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Abstract

Detecting semantic arguments of a predicate
word has been conventionally modeled as a
sentence-level task. The typical reader, how-
ever, perfectly interprets predicate-argument
relations in a much wider context than just the
sentence where the predicate was evoked. In
this work, we reformulate the problem of ar-
gument detection through textual entailment
to capture semantic relations across sentence
boundaries. We propose a method that tests
whether some semantic relation can be in-
ferred from a full passage by first encoding
it into a simple and standalone proposition and
then testing for entailment against the passage.
Our method does not require direct supervi-
sion, which is generally absent due to dataset
scarcity, but instead builds on existing NLI and
sentence-level SRL resources. Such a method
can potentially explicate pragmatically under-
stood relations into a set of explicit sentences.
We demonstrate it on a recent document-level
benchmark, outperforming some supervised
methods and contemporary language models.

1 Introduction

Identifying which entities in text play certain se-
mantic role with respect to a given predicate (i.e. a
verb) is a core ability of language comprehension
(Fillmore, 1976). Such basic semantic information
is often surfaced via simple lexical and syntacti-
cal patterns in the sentence. Readers however can
perfectly interpret such semantic relations pragmat-
ically in a wider context. Consider the example in
Figure 1. The entity being paid can be resolved as
the manufacturer by deduction, and ‘the deposit’ is
understood as the currency that changes ownership
in exchange for recycling. These examples show-
case where semantics departs from syntax, and
allow us to systematically investigate how humans
and machines reason over events in text in cases
where they cannot rely on easy-to-follow grammat-
ical patterns.

“This house on Al Zaharah Street half a mile
from the port is where investigators believe the
bomb was built into the boat that carried it. ...
On the day of the bombing, neighbors saw the
boat leaving. ...

The trip from the house to the harbor was only
about amile...”

1. Local Args The boat left on the day of the bombing.

2. Cross-Sent The boat left this house on the day of the bombing.
3. Misplaced this house left on the day of the bombing.

4. Unrelated  Investigators left on the day of the bombing.

Figure 1: Example of semantic arguments in the sen-
tence and document scope. The predicate is in boldface
while arguments are highlighted in color. The bottom
part shows four different propositions: (1) A proposition
constructed from in-sentence arguments of the predicate.
(2) The same proposition with additional arguments
from anywhere in the document (3) A proposition with
some arguments (the house) placed in incorrect syntac-
tic position, that do not align with their semantic role.
(4) A proposition with a non-argument phrase. Both (3)
and (4) are not supported by to the document.

In this work!, we address detecting cross-
sentence semantic arguments for verbal and dever-
bal noun predicates. We propose a method based
on textual-entailment (Dagan et al., 2005) and su-
pervised only with NLI and sentence-level Seman-
tics Role Labeling (SRL) (Gildea and Jurafsky,
2000) data. It takes a document and a marked pred-
icate and outputs a set of simple, easy-to-grasp sen-
tences that incorporate semantic arguments from
anywhere in the document (e.g. ‘the house’ argu-
ment from a different sentence incorporated into
the leave event in Figure 1, proposition 2). We
assume that an argument is omitted by the speaker
from the predicate’s sentence due to its redundancy

'The codebase, dataset, and models will be made publicly
available in the non-anonymous version of this manuscript.



in discourse while re-inserting it back into its desig-
nated position next to the predicate should not alter
the meaning of the event in the passage. Our basic
idea is that a simple proposition constructed from
a set of true arguments should be entailed from
the passage (see props 1-2 in Figure 1), while any
proposition that targets the same predicate and con-
tains a non-argument phrase or a misplaced phrase
should not be entailed (see props 3-4 in Figure 1).
Therefore, we design a method that starts at the
local parse of the predicate, builds a proposition
from the extracted in-sentence arguments, and then
examines candidate phrases one by one from across
the document by inserting them into different posi-
tions and testing for entailment. Our method does
not require a frame repository such as PropBank
(Palmer et al., 2005) or FrameNet (Baker et al.,
1998) to operate. Instead, it uses the explicit syn-
tactic argument structure in the proposition as a
syntactic surrogate for the underlying semantics of
the predicate in the passage (see how the meaning
changes in the misplaced argument example, prop
3 in Figure 1).

Some recent works from the event extraction lit-
erature apply similar slot-filling (Li et al., 2021)
or entailment-based methods (Sainz et al., 2022;
Lyu et al., 2021). However, they rely on a limited
event ontology for predefined templates for argu-
ment extraction. In contrast, our work uses English
syntax for creating propositions, akin to the clause
structure in Del Corro and Gemulla (2013).

This generally illuminates another benefit of
our approach, being schema-free, the propositions
can be easily processed downstream by parsers
trained on abundant single-sentence data, for exam-
ple for relation extraction (Hendrickx et al., 2010)
or event participant detection (Doddington et al.,
2004). Thus, explicating to downstream tasks the
set of document-level semantic relations that were
previously unreachable, now encoded in a simple
sentence form.

To summarize, our contributions include a novel
distantly supervised argument detection method
based on combining Textual Entailment with SRL
analysis. Our implementation achieves higher per-
formance than supervised models on a document-
level dataset (Elazar et al., 2022) for noun-phrase
relations, and outperforms other approaches on a re-
annotated benchmark for verbal predicates (Moor
etal., 2013).

2 Background and Related Works

Implicit Arguments Mainstream research efforts
in semantic role labeling (SRL) (Gildea and Ju-
rafsky, 2000; Kingsbury and Palmer, 2002) have
focused on the problem of assigning semantic roles
only to syntactically related phrases, e.g. the sub-
ject or object phrases of verbs, while neglecting
constituents from the wider passage that are prag-
matically interpreted as participants. The latter
ones, referred to as implicit arguments (Gerber and
Chai, 2010; Ruppenhofer et al., 2010) despite be-
ing overtly understood by readers, constitute a size-
able portion of the potentially identified argument
set (Klein et al., 2020; Roit et al., 2020; Gerber
and Chai, 2010; Fillmore, 1986). While some re-
cent works (FitzGerald et al., 2018) have annotated
large datasets with semantic arguments captured
anywhere within the sentence scope, to this day,
only a handful of limited resources for SRL in
the document scope exist (Gerber and Chai, 2010;
Moor et al., 2013; Ruppenhofer et al., 2010; Feiz-
abadi and Pado, 2015). Some resources contain
only a few hundred instances, others lack diver-
sity, capturing only a tiny set of predicates (5-10
unique verbs), and all focused only on semantic
core roles (i.e. the numbered arguments in Prop-
Bank), neglecting other meaningful information
for the reader such as temporal or locative modi-
fiers. O’Gorman et al. (2018) annotated a dataset
of cross-sentence arguments on top of AMR graphs
(Banarescu et al., 2013) specifying arguments as
AMR concepts, without their exact location in the
sentence.

Earlier supervised models for implicit SRL re-
lied on extensive feature engineering and also us-
ing gold features (Gerber and Chai, 2012). Many
works additionally attempted to overcome data
scarcity by creating artificial training data using
coreference (Silberer and Frank, 2012) or align-
ing predicates in comparable documents (Roth and
Frank, 2015), Cheng and Erk (2018) proposed to
transform the problem into a narrative cloze task,
creating synthetic datasets. More recently, Zhang
et al. (2020) improved upon the baseline model pro-
posed for the RAMS dataset (Ebner et al., 2020),
and trained a supervised model that detects argu-
ment heads before expanding to the full constituent.

QA-SRL (He et al., 2015) represents the label of
each semantic argument as a simple Wh-question
that the argument answers, for example, ‘Who ac-
quired something?’ encodes the agent, and ‘Who



did someone give something to?’ encodes the re-
cipient. These question-labels point at the syntactic
position of the argument in a declarative form of the
QA pair, e.g.: ‘The agent acquired something’ or
‘Someone gave something to the recipient’ (see the
example in Figure 2, top-left, where the position
of the answer is apparent from the question). Each
question also encodes the tense of the event, the
modality, and negation properties (might the event
occur or has the event occurred?) which are used
to instantiate our propositions. Klein et al. (2020)
extended QA-SRL to deverbal nominal predicates,
recently leveraged for training a joint verbal and
nominal QA-SRL model (Klein et al., 2022).

TNE is a dataset for modeling semantic rela-
tions between noun phrases (NPs) across a doc-
ument and is annotated on top of Wikipedia. A
relation consists of an anchor and complement
phrases that are labeled with a preposition, i.e. [the
investigation]ancnor by [the police]lcomprement-
Each document is first segmented into a list of
non-overlapping NPs and every NP pair is anno-
tated with either a preposition or a *no-relation’ tag.
Each NP is also assigned to a cluster of co-referring
within-document mentions.

ONS5V (Moor et al., 2013) is a dataset contain-
ing 390 instances of five different verbal predicates,
selected from 260 documents from the develop-
ment and train partitions in OntoNotes (Pradhan
and Xue, 2009). Original annotation only filled
vacant core roles (i.e. numbered, ARGO, ARG1)
with the closest argument phrase that fits the role
description.

3 Method

Our approach for identifying semantic arguments
of a predicate is based on verifying the correctness
of an assignment of phrases to semantic roles. In a
nutshell, we represent the assignment as a simple
proposition, named the semantic hypothesis, that
consists of phrases placed in subject or object po-
sitions according to their roles. If the semantic hy-
pothesis is entailed from the passage, we conclude
that the relations encoded within the proposition
are also present in the document. For example, in
proposition no. 2 in Figure 1 ‘The boat’ is placed
into the subject position and represents the leaver,
while ‘on the day of the bombing’ is placed as an
adjunct and represents the time of the event. On the
other hand, incorrectly placing an argument phrase,
‘this house’ (proposition no. 3), in the subject posi-

tion would assign an incorrect semantic role to the
phrase, and should not be entailed.

We apply this verification procedure in a multi-
step process as follows. First, we retrieve a set of
semantic arguments in the vicinity of the predicate,
leveraging highly performant parsers trained on in-
sentence data (FitzGerald et al., 2018; Klein et al.,
2020). Next, we verify their correctness to prevent
parsing errors from propagating to later stages (Fig-
ure 2, top-center), and construct a base hypothesis
from the verified arguments (see the top row in
Figure 2). Finally, we insert different candidate
phrases from any sentence into different syntactic
positions in the base hypothesis and verify the re-
sulting hypotheses independently (see the bottom
part of Figure 2). The first step ensures that the base
hypothesis describes the target event by referring
to the predicate’s local arguments (the boat and the
time of leaving), while the last step expands the ar-
gument set by integrating new phrases into the base
hypothesis (the house and the port). In the next sub-
sections, we will describe in detail the structure of
the semantic hypothesis, how we initialize it, and
how we expand it to include arguments beyond the
scope of the predicate’s sentence.

3.1 The Semantic Hypothesis

The semantic hypothesis is a simple English declar-
ative sentence centered around a verb. It is con-
structed from the main verb and a set of phrases
assigned to unique syntactic positions, and can
be modified with tense, modality, and negation
properties. The supported positions are directly
related to the verb and include: subject (SUBJ),
direct object (DOBJ), indirect object (I0BJ), and
adjunct (ADJ). The last two may be preceded
with an optional preposition. In our implemen-
tation, we construct a sentence in active voice
if a subject phrase is present, or resort to pas-
sive voice if not. Generally, we apply the fol-
lowing templates: SUBJ-VERB-DOBJ-IOBJ-ADJ, or
DOBJ-VERBpassive~10BJ-ADJ and fill the phrases
as required. Given these specifics, we determine
the corresponding verb inflection, and when neces-
sary use the plural form to agree with the subject
and modify any auxiliary verbs accordingly. We
note that a valid declarative sentence in English
must contain a subject phrase. To satisfy this re-
quirement, we allow unspecified ‘placeholder’ ar-
guments to be inserted instead of concrete ones,
placing ‘someone’ in an empty subject position or
‘something’ in empty object positions when neces-
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Figure 2: End-to-end example of our suggested argument extraction pipeline. fop-left: Parsing with QA-SRL, the
predicate is marked in bold while the local arguments are highlighted in color. The question (Q) is used to determine
the syntactic position (P) of the argument (A). top-center: Verification of individual arguments, a proposition is
constructed for each, the argument is placed in its designated position from the previous step and placeholders are
inserted to other positions. The propositions are examined against the sentence for entailment. fop-right: Validated
arguments construct the base hypothesis; Event attributes such as tense, modality and negation are extracted from

the QA-SRL parse and initialize the hypothesis sentence. bottom-left:

Extracting candidate phrases from the

document scope (highlighted in gray). bottom-right: Each candidate is inserted into three different positions in the
base hypothesis and verified against the full document. The second candidate demonstrates two correct alternations.

sary. Such flexibility enables the system to force a
specific valency pattern, for example, construct a
transitive clause by inserting ‘something’ when a
concrete direct object is unavailable.

3.2 Hypothesis from Local Arguments

In the first step, we initialize the semantic hypothe-
sis with arguments from the sentence extracted with
a highly performant QA-SRL parser (Klein et al.,
2022). We retrieve the local arguments as QA pairs
and apply a heuristic from Klein et al. (2020) over
the questions to determine the syntactic position of
each argument-answer in our proposition (Figure 2,
top-left). To verify their correctness, we construct
a hypothesis for each argument individually and
validate them with an entailment model against the
original sentence. This validates both the argument
and its predicted syntactic position. Finally, the
highest-scoring argument in each position is taken
to construct the base hypothesis.

3.3 Expanding to Non-Local Candidates

To expand the argument set we inspect candidate
phrases from the document. Each phrase is inserted
into three positions independently in the base hy-
pothesis: the subject, direct object, and indirect

object, forming a new hypothesis on the grounds
of the base one. Each is then scored using our NLI
model against the document. We select the highest-
scoring hypothesis for each candidate, and add it
to the output if it passes a configurable threshold.
In this work, we consider noun-phrase candidates
from the entire document that don’t overlap with
generated arguments from the first stage.

3.4 Implementation Details

The prepositions for I0OBJ or ADJ phrases are as-
signed in one of two ways: either by inspecting
the dependency structure of the predicate’s sen-
tence for a connecting preposition or from the QA-
SRL analysis, and lastly, if not captured by the pre-
ceding methods, using a masked language model
that assigns the most semantically probable (Devlin
et al., 2019) preposition given the full passage and
the hypothesis. Attributes such as tense, modality,
and negation are extracted from the local QA-SRL
parse of the sentence. For more details see Ap-
pendix F



4 Predicate-Argument aware NLI Dataset

Throughout our experiments, we noticed that the
readily available NLI models usually make poor
decisions when considering different semantic hy-
potheses, assigning high probability to propositions
with unrelated candidates — which resonates the
findings of Min et al. (2020); Basmov et al. (2023).
We believe that this is caused by the inherent lexi-
cal overlap between the hypothesis and the premise
texts since our proposition is built entirely from
phrases found in the original document. To circum-
vent this, we train a semantics-aware entailment
model from QA-SRL data. We use the single-
sentence training data and generate entailed and
not-entailed propositions. Each training instance
includes a sentence and a proposition centered on a
predicate in the sentence. Positive instances include
propositions built using the predicate’s argument
set. Each true argument is placed in the hypothesis
according to their syntactic position as determined
by their QA-SRL question. The positive proposi-
tions are then used to build the negative instances
in the following two ways: The first inserts a noun
phrase from the sentence that is not an argument
into any position. The second switches between
syntactic positions of true arguments in the positive
proposition, replacing objects as subjects and vice-
versa. This training setup encourages the model to
be more sensitive to the semantics of the hypothe-
sis, as encoded in its argument structure.

Our training set contains 465K sentence-
hypothesis pairs extracted from the training par-
titions of QANom (Klein et al., 2020) and QAS-
RLv2 (FitzGerald et al., 2018), with 30% positive
(entailed) instances. Negative instances are split be-
tween subject-object swaps (14%), and insertions
of non-argument phrases from the sentence (56%).
We created multiple positive hypotheses for each
predicate by omitting subsets of true arguments, an-
ticipating low coverage conditions of the QA-SRL
parser at inference time. For negative examples, we
sampled one positive hypothesis for each predicate
and applied our augmentations.

5 Experiment Setup

5.1 Evaluation Datasets

We apply our method to verbal and nominal predi-
cates from several document-level benchmarks.
TNE (Elazar et al., 2022). We derive our main
benchmark from the TNE dataset. We extract
predicate-argument data by focusing on a subset

of relations in TNE where the anchor’s syntactic
head is a deverbal noun, i.e. a nominal predicate,
and hypothesize that their complements constitute
semantic arguments of the predicate word. To filter
the relevant anchors, we apply the nominal predi-
cate classifier of QANom (Klein et al., 2020) with
a threshold of 0.75 and identify 10946/1315/1206
predicate instances in the train, development, and
test partitions respectively. On average, each dever-
bal anchor contains 4.5 complement entities, and
notably, 2.5 of these have the closest mention to
the predicate located in a different sentence. Ex-
amining a sample of 50 deverbal anchors we find
that out of 275 cross-sentence complement entities,
93% exhibit a semantic relation that can be cap-
tured by a QA-SRL question, validating our initial
hypothesis.

Our task in this setup is to select all NP com-
plements given a deverbal anchor, the document,
and the segmented list of noun-phrase candidates.
When applying generative methods, we consider
a specific NP candidate from the document as pre-
dicted if it matches one of the generated argument
phrases, where two phrases match if either they
share the same syntactic head or have a high token-
wise overlap of above 0.5 Intersection-over-Union
(IOU). Otherwise, any non-overlapping generated
phrase is discarded.

ONS5YV (Moor et al., 2013) We also evaluate our
method on ON5V. We use the unified set of pred-
icates from both partitions as our evaluation data.
To cover the coverage gap for modifier roles we
asked an in-house annotator team to go over the
existing data and add any argument phrase that can
be captured by a QA-SRL question. The result-
ing dataset has 3271 arguments with 1800 novel
cross-sentence mentions that did not belong to any
previously annotated entity, emphasizing the need
for exhaustive annotation. We refer to Appendix B
for more details regarding the annotation protocol.

We use cross-fold validation over 4 folds split by
document, we tune the NLI classification threshold
over 3 folds and evaluate on the fourth. Results
over the test folds are averaged and reported with
std. dev. We limit the search for arguments to a
context window of 7 sentences, with 5 preceding
and 1 subsequent sentence around the predicate.
This window follows the annotation scope set for
our annotators and was found to be sufficient to
locate more than 98% of all originally annotated
arguments in the data.



5.2 Evaluation

We follow the methodology proposed by Ruppen-
hofer et al. (2010) in evaluating document-level
argument detection. We assign credit for an argu-
ment only once at the entity level, regardless of
the number of times it is mentioned in the passage
or captured in the system output. Consider for ex-
ample the boat argument from Figure 1, it appears
twice in a short passage, and we give it a full score
if at least one of these mentions were captured.
This disentangles SRL evaluation at the document
level from co-reference resolution. Practically, we
map system and reference argument mentions to
their entities using gold co-reference chains and
calculate the standard precision and recall metrics
over entities. For specific implementation details
see Appendix C

5.3 Baselines

NP-SpanBERT (Elazar et al., 2022) is a classifica-
tion model over NP pairs trained over TNE based
on SpanBERT-Large (Joshi et al., 2020). We ap-
ply the label classifier on pairs of deverbal anchors
and any other NP in the document and consider the
phrase as an argument if the predicted label is any
valid preposition.

QA-SRL Parser We re-train the generative
parser from Klein et al. (2022) over a joint training
set consisting of sentence level QA-SRL annota-
tions for verbal and nominal predicates (FitzGerald
et al., 2018; Klein et al., 2020) using a T5-Large
encoder-decoder (Raffel et al., 2020). The parser
is trained over examples of a sentence and marked
predicate word as input and produces questions and
answers in the QA-SRL format in its output, where
each answer is a semantic argument. Our re-trained
parser has significant performance boosts vs. pre-
vious published models on the QA-SRL data, for
details refer to Appendix D. Training is performed
for 5 epochs until convergence, using the Adam
optimizer with a learning rate of 5¢ — 05 and a
batch size of 16.

For the baseline, we simply apply the parser over
complete passages during inference.

TNE-Parser Re-using the joint QA-SRL setup
(Klein et al., 2022), we train a parser directly over
passage-level TNE data over the deverbal subset
of anchors. The parser takes a passage with the
marked anchor (the head word) as the predicate
and outputs questions and answers. Questions are
encoded using the "[anchor] [preposition]?" tem-

plate to signify the semantic relation between the
pair, e.g. "investigation by?" and the answer is the
complement-argument phrase of that relation.

Mistral We evaluate a prompting approach us-
ing the open-source Mistral-7B (v0.1) instruction-
tuned model (Jiang et al., 2023). We design two
different prompts for the task, each includes an in-
struction, a few examples (2-5) in the required for-
mat, and the passage with the predicate surrounded
by special tags. The first prompt variant asks the
model to produce a list of semantically related ar-
guments of the marked predicate, while the second
version asks for a combined representation of an
argument and its semantic role represented as a
natural language question-answer pair. Please refer
to Appendix E for concrete prompt examples. For
ONS5V we use examples from the QASRL-GS de-
velopment set (Roit et al., 2020) containing a high
ratio of implicit arguments. For TNE, we use ex-
amples from the TNE training set, with questions
formatted in the TNE-Parser format. The examples
are randomly selected and kept fixed for the entire
evaluation, to reduce the dependence on specific
examples we repeat the evaluation four times and
report the average and standard deviation. Decod-
ing is performed with beam-search (beam=4).

5.4 Our System

NLI We apply our entailment-based approach us-
ing an off-the-shelf> NLI model (Laurer et al.,
2024), based on DeBERTA-V3-Large and trained
over a mixture of challenging NLI datasets (Parrish
et al., 2021; Williams et al., 2018; Nie et al., 2020;
Liu et al., 2022). Reported performance is on par
with current leading models on MNLI and ANLI.
All NLI-based models are tuned on the develop-
ment set, or using cross-fold validation to find the
best-performing classification threshold for candi-
date phrases.

Instruct-NLI We also apply our method with the
Mistral LLM serving as the underlying entailment
engine. We assume that the entailment task is em-
bedded in different training regimes and datasets
for instruction tuning, and apply the model in a
"zero-shot" setting without demonstrating exam-
ples in the prompt. The specific prompt for NLI
is re-used from FLAN (Wei et al., 2022), assum-
ing a similar prompt was also used to train Mistral
LLM as well. We ask for a binary Yes/No an-
swer, where Yes refers to entailment, and verify

2https://huggingface.co/Mor‘itzLaurer‘/
DeBERTa-v3-large-mnli-fever-anli-ling-wanli
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Full Document

Cross-Sentence

System Training Data Precision Recall F1 Precision  Recall F1
Baselines

NP-SpanBERT (LG) TNE 75.33 42.86 54.63 66.46 36.60 47.20
TNE-Parser (T5-LG) TNE 62.60 51.73 56.65 51.57 40.02 45.07
QA-SRL Parser (T5-LG) QA-SRL 84.77 25.14 38.77 79.85 7.64 13.95
Mistral (Arg, 7B) Instructions 35.62+75 5293 1149 40.7212: 26.76 62 48.81 +152 32.70+12
Mistral (QA, 7B) Instructions 46.29+35  18.03139  25.85144 3495 137 1550430  21.41x33
Entailment-based models

Instruct-NLI (Mistral 7B) Instructions 49.22 53.55 51.29 36.01 41.49 38.56
NLI (DeBERTa LG) NLI mix. 47.42 58.76 52.49 36.09 49.37 41.70
SRL-NLI (DeBERTa LG) NLI mix. + QA-SRL 56.52 60.29 58.34 46.41 50.43 48.34

Table 1: Results on the TNE test set for argument detection. Metrics are entity-level — multiple mentions of the
same entity are considered as one. “Full Document” refers to results evaluated on all of the arguments, while
“Cross-Sentence" considers only those reference and predicted arguments that have their closest mention to the
anchor predicate appear in a different sentence. Direct prompting methods (Mistral) results include standard

deviation (SD) over 4 runs with different examples.

System Precision Recall F1
Baselines

QA-SRL Parser (T5-LG) 58.33 1.29 2.52
Mistral (Arg, 7B) 9.9343 2024166  12.71+21
Mistral (QA, 7B) 7.04+14 114141 8.60+09
Entailment-based models

Instruct-NLI (Mistral 7B) 16.34+11  39.47+s54 22994+
NLI (DeBERTa-LG) 16.90+24 5213433 254743
SRL-NLI (DeBERTa-LG) 2541155 36.10+s52  29.28+s

Table 2: Results on the ON5V unified evaluation set
on cross-sentence arguments (see Appendix A for Full
Document results). We evaluated only those reference
and predicted arguments that their closest mention to the
predicate appears in a different sentence. All NLI meth-
ods use cross-fold validation of 4 folds to determine the
classification threshold and report mean and SD over the
test folds. Direct prompting methods (Mistral) report
mean and SD of 4 runs with different sets of examples.

that one of them is the first emitted token in the
response. To get a normalized probability of entail-
ment given the premise-hypothesis pair, we apply
the softmax function over the corresponding logit
values of "Yes" and "No" from the first decoded
vector of logits and select the probability of "Yes".

SRL-NLI Training We fine-tune our predicate-
argument-aware NLI model with the weights ini-
tialized to the aforementioned NLI model. Our
model is trained for 3 epochs, with batch size 32
and 5e-6 learning rate.

Inference We extract NP candidates that do not
overlap with existing local arguments, our candi-
date extraction is based on Spacy’s noun-chunker
(Honnibal et al., 2020), and successfully covers 80-

90% of cross-sentence arguments in several bench-
marks (Gerber and Chai, 2010; Moor et al., 2013).
We set a strict threshold for local argument veri-
fication of 0.5 for the base NLI models and 0.95
for the semantics-aware model. If a local argument
fails to be verified, it is assumed to be misplaced
and is appended to the candidate list for further
processing. All NLI-based methods use the QA-
SRL Parser internally by parsing the predicate’s
sentence to extract local arguments.

6 Results

Tables 1 and 2 present the results of the argument
detection task on nominal predicates from TNE
and verbal predicates from ONS5V, respectively. For
TNE, we report the results in two settings, (1) Full
Document considering all semantic arguments in
the entire document and (2) Cross-Sentence, fo-
cusing on arguments located in different sentences
than the predicate. This separation allows us to
analyze the parsers’ performance beyond sentence
boundaries. For ON5V, we show results for the
Cross-Sentence setting in Table 2 and defer Full
Document results to Appendix A due to our focus
on cross-sentence performance.

Across both datasets, our predicate-argument-
aware entailment model (SRL-NLI), trained on a
diverse mix of NLI datasets and further fine-tuned
on QA-SRL-derived entailment data (§4), exhibits
superior overall performance (F1) compared to all
evaluated approaches.

QOur generic approach outperforms supervised
models on TNE As shown in Table 1, our dis-



tantly supervised SRL-NLI approach achieves su-
perior performance compared to supervised models
like NP-SpanBERT and TNE-Parser, even though
these models were directly trained on TNE. This
indicates the effectiveness of our approach in tack-
ling semantic argument detection without the need
for task-specific supervision.

Predicate-Argument-aware entailment model
boost performance SRL-NLI outperforms NLI
(using the same DeBERTa underlying model) by
6.6 F1 points on TNE and 3.8 on ONS5YV, indicating
the benefit of an enhanced classifier that is sensitive
to predicate-argument semantics.

Cross-sentence is more difficult When evalu-
ated on TNE, all examined models undergo a per-
formance deterioration for the more challenging
setting of cross-sentence argument detection. The
drop in performance is especially detrimental for
the QA-SRL Parser (-24.8 F1), which can be at-
tributed to its single-sentence training scope. No-
tably, NLI-based models exhibit an on-par perfor-
mance decrease with the TNE parser, which was
supervised over task-specific document-level data.
Hence, it seems that our SRL-NLI approach enjoys
the best of both worlds — it learns document-level
semantic understanding from NLI, while special-
izing in predicate-argument semantics due to the
sentence-level QA-SRL supervision.

LLMs: Simple wins, complex stumbles Di-
rectly asking Mistral in the few-shot setting to iden-
tify all semantic arguments of a predicate within
a paragraph leads to subpar performance (40.72
vs. 58.34 F1 on TNE and 12.71 vs. 29.28 F1 on
ONSV for the best Mistral configuration). Inter-
estingly, prompting Mistral with arguments-only
prompt consistently achieves higher performance
than with QA prompt, on both TNE and ONS5V.

However, our approach of framing implicit argu-
ment identification as a series of entailment deci-
sions, and leveraging Mistral as a zero-shot entail-
ment model (Instruct-NLI) already yields remark-
able performance gains. This method surpasses
directly prompting Mistral for arguments, achiev-
ing a 5.9 Fl-score improvement on TNE and an
impressive 10+ F1-score increase on ON5V.

These results highlight the benefit of decompos-
ing complex tasks into simpler binary decisions
for LLMs, potentially due to reduced reasoning
burden and better alignment with their instruction
fine-tuning data.

7 Analysis

Our evaluation against the TNE datasets measures
unlabelled argument detection, which leaves the
role assignment accuracy of our system unexplored.
Since our approach is schema-independent, the ar-
gument’s semantic role is not provided explicitly
but is expressed through its syntactic position in the
proposition. We thus tap into the labeling accuracy
of our system through a manual analysis. Specif-
ically, we sample 50 deverbal nominal predicates
from the TNE test set along with their 260 gold
cross-sentence complements and inspect the com-
plements’ highest-ranked proposition during infer-
ence. Each proposition contains the complement
in its most probable syntactic position as ranked by
our SRL-NLI model. In order to align the setting
of our analysis to a typical use case scenario of
our method, we further run an OntoNotes parser
(Shi and Lin, 2019) over the selected propositions
to attain PropBank labels of the arguments. An
author of this paper then verified that the predicted
semantic role label matches in definition against
the semantic relation captured by TNE annotators.

Omitting 14 TNE complements that don’t corre-
spond to verbal arguments, and 20 arguments that
are missed by the OntoNotes parser, the extracted
role is accurate at 161/226 (71%) of the cases. Mis-
takes include both OntoNotes parsing mistakes, as
well as erroneous syntactic positions selected by
the NLI-based ranking.

8 Conclusions

We have demonstrated how to reformulate the prob-
lem of argument detection into an entailment task,
and successfully used it to detect arguments across
sentence boundaries where training data is inher-
ently scarce. Moreover, we have explicated the
meaning of these distant arguments in the form of
simple and easy-to-grasp propositions that keep
the correct semantic role information without com-
mitting to a specific label schema. Our proposed
method can thus augment any specialized SRL or
event-extraction schema with cross-sentence argu-
ments at test time, without additional annotation or
training. Given a sentence-level parser, one can ap-
ply it on the extracted proposition to get a label for
the captured implicit argument. The propositions
by themselves can potentially serve applications
that require information decomposition into smaller
units, e.g. SCUs (Nenkova and Passonneau, 2004)
for the summarization task and many more.



Limitations

We raise the following limitations of our method.
First, our method relies on a strong entailment com-
ponent that is sensitive to the syntactic argument
structure of the hypothesis and has a good compre-
hension of the passage. As we have discovered,
this is not a trivial task even for contemporary NLI
models.

Secondly, our method might be prone to correct
but undesired entailment judgments. For example,
when a passage describes several different events
with lexically similar predicates (e.g. two acquisi-
tion events), we might construct a hypothesis with
a participant of one event while targeting the other
event where that participant does not belong. This
problem is inherent to the entailment task. It is not
event-specific, it verifies the hypothesis against the
entire premise, without a notion of a target predi-
cate. We tried to address this by incorporating the
candidate phrase into a hypothesis with other local
arguments of the event, yet this is not a foolproof
method.

In addition, ideally, a non-entailed hypothesis
would specify which argument phrase is incorrect
or misplaced, however, we don’t have that level of
granularity in NLI, therefore we build the hypoth-
esis from the ground up, first verifying the local
arguments, and then adding candidates to different
positions one at a time. There may be a better com-
binatorial approach that adds multiple candidates
at different positions and verifies them together to
save computational steps.

Delving deeper into computational costs, com-
puting entailment for each candidate phrase mul-
tiple times may seem at first costly, however, we
have seen in practice that our method is quick to
run even on modest accelerators. Each classifica-
tion decision applies a single forward pass in an
encoder network, and the number of forward steps
is bounded by the number of candidates we ex-
amine. On the other hand, a generative approach
makes a forward pass at inference time for each
token of a predicted argument. Moreover, simple
implementation optimziation can mitigate most of
the computational cost. In a typical example, we
compute entailment over different short hypotheses
against the same long passage. So pre-computing
the attention key-values for that passage, as custom-
arily done in Decoder-Only models, can effectively
mitigate most of the required computation for a
single example.
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A ONSYV Results

System Precision Recall F1
Baselines

QA-SRL Parser (T5-LG) 89.38 37.48 52.81
Mistral (Arg, 7B) 17.01+49  21.45+s54 18.16+17
Mistral (QA, 7B) 1537436 15.49+11  15.27+19
Entailment-based models

Instruct-NLI (Mistral 7B) 33974115 61.41+4s5  16.34+1.
NLI (DeBERTa-LG) 31.28+16  69.01+20 43.03+19
SRL-NLI (DeBERTa-LG) 46.59+79  61.491+24  52.6414.

Table 3: Results on the ON5V unified evaluation set on
full-document evaluation. All NLI methods use cross-
fold validation of 4 folds to determine the classification
threshold and report mean and std. dev. over the test
folds. Direct prompting methods report an average and
std. dev. of 4 runs with different sets of examples.

For completeness, we add the results for the full
document evaluation on ON5V. We achieve com-
parable results to the QA-SRL parser on the full
document. The parser does not extract almost any
cross-sentence arguments, and its overall results
stem from its high in-sentence performance.

B ONS5V Annotation

We annotated additional arguments for the ON5V
dataset for the existing predicates in the dataset.
Annotators were instructed to add new argument
phrases and write a question for each one using
the QA-SRL question format. Our interface, de-
picted in Figure 3, presents the full document with
the predicate and all of the already marked argu-
ments from OntoNotes (Pradhan and Xue, 2009)
and ONS5YV, and a selection of candidate phrases.
Annotators were instructed to add new mentions
and do not modify existing arguments. In our expe-
rience selecting arguments from a wide candidate
list, as also performed in TNE (Elazar et al., 2022),
streamlines annotation on a long passage and helps
the annotator in covering lengthy contexts.

We scoped the annotation to be in a context win-
dow of sentences of 5 preceding sentences and 1
subsequent after the predicate. Past works have
shown that more than 90% of all implicit argu-
ments can be found within this window (Gerber
and Chai, 2010). Our phrase candidates include

System Dataset Precision Recall F1

T5-Large, retrained Verbal 91.36 64.27 75.46
T5-Large, retrained Nominal 76.16 63.73  69.39
T5-Large, retrained ON5V 76.48 84.35 80.22
T5-Small (Klein et al., 2022)  Verbal 76.20 62.40  68.60
T5-Small (Klein et al., 2022) Nominal 64.30 54.80 59.20

Table 4: Results for single sentence evaluation of the re-
trained parser on QA-SRL and ONS5V evaluation sets.

noun-phrases extracted using the same procedure
we describe in section 5, and the annotator is asked
to remove them from a "TODOQO" list if they are
not an argument, or write them a proper QA-SRL
question. If a candidate is co-referring to a current
argument, we ask the annotator to add it to its set
of answers. Otherwise, we ask them to add it as a
new QA pair, even if the question repeats itself.

We recruited 5 in-house annotators, four with
a strong background in linguistics and one native
English speaker who excelled on our qualification
assignment. We presented them the QA-SRL anno-
tation guidelines from Roit et al. (2020), and con-
ducted a short training round of 10-15 predicates,
after which we provided personal and detailed feed-
back. Each predicate took on average 5 minutes
to annotate. During the annotation period, one of
the authors examined 10-20% of each annotator’s
workload to verify correctness and proper coverage.
We paid each annotator an hourly rate of 14$, and
annotation took about 10 minutes per predicate.

C Evaluation Procedure

An argument is mapped to the entity of the highest-
ranking mention in any chain according to an over-
lap score, as long as it passes a certain threshold.
Scoring between two phrases is calculated based on
syntactical head equivalence®, which accounts for
a full match, or the token-wise intersection-over-
union (IOU) which ranges between 0 and 1. The
threshold for a match is set to 0.5 based on standard
argument evaluation criteria (Roit et al., 2020). For
each evaluated predicate, we add arguments that
did not map to any existing coreference cluster to
singleton clusters. We verify that a predicted argu-
ment that matches some gold argument according
to the criteria above, will always be mapped to the
same entity with the matching gold argument.



Implicit Arguments Annotation Interface

SNUULU pe 4 1dsL resore . ATODO
Needs are n't clear , and the state constitution makes increasing taxes and spending very difficult .

But some legislators think the time may be ripe to revise the constitution . Needs
THE IRS WILL PAY if its error burdens you with bank charges .

Policy statement P - 5 - 39 sets out terms .

the state
constitution

As a result of an erroneous IRS levy on a bank account , a taxpayer may incur administrative and overdraft
charges .

If the IRS admits its error and the charges have been paid , it will reimburse a taxpayer who has n't refused to
increasing taxes

and spending

give timely answers to IRS inquiries or has n't contributed to continuing or compounding the error .
The IRS recently amended the policy to cover stop - payment charges for checks lost by the IRS .

If the IRS asks for and gets a replacement for a check that it concedes it lost in processing , it will
some legislators

reimburse the taxpayer for the stop - payment charge on the original .

Reimbursement claims must be filed with the IRS district or service - center director within a year after the

expense accrues . the time

If the IRS seeks late - payment interest because of the lost check , you should request interest abatement , =

the constitution

T =

-
4

#1 what does something pay ? - =

#2 who pays something ? - a taxpayer -

Figure 3: Our implicit arguments annotation interface. The yellow highlighted phrases depicts the current set of
arguments, phrases in grey are candidates that need to be either removed from the TODO list or selected as an
answer to a QA-SRL question. The interface validates that the question is formatted correctly.

D QA-SRL Parsel’ EValuation [INST] Read the following text and write questions and answer

pairs about all related arguments of the verb or noun that is
marked up between <p> and </p> in the text. All questions must

We re_train thejoint QA_SRL parser (Kleln et al begin with a Wh word and use the marked up word as the main
*

verb in the question. Output each question and answer on its

2022) on a T5-Large model and report performance 900 L0

TEXT: ... <p> {predicate} </p> ... [/INST]
i i 1 1 _ (OA i} ...repeated
metrics on single sentences. Evaluation is con (vsT) T |/ 1N
1 10N- 1 {QA i} ...repeated
ducted with unlabeled mention-level metrics that (INST) (RS |/ 1NsT]
match spans between reference and predicted argu- , : ,
[INST] Read the following text and write all semantic
ments. Results are ShOWn in Table 4 Verbal and arguments of the predicate verb or noun that is marked up
i . between <p> and </p>. Output each argument separated by |
Nominal refer to the gold-standard evaluation sets TEXT: ... <p> (predicate} </p> ...[/INST]
. . {ARG 1}| {ARG 2} | ...repeated
of Roit et al. (2020) and Klein et al. (2020) respec- [INSTITEXT:... <p> {predicate} </p> ...[/INST]
. {ARG 1}| {ARG 2} | ...repeated
tively. A span match threshold of IOU >= 0.3 was [INSTITEXT:... <p> (predicate} </p> ... [/INST]

used to match previously published metrics. ) ) )
Figure 4: The Mistral specific prompts formatted both as

QA generation (top) and argument extraction (bottom).
Blue highlighting is to indicate chat instructions, green
is our task specific instruction, orange is for the query,
yellow is our example of a suitable response.

E Prompt Examples

We provide the prompt templates for both the QA
prompt and the argument prompt formatted specif-
ically as a chat for the Mistral model in Figure 4.

pair. If the argument in one of these sentences is
connected to the predicate via a preposition, we
re-use it in our semantic hypothesis as well. For
The prepositions for Indirect or Adjunct phrases  example, consider the "on the day of the bombing"
can be pre-assigned, as in the case of local argu-  argument in Figure 2, it connects with the predicate
ments, or can be inferred using an auxiliary model.  "leave" via the preposition "on" in both sentences.
To assign a preposition to an argument sourced  In the general case, we use a masked language
from the QA-SRL analysis, we inspect the depen-  model (Devlin et al., 2019) to output the highest-
dency structure of either the original sentence or  ranking preposition word given the context and the
the declarative sentence that is formed by its QA masked hypothesis. We use bert-large-cased as the
underlying ranking model.

F Implementation Details

3The head of a phrase is captured by Spacy’s dependency . .
parser (Honnibal et al., 2020) We also inspect the local QA-SRL analysis for
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linguistic attributes such as tense, modality, and
negation that affect the main verb inflection and
auxiliaries. For example, the question "Who did
not pay something" uncovers that the event is de-
scribed in the past tense and that the event did not
unfold in the sentence. We parse these attributes
from the QA-SRL question of the first argument in
the template and initialize our hypothesis accord-
ingly. When required, we modify the VERB field of
the template to include the modal verb ‘might’ or
negate the auxiliary verb and use the proper inflec-
tion.
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