', 'open fridge', 'focus on 
chocolate'} 
6- …

Figure 3: The figure demonstrates KD to generate sub-goals using an LLM. The LLM is presented with a prompt
containing two in-context examples. Each example is composed of a task description in green and an expert
trajectory detailing the steps to accomplish that task in blue. It also includes the expected set of sub-goals with their
corresponding sequences of actions in red. Following this, we provide a new task description and trajectory, and we
let the LLM generate the associated sub-goals and segmented actions.

below a billion of parameters. This policy learns309

to predict the next action given the current task de-310

scription, the 10 previous observation-action pairs,311

the previous completed sub-goals, and the current312

sub-goal. We refer to this policy as the action313

generator.314

High-level policy: The high-level policy is an-315

other LM with a reasonable size which is trained to316

generate the next sub-goal. This policy conditions317

on the same input information as for the action gen-318

erator. We call this policy the sub-goal generator.319

Hierarchical policy: During inference, we first320

leverage the high-level policy to generate a sub-321

goal. This generated sub-goal is then fed into the322

action generator, allowing it to produce the next323

action aligned with the provided sub-goal. This324

sequential approach serves as a guiding cue for the325

action generator, particularly when the trajectory326

to achieve the goal is complex or long. Moreover,327

it serves to prevent the action generator from gen-328

erating actions that might deviate the agent from329

the correct path, thereby improving the precision330

and relevance of the actions being generated.331

4 Experiments332

4.1 Environment333

We chose ScienceWorld (Wang et al., 2022a) as the334

environment due to its complexity and the diverse335

range of tasks it encompasses. This environment336

is an interactive text-based game where the agent337

conducts elementary science experiments in a sim- 338

ulated environment. Each experiment is designed 339

as a separate task. For example, "Your task is to 340

boil water. For compounds without a boiling point, 341

combusting the substance is also acceptable. First, 342

focus on the substance. Then, take actions that will 343

cause it to change its state of matter". To complete 344

a task, the agent must perform multiple actions and 345

receives the result of each action as an observation 346

and a score. The observations and actions are in 347

text format. An observation describes the changes 348

in the environment, and the score is a numerical 349

value ranging from 0% to 100%, indicating the de- 350

gree of completion of the current task through the 351

current action. 352

The environment includes 30 task types covering 353

10 different science topics (Appendix A.5). It has 354

10 different locations, more than 200 object types, 355

and 25 action templates which makes the search 356

space very larger for the agent. Each type of task 357

has different variations in which the task objects, 358

the agent’s initial location, and random contents of 359

each room are altered. 360

4.2 Experimental Setup 361

The environment has separate sets of variations for 362

train and test. In the test variations, the combina- 363

tions of objects and conditions are not seen in the 364

train set. Following the experimental setup in (Lin 365

et al., 2023), if the number of variations is more 366

than 10, we consider only the first 10 variations. 367
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Our base models for both policies is a pre-trained368

FLAN-T5-LARGE (Chung et al., 2022) with 700M369

parameters. For the both polices, we used greedy370

decoding at inference. We also conduct an ablation371

study over different model sizes (Fig. 4). For fine-372

tuning the policies, we use all the training tasks373

and their variations (3600 games in total) from374

ScienceWorld. We vary the number of training375

epochs in function of the size of the models (see376

Appendix A.4).377

4.3 Baseline Agents378

We compare our approach with other works that379

leverage LLMs. Some rely only on prompting such380

as SayCan, ReAct, and Reflexion, but SwiftSage381

also do imitation learning. Here is a brief descrip-382

tion of each method.383

SayCan: the LLM initially offers a set of actions384

along with their respective ranks. Then, a value-385

based method is employed to re-rank these actions386

in order to determine the most rewarding action for387

execution (Brohan et al., 2023).388

ReAct: the LLM generates actions by incorpo-389

rating the provided prompt and the history of gen-390

erated texts. It employs reasoning traces as inter-391

mediate thought steps during the action generation392

to refine a plan for the upcoming steps (Yao et al.,393

2022).394

Reflexion: the language agent reflects the task395

feedback at each trial in the form of text and re-396

tains this information within an episodic memory.397

During the subsequent trial, it leverages the stored398

memory text to enhance its decision-making pro-399

cess (Shinn et al., 2023).400

SwiftSage: it comprises two components: Swift,401

a fine-tuned LM to predict actions, and Sage, a402

module that queries ChatGPT for planning when403

the performance of Swift is inadequate (as deter-404

mined by some handcrafted rules) (Lin et al., 2023).405

Swift-only: this is the Swift part of the Swift-406

Sage method which only has the fine-tuned LM to407

predict the actions. We consider this method as408

a strong baseline and the most comparable to our409

approach as it relies on imitation learning without410

the need for querying ChatGPT during inference.411

4.4 Results and Analysis412

Main Results: Table 1 compares the perfor-413

mance of the baselines with our approach in the414

ScienceWorld. The score for each task type is 415

the average score (in percent) obtained for 10 test 416

variations. Our approach demonstrates an overall 417

performance of 63.43%, surpassing Swift-only by 418

16.71% (33.9% relative increase), and showing a 419

slight improvement over SwiftSage of 3.3% (5.3% 420

relative). Interestingly, our method is able to solve 421

all test variations (i.e., gets an average score of 422

100%) for 11 out of the 30 task types. In contrast, 423

SwiftSage solves them only for 2 task types, and 424

Swift-only, only for 4 task types. 425

Additionally, we measured the performance of 426

the agents with respect to the length of the tasks (a 427

proxy for task complexity). The length of a task is 428

determined by how many actions was needed by the 429

expert to solve it.1 Following Lin et al. (2023), we 430

group the tasks into three categories: Short when 431

the length is less than 20 actions, Medium when 432

it falls between 20 and 50 (inclusively), and Long 433

if above 50. As shown in Table 1, our approach 434

outperforms other methods on short and medium 435

tasks. On long tasks, we outperform all methods ex- 436

cept SwiftSage, which has a substantial advantage 437

here: The longer the task, the higher the chance it 438

triggers one of the rules for Sage to take over. 439

A key motivation for our approach is cost- 440

effectiveness in terms of LLM queries. During 441

training, we make one query to ChatGPT per task 442

to identify the sub-goals within an expert trajec- 443

tory. Sometimes mismatches occur between the 444

expert trajectory and the actions assigned to each 445

sub-goal by ChatGPT. When that is the case, we 446

employ dynamic programming, with a maximum 447

of 10 attempts per task. This contrasts with other 448

baseline methods, where LLM is queried for each 449

action, incurring considerably higher costs. 450

Why is it failing on some task types? The per- 451

formance of our algorithm in some tasks are low, 452

(see Table 4). In Table 1, the scores of two tasks 453

are presented. One contributing factor is the varia- 454

tions in the test are very different from those in the 455

training. For instance, the objects might be very 456

different or the path to complete the task is very 457

different and longer. The main culprit is the sub- 458

goal generator which is not able to generate good 459

sub-goals. 460

As a concrete example (Table 2), in the test 461

variations for task 3-3, the agent needs to go to 462

kitchen and then fill a jug with water. When look- 463

1Expert trajectories for test tasks were not seen during
training.
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Methods SayCan∗ ReAct∗ Reflexion∗ Swift-only SwiftSage∗ Ours
Overall Average 25.22 19.76 23.40 46.25 62.22 65.43

Solved Task Types 0/30 0/30 4/30 4/30 2/30 11/30
Short† 37.24 28.95 39.19 79.68 72.81 91.61

Medium 20.06 21.09 14.73 35.80 55.34 62.83
Long 18.66 11.23 16.27 25.36 57.99 45.35

Task 1-1 33.06 3.52 4.22 15.0 58.0 16.22
Task 3-3 99.56 76.19 72.54 59.5 66.9 5.6

Table 1: The table illustrates the overall average score (%) across all test tasks on the ScienceWorld benchmark for
SayCan, ReAct, Reflexion, Swift-only, SwiftSage, and our algorithm (last column). The Solved Task Types row
represents the number of task types for which an agent manages to solve all the test variations. The table also shows
the average scores for tasks with a short, medium, and long length of expert trajectory. The rows Task 1-1 and Task
3-3 display the scores for each of them in which our approach does not work well in comparison with the other
methods. The ∗ denotes scores reported from (Lin et al., 2023).

ing at the transcript, we see the agent is able to go464

to kitchen but then when it arrives, the sub-goal465

generator issues a sub-goal which is not relevant,466

FocusOn(fountain). The agent attempts to focus467

on the fountain which is a wrong action and the468

game terminates with a score of 0.469

Another example is task 1-1 (Table 2) in which470

the agent should boil a substance. It should first471

find the substance but since the substance is in a472

totally different location than those seen during473

training, the sub-goal generator is not able to gen-474

erate a good sub-goal for this step. Consequently475

the agent will do other actions and exhaust all the476

allocated time steps.477

Does scale matter? We conduct a comparison478

across various sizes of language models such479

as FLAN-T5-XL, FLAN-T5-BASE, and FLAN-T5-480

SMALL. Additionally, we evaluate T5-3B and T5-481

LARGE to determine the effectiveness of FLAN-T5482

versus T5. The results are illustrated in Fig. 4.483

In our initial findings, we observed that FLAN-T5484

outperforms T5 significantly. Moreover, our re-485

sults reveal a positive correlation between the LM486

size and its performance – larger models generally487

yield better results. Intriguingly, we observe that488

for smaller models (FLAN-T5-SMALL and FLAN-489

T5-BASE), not conditioning on sub-goals works490

slightly better than including them. This might be491

indicative that the sub-goal generator is not expres-492

sive enough to generate meaningful and effective493

sub-goals which in turn impacts the action genera-494

tor policy and leads to lower scores.495

To further demonstrate the impact of the sub-496

goal generator’s size on the overall performance,497

we try pairing different sizes of sub-goal genera-498

Example (task 3-3)
With Sub-goal Expert Trajectory

NavigateTo(kitchen) -
- go to art studio - go to art studio
- go to outside - go to outside
- go to kitchen - go to kitchen

FocusOn(fountain) -
-focus on fountain - move jug to sink

- activate sink
- deactivate sink
- pick up jug

Example (task 1-1)
With Sub-goal Expert Trajectory

NavigateTo(kitchen) -
- go to art studio - go to art studio
- go to outside - go to outside
- go to hallway - go to hallway

NavigateTo(bedroom) -
-go to bedroom - go to workshop

- pick up metal pot
containing gallium

Table 2: Two instances where the performance of our
algorithm is low. The first column displays the trajec-
tory generated with sub-goals, while the second column
presents the expert trajectory. Sub-goals are highlighted
in dark red, accompanied by their corresponding actions,
and incorrect actions are marked in red.

tor while limiting the action generator to be small. 499

In Fig. 5, the average scores exhibit an upward 500

trajectory. This can be attributed to the larger sub- 501

goal generators producing more accurate and rel- 502

evant sub-goals, subsequently empowering the ac- 503

tion generator to generate more correct actions. See 504

Table 5 for a complete breakdown of the score per 505

task type and per model size. 506

5 Discussion 507

In contrast to SwiftSage, which relies on interactive 508

usage of the ChatGPT API to handle planning, our 509
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Figure 4: Average scores across different model sizes
for FLAN-T5 and T5. For T5 model, X-Large refers to
T5-3B. The larger models work better and FLAN-T5
performs also better than T5. Dashed lines represent
models that are not conditioning on any sub-goals (“no
sg”). Those are equivalent to Swift-only.

approach makes use of a trained sub-goal gener-510

ator to guide the action generator. Moreover, our511

framework empowers the agent to retrieve a nearly512

optimal trajectory by supplying the appropriate sub-513

goal. Nevertheless our framework has significantly514

reduced the frequency of API calls, which are both515

expensive and not universally accessible. ReAct,516

Reflexion, and SwiftSage require human annota-517

tions to correct sub-goals and predict a reasonable518

action. However in our approach, we do not need519

human help to predict sub-goals or provide precise520

prompts.521

6 Conclusion522

We introduce a straightforward yet highly effective523

approach for tackling complex text-based environ-524

ments. Our framework leverages the knowledge of525

an LLM to extract sub-goals. A hierarchical policy526

of two LMs proposed: a high-level policy predicts527

a sub-goal, and a low-level policy, by using the528

predicted sub-goal, generates elementary actions.529

Through extensive experiments across 30 task types530

in ScienceWorld, our approach demonstrates in-531

crease performance compared to state-of-the-art532

baselines, including standard imitation learning and533

SwiftSage.534

As future directions for this work, we aim to535

delve into further exploration of goal modification536

strategies when the agent encounters challenges537

in solving the current sub-goal. This could in-538

volve breaking down or transforming a sub-goal539

Figure 5: Average scores across different sizes of sub-
goal generator while the action generator is kept to be
base (blue) or small (green). Having larger sub-goal
generators can significantly boost performance of small
action generators.

into a more achievable form. Another venue for 540

future research involves extending this approach 541

to a multi-module environment. In such scenarios, 542

the sub-goal generator could leverage each module 543

as an independent source to generate diverse and 544

context-specific sub-goals. 545

7 Limitations 546

We highlight the limitations of our approach and 547

experimental setup. 548

First, we acknowledge the proposed technique 549

has only been tested on a single type of environ- 550

ments – ScienceWorld – even though it encom- 551

passes 30 different types of task each with 10 vari- 552

ations. Also, ScienceWorld naturally provides lan- 553

guage observations and actions which are readily 554

compatible with LLMs. Tackling more visual en- 555

vironments would require multi-modal foundation 556

models for the KD phase. 557

Second, while we did run the Swift-only model 558

ourselves to check for reproducibility, we have 559

not run SwiftSage for budget constraints. We ac- 560

knowledge that ChatGPT might have improved (or 561

worsen) since when Lin et al. (2023) ran their ex- 562

periments. 563
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A Appendix 777

A.1 Few-shot Prompt for the Large Language Model 778

We employed the ChatGPT API as the large language model in our study. The structure of the ChatGPT 779

prompt is comprised of three main components. Firstly, there is a general description of the environment. 780

The second part includes two examples, each containing the task description, an expert trajectory, and 781

a set of sub-goals with their corresponding action sequences. Lastly, the prompt presents a new task 782

description, along with an expert trajectory, then we ask the LLM to generate sub-goals for this new task. 783

Here is the first part: 784

Description of the Environment

You are a helpful assistant. You are in a simulated environment as an agent. A task and its description
will be given to you. Suggest the best actions the agent can take based on the things you see and the
items in your inventory to complete the task. Only use valid actions and objects. If you know what are
around, then suggest the following actions. You are allowed to do the following actions with the objects.
Open or close OBJ meaning open or close a container , Deactivate or activate OBJ meaning activate
or deactivate a device, connect OBJ to OBJ meaning connect electrical components , disconnect OBJ
meaning disconnect electrical components , use OBJ [on OBJ] meaning use a device/item , look around
meaning describe the current room, look at OBJ meaning describe an object in detail, look in OBJ
meaning describe a container’s contents, read OBJ meaning read a note or book, move OBJ to OBJ
meaning move an object to a container, pick up OBJ meaning move an object to the inventory, put down
OBJ meaning drop an inventory item, pour OBJ into OBJ meaning pour a liquid into a container , dunk
OBJ into OBJ meaning dunk a container into a liquid , mix OBJ meaning chemically mix a container ,
go to LOC meaning move to a new location , teleport to LOC meaning teleport to a specific room , eat
OBJ meaning eat a food , flush OBJ meaning flush a toilet, focus on OBJ meaning signal intent on
a task object, wait [DURATION] meaning take no action for some duration, task meaning describe
current task, inventory meaning list agent’s inventory, OBJ means objects. LOC means location. There
are 10 locations centered around a house theme. These are: kitchen, bathroom, workshop, art studio,
greenhouse, outside, bedroom, living room, foundry.

785

Here are the two examples for task 4 − 1, which is find-living-thing. This is the second part of the 786

prompt: 787
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Two-shot examples of Task 4-1 (find-living-thing)

Example 1 [Task Description] Your task is to find a(n) living thing. First, focus on the thing. Then,
move it to the red box in the kitchen.
[Expert trajectory] Here is the goal path to achieve to the goal: open door to greenhouse, go to
greenhouse, open door to outside, go to outside, focus on dove, pick up dove, open door to kitchen, go
to kitchen, move egg dove egg in inventory to red box
Based on the given goal path, provide me with the functional format of high-level sub-tasks to complete
this task and their corresponding actions.
[sub-goals] 1- navigate_to(greenhouse): {’open door to greenhouse’, ’go to greenhouse’} 2- navi-
gate_to(outside): {’open door to outside’, ’go to outside’} 3- Focus_on(dove): {’focus on dove’} 4-
pick_up(dove): {’pick up dove’} 5- navigate_to(kitchen): {’open door to kitchen’, ’go to kitchen’} 6-
move(dove egg, red box): {’move dove egg in inventory to red box’}
Example 2 [Task Description] Your task is to find a(n) living thing. First, focus on the thing. Then,
move it to the green box in the kitchen.
[Expert trajectory] Here is the goal path to achieve to the goal: open door to kitchen, go to kitchen,
open door to outside, go to outside, focus on egg turtle, pick up egg turtle, open door to kitchen, go to
kitchen, move egg turtle egg in inventory to green box
Based on the given goal path, provide me with the functional format of high-level sub-tasks to complete
this task and their corresponding actions.
[sub-goals] 1- navigate_to(kitchen): {’open door to kitchen’, ’go to kitchen’} 2- navigate_to(outside):
{’open door to outside’, ’go to outside’} 3- Focus_on(egg turtle): {’focus on egg turtle’} 4- pick_up(egg
turtle): {’pick up egg turtle’} 5- navigate_to(kitchen): {’open door to kitchen’, ’go to kitchen’} 6-
move(egg turtle, green box): {’move egg turtle in inventory to green box’}

788

The third part is just a new task description with an expert trajectory:789

Request for sub-goal generating

[Task Description] Your task is to find a(n) living thing. First, focus on the thing. Then, move it to the
green box in the living room.
[Expert trajectory] Here is the goal path to achieve to the goal: open door to hallway, go to hallway,
open door to greenhouse, go to greenhouse, open door to outside, go to outside, focus on baby baby
beaver, pick up baby baby beaver, open door to greenhouse, go to greenhouse, open door to hallway,
go to hallway, open door to living room, go to living room, move baby baby beaver in inventory to
green box
Based on the given goal path, provide me with the functional format of high-level sub-tasks to complete
this task and their corresponding actions.

790

A.2 Input Prompt for the Policies791

Here, we show the inputs and outputs for both the action generator and sub-goal generator. We followed792

the format used by SwiftSage (Lin et al., 2023), incorporating sub-goals and making minor textual793

adjustments accordingly.794
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Input for the action generator

[Task Description] Your task is to find a(n) living thing. First, focus on the thing. Then, move it to the
red box in the kitchen;
Time: 4; Score: 16; < /s >
Completed subtasks are: navigate_to(greenhouse), navigate_to(outside). The current subtask is
Focus_on(dove);< /s >
Action history: < extra_id_4 > look around (+0) –> N/A | < extra_id_3 > go to greenhouse (+16)
–> You move to the greenhouse. | < extra_id_2 > open door to outside (+0) –> The door is already
open. | < extra_id_1 > go to outside (+0) –> You move to the outside. | < /s >
Current environment: This outside location is called the outside. Here you see: | the agent | a substance
called air | an axe | a blue jay egg | a butterfly egg | a dove egg | a fire pit | a fountain (containing a
substance called water) | the ground | a substance called wood | You also see: | A door to the foundry |
A door to the greenhouse | A door to the kitchen | < /s >;
Current inventory: In your inventory, you see: | an orange | < /s >;
Visited rooms: hallway, greenhouse, outside < /s >;
What action should you do next? < /s >

795

Output for the action generator

focus on dove
796

Input for the sub-goal generator

[Task Description] Your task is to find a(n) living thing. First, focus on the thing. Then, move it to the
red box in the kitchen;
Time: 4; Score: 16; < /s >
The previous subtasks are: navigate_to(greenhouse). The current subtask is navigate_to(outside)
;< /s >
Action history: < extra_id_4 > look around (+0) –> N/A | < extra_id_3 > go to greenhouse (+16)
–> You move to the greenhouse. | < extra_id_2 > open door to outside (+0) –> The door is already
open. | < extra_id_1 > go to outside (+0) –> You move to the outside. | < /s >
Current environment: This outside location is called the outside. Here you see: | the agent | a substance
called air | an axe | a blue jay egg | a butterfly egg | a dove egg | a fire pit | a fountain (containing a
substance called water) | the ground | a substance called wood | You also see: | A door to the foundry |
A door to the greenhouse | A door to the kitchen | < /s >;
Current inventory: In your inventory, you see: | an orange | < /s >;
Visited rooms: hallway, greenhouse, outside < /s >;
What subtask should you do next? < /s >

797

Output for the sub-goal generator

Focus_on(dove)
798

A.3 Matching Generated Trajectory 799

The trajectory produced by the LLM may not always align with the expert trajectory. In such instances, 800

we employ dynamic programming to identify the minimum set of actions that need to be added to or 801

removed from the generated trajectory. For actions absent in the generated trajectory that should be added, 802

we initially determine if they are sequential. Then, for each sequence identified, we prompt the LLM once 803

more to generate a sub-goal corresponding to that specific sequence, see Fig. 6. 804

A.4 Implementation Details 805

We set the maximum number of steps per episode to 100. Additionally, we implemented an alternative 806

termination condition: if the scores remain unchanged over the last 50 steps, we stop the episode. This 807
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pick up thermometer
open cupboard
pick up metal pot
move metal pot to sink
activate sink
deactivate sink
pick up metal pot 
pour metal pot into metal pot
open door to kitchen
go to kitchen
pick up metal pot
open freezer
move metal pot to freezer 

Pick_up(thermometer):
- pick up thermometer 

Fill(metal pot, water): 
- move metal pot to sink
- activate sink
- deactivate sink
- pick up metal pot
- open door to bathroom
- go to bathroom

Freeze(water, metal pot): 
- pour metal pot into metal pot
- open door to kitchen
- open freezer
- move metal pot to freezer

Missed 
actions

Missed 
actions

Extra 
actions

LLM

LLM

Remove

Generated Trajectory by LLMExpert Trajectory 

Figure 6: This figure illustrates instances where the trajectory generated by the LLM deviates from the provided
expert trajectory. In this example which is for boiling task, certain actions are omitted in the generated trajectory,
indicated in blue in the left box. To address these missing actions, we group them into sequences and prompt the
LLM to generate sub-goals for them. If the generated trajectory includes additional actions, such as the green action
on the right, we simply remove them to align with the expert trajectory.

prevents the agent from getting stuck in a repetitive loop of actions that do not yield any changes, such as808

navigating between rooms. We selected this threshold to ensure that it is not too restrictive, considering809

that certain tasks with lengthy trajectories may require a long sequence of actions to achieve a reward.810

The learning rate in all of the experiments is 1e− 4. The values for max_source_length = 1024 and811

for max_target_length = 30. The batch size for training is 8. We set the number of epochs to 20 during812

training. In the evaluation phase, checkpoints were selected based on their loss values, encompassing813

the checkpoint with the lowest loss and the subsequent three checkpoints. The final choice for test was814

determined among these checkpoints, with priority given to the one demonstrating the highest score in the815

test set.816

For both the action generator and sub-goal generator, we used greedy decoding. When the generated817

actions is invalid we attempt to find the closes match from the list of admissible commands provided by818

ScienceWorld.819

A.5 Dataset Statistics820

In Table 3, we provide tasks’ names and their variations for all of the tasks in ScienceWorld (Wang et al.,821

2022a). For each task, variations are partitioned into 50% training, 25% development, and 25% test sets.822

In the development and test sets, variations include substances, animals, or plants that are not seen in the823

training.824

A.6 Scores of Each Task825

The average score of each task of the ScienceWorld is shown in Table 4. The methods are SayCan, ReAct,826

Reflexion, Swift-only, SwiftSage and our algorithm. In all of them ChatGPT is used as the LLM. The827

language models for Swift-only, SwiftSage and our algorithm are FLAN-T5-LARGE. For the methods,828

SayCan, ReAct, Reflexion, and SwiftSage we used the results from Lin et al. (2023). However, we829

reproduced the results for Swift-only and we found a lower performance than what was reported in the830

paper. So here we presented our scores.831
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Task Type Topic Task Name # Variations
1-1 Matter boil 30
1-2 Matter melt 30
1-3 Matter freeze 30
1-4 Matter change-the-state-of-matter-of 30
2-1 Measurement use-thermometer 540
2-2 Measurement measure-melting-point-known-substance 436
2-3 Measurement measure-melting-point-unknown-substance 300
3-1 Electricity power-component 20
3-2 Electricity power-component-renewable-vs-nonrenewable-energy 20
3-3 Electricity test-conductivity 900
3-4 Electricity test-conductivity-of-unknown-substances 600
4-1 Classification find-living-thing 300
4-2 Classification find-non-living-thing 300
4-3 Classification find-plant 300
4-4 Classification find-animal 300
5-1 Biology grow-plant 126
5-2 Biology grow-fruit 126
6-1 Chemistry chemistry-mix 32
6-2 Chemistry chemistry-mix-paint-secondary-color 36
6-3 Chemistry chemistry-mix-paint-tertiary-color 36
7-1 Biology lifespan-longest-lived 125
7-2 Biology lifespan-shortest-lived 125
7-3 Biology lifespan-longest-lived-then-shortest-lived 125
8-1 Biology identify-life-stages-1 14
8-2 Biology identify-life-stages-2 10
9-1 Forces inclined-plane-determine-angle 168
9-2 Forces inclined-plane-friction-named-surfaces 1386
9-3 Forces inclined-plane-friction-unnamed-surfaces 162

10-1 Biology mendelian-genetics-known-plant 120
10-2 Biology mendelian-genetics-unknown-plant 480

Table 3: ScienceWorld’s tasks names and numbers of variations.
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The scores for SayCan, ReAct, Reflexion, and SwiftSage when they use GPT4 as the LLM are higher832

according to the results reported in Lin et al. (2023). However, due to limited access to GPT-4, we utilized833

ChatGPT, and thus, we present the results obtained using ChatGPT.834

Task Type Length SayCan ReAct Reflexion Swift-only SwiftSage Ours
1-1 107.7 0 3.52 4.22 15.0 58.0 16.22
1-2 78.6 0 13.70 10.61 24.4 58.5 0.2
1-3 88.9 0 7.78 7.78 32.2 38.5 30.33
1-4 75.2 0 9.88 0.92 57.4 62.5 65.0
2-1 21.4 1.7 7.19 5.92 9.4 47.9 98.55
2-2 35.2 14.1 6.10 28.59 6.7 53.3 46.0
2-3 65.0 93.7 22.37 22.37 5.7 48.6 45.0
3-1 13.6 19.3 56.0 100.0 70.0 72.7 100
3-2 20.8 8.7 54.33 17.45 48.3 50.3 78.2
3-3 25.6 22.0 76.19 72.54 59.5 66.9 5.6
3-4 29.0 36.4 36.4 70.22 69.0 78.1 46.0
4-1 14.6 11.7 26.67 64.93 100.0 100.0 100
4-2 8.8 76.0 80.0 87.27 100.0 97.5 100
4-3 12.6 11.4 53.33 16.42 94.4 58.3 100
4-4 14.6 9.5 27.50 100.0 100.0 100.0 100
5-1 69.5 11.3 11.1 5.8 13.4 57.5 100
5-2 79.6 75.0 18.8 47.6 44.6 50.9 65
6-1 33.6 13.5 35.0 22.4 26.2 43.2 66.87
6-2 15.1 25.0 20.0 10.0 53.3 63.3 100
6-3 23.0 58.4 16.7 40.0 11.1 27.4 100
7-1 7.0 75.0 37.5 75.0 83.3 75.0 100
7-2 7.0 100.0 50.0 75.0 100.0 60.0 100
7-3 8.0 31.7 31.7 28.1 77.8 68.3 100
8-1 40.0 5.6 4.2 2.8 33.0 75.6 60.0
8-2 16.3 12.8 7.0 8.2 8.0 33.0 25.0
9-1 97.0 38.0 28.5 100.0 73.3 54.0 52.5
9-2 84.9 4.2 10.0 17.5 73.3 63.3 53.6
9-3 123.1 0.0 0.0 1.7 53.3 77.0 64.4

10-1 130.1 1.3 24.5 1.3 17.0 76.0 30.76
10-2 132.1 0.3 11.7 6.0 17.0 51.1 30.76

Average 49.26 25.22 19.76 23.40 49.22 62.22 65.43

Table 4: The table illustrates the results for each task of the ScienceWorld for SayCan, ReAct, Reflexion, Swift-only,
SwiftSage and our algorithm. Each row shows the average score of the test variations for a task type. Column
Length shows the average lengths of the expert trajectories.

A.7 Task Scores Across Various Model Sizes835

In Table 5, the average scores for models of different sizes are presented. In this experiment, the836

base model was employed for the action generator, while the size of the sub-goal generator was varied837

across small, base, large, and x-large. The first four columns of the table display their respective scores.838

Additionally, using the small model for the action generator, the experiment was repeated with various839

sizes of the sub-goal generator, and the results are shown in the second set of four columns. The last840

column illustrates the performance when both the action generator and the sub-goal generator are x-large,841

achieving the highest score.842
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Action generator Base Small X-Large

Tasks
Sg generator

Small Base Large X-Large Small Base Large X-Large X-Large

1-1 0.2 0.0 0.0 4.2 0.0 0.0 0.0 0.0 16.55
1-2 0.0 0.0 0.0 0.22 0.0 0.0 0.44 0.22 17.11
1-3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1-4 0.1 0.0 0.0 7.77 0.33 0.0 7.77 19.44 20.44
2-1 10.0 20.0 100 90.0 30.0 10.0 80.0 70.0 100
2-2 13.2 20.0 20.0 77.5 0.0 20.0 20.0 65.7 77.5
2-3 0.0 20.0 0.0 64.0 0.0 20.0 20.0 60.0 45.0
3-1 0.0 78.0 84.0 79.4 0.0 48.0 77.8 71.2 100
3-2 10.6 36.4 47.0 77.2 0.0 27.8 49.0 56.4 77.2
3-3 26.0 20.0 22.0 6.4 7.3 10.5 3.5 1.5 28.0
3-4 40.0 30.0 40.0 30.0 50.31 30.0 60.0 30.0 47.05
4-1 100 100 100 100 100 100 100 90 100
4-2 100 100 100 100 100 100 100 100 100
4-3 100 100 92.5 93 100 100 92.5 94.0 100
4-4 100 100 100 100 90.9 100 100 100 100
5-1 66.2 56.18 100 72.7 82.8 67.1 100 72.7 100
5-2 31.8 7.45 39.6 69.4 35.8 0.0 47.1 45.7 70.0
6-1 3.12 31.25 43.62 36.62 12.5 28.12 38.75 34.62 56.25
6-2 20.0 10.0 66.66 74.44 18.88 32.22 33.33 35.55 91.11
6-3 23.0 13.33 33.66 52.33 1.1 6.33 18.22 17.88 54.88
7-1 80.0 100 100 100 90.9 100 100 100 100
7-2 20.0 78.12 80.0 100 40.0 50.0 50.0 60.0 100
7-3 100 100 100 100 70.0 70.0 70.0 70.0 100
8-1 11.6 18.4 60.0 40.0 0.0 18.4 60.0 40.0 60.0
8-2 0.0 0 0.0 42.5 0.0 0.0 0.0 25.0 67.5
9-1 28.0 35.65 24 70 42.0 44.0 33.0 74.0 84.0
9-2 26.0 32.6 23 65 35.6 44.0 32.0 70.0 82.0
9-3 27.0 29.89 29 66 30.0 43.0 31.0 69.0 83.0
10-1 27.0 26.9 30.1 28.2 24.9 25.2 25.2 25.2 28.2
10-2 30.2 27.75 30.4 27.7 23.0 19.5 29.9 18.9 30.1

Average 33.13 39.73 48.85 59.15 32.87 37.13 45.98 50.56 67.86

Table 5: The table displays the average scores for the models of different sizes. The first four columns depict scores
when a model with a base size is used as the action generator. The subsequent four columns illustrate scores when
the action generator is small size. The last column shows the results when both the action generator and sub-goal
generator are x-large.
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A.8 Scores for Different Model Sizes Without sub-goals843

Table 6 presents task scores without the utilization of sub-goals, akin to the Swift-only method but844

employing language models of varying sizes. All models are FLAN-T5.845

Task Type Small Base Large X-Large
1-1 0.4 0.0 14.0 14.0
1-2 11.8 0.0 22.88 22.0
1-3 0.0 0.0 24.55 20.0
1-4 7.6 0.0 0.88 0.88
2-1 40.0 80.0 70.32 91.66
2-2 43.2 45.6 6.56 45.82
2-3 40.0 43.0 5.76 41.0
3-1 59.8 85.2 85.2 74
3-2 41.4 51.0 41.1 43.4
3-3 19.2 9.4 64.88 33.29
3-4 50.0 33.0 81.26 58.75
4-1 100 95.0 100 100
4-2 100 97.7 100 100
4-3 80.0 92.0 80.0 81.25
4-4 100 95.0 100 100
5-1 64.2 64.4 24.0 60.42
5-2 34.5 35.0 43.57 42.53
6-1 12.75 29.62 26.0 58.12
6-2 0.0 11.11 36.0 34.11
6-3 3.6 0.0 11.33 7.77
7-1 90.9 100 100 100
7-2 40.0 100 100 100
7-3 74.7 78.34 87.6 100
8-1 8.2 35.2 46.0 34.4
8-2 0.0 0.0 8.0 41.0
9-1 20.0 20.0 40.7 40.0
9-2 19.0 20.0 43.6 43.0
9-3 20.0 20.0 44.52 44.0
10-1 22.8 23.0 19.66 23.0
10-2 22.9 22.9 20.22 23.0

Average 37.56 42.88 46.25 52.88

Table 6: Scores for each task without the utilization of sub-goals across various model sizes. All models are
FLAN-T5.

A.9 Results for T5 Language Model With and Without sub-goals846

The results for the T5 model, including T5-LARGE and T5-3B, are presented in Table 7. The outcomes847

are shown for both scenarios—with and without the integration of sub-goals. In the experiments where848

sub-goals were employed, equivalent sizes were utilized for both the action generator and sub-goal849

generator.850
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No sub-goals With sub-goals
Task Type Large X-large Large X-large

1-1 16.66 0.2 0.55 18.0
1-2 0.0 56.0 5 19.66
1-3 0.0 8.55 4.77 0.0
1-4 0.0 30.77 16.22 38.0
2-1 9.1 91.66 70.0 70.0
2-2 37.8 41.0 20.0 27.7
2-3 10.0 30.0 34.0 44.0
3-1 85.2 78.6 39.2 48.6
3-2 46.0 55.2 64.8 30.6
3-3 50.2 14.61 1.0 31.76
3-4 30.0 35.71 40.0 50.0
4-1 100 100 100 100
4-2 100 100 100 100
4-3 90.0 93.7 100 100
4-4 100 100 100 74.33
5-1 100 64.2 91.5 100
5-2 8.9 37.8 2.1 100
6-1 41.62 43.62 21.87 31.25
6-2 15.55 100 55.55 73.33
6-3 4.77 80.0 29.2 35.0
7-1 90.0 100 100 100
7-2 100 100 30.0 100
7-3 80.0 60.0 100 100
8-1 55.4 35.2 60.0 69.0
8-2 0.0 0.0 0.0 0.0
9-1 20.0 20.0 36.0 33.33
9-2 21.0 20.0 34.2 36.1
9-3 22.0 20.0 37.1 39.0
10-1 27.9 23.0 29.69 30.4
10-2 28.0 22.9 28.75 28.0

Average 43.00 52.09 45.05 54.26

Table 7: Scores for the T5 model are depicted under two conditions: without sub-goals and with sub-goals.
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