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ABSTRACT

Knowledge distillation (KD) aims to transfer the power of pre-trained teacher
models to (more lightweight) student models. However, KD also poses the risk of
intellectual properties (IPs) leakage of teacher models. Even if the teacher model
is released as a black box, it can still be cloned through KD by imitating input-
output behaviors. To address this unwanted effect of KD, the concept of Nasty
Teacher was proposed recently. It is a special network that achieves nearly the
same accuracy as a normal one, but significantly degrades the accuracy of student
models trying to imitate it. Previous work builds the nasty teacher by retraining
a new model and distorting its output distribution from the normal one via an ad-
versarial loss. With this design, the “nasty” teacher tends to produce sparse and
noisy logits. However, it is unclear why the distorted distribution is catastrophic
to the student model, as the nasty logits still maintain the correct labels. In this
paper, we provide a theoretical analysis of why the sparsity of logits is key to
Nasty Teacher. Furthermore, we propose an ideal version of nasty teacher to pre-
vent imitation through KD, named Stingy Teacher. The Stingy Teacher directly
manipulates the logits of a standard pre-trained network by maintaining the values
for a small subset of classes while zeroing out the rest. Extensive experiments
on several datasets demonstrate that stingy teacher is more catastrophic to student
models on both standard KD and data-free KD. Source code and trained model
can be found at https://https://github.com/HowieMa/stingy-teacher.

1 INTRODUCTION

Knowledge Distillation (KD) (Hinton et al.l |2015) aims to transfer the ability of a pre-trained net-
work (teacher) to another network (student). It has been widely applied in many areas including
image classification |[Hinton et al.| (2015); Ma et al.[(2021a)); Chen et al.[(2021ajb), object detection
Wang et al.| (2019); [Zheng et al.| (2021)), semantic segmentation |[Liu et al.| (2019); You et al.| (2022)
and speech recognition |Oord et al.| (2018)); |You et al.| (2021abic). Typically, the teacher model
is more sophisticated with higher performance. The performance of lightweight student model
is boosted by imitating the output logits (Hinton et al., | 2015} [Park et al., |2019; Mirzadeh et al.,
2020; [Furlanello et al.| 2018} Zhang et al.| |2019; |Yuan et al.| 2020) or intermediate activation maps
(Romero et al., [2014; Zagoruyko & Komodakis| 2016} |[Passalis & Tefas} 2018} [Ahn et al.| 2019; L1
et al.,[2020) from teacher models.

Recent work (Ma et al.| 2021b) suggests that KD, on the other hand, poses the risk of exposing
intellectual properties (IP). Even if the trained model is released as “black boxes”, it can still be
cloned by imitating the input-output behaviors, as some data-free KD methods (Lopes et al.| 2017}
Chen et al.|[2019;Nayak et al.}|2019; |Yin et al., 2020; |Truong et al.,|2021}|Yin et al.,2021) eliminate
the necessity of having access to the original training examples. To alleviate this side effect of KD,
(Ma et al., 2021b) introduces the concept of the Nasty Teacher: a specially trained teacher network
that yields nearly the same performance as a normal one, but significantly degrades the performance
of student models trying to imitate it. To this end, (Ma et al.,|2021b) proposes to obtain special logits
via adversarial training that maximizes the difference between the output of the nasty teacher and a
normal pre-trained (teacher) network. With this design, the accuracy of the student learned from the
nasty teacher can be degraded by over 10%.


https://github.com/HowieMa/stingy-teacher

ICLR 2022 PAIR?Struct Workshop

However, several issues remain unsolved in the aforementioned Nasty Teacher approach. First, it
is unclear why changing the distribution of the output probabilities is catastrophic to the student
model. Although the logits are noisy, it still has the correct output label. The student should not
be significantly degraded as long as it learns the teacher well. Second, the accuracy of the Nasty
Teacher model can also drops over 2%, which is unacceptable in many applications. In this case, the
protection of IP comes at the cost of the accuracy of the model. One may need to carefully balance
the pros and cons of the nasty teacher, which undermines its utility.

In this paper, we empirically validate that the sparsity of logits is key to the nasty teacher, for which
we also provide a theoretical analysis to understand when sparse logits can be useful to degrade
the performance of student networks. Contrary to the common belief, we find out that the logits
do not have to be very noisy (in which case the teacher becomes “ignorant” itself) — as long as the
teacher supplies sparse logits, the student model will suffer. Based on this empirical observation, we
propose to construct the Stingy Teacher, an ideal version of the nasty teacher to prevent knowledge
leaking and unauthorized model cloning. The stingy teacher directly manipulates the logits of a pre-
trained network by keeping the values for the classes with relatively high probabilities, and zeroing
out the rest. Such special sparse logits can still preserve the teacher’s accuracy (hence the teacher
itself is still “knowledgeable”), as well as the partial inter-class similarity structure. However, it is
“stingy” and refuses to provide full information of all classes. This simple design is innocuous to
the original trained model and requires no retraining, as we just manually re-shape its logits without
touching pre-trained weights. Thus, it is easy to be applied to any huge networks in real applications.
Although ideally, we believe the property of the stingy teacher is potentially helpful for designing
loss function in the future work. We summarize our contributions as follows:

* We provide a theoretical understanding of why introducing sparsity to the output probabil-
ities makes KD ineffective to distill knowledge from the teacher model.

* We propose a simpler yet more effective Nasty Teacher called Stingy Teacher. It directly
manipulates the logits by keeping the values for the top-N classes and zeroing out the rest.
Thus, there is no accuracy drop for the teacher models.

* Extensive experiments on both standard KD and data-free KD demonstrate that the Stingy
Teacher can make the student model learned from it fails substantially in terms of accuracy.

2 PRELIMINARIES

Knowledge Distillation The key idea of KD (Hinton et al., 2015) is to force the student network
to imitate the input-output behavior of pre-trained teacher networks. Suppose there are K classes
in total, the student model S produces the soft probability of each label £k € C = {1,2,..., K}:
p2(k) = o.(z7), where z is the logit from S and o, (-) is the scaled Softmax function with
temperature 7. Similarly, denote pI (k) = o, (z}) as the soft output from the pre-trained teacher
network 7. The student S is trained by minimizing the cross-entropy loss (-, -) and the K-L
divergence KCL(+, -) between the student and teacher predictions:

Lip = o’ KL(L, pY) + (1 — ) H(p7_, (), v).- (1)

Nasty Teacher The Nasty Teacher (Ma et al.,2021b) is a defensive approach for model owners
to alleviate the issue of model cloning through KD. By definition, the accuracy of the nasty teacher
is the same as its normal one, while any arbitrary student networks who attempt to imitate it will
be degraded. The nasty teacher NT' propose a strategy to maintain the correct class assignments,
while disturbs its in-correct class assignments. In detail, it is trained from scratch by simultaneously
minimizing the cross-entropy loss with the hard label and maximizing the K-L divergence with the
pre-trained normal teacher network 7":

Lyr =HE",y) — wr*KLET p27), 2
where w is the weight to control the trade-off between performance suffering and nasty behavior.

3 METHODOLOGY

3.1 SPARSE PROBABILITIES: KEY TO THE SUCCESS OF NASTY TEACHER

The previous work (Ma et al., 2021b) hypothesizes that the noisy responses of NT' give a false
sense of generalization, and thus degrade the accuracy of student models. However, even if the
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“dark knowledge” encoded in the output is disturbed, the output still maintains the (almost) correct
predictions. The student network should give a reasonable prediction as long as it perfectly mimics
the disturbed logits. Thus, we question whether the noise is the major effect which results in the
accuracy drop of the student.

Besides noise, we find that the probability distribution produced by the nasty teacher also yields
another interesting property, the Sparsity. When increasing the probability of some incorrect cate-
gories, the nasty logits meanwhile reduce or even zero out the probabilities of the rest categories.
Thus, the nasty logits are more likely to be sparse labels, rather than a smooth distribution. Our
question of curiosity is hence: “Is sparsity the key to the nasty teacher”?

In this section, we provide a mathematical analysis to understand why the student model will be
degraded when imitating the sparse probabilities, whether it is noisy or not. Denote the sparse
probabilities as pL (k). Compared with the original distribution pZ (k), we only preserve the proba-
bilities of a subset Ml (M C C) of categories, while setting the probabilities of the rest categories to
0. The label of the top-1 prediction is always preserved in M. Specifically, we define the adjusted
probability as pL (k) = pI'(k) + &(k) if k € M, and 0 otherwise. The (k) is added to ensure
that the adjusted probabilities are properly normalized (i.e., >, p~ (k) = 1). Let N = |M]| with
1 < N < K. Wedefiner = % as the sparse ratio of [)Z(k). Moreover, (Ma et al., 2021b)) finds that
the accuracy of the student network is much worse when imitating the nasty teacher with a larger 7.
Typically, the output will be very soft and similar to a uniform distribution with a large 7 (Hinton
et al., 2015), especially when the total number of class K is large. Therefore, we assume that all
pL (k) (except for the top-1 prediction) are equal when T is relatively large, and apply a uniform
distribution to approximate them for simplicity. Let j be the class of the top-1 prediction, p (k) can
be approximated by:
o [ k- itk #j
pT(k)’“{ Lk -1, ith= ®)

where € is sufficiently small (0 < ¢ < %). Thus, the residual value §(k) can be approximated as
d(k) ~ 1&{ for all £ € M. The detailed derivation process is presented in Appendix When the
student learns from the sparse probabilities 57 (k), the KL divergence in Eq. |1|is rewritten as :

KL(pE,p?) = ZPT Ylogp? (k) = — > (pT (k) + (k) log p (k)

keM
1—7r 1 g
= > pr(R)logpl(k) — —— > = logp? (k) &)
keM keM
1 s
~ K Z log p7 (k)
keM

For the first approximation, we replace (k) with 1T ¢ » and for the second approximation, we replace

pZL (k) with % Thus, when learning from the sparse logits, the loss function in Eq. is rewritten as:

Lxp=(1—a)H(p® )+ %7; l— Z logpf(k:)] o)

keM

Compared with learning from the hard label, the second term in Eq. [5|equally maximizes the prob-
abilities of all classes within the subset M. This term forces the model to produce high responses
on all categories within the subset M. A sparse logit (i.e., » < 0.1) leads to a large weight 1/r,
making the student model spend more effort to optimize the second term. Consequently, the student
model cannot identify the difference between categories within the subset M and undoubtedly give
a wrong prediction. Similarly, a larger « or 7 leads to the same effect.

3.2 STINGY TEACHER

Based on the above theoretical analysis, we propose a new method that directly manipulates the out-
put logits of any pre-trained model to achieve the effect of the nasty teacher, named Stingy teacher.
The stingy teacher only keeps the information for the top-N classes, while zeroing out the rest. Thus,

'we intend to discard the entropy of ﬁf(k) as it does not contribute to the gradient of student S
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the logit still maintains the similarity structure among categories, but it is “stingy” as it only provides
the information of a few categories. Given the logits z,{ from the pre-trained model, the stingy logit
27T still keep the value 2] if k is in the top-N subset M°T'. Otherwise, it is set to negative infinity.

4 EXPERIMENTS

4.1 STINGY TEACHER ON STANDARD KNOWLEDGE DISTILLATION

In the standard KD, the student has the access to the original training examples. We follow all
experimental settings in (Ma et al.,[2021b)) to explore our stingy teacher on standard KD.

=== Scratch === KD (normal) === KD (reverse) KD (stingy - sparse) KD (stingy - smooth)
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Figure 1: Comparison of KD from three types of logits: the “stingy-sparse”, the stingy-smooth, and the
“reversed logits”. Experiments are conducted on CIFAR-100.

4.1.1 THE EFFECT OF SPARSE LOGITS

We firstly compare the stingy logits (“stingy - sparse”) with two variants. 1) “stingy - smooth’:
We keep the same subset of logits, but replace the rest of logits with their average; 2) “reversed
logits”: We keep the top-1 prediction, but reverse the value of the rest of the logits. Both of them
still maintain the smoothness property. We explore the relationship between the sparse ratio r and
the accuracy of student networks distilling from each types of logits. Results are presented in Fig. [1}
Firstly, when the logits is smooth, even if the dark knowledge is limited, the student can still obtain
some improvements. This also supports that KD plays the role of label smooth regularization (Yuan
et al.|2020). Secondly, when the logits are misleading, the accuracy of student can be downgraded
5% to 8%. When the capacity of student is huge, the damage is mitigated. This suggests that a noisy
logits is somewhat harmful for lightweight student networks. Thirdly, when the logit is sparse, the
accuracy of the student model is significantly degraded, whatever the capacity of the student model.
When sparse ratio r is around 10%, most students achieve the worst performance, i.e, more than
20% accuracy drop. All of the experiments support our claim that sparsity is the major reason leads
to the accuracy drop of student networks, compared with noise.

Table 1: Comparison of the nasty teacher and the stingy teacher on CIFAR-100.

|  Teacher | Students accuracy after KD
Teacher network

| accuracy | Shufflenetv2 | MobilenetV2 | ResNet-18 | Teacher Self
Student baseline | - | 71.17 | 69.12 | 77.44 | -
ResNet-18 (normal) 77.44 74.24 (+3.07) | 73.11 (+3.99) 79.03 (+1.59) 79.03 (+1.59)
ResNet-18 (nasty) 77.42 (-0.02) 64.49 (-6.68) 3.45 (-65.67) 74.81 (-2.63) 74.81 (-2.63)
ResNet-18 (stingy) 77.44 (-0.00) | 50.22 (-20.95) | 6.78 (-62.34) 54.44 (-23.00) 54.44 (-23.00)
ResNet-50 (normal) 78.12 74.00 (+2.83) | 72.81 (+3.69) | 79.65 (+2.21) | 80.02 (+1.96)
ResNet-50 (nasty) 77.14 (-0.98) | 63.16 (-8.01) | 3.36(-65.76) | 71.94(-5.50) | 75.03 (-3.09)
ResNet-50 (stingy) | 78.12 (-0.00) | 49.05 (-22.12) | 5.52 (-63.60) | 55.44 (-22.00) | 55.63 (-22.49)
ResNeXt-29 (normal) 81.85 7450 (+3.33) | 72.43 (+4331) | 80.84 (+3.40) | 83.53 (+1.68)
ResNeXt-29 (nasty) 80.26 (-1.59) | 58.99 (-12.18) 1.55 (-67.57) 68.52 (-8.92) 75.08 (-6.77)
ResNeXt-29 (stingy) 81.85 (-0.00) | 49.46 (-21.71) | 6.93(-62.19) | 58.70 (-18.74) | 54.18 ( -27.67)
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4.1.2 COMPARISON WITH NASTY TEACHER

We apply the surprising property of sparse logits to the standard KD and compare it with the nasty
teacher. We empirically set the sparse ratio to 0.1. Table[I]show the results on CIFAR-100. Results
on CIFAR-10, Tiny-ImageNet and ImageNet are presented in Appendix [A2] The performance of
the stingy teacher always matches that of the normal teacher perfectly, as we only manipulate the
logits. Meanwhile, the accuracy of students can be further degraded when distilling from the stingy
teacher. Moreover, stingy teacher is more catastrophic to large student networks. In conclusion, the
stingy teacher can significantly downgrade the performance of any network trying to clone it without
sacrificing its own accuracy.

4.2  STINGY TEACHER ON DATA-FREE KNOWLEDGE DISTILLATION

In practice, as long as the student cannot perform well via the standard KD, the attacker can just train
the model solely with the hard label. Instead, KD without accessing any training sample is a more
realistic way, where the student can only access the output distributions from the teacher. In this
way, the teacher is released as “black boxes”. Following Ma et al.[(2021b)), we explore the stingy
teacher on one popular data-free KD method, i.e., DAFL [Chen et al.| (2019). Results are shown in
Table 2] Noticeably, the accuracy of students can still be downgraded up to 2% when distilling
from the stingy teacher. Thus, the sparse logits also have the ability to downgrade the data-free KD.
Although the nasty teacher can further destroy the student, it achieves this at the cost of accuracy
drop, while the stingy teacher can exactly maintain the origin accuracy.

Table 2: Data-free KD from nasty teacher on CIFAR-10 and CIFAR-100

dataset | CIFAR-10 | CIFAR-100
Teacher Network | Teacher Accuracy |  DAFL | Teacher Accuracy |  DAFL
ResNet34 (normal) | 95.42 | 9249 | 76.97 | 7106

ResNet34 (nasty) 94.54 (-0.88) | 86.15(-6.34) |  76.12(-0.79) | 65.67 (-5.39)
ResNet34 (stingy) 95.42 (-0.00) | 90.26 (-2.23) |  76.97 (-0.00) | 69.02 (-2.04)

4.3 DISCUSSIONS

We acknowledge that the stingy teacher is a relatively ideal version of the nasty teacher, as the logits
are obtained in a post-processing way, rather than obtained from the vanilla output. On standard KD,
we aim to use the stingy logits to reveal the effect of sparsity on the success of the nasty teacher.
Experiment results suggest that sparsity is more effective than noise. We believe this interesting
property of nasty logits can help the community to design extra loss functions or training strategies
to make the model directly produce better nasty logits. On data-free KD, since the teacher is already
released as a “black box”, applying a post-processing method on the origin output is a reasonable
way. It is true that some naive post-processing strategies such as releasing the top-1 / top-N cat-
egories can avoid distilling. Nevertheless, many practical cloud APIs, such as Google Vision Al,
prefer to provide the probabilities to customers. In this case, the stingy logits can maximally main-
tain the property of the origin logits, such as the relative relationships among the top categories. To
this end, the stingy teacher does not hurt the normal usage of the black-box API, while still has the
ability to avoid distillation.

5 CONCLUSION

In this paper, we demonstrate that the sparsity of the logits is the main reason for the accuracy drop
of student networks in the setting of the nasty teachers. Based on this property, we propose the
stingy teacher. The stingy teacher is simple yet effective, which is implemented by keeping a small
subset of top logits and zeroing out the rest. Extensive experiments demonstrate that our method
is more catastrophic to student networks on standard KD and also effective on data-free KD. We
believe this relatively ideal version of the nasty teacher can motivate the community to design better
model protection strategies in the future.
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Al DETAILED MATHEMATICAL DERIVATION

In this appendix, we give detailed derivation process of Eq. [} When the temperature 7 is high, we
can use a uniform distribution to approximate pZ (k). As in Eq. [3| the soft probabilities pZ (k) can
be approximated with:
1 . .
T ~ 6 if k # J
p*“”{§+4K—1y ik = &
Where € is a neglectable factor (0 < € < %), and j is the original top-1 prediction. The new sparse
logits pZ (k) is defined with:
_ T(k)+6(k), ifkeM
pZ(k)%{ g:—( ) (k) ifk ¢ M (A2)
Once zeroing out the probabilities of class k ¢ M, the total discarded probabilities P; can be derived
by:
1

Pr= (K = ML) = (K = ) (= ) = (5 = k) (g —¢) = (1= em)1 =) A)

Again, r = % is the sparse ratio, and N is the total number of element in the subset M. Thus, the
total preserved probabilities of class k € M is

Pr=1-P1=1—-(1—-€eK)1—r)=r+eK(1—7r) (Ad)
To ensure the sum of 7 (k) is equal to 1, we need re-normalize the probabilities of the preserved

categories k € M. Here we just consider the simplest additional way, and distribute P; onto class
k € M based on the original probability pZ (k). Thus, the additional term §(k) can be writen as

T(k
N@:pngl (A5)

Specifically, when k& # j, we have
T 1 2
pT (k) L e (1—eK)* 1-r
= = 1-eK)(1—-r)=
P P1 r—i—eK(l—r)( eK)1 =) r+eK(1—r) K
Since € < %, wehave 0 < eK < 1,thus (1—eK)?~ 1. Asr < 1,r+eK(1—r) <r+eK ~r.
Therefore, we can approximate 6 (k) with
1—eK)? 1— 1—
5(k) = (1—€K) o r
r+eK(1—r) K rK

5(k) (A6)

(AT)

When k = j, we have
: 1—r 1-—7r
) =P1— (N =1k kemprzj =~ (1 —71)— (rK —1) K - K (A8)

1—r

In conclusion, we can approximate §(k) with % for any k € M.

A2 MORE EXPERIMENTAL RESULTS

A2.1 COMPARISON WITH NASTY TEACHER

Besides CIFAR-100, we also compare the stingy teacher with the nasty teacher on CIFAR-10 and
Tiny-ImageNet. Results are presented in Tab. [AT]and Tab. [A2] The accuracy of students can still be
further degraded when learning from the stingy teacher on CIFAR-10 and Tiny-ImageNet.

A2.2 VISUALIZATION OF LOGITS

Figure [AT] compares the soft probabilities produced by the normal teacher, the nasty teacher, and
the stingy teacher respectively. Compared with the normal response, the nasty logit is very noisy
and it significantly increases the probabilites of some irrelevant classes. As a result, it is easy to
be identified by the attacker. Oppositely, the stingy logits still maintain the relatively relationships
among the top categories, so it still provides the normal function as the original network.

Al
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Table Al: Comparison of the nasty teacher and the stingy teacher on CIFAR-10.

| Teacher | Students accuracy after KD
Teacher network

| ACCUESY 1 CNN | ResNetC-20 | ResNetC-32 | ResNet-18
Student baseline | - | 86.64 | 92.28 | 93.04 | 95.13
ResNet-18 (normal) 95.13 87.75 (+1.11) | 92.49 (+0.21) | 93.31 (+0.27) | 95.39 (+0.26)

91.55 (-3.58)
92.46 (-2.67)

ResNet-18 (nasty)
ResNet-18 (stingy)

94.56 (-0.57)
95.13 (-0.0)

71.83 (-14.81)
82.77 (-3.87)

74.22 (-18.06)
68.86 (-25.42)

79.66 (-13.38)
74.34 (-18.70)

Table A2: Comparison of the nasty teacher and the stingy teacher on Tiny-ImageNet

|  Teacher | Students accuracy after KD

Teacher network accurac

Y Shufflenetv2 | MobilenetV2 | ResNet-18 | Teacher Self
Student baseline | - | 55.74 | 51.72 | 58.73 | -
ResNet-18 (normal) 58.73 58.09 (+2.35) 55.99 (+4.27) | 61.45 (+2.72) 61.45 (+2.72)
ResNet-18 (nasty) 57.77 (0.96) | 23.16 (-32.58) | 1.82 (-49.90) | 44.73 (-14.00) | 44.73 (-14.00)
ResNet-18 (stingy) | 58.73 (-0.00) | 34.36 (-21.38) | 5.55 (-46.17) | 33.34 (-25.39) | 33.34 (-25.39)
ResNet-50 (normal) 62.01 58.01 (+2.27) | 54.18 (+2.46) | 62.01 (+3.28) | 63.91 (+1.90)

ResNet-50 (nasty) 60.06 (-1.95) | 41.84(-13.90) | 1.41(-50.31) | 48.24 (-10.49) | 51.27 (-10.74)
ResNet-50 (stingy) 62.01 (-0.00) | 28.03 (-27.71) | 5.41(-46.31) | 37.05 (-21.68) | 34.26 (-27.75)

ResNeXt-29 (normal) 62.81 57.87 (+2.13) | 54.34 (+2.62) | 62.38 (+3.65) | 64.22 (+1.41)
ResNeXt29 (nasty) | 60.21 (-2.60) | 42.73 (-13.01) | 1.09 (-50.63) | 54.53 (-4.20) | 59.54 (-3.27)
ResNeXt29 (stingy) | 62.81 (-0.00) | 30.98 (-24.76) | 9.65 (-42.07) | 30.70 (-28.03) | 34.67 (-28.14)

A2.3 RESULTS ON IMAGENET

The accuracy of the nasty teacher is sensitive to the adversarial weights w in the retraining process,
thus the model owner need to pay lots of effort to exploring the best w. On the contrary, without
the retraining process, our stingy teacher can be easily scaled up to huge datasets. We evaluate the
stingy teacher on ImageNet. As shows in Table [A3] when distilling from a stingy DenseNet-121,
the accuracy of students can be degraded up to 37.55%. As a result, our stingy teacher is also more
favorable for protecting huge models in real applications.

Table A3: Experimental results on ImageNet.
Model | Baseline | self-KD | KD (normal T) | KD (stingy T)

ResNet-18 | 69.84 | 70.42(+0.58) | 70.40 (+0.56) | 32.29 (-37.55)

A2.4 ABLATION STUDIES OF STINGY TEACHER ON STANDARD KD

Sample of subset The stingy teacher preserves the logits of the top IV categories to maintain the
dark knowledge. We denote it as “fop logits” for short. We then explore the performance of other
possibility to build the subset M. Specifically, we design another sparse logits that concatenates the
top one logits and the N - 1 smallest logits, and we denote it as “least logits” for short. The least
logits can be regarded as the worst sparse logits, as it masks out all meaningful dark knowledge, and
enlarges the least related categories instead. Figure[AZ] presents the comparison results. Obviously,
at around the 10% sparse ratio, both top logits and least logits achieve the greatest damage to the
student networks. This is consistent with our analysis in Eq. [5] that when r is small, the sparse
logits should be able to degrade the student networks, whatever subset we use. When r is equal to
%, both of them degenerate into the hard label, thus they have the same performance. When r is
large, the damage from both types of logits is alleviated, as the weight on the second term of Eq.
[ is reduced. However, the least logits always leads to a worse accuracy of students than the top
logits. We believe that the irrelevant classes in M provide harmful interference to the learning of
students, and make the learning much difficult. This also reveals that dark knowledge is beneficial
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Figure Al: The visualization of logit responses produced by a normal ResNet-18 (blue), a nasty ResNet-18

(yellow), and a stingy ResNet-18 (orange) trained on CIFAR-10. We present the probabilities after temperature-
scaled softmax, where 7 is 4.
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to the student networks. Although the performance of the least logits is promising, considering the
similarity to the original logits, the top logits is still a favorable choice of the stingy teacher.
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Figure A2: Comparison of sparse logits built with top N categories (top logits) and the combination of the
top-1 class and N-1 smallest probabilities (least logits). Experiments are conducted on CIFAR-100.

Temperature We also conduct ablation studies to explore the effect of 7 on the stingy teacher.
We keep the sparse ratio = 0.1 and vary the temperature 7, from 1 to 20. As in Figure [A3] with
a larger 7, the student can also be further degraded when learning from the stingy teacher. When
reducing 7, the student networks can recover some performance. As supported by Equation [5] a
small 7 turns the weights of the second term down, and thus mitigates its negative effect. Moreover,
we cannot approximate the soft probabilities pZ (k) with the uniform distribution when 7 is small.
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Figure A3: Ablation studies on temperature 7. Experiments are conducted on CIFAR-100.
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