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Abstract

Detecting semantic arguments of a predicate001
word has been conventionally modeled as a002
sentence-level task. The typical reader, how-003
ever, perfectly interprets predicate-argument004
relations in a much wider context than just the005
sentence where the predicate was evoked. In006
this work, we reformulate the problem of ar-007
gument detection through textual entailment008
to capture semantic relations across sentence009
boundaries. We propose a method that tests010
whether some semantic relation can be in-011
ferred from a full passage by first encoding012
it into a simple and standalone proposition and013
then testing for entailment against the passage.014
Our method does not require direct supervi-015
sion, which is generally absent due to dataset016
scarcity, but instead builds on existing NLI and017
sentence-level SRL resources. Such a method018
can potentially explicate pragmatically under-019
stood relations into a set of explicit sentences.020
We demonstrate it on a recent document-level021
benchmark, outperforming some supervised022
methods and contemporary language models.023

1 Introduction024

Identifying which entities in text play certain se-025

mantic role with respect to a given predicate (i.e. a026

verb) is a core ability of language comprehension027

(Fillmore, 1976). Such basic semantic information028

is often surfaced via simple lexical and syntacti-029

cal patterns in the sentence. Readers however can030

perfectly interpret such semantic relations pragmat-031

ically in a wider context. Consider the example in032

Figure 1. The entity being paid can be resolved as033

the manufacturer by deduction, and ‘the deposit’ is034

understood as the currency that changes ownership035

in exchange for recycling. These examples show-036

case where semantics departs from syntax, and037

allow us to systematically investigate how humans038

and machines reason over events in text in cases039

where they cannot rely on easy-to-follow grammat-040

ical patterns.041

“This house on Al Zaharah Street half a mile 

from the port is where investigators believe the 

bomb was built into the boat that carried it. … 

On the day of the bombing, neighbors saw the 

boat leaving. … 

The trip from the house to the harbor was only 

about a mile …”

1. Local Args The boat left on the day of the bombing.

2. Cross-Sent The boat left this house on the day of the bombing.

3. Misplaced this house left on the day of the bombing.

4. Unrelated Investigators left on the day of the bombing.

Figure 1: Example of semantic arguments in the sen-
tence and document scope. The predicate is in boldface
while arguments are highlighted in color. The bottom
part shows four different propositions: (1) A proposition
constructed from in-sentence arguments of the predicate.
(2) The same proposition with additional arguments
from anywhere in the document (3) A proposition with
some arguments (the house) placed in incorrect syntac-
tic position, that do not align with their semantic role.
(4) A proposition with a non-argument phrase. Both (3)
and (4) are not supported by to the document.

In this work1, we address detecting cross- 042

sentence semantic arguments for verbal and dever- 043

bal noun predicates. We propose a method based 044

on textual-entailment (Dagan et al., 2005) and su- 045

pervised only with NLI and sentence-level Seman- 046

tics Role Labeling (SRL) (Gildea and Jurafsky, 047

2000) data. It takes a document and a marked pred- 048

icate and outputs a set of simple, easy-to-grasp sen- 049

tences that incorporate semantic arguments from 050

anywhere in the document (e.g. ‘the house’ argu- 051

ment from a different sentence incorporated into 052

the leave event in Figure 1, proposition 2). We 053

assume that an argument is omitted by the speaker 054

from the predicate’s sentence due to its redundancy 055

1The codebase, dataset, and models will be made publicly
available in the non-anonymous version of this manuscript.
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in discourse while re-inserting it back into its desig-056

nated position next to the predicate should not alter057

the meaning of the event in the passage. Our basic058

idea is that a simple proposition constructed from059

a set of true arguments should be entailed from060

the passage (see props 1-2 in Figure 1), while any061

proposition that targets the same predicate and con-062

tains a non-argument phrase or a misplaced phrase063

should not be entailed (see props 3-4 in Figure 1).064

Therefore, we design a method that starts at the065

local parse of the predicate, builds a proposition066

from the extracted in-sentence arguments, and then067

examines candidate phrases one by one from across068

the document by inserting them into different posi-069

tions and testing for entailment. Our method does070

not require a frame repository such as PropBank071

(Palmer et al., 2005) or FrameNet (Baker et al.,072

1998) to operate. Instead, it uses the explicit syn-073

tactic argument structure in the proposition as a074

syntactic surrogate for the underlying semantics of075

the predicate in the passage (see how the meaning076

changes in the misplaced argument example, prop077

3 in Figure 1).078

Some recent works from the event extraction lit-079

erature apply similar slot-filling (Li et al., 2021)080

or entailment-based methods (Sainz et al., 2022;081

Lyu et al., 2021). However, they rely on a limited082

event ontology for predefined templates for argu-083

ment extraction. In contrast, our work uses English084

syntax for creating propositions, akin to the clause085

structure in Del Corro and Gemulla (2013).086

This generally illuminates another benefit of087

our approach, being schema-free, the propositions088

can be easily processed downstream by parsers089

trained on abundant single-sentence data, for exam-090

ple for relation extraction (Hendrickx et al., 2010)091

or event participant detection (Doddington et al.,092

2004). Thus, explicating to downstream tasks the093

set of document-level semantic relations that were094

previously unreachable, now encoded in a simple095

sentence form.096

To summarize, our contributions include a novel097

distantly supervised argument detection method098

based on combining Textual Entailment with SRL099

analysis. Our implementation achieves higher per-100

formance than supervised models on a document-101

level dataset (Elazar et al., 2022) for noun-phrase102

relations, and outperforms other approaches on a re-103

annotated benchmark for verbal predicates (Moor104

et al., 2013).105

2 Background and Related Works 106

Implicit Arguments Mainstream research efforts 107

in semantic role labeling (SRL) (Gildea and Ju- 108

rafsky, 2000; Kingsbury and Palmer, 2002) have 109

focused on the problem of assigning semantic roles 110

only to syntactically related phrases, e.g. the sub- 111

ject or object phrases of verbs, while neglecting 112

constituents from the wider passage that are prag- 113

matically interpreted as participants. The latter 114

ones, referred to as implicit arguments (Gerber and 115

Chai, 2010; Ruppenhofer et al., 2010) despite be- 116

ing overtly understood by readers, constitute a size- 117

able portion of the potentially identified argument 118

set (Klein et al., 2020; Roit et al., 2020; Gerber 119

and Chai, 2010; Fillmore, 1986). While some re- 120

cent works (FitzGerald et al., 2018) have annotated 121

large datasets with semantic arguments captured 122

anywhere within the sentence scope, to this day, 123

only a handful of limited resources for SRL in 124

the document scope exist (Gerber and Chai, 2010; 125

Moor et al., 2013; Ruppenhofer et al., 2010; Feiz- 126

abadi and Padó, 2015). Some resources contain 127

only a few hundred instances, others lack diver- 128

sity, capturing only a tiny set of predicates (5-10 129

unique verbs), and all focused only on semantic 130

core roles (i.e. the numbered arguments in Prop- 131

Bank), neglecting other meaningful information 132

for the reader such as temporal or locative modi- 133

fiers. O’Gorman et al. (2018) annotated a dataset 134

of cross-sentence arguments on top of AMR graphs 135

(Banarescu et al., 2013) specifying arguments as 136

AMR concepts, without their exact location in the 137

sentence. 138

Earlier supervised models for implicit SRL re- 139

lied on extensive feature engineering and also us- 140

ing gold features (Gerber and Chai, 2012). Many 141

works additionally attempted to overcome data 142

scarcity by creating artificial training data using 143

coreference (Silberer and Frank, 2012) or align- 144

ing predicates in comparable documents (Roth and 145

Frank, 2015), Cheng and Erk (2018) proposed to 146

transform the problem into a narrative cloze task, 147

creating synthetic datasets. More recently, Zhang 148

et al. (2020) improved upon the baseline model pro- 149

posed for the RAMS dataset (Ebner et al., 2020), 150

and trained a supervised model that detects argu- 151

ment heads before expanding to the full constituent. 152

QA-SRL (He et al., 2015) represents the label of 153

each semantic argument as a simple Wh-question 154

that the argument answers, for example, ‘Who ac- 155

quired something?’ encodes the agent, and ‘Who 156
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did someone give something to?’ encodes the re-157

cipient. These question-labels point at the syntactic158

position of the argument in a declarative form of the159

QA pair, e.g.: ‘The agent acquired something’ or160

‘Someone gave something to the recipient’ (see the161

example in Figure 2, top-left, where the position162

of the answer is apparent from the question). Each163

question also encodes the tense of the event, the164

modality, and negation properties (might the event165

occur or has the event occurred?) which are used166

to instantiate our propositions. Klein et al. (2020)167

extended QA-SRL to deverbal nominal predicates,168

recently leveraged for training a joint verbal and169

nominal QA-SRL model (Klein et al., 2022).170

TNE is a dataset for modeling semantic rela-171

tions between noun phrases (NPs) across a doc-172

ument and is annotated on top of Wikipedia. A173

relation consists of an anchor and complement174

phrases that are labeled with a preposition, i.e. [the175

investigation]ANCHOR by [the police]COMPLEMENT.176

Each document is first segmented into a list of177

non-overlapping NPs and every NP pair is anno-178

tated with either a preposition or a ’no-relation’ tag.179

Each NP is also assigned to a cluster of co-referring180

within-document mentions.181

ON5V (Moor et al., 2013) is a dataset contain-182

ing 390 instances of five different verbal predicates,183

selected from 260 documents from the develop-184

ment and train partitions in OntoNotes (Pradhan185

and Xue, 2009). Original annotation only filled186

vacant core roles (i.e. numbered, ARG0, ARG1)187

with the closest argument phrase that fits the role188

description.189

3 Method190

Our approach for identifying semantic arguments191

of a predicate is based on verifying the correctness192

of an assignment of phrases to semantic roles. In a193

nutshell, we represent the assignment as a simple194

proposition, named the semantic hypothesis, that195

consists of phrases placed in subject or object po-196

sitions according to their roles. If the semantic hy-197

pothesis is entailed from the passage, we conclude198

that the relations encoded within the proposition199

are also present in the document. For example, in200

proposition no. 2 in Figure 1 ‘The boat’ is placed201

into the subject position and represents the leaver,202

while ‘on the day of the bombing’ is placed as an203

adjunct and represents the time of the event. On the204

other hand, incorrectly placing an argument phrase,205

‘this house’ (proposition no. 3), in the subject posi-206

tion would assign an incorrect semantic role to the 207

phrase, and should not be entailed. 208

We apply this verification procedure in a multi- 209

step process as follows. First, we retrieve a set of 210

semantic arguments in the vicinity of the predicate, 211

leveraging highly performant parsers trained on in- 212

sentence data (FitzGerald et al., 2018; Klein et al., 213

2020). Next, we verify their correctness to prevent 214

parsing errors from propagating to later stages (Fig- 215

ure 2, top-center), and construct a base hypothesis 216

from the verified arguments (see the top row in 217

Figure 2). Finally, we insert different candidate 218

phrases from any sentence into different syntactic 219

positions in the base hypothesis and verify the re- 220

sulting hypotheses independently (see the bottom 221

part of Figure 2). The first step ensures that the base 222

hypothesis describes the target event by referring 223

to the predicate’s local arguments (the boat and the 224

time of leaving), while the last step expands the ar- 225

gument set by integrating new phrases into the base 226

hypothesis (the house and the port). In the next sub- 227

sections, we will describe in detail the structure of 228

the semantic hypothesis, how we initialize it, and 229

how we expand it to include arguments beyond the 230

scope of the predicate’s sentence. 231

3.1 The Semantic Hypothesis 232

The semantic hypothesis is a simple English declar- 233

ative sentence centered around a verb. It is con- 234

structed from the main verb and a set of phrases 235

assigned to unique syntactic positions, and can 236

be modified with tense, modality, and negation 237

properties. The supported positions are directly 238

related to the verb and include: subject (SUBJ), 239

direct object (DOBJ), indirect object (IOBJ), and 240

adjunct (ADJ). The last two may be preceded 241

with an optional preposition. In our implemen- 242

tation, we construct a sentence in active voice 243

if a subject phrase is present, or resort to pas- 244

sive voice if not. Generally, we apply the fol- 245

lowing templates: SUBJ-VERB-DOBJ-IOBJ-ADJ, or 246

DOBJ-VERBpassive-IOBJ-ADJ and fill the phrases 247

as required. Given these specifics, we determine 248

the corresponding verb inflection, and when neces- 249

sary use the plural form to agree with the subject 250

and modify any auxiliary verbs accordingly. We 251

note that a valid declarative sentence in English 252

must contain a subject phrase. To satisfy this re- 253

quirement, we allow unspecified ‘placeholder’ ar- 254

guments to be inserted instead of concrete ones, 255

placing ‘someone’ in an empty subject position or 256

‘something’ in empty object positions when neces- 257
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QA-SRL Analysis

This house on Al Zaharah Street half a mile 
from the port is where investigators believe the 
bomb was built into the boat that carried it . …
On the day of the bombing, neighbors saw the 
boat leaving. …
The trip from the house to the harbor was only 
about a mile …”

On the day of the bombing, 

neighbors saw the boat leaving. 

Q: When was something leaving?
A: the day of the bombing P:  ADJ

Q: What was leaving?
A: the boat P: SUBJ

Argument Verification

On the day of 

the bombing, 

neighbors saw 

the boat leaving. 

D: something 
was leaving on 
the day of the 
bombing.

D: The boat was 
leaving 
something.

⊨

⊨

Semantic Hypothesis

The boat was leaving on the day of the bombing.

Candidate Extraction

The boat left the investigators on the day of the bombing

Investigators left on the day of the bombing

The boat left with the investigators on the day of the bombing

The port left on the day of the bombing

The boat left the port on the day of the bombing

The boat left to the port on the day of the bombing

This house left on the day of the bombing.

The boat left this house on the day of the bombing

The boat left from this house on the day of the bombing

Candidate Placement and Verification

VERB: leave
SBJ: the boat Tense: Past
DOBJ: N/A Modality: No
IOBJ: N/A Negation: No
ADJ: the day of the… (prep=”on”)

Figure 2: End-to-end example of our suggested argument extraction pipeline. top-left: Parsing with QA-SRL, the
predicate is marked in bold while the local arguments are highlighted in color. The question (Q) is used to determine
the syntactic position (P) of the argument (A). top-center: Verification of individual arguments, a proposition is
constructed for each, the argument is placed in its designated position from the previous step and placeholders are
inserted to other positions. The propositions are examined against the sentence for entailment. top-right: Validated
arguments construct the base hypothesis; Event attributes such as tense, modality and negation are extracted from
the QA-SRL parse and initialize the hypothesis sentence. bottom-left: Extracting candidate phrases from the
document scope (highlighted in gray). bottom-right: Each candidate is inserted into three different positions in the
base hypothesis and verified against the full document. The second candidate demonstrates two correct alternations.

sary. Such flexibility enables the system to force a258

specific valency pattern, for example, construct a259

transitive clause by inserting ‘something’ when a260

concrete direct object is unavailable.261

3.2 Hypothesis from Local Arguments262

In the first step, we initialize the semantic hypothe-263

sis with arguments from the sentence extracted with264

a highly performant QA-SRL parser (Klein et al.,265

2022). We retrieve the local arguments as QA pairs266

and apply a heuristic from Klein et al. (2020) over267

the questions to determine the syntactic position of268

each argument-answer in our proposition (Figure 2,269

top-left). To verify their correctness, we construct270

a hypothesis for each argument individually and271

validate them with an entailment model against the272

original sentence. This validates both the argument273

and its predicted syntactic position. Finally, the274

highest-scoring argument in each position is taken275

to construct the base hypothesis.276

3.3 Expanding to Non-Local Candidates277

To expand the argument set we inspect candidate278

phrases from the document. Each phrase is inserted279

into three positions independently in the base hy-280

pothesis: the subject, direct object, and indirect281

object, forming a new hypothesis on the grounds 282

of the base one. Each is then scored using our NLI 283

model against the document. We select the highest- 284

scoring hypothesis for each candidate, and add it 285

to the output if it passes a configurable threshold. 286

In this work, we consider noun-phrase candidates 287

from the entire document that don’t overlap with 288

generated arguments from the first stage. 289

3.4 Implementation Details 290

The prepositions for IOBJ or ADJ phrases are as- 291

signed in one of two ways: either by inspecting 292

the dependency structure of the predicate’s sen- 293

tence for a connecting preposition or from the QA- 294

SRL analysis, and lastly, if not captured by the pre- 295

ceding methods, using a masked language model 296

that assigns the most semantically probable (Devlin 297

et al., 2019) preposition given the full passage and 298

the hypothesis. Attributes such as tense, modality, 299

and negation are extracted from the local QA-SRL 300

parse of the sentence. For more details see Ap- 301

pendix F 302
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4 Predicate-Argument aware NLI Dataset303

Throughout our experiments, we noticed that the304

readily available NLI models usually make poor305

decisions when considering different semantic hy-306

potheses, assigning high probability to propositions307

with unrelated candidates — which resonates the308

findings of Min et al. (2020); Basmov et al. (2023).309

We believe that this is caused by the inherent lexi-310

cal overlap between the hypothesis and the premise311

texts since our proposition is built entirely from312

phrases found in the original document. To circum-313

vent this, we train a semantics-aware entailment314

model from QA-SRL data. We use the single-315

sentence training data and generate entailed and316

not-entailed propositions. Each training instance317

includes a sentence and a proposition centered on a318

predicate in the sentence. Positive instances include319

propositions built using the predicate’s argument320

set. Each true argument is placed in the hypothesis321

according to their syntactic position as determined322

by their QA-SRL question. The positive proposi-323

tions are then used to build the negative instances324

in the following two ways: The first inserts a noun325

phrase from the sentence that is not an argument326

into any position. The second switches between327

syntactic positions of true arguments in the positive328

proposition, replacing objects as subjects and vice-329

versa. This training setup encourages the model to330

be more sensitive to the semantics of the hypothe-331

sis, as encoded in its argument structure.332

Our training set contains 465K sentence-333

hypothesis pairs extracted from the training par-334

titions of QANom (Klein et al., 2020) and QAS-335

RLv2 (FitzGerald et al., 2018), with 30% positive336

(entailed) instances. Negative instances are split be-337

tween subject-object swaps (14%), and insertions338

of non-argument phrases from the sentence (56%).339

We created multiple positive hypotheses for each340

predicate by omitting subsets of true arguments, an-341

ticipating low coverage conditions of the QA-SRL342

parser at inference time. For negative examples, we343

sampled one positive hypothesis for each predicate344

and applied our augmentations.345

5 Experiment Setup346

5.1 Evaluation Datasets347

We apply our method to verbal and nominal predi-348

cates from several document-level benchmarks.349

TNE (Elazar et al., 2022). We derive our main350

benchmark from the TNE dataset. We extract351

predicate-argument data by focusing on a subset352

of relations in TNE where the anchor’s syntactic 353

head is a deverbal noun, i.e. a nominal predicate, 354

and hypothesize that their complements constitute 355

semantic arguments of the predicate word. To filter 356

the relevant anchors, we apply the nominal predi- 357

cate classifier of QANom (Klein et al., 2020) with 358

a threshold of 0.75 and identify 10946/1315/1206 359

predicate instances in the train, development, and 360

test partitions respectively. On average, each dever- 361

bal anchor contains 4.5 complement entities, and 362

notably, 2.5 of these have the closest mention to 363

the predicate located in a different sentence. Ex- 364

amining a sample of 50 deverbal anchors we find 365

that out of 275 cross-sentence complement entities, 366

93% exhibit a semantic relation that can be cap- 367

tured by a QA-SRL question, validating our initial 368

hypothesis. 369

Our task in this setup is to select all NP com- 370

plements given a deverbal anchor, the document, 371

and the segmented list of noun-phrase candidates. 372

When applying generative methods, we consider 373

a specific NP candidate from the document as pre- 374

dicted if it matches one of the generated argument 375

phrases, where two phrases match if either they 376

share the same syntactic head or have a high token- 377

wise overlap of above 0.5 Intersection-over-Union 378

(IOU). Otherwise, any non-overlapping generated 379

phrase is discarded. 380

ON5V (Moor et al., 2013) We also evaluate our 381

method on ON5V. We use the unified set of pred- 382

icates from both partitions as our evaluation data. 383

To cover the coverage gap for modifier roles we 384

asked an in-house annotator team to go over the 385

existing data and add any argument phrase that can 386

be captured by a QA-SRL question. The result- 387

ing dataset has 3271 arguments with 1800 novel 388

cross-sentence mentions that did not belong to any 389

previously annotated entity, emphasizing the need 390

for exhaustive annotation. We refer to Appendix B 391

for more details regarding the annotation protocol. 392

We use cross-fold validation over 4 folds split by 393

document, we tune the NLI classification threshold 394

over 3 folds and evaluate on the fourth. Results 395

over the test folds are averaged and reported with 396

std. dev. We limit the search for arguments to a 397

context window of 7 sentences, with 5 preceding 398

and 1 subsequent sentence around the predicate. 399

This window follows the annotation scope set for 400

our annotators and was found to be sufficient to 401

locate more than 98% of all originally annotated 402

arguments in the data. 403
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5.2 Evaluation404

We follow the methodology proposed by Ruppen-405

hofer et al. (2010) in evaluating document-level406

argument detection. We assign credit for an argu-407

ment only once at the entity level, regardless of408

the number of times it is mentioned in the passage409

or captured in the system output. Consider for ex-410

ample the boat argument from Figure 1, it appears411

twice in a short passage, and we give it a full score412

if at least one of these mentions were captured.413

This disentangles SRL evaluation at the document414

level from co-reference resolution. Practically, we415

map system and reference argument mentions to416

their entities using gold co-reference chains and417

calculate the standard precision and recall metrics418

over entities. For specific implementation details419

see Appendix C420

5.3 Baselines421

NP-SpanBERT (Elazar et al., 2022) is a classifica-422

tion model over NP pairs trained over TNE based423

on SpanBERT-Large (Joshi et al., 2020). We ap-424

ply the label classifier on pairs of deverbal anchors425

and any other NP in the document and consider the426

phrase as an argument if the predicted label is any427

valid preposition.428

QA-SRL Parser We re-train the generative429

parser from Klein et al. (2022) over a joint training430

set consisting of sentence level QA-SRL annota-431

tions for verbal and nominal predicates (FitzGerald432

et al., 2018; Klein et al., 2020) using a T5-Large433

encoder-decoder (Raffel et al., 2020). The parser434

is trained over examples of a sentence and marked435

predicate word as input and produces questions and436

answers in the QA-SRL format in its output, where437

each answer is a semantic argument. Our re-trained438

parser has significant performance boosts vs. pre-439

vious published models on the QA-SRL data, for440

details refer to Appendix D. Training is performed441

for 5 epochs until convergence, using the Adam442

optimizer with a learning rate of 5e − 05 and a443

batch size of 16.444

For the baseline, we simply apply the parser over445

complete passages during inference.446

TNE-Parser Re-using the joint QA-SRL setup447

(Klein et al., 2022), we train a parser directly over448

passage-level TNE data over the deverbal subset449

of anchors. The parser takes a passage with the450

marked anchor (the head word) as the predicate451

and outputs questions and answers. Questions are452

encoded using the "[anchor] [preposition]?" tem-453

plate to signify the semantic relation between the 454

pair, e.g. "investigation by?" and the answer is the 455

complement-argument phrase of that relation. 456

Mistral We evaluate a prompting approach us- 457

ing the open-source Mistral-7B (v0.1) instruction- 458

tuned model (Jiang et al., 2023). We design two 459

different prompts for the task, each includes an in- 460

struction, a few examples (2-5) in the required for- 461

mat, and the passage with the predicate surrounded 462

by special tags. The first prompt variant asks the 463

model to produce a list of semantically related ar- 464

guments of the marked predicate, while the second 465

version asks for a combined representation of an 466

argument and its semantic role represented as a 467

natural language question-answer pair. Please refer 468

to Appendix E for concrete prompt examples. For 469

ON5V we use examples from the QASRL-GS de- 470

velopment set (Roit et al., 2020) containing a high 471

ratio of implicit arguments. For TNE, we use ex- 472

amples from the TNE training set, with questions 473

formatted in the TNE-Parser format. The examples 474

are randomly selected and kept fixed for the entire 475

evaluation, to reduce the dependence on specific 476

examples we repeat the evaluation four times and 477

report the average and standard deviation. Decod- 478

ing is performed with beam-search (beam=4). 479

5.4 Our System 480

NLI We apply our entailment-based approach us- 481

ing an off-the-shelf2 NLI model (Laurer et al., 482

2024), based on DeBERTA-V3-Large and trained 483

over a mixture of challenging NLI datasets (Parrish 484

et al., 2021; Williams et al., 2018; Nie et al., 2020; 485

Liu et al., 2022). Reported performance is on par 486

with current leading models on MNLI and ANLI. 487

All NLI-based models are tuned on the develop- 488

ment set, or using cross-fold validation to find the 489

best-performing classification threshold for candi- 490

date phrases. 491

Instruct-NLI We also apply our method with the 492

Mistral LLM serving as the underlying entailment 493

engine. We assume that the entailment task is em- 494

bedded in different training regimes and datasets 495

for instruction tuning, and apply the model in a 496

"zero-shot" setting without demonstrating exam- 497

ples in the prompt. The specific prompt for NLI 498

is re-used from FLAN (Wei et al., 2022), assum- 499

ing a similar prompt was also used to train Mistral 500

LLM as well. We ask for a binary Yes/No an- 501

swer, where Yes refers to entailment, and verify 502

2https://huggingface.co/MoritzLaurer/
DeBERTa-v3-large-mnli-fever-anli-ling-wanli
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Full Document Cross-Sentence

System Training Data Precision Recall F1 Precision Recall F1

Baselines
NP-SpanBERT (LG) TNE 75.33 42.86 54.63 66.46 36.60 47.20
TNE-Parser (T5-LG) TNE 62.60 51.73 56.65 51.57 40.02 45.07
QA-SRL Parser (T5-LG) QA-SRL 84.77 25.14 38.77 79.85 7.64 13.95
Mistral (Arg, 7B) Instructions 35.62±7.3 52.93 ±14.9 40.72±2.1 26.76 ± 6.2 48.81 ±15.2 32.70±1.2

Mistral (QA, 7B) Instructions 46.29±3.5 18.03±3.9 25.85±4.4 34.95 ±3.7 15.50±3.0 21.41±3.3

Entailment-based models
Instruct-NLI (Mistral 7B) Instructions 49.22 53.55 51.29 36.01 41.49 38.56
NLI (DeBERTa LG) NLI mix. 47.42 58.76 52.49 36.09 49.37 41.70
SRL-NLI (DeBERTa LG) NLI mix. + QA-SRL 56.52 60.29 58.34 46.41 50.43 48.34

Table 1: Results on the TNE test set for argument detection. Metrics are entity-level — multiple mentions of the
same entity are considered as one. “Full Document” refers to results evaluated on all of the arguments, while
“Cross-Sentence" considers only those reference and predicted arguments that have their closest mention to the
anchor predicate appear in a different sentence. Direct prompting methods (Mistral) results include standard
deviation (SD) over 4 runs with different examples.

System Precision Recall F1

Baselines
QA-SRL Parser (T5-LG) 58.33 1.29 2.52
Mistral (Arg, 7B) 9.93±3 20.24±6.6 12.71±2.1

Mistral (QA, 7B) 7.04±1.4 11.41±1 8.60±0.9

Entailment-based models
Instruct-NLI (Mistral 7B) 16.34±1.1 39.47±5.4 22.99±1

NLI (DeBERTa-LG) 16.90±2.4 52.13±3.3 25.47±3

SRL-NLI (DeBERTa-LG) 25.41±5.5 36.10±5.2 29.28±3

Table 2: Results on the ON5V unified evaluation set
on cross-sentence arguments (see Appendix A for Full
Document results). We evaluated only those reference
and predicted arguments that their closest mention to the
predicate appears in a different sentence. All NLI meth-
ods use cross-fold validation of 4 folds to determine the
classification threshold and report mean and SD over the
test folds. Direct prompting methods (Mistral) report
mean and SD of 4 runs with different sets of examples.

that one of them is the first emitted token in the503

response. To get a normalized probability of entail-504

ment given the premise-hypothesis pair, we apply505

the softmax function over the corresponding logit506

values of "Yes" and "No" from the first decoded507

vector of logits and select the probability of "Yes".508

SRL-NLI Training We fine-tune our predicate-509

argument-aware NLI model with the weights ini-510

tialized to the aforementioned NLI model. Our511

model is trained for 3 epochs, with batch size 32512

and 5e-6 learning rate.513

Inference We extract NP candidates that do not514

overlap with existing local arguments, our candi-515

date extraction is based on Spacy’s noun-chunker516

(Honnibal et al., 2020), and successfully covers 80-517

90% of cross-sentence arguments in several bench- 518

marks (Gerber and Chai, 2010; Moor et al., 2013). 519

We set a strict threshold for local argument veri- 520

fication of 0.5 for the base NLI models and 0.95 521

for the semantics-aware model. If a local argument 522

fails to be verified, it is assumed to be misplaced 523

and is appended to the candidate list for further 524

processing. All NLI-based methods use the QA- 525

SRL Parser internally by parsing the predicate’s 526

sentence to extract local arguments. 527

6 Results 528

Tables 1 and 2 present the results of the argument 529

detection task on nominal predicates from TNE 530

and verbal predicates from ON5V, respectively. For 531

TNE, we report the results in two settings, (1) Full 532

Document considering all semantic arguments in 533

the entire document and (2) Cross-Sentence, fo- 534

cusing on arguments located in different sentences 535

than the predicate. This separation allows us to 536

analyze the parsers’ performance beyond sentence 537

boundaries. For ON5V, we show results for the 538

Cross-Sentence setting in Table 2 and defer Full 539

Document results to Appendix A due to our focus 540

on cross-sentence performance. 541

Across both datasets, our predicate-argument- 542

aware entailment model (SRL-NLI), trained on a 543

diverse mix of NLI datasets and further fine-tuned 544

on QA-SRL-derived entailment data (§4), exhibits 545

superior overall performance (F1) compared to all 546

evaluated approaches. 547

Our generic approach outperforms supervised 548

models on TNE As shown in Table 1, our dis- 549
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tantly supervised SRL-NLI approach achieves su-550

perior performance compared to supervised models551

like NP-SpanBERT and TNE-Parser, even though552

these models were directly trained on TNE. This553

indicates the effectiveness of our approach in tack-554

ling semantic argument detection without the need555

for task-specific supervision.556

Predicate-Argument-aware entailment model557

boost performance SRL-NLI outperforms NLI558

(using the same DeBERTa underlying model) by559

6.6 F1 points on TNE and 3.8 on ON5V, indicating560

the benefit of an enhanced classifier that is sensitive561

to predicate-argument semantics.562

Cross-sentence is more difficult When evalu-563

ated on TNE, all examined models undergo a per-564

formance deterioration for the more challenging565

setting of cross-sentence argument detection. The566

drop in performance is especially detrimental for567

the QA-SRL Parser (-24.8 F1), which can be at-568

tributed to its single-sentence training scope. No-569

tably, NLI-based models exhibit an on-par perfor-570

mance decrease with the TNE parser, which was571

supervised over task-specific document-level data.572

Hence, it seems that our SRL-NLI approach enjoys573

the best of both worlds — it learns document-level574

semantic understanding from NLI, while special-575

izing in predicate-argument semantics due to the576

sentence-level QA-SRL supervision.577

LLMs: Simple wins, complex stumbles Di-578

rectly asking Mistral in the few-shot setting to iden-579

tify all semantic arguments of a predicate within580

a paragraph leads to subpar performance (40.72581

vs. 58.34 F1 on TNE and 12.71 vs. 29.28 F1 on582

ON5V for the best Mistral configuration). Inter-583

estingly, prompting Mistral with arguments-only584

prompt consistently achieves higher performance585

than with QA prompt, on both TNE and ON5V.586

However, our approach of framing implicit argu-587

ment identification as a series of entailment deci-588

sions, and leveraging Mistral as a zero-shot entail-589

ment model (Instruct-NLI) already yields remark-590

able performance gains. This method surpasses591

directly prompting Mistral for arguments, achiev-592

ing a 5.9 F1-score improvement on TNE and an593

impressive 10+ F1-score increase on ON5V.594

These results highlight the benefit of decompos-595

ing complex tasks into simpler binary decisions596

for LLMs, potentially due to reduced reasoning597

burden and better alignment with their instruction598

fine-tuning data.599

7 Analysis 600

Our evaluation against the TNE datasets measures 601

unlabelled argument detection, which leaves the 602

role assignment accuracy of our system unexplored. 603

Since our approach is schema-independent, the ar- 604

gument’s semantic role is not provided explicitly 605

but is expressed through its syntactic position in the 606

proposition. We thus tap into the labeling accuracy 607

of our system through a manual analysis. Specif- 608

ically, we sample 50 deverbal nominal predicates 609

from the TNE test set along with their 260 gold 610

cross-sentence complements and inspect the com- 611

plements’ highest-ranked proposition during infer- 612

ence. Each proposition contains the complement 613

in its most probable syntactic position as ranked by 614

our SRL-NLI model. In order to align the setting 615

of our analysis to a typical use case scenario of 616

our method, we further run an OntoNotes parser 617

(Shi and Lin, 2019) over the selected propositions 618

to attain PropBank labels of the arguments. An 619

author of this paper then verified that the predicted 620

semantic role label matches in definition against 621

the semantic relation captured by TNE annotators. 622

Omitting 14 TNE complements that don’t corre- 623

spond to verbal arguments, and 20 arguments that 624

are missed by the OntoNotes parser, the extracted 625

role is accurate at 161/226 (71%) of the cases. Mis- 626

takes include both OntoNotes parsing mistakes, as 627

well as erroneous syntactic positions selected by 628

the NLI-based ranking. 629

8 Conclusions 630

We have demonstrated how to reformulate the prob- 631

lem of argument detection into an entailment task, 632

and successfully used it to detect arguments across 633

sentence boundaries where training data is inher- 634

ently scarce. Moreover, we have explicated the 635

meaning of these distant arguments in the form of 636

simple and easy-to-grasp propositions that keep 637

the correct semantic role information without com- 638

mitting to a specific label schema. Our proposed 639

method can thus augment any specialized SRL or 640

event-extraction schema with cross-sentence argu- 641

ments at test time, without additional annotation or 642

training. Given a sentence-level parser, one can ap- 643

ply it on the extracted proposition to get a label for 644

the captured implicit argument. The propositions 645

by themselves can potentially serve applications 646

that require information decomposition into smaller 647

units, e.g. SCUs (Nenkova and Passonneau, 2004) 648

for the summarization task and many more. 649
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Limitations650

We raise the following limitations of our method.651

First, our method relies on a strong entailment com-652

ponent that is sensitive to the syntactic argument653

structure of the hypothesis and has a good compre-654

hension of the passage. As we have discovered,655

this is not a trivial task even for contemporary NLI656

models.657

Secondly, our method might be prone to correct658

but undesired entailment judgments. For example,659

when a passage describes several different events660

with lexically similar predicates (e.g. two acquisi-661

tion events), we might construct a hypothesis with662

a participant of one event while targeting the other663

event where that participant does not belong. This664

problem is inherent to the entailment task. It is not665

event-specific, it verifies the hypothesis against the666

entire premise, without a notion of a target predi-667

cate. We tried to address this by incorporating the668

candidate phrase into a hypothesis with other local669

arguments of the event, yet this is not a foolproof670

method.671

In addition, ideally, a non-entailed hypothesis672

would specify which argument phrase is incorrect673

or misplaced, however, we don’t have that level of674

granularity in NLI, therefore we build the hypoth-675

esis from the ground up, first verifying the local676

arguments, and then adding candidates to different677

positions one at a time. There may be a better com-678

binatorial approach that adds multiple candidates679

at different positions and verifies them together to680

save computational steps.681

Delving deeper into computational costs, com-682

puting entailment for each candidate phrase mul-683

tiple times may seem at first costly, however, we684

have seen in practice that our method is quick to685

run even on modest accelerators. Each classifica-686

tion decision applies a single forward pass in an687

encoder network, and the number of forward steps688

is bounded by the number of candidates we ex-689

amine. On the other hand, a generative approach690

makes a forward pass at inference time for each691

token of a predicted argument. Moreover, simple692

implementation optimziation can mitigate most of693

the computational cost. In a typical example, we694

compute entailment over different short hypotheses695

against the same long passage. So pre-computing696

the attention key-values for that passage, as custom-697

arily done in Decoder-Only models, can effectively698

mitigate most of the required computation for a699

single example.700
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Zhisong Zhang, Xiang Kong, Zhengzhong Liu, Xuezhe989
Ma, and Eduard Hovy. 2020. A two-step approach990
for implicit event argument detection. In Proceedings991
of the 58th Annual Meeting of the Association for992
Computational Linguistics, pages 7479–7485.993

A ON5V Results994

System Precision Recall F1

Baselines
QA-SRL Parser (T5-LG) 89.38 37.48 52.81
Mistral (Arg, 7B) 17.01±4.9 21.45±5.4 18.16±1.7

Mistral (QA, 7B) 15.37±3.6 15.49±1.1 15.27±1.9

Entailment-based models
Instruct-NLI (Mistral 7B) 33.97±1.5 61.41±4.5 16.34±1.1

NLI (DeBERTa-LG) 31.28±1.6 69.01±2.9 43.03±1.9

SRL-NLI (DeBERTa-LG) 46.59±7.9 61.49±2.4 52.64±4.1

Table 3: Results on the ON5V unified evaluation set on
full-document evaluation. All NLI methods use cross-
fold validation of 4 folds to determine the classification
threshold and report mean and std. dev. over the test
folds. Direct prompting methods report an average and
std. dev. of 4 runs with different sets of examples.

For completeness, we add the results for the full995

document evaluation on ON5V. We achieve com-996

parable results to the QA-SRL parser on the full997

document. The parser does not extract almost any998

cross-sentence arguments, and its overall results999

stem from its high in-sentence performance.1000

B ON5V Annotation1001

We annotated additional arguments for the ON5V1002

dataset for the existing predicates in the dataset.1003

Annotators were instructed to add new argument1004

phrases and write a question for each one using1005

the QA-SRL question format. Our interface, de-1006

picted in Figure 3, presents the full document with1007

the predicate and all of the already marked argu-1008

ments from OntoNotes (Pradhan and Xue, 2009)1009

and ON5V, and a selection of candidate phrases.1010

Annotators were instructed to add new mentions1011

and do not modify existing arguments. In our expe-1012

rience selecting arguments from a wide candidate1013

list, as also performed in TNE (Elazar et al., 2022),1014

streamlines annotation on a long passage and helps1015

the annotator in covering lengthy contexts.1016

We scoped the annotation to be in a context win-1017

dow of sentences of 5 preceding sentences and 11018

subsequent after the predicate. Past works have1019

shown that more than 90% of all implicit argu-1020

ments can be found within this window (Gerber1021

and Chai, 2010). Our phrase candidates include1022

System Dataset Precision Recall F1
T5-Large, retrained Verbal 91.36 64.27 75.46
T5-Large, retrained Nominal 76.16 63.73 69.39
T5-Large, retrained ON5V 76.48 84.35 80.22
T5-Small (Klein et al., 2022) Verbal 76.20 62.40 68.60
T5-Small (Klein et al., 2022) Nominal 64.30 54.80 59.20

Table 4: Results for single sentence evaluation of the re-
trained parser on QA-SRL and ON5V evaluation sets.

noun-phrases extracted using the same procedure 1023

we describe in section 5, and the annotator is asked 1024

to remove them from a "TODO" list if they are 1025

not an argument, or write them a proper QA-SRL 1026

question. If a candidate is co-referring to a current 1027

argument, we ask the annotator to add it to its set 1028

of answers. Otherwise, we ask them to add it as a 1029

new QA pair, even if the question repeats itself. 1030

We recruited 5 in-house annotators, four with 1031

a strong background in linguistics and one native 1032

English speaker who excelled on our qualification 1033

assignment. We presented them the QA-SRL anno- 1034

tation guidelines from Roit et al. (2020), and con- 1035

ducted a short training round of 10-15 predicates, 1036

after which we provided personal and detailed feed- 1037

back. Each predicate took on average 5 minutes 1038

to annotate. During the annotation period, one of 1039

the authors examined 10-20% of each annotator’s 1040

workload to verify correctness and proper coverage. 1041

We paid each annotator an hourly rate of 14$, and 1042

annotation took about 10 minutes per predicate. 1043

C Evaluation Procedure 1044

An argument is mapped to the entity of the highest- 1045

ranking mention in any chain according to an over- 1046

lap score, as long as it passes a certain threshold. 1047

Scoring between two phrases is calculated based on 1048

syntactical head equivalence3, which accounts for 1049

a full match, or the token-wise intersection-over- 1050

union (IOU) which ranges between 0 and 1. The 1051

threshold for a match is set to 0.5 based on standard 1052

argument evaluation criteria (Roit et al., 2020). For 1053

each evaluated predicate, we add arguments that 1054

did not map to any existing coreference cluster to 1055

singleton clusters. We verify that a predicted argu- 1056

ment that matches some gold argument according 1057

to the criteria above, will always be mapped to the 1058

same entity with the matching gold argument. 1059
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Figure 3: Our implicit arguments annotation interface. The yellow highlighted phrases depicts the current set of
arguments, phrases in grey are candidates that need to be either removed from the TODO list or selected as an
answer to a QA-SRL question. The interface validates that the question is formatted correctly.

D QA-SRL Parser Evaluation1060

We re-train the joint QA-SRL parser (Klein et al.,1061

2022) on a T5-Large model and report performance1062

metrics on single sentences. Evaluation is con-1063

ducted with unlabeled mention-level metrics that1064

match spans between reference and predicted argu-1065

ments. Results are shown in Table 4. Verbal and1066

Nominal refer to the gold-standard evaluation sets1067

of Roit et al. (2020) and Klein et al. (2020) respec-1068

tively. A span match threshold of IOU >= 0.3 was1069

used to match previously published metrics.1070

E Prompt Examples1071

We provide the prompt templates for both the QA1072

prompt and the argument prompt formatted specif-1073

ically as a chat for the Mistral model in Figure 4.1074

1075

F Implementation Details1076

The prepositions for Indirect or Adjunct phrases1077

can be pre-assigned, as in the case of local argu-1078

ments, or can be inferred using an auxiliary model.1079

To assign a preposition to an argument sourced1080

from the QA-SRL analysis, we inspect the depen-1081

dency structure of either the original sentence or1082

the declarative sentence that is formed by its QA1083

3The head of a phrase is captured by Spacy’s dependency
parser (Honnibal et al., 2020)

[INST] Read the following text and write questions and answer 
pairs about all related arguments of the verb or noun that is 
marked up between <p> and </p> in the text. All questions must 
begin with a Wh word and use the marked up word as the main 
verb in the question. Output each question and answer on its 
own line. 
TEXT: ... <p> {predicate} </p> ... [/INST]
{QA_i} … repeated 
[INST] TEXT: ... <p> {predicate}</p> ...[/INST]
{QA_i} … repeated 
[INST] TEXT: ... <p> {predicate}</p> ...[/INST]

[INST] Read the following text and write all semantic 
arguments of the predicate verb or noun that is marked up 
between <p> and </p>. Output each argument separated by | 
TEXT: ... <p> {predicate} </p> ...[/INST]
{ARG 1}| {ARG 2} | … repeated
[INST]TEXT:... <p> {predicate} </p> ...[/INST]
{ARG 1}| {ARG 2} | … repeated
[INST]TEXT:... <p> {predicate} </p> ... [/INST]

Figure 4: The Mistral specific prompts formatted both as
QA generation (top) and argument extraction (bottom).
Blue highlighting is to indicate chat instructions, green
is our task specific instruction, orange is for the query,
yellow is our example of a suitable response.

pair. If the argument in one of these sentences is 1084

connected to the predicate via a preposition, we 1085

re-use it in our semantic hypothesis as well. For 1086

example, consider the "on the day of the bombing" 1087

argument in Figure 2, it connects with the predicate 1088

"leave" via the preposition "on" in both sentences. 1089

In the general case, we use a masked language 1090

model (Devlin et al., 2019) to output the highest- 1091

ranking preposition word given the context and the 1092

masked hypothesis. We use bert-large-cased as the 1093

underlying ranking model. 1094

We also inspect the local QA-SRL analysis for 1095
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linguistic attributes such as tense, modality, and1096

negation that affect the main verb inflection and1097

auxiliaries. For example, the question "Who did1098

not pay something" uncovers that the event is de-1099

scribed in the past tense and that the event did not1100

unfold in the sentence. We parse these attributes1101

from the QA-SRL question of the first argument in1102

the template and initialize our hypothesis accord-1103

ingly. When required, we modify the VERB field of1104

the template to include the modal verb ‘might’ or1105

negate the auxiliary verb and use the proper inflec-1106

tion.1107
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