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ABSTRACT

The inverse folding of proteins has tremendous applications in protein design
and protein engineering. While machine learning approaches for inverse fold-
ing have made significant advancements in recent years, efficient generation of
diverse and high-quality sequences remains a significant challenge, limiting their
practical utility in protein design and engineering. We propose a probabilistic
flow framework that introduces three key designs for designing an amino acid se-
quence with target fold. 1) At the input level, compare to existing inverse folding
methods, rather than sampling sequences from the backbone scaffold, we demon-
strate that analyzing a protein structure via the local chemical environment (micro-
environment) at each residue can come to comparable performance. 2) At the
method level, rather than optimizing the recovery ratio, we generate diverse sug-
gestions. 3) At the data level, during training, we propose to do data augmentation
with sequence with high sequence similarity, and train a probability flow model to
capture the diverse sequence information. We demonstrate that we achieve com-
parable recovery ratio as the SOTA inverse folding models with higher inference
efficiency and flexibility by only using micro-environment as inputs, and further
show that we outperforms existing inverse folding methods in several zero-shot
thermal stability change prediction tasks.

1 INTRODUCTION

Protein engineering and design (e.g., AlQuraishi, 2019; Kuhlman et al., 2003; Huang et al., 2016;
Kuhlman & Bradley, 2019) are rapidly growing interdisciplinary fields that encompass computa-
tional and experimental methods aimed at discovering amino acid sequences to achieve desired
functions or physicochemical properties (e.g., Kuhlman & Bradley, 2019; Shroff et al., 2020; Paik
et al., 2021; Yang et al., 2019; Wittmann et al., 2021). One of the key challenges in protein engi-
neering is identifying residue primed to improve a particular phenotype such as expression (Daly
& Hearn, 2005), stability (Socha & Tokuriki, 2013), activity (Fox et al., 2003), etc, upon mutation.
Machine learning (ML)-guided protein engineering has emerged as a promising approach to address
this challenge; so far, several machine learning algorithms have demonstrated the ability to learn
meaningful representations of the mutational landscape to accelerate the identification of gain-of-
function mutations. (e.g., Shroff et al., 2020; Paik et al., 2021; Yang et al., 2019; Wittmann et al.,
2021; d’Oelsnitz et al., 2023; Lu et al., 2022b; Diaz et al., 2023).

One common practice in structure-based ML-guided protein design and engineering is to train on
self-supervised learning tasks, such as inverse folding, and masked residue prediction, to learn per-
residue likelihoods of amino acids. (e.g., Shroff et al., 2020; Lu et al., 2022b; Paik et al., 2021;
d’Oelsnitz et al., 2023). Inverse folding aims to predict the amino acid sequence that can fold into
a specific protein backbone scaffold while masked residue prediction aims to predict the masked
amino acid from its surrounding atomistic chemical environment (microenvironment) (Dauparas
et al., 2022; Torng & Altman, 2017). These self-supervised tasks enable scaling to vast amounts
of unlabeled protein data and provide meaningful representations to fine-tune on downstream tasks
(Townshend et al., 2020; Jing et al., 2020).

It is quite common in nature for proteins that have a sequence similarity of at least ∼30% to have a
structurally similar scaffold (Stern, 2013; Rost, 1999). Once we go below 30% sequence similarity,
this fact begins to break down and is known as the “twilight zone” (Rost, 1999). This scaffold
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degeneracy is the underlying principle that drives the grouping of proteins into families and domains
(e.g., Fox et al., 2014; Sillitoe et al., 2021; Paysan-Lafosse et al., 2023). However, current inverse-
folding frameworks demonstrate a narrow range of sequence diversity compared to the observed
distribution of extant proteins. This has motivated the development of ML methods that can suggest
a diverse set of functionally plausible sequences for a given fold (Li et al., 2020). Here, we propose
one micro-environment based probability flow (MeFlow): a rectified flow-based method (Liu, 2022;
Lipman et al., 2022) that predicts protein sequences by representing the protein backbone as per-
residue micro-environments. To promote more diverse generation, we augment the wild-type protein
sequences using the other sequences that exhibit high sequence similarity.

To assess the effectiveness of our approach for protein sequence prediction, we compare the wild-
type sequence recovery ratio with other methods on CATH 4.2 (Sillitoe et al., 2021). CATH is a
widely used database that categorizes proteins based on their evolutionary structural similarity. We
achieve high recovery ratios, indicating its effectiveness in accurately predicting a scaffold’s native
sequence. To further evaluate the folding quality of the generated diverse sequences, we compute the
AlphaFoldV2 (Jumper et al., 2021) scores. To evaluate diversity, we compare relative hamming dis-
tance and ESM2 embedding distance of the generated sequences versus wildtype and show MeFlow
produces a more diverse set of sequences.

Contributions We present three key contributions: (1) we use a masked micro-environment ap-
proach to perform amino acid prediction for target fold, which leads to faster training and inference
and improved accuracy; (2) we give the first probability flow based method to generate diverse se-
quences conditioned on micro-environments with data augmentation, leading to considerably more
diverse overall sequences versus state-of-the-art inverse folding tools; (3) we illustrate that top-
performing inverse folding tools might not be as effective in zero-shot single-mutation engineering
scenarios. More specifically:

• MeFlow splits the protein scaffold into per-residue microenvironments instead of using the
entire backbone scaffold as the input. This makes it easy to parallelize, leading to inference
time on the order of seconds while training time is approximately five GPU days. the
recovery ratio aligns with or even outperforms the ones with the entire backbone structure
as inputs. In comparison, MPNN (Dauparas et al., 2022) inference takes over 1,000 seconds
and ESM inverse folding (ESM-IF) (Hsu et al., 2022) takes hundreds of GPU days to train.
Moreover, MeFlow achieves a 53.53% recovery ratio on CATH; while MPNN and ESM-IF
achieves lower than 50% recovery ratio.

• MeFlow yields the first probability flow generative model for sequences conditioned on a
particular micro-environment. We further introduce data augmentation in the amino acid
label space to encourage diversity. This provides faster and more expressive exploration
of the solution space compared to prior works, (e.g., beam-search with MPNN (Dauparas
et al., 2022)). It improves sequence diversity (as measured by traditional metrics such as
hamming distance and ESM2-embedding distance) by 10% over prior work.

• On several single-point mutation fitness prediction benchmarks, our model achieves im-
provements over ProteinMPNN. In contrast, despite their recent advancements, current
high-accuracy inverse folding tools still lag behind ProteinMPNN. Our analysis under-
scores the significance of incorporating diversity during model design.

2 BACKGROUND AND RELATED WORKS

Machine Learning Based Inverse Folding Inverse folding is the problem of designing a protein
sequence that will fold into a target scaffold with desired properties (Godzik et al., 1993). It has been
a long-standing challenge in computational biology and has important applications in protein-based
biotechnology. Physics-based models have also been developed for inverse folding (e.g., Alford
et al., 2017; Dahiyat & Mayo, 1997; DeGrado, 1997). These methods use energy functions which
directly models the physical basis of a protein’s folded state and search for the optimal sequence
that maximizes the thermodynamic stability of a given protein structure. Recently, machine learning
approaches have shown promising results in addressing the inverse folding problem (e.g., Hsu et al.,
2022; Dauparas et al., 2022; Gao et al., 2022).
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The most effective approach is to train an auto-regressive prediction model that generates amino
acid sequences. For example, ESM-IF (Hsu et al., 2022) uses an encoder-decoder architecture that
makes use of geometric vector perceptron (GVP) and transformer blocks and outputs the most pos-
sible amino acid sequence given the backbone structure as input. ProteinMPNN (Dauparas et al.,
2022) turns the protein backbone into a residue-level graph and uses a message-passing graph neural
network (MPNN) in an encoder-decoder architecture to decode the sequence in a sequential or non-
sequential auto-regressive fashion. PiFold (Gao et al., 2022) introduces non-autoregressive fashion
and GVF (Mao et al., 2023) improves the GVP layer of a GNN, and come to better recovery ra-
tio in commonly-used benchmarks. Overall, machine learning-based methods for inverse folding
are a valuable approach to protein design because they can outperform physic-based methods with
a fraction of the computational cost. Zheng et al. (2023) proposes to use inverse folding model
information to improve a masked language model based protein designer.

Another possible approach is to use recently-developed probability flow based models. In the liter-
ature, researchers have used generative models to design small molecules or DNA sequences (e.g.,
Brock et al., 2016; Wu et al., 2022; Trippe et al., 2022; Gupta & Zou, 2019; Xu et al., 2022). In our
work, we try to solve the problem only with micro-environment information to understand whether
it is necessary to model the full backbone as inputs. We further apply probabilistic flow (e.g., diffu-
sion) model and display the advantages for single-mutation protein engineering.

Probabilistic Flows In recent years, researchers have been trying to improve the generative mod-
els by breaking down the one-step mapping into multiple steps (e.g., Song & Ermon, 2019; Song
et al., 2020; Song & Ermon, 2020; Song et al., 2021; Zhang et al., 2023). This can be done in an
ODE (Zhang et al., 2022; Liu, 2022) or SDE (Meng et al., 2021; Song et al., 2020) fashion. The
denoising diffusion probabilistic models (DDPM) Ho et al. (2020) are among the approaches that
have demonstrated impressive flexibility and power in generating high-quality samples in various
domains, such as large-scale image benchmarks (e.g., Ho & Salimans, 2022; Saharia et al., 2022;
Nichol et al., 2021). Consequently, the diffusion model has become a mainstream approach to trans-
porting noise to the target distribution. Despite the success of DDPM in generating high-quality
samples on large-scale benchmarks, a drawback with this approach is that it requires hundreds of
simulation steps to generate desired samples. Previous works have proposed strategies to reduce the
simulation steps and accelerate the learning of the transport process. For instance, DDIM (Zhang
et al., 2022) formulates the sampling trajectory process as an ODE. FastDPM (Kong & Ping, 2021)
and its variants bridge the connection between the discrete and continuous time steps. However,
simplifying generation process into a few step simulation remains a challenge; knowledge distilla-
tion methods have shown promise but have yet to match the performance with a single or few steps.
Recently, (Liu, 2022; Liu et al., 2022) propose Rectified Flow and uses ReFlow operation to reduce
the inference simulation steps into a single step.

Neural probabilistic flows such as Neural bridges (Wu et al., 2022; Wang et al., 2021) and DDPM,
have recently demonstrated their powers in image generation and other real-world applications
(Nichol et al., 2021; Lu et al., 2022a). These models repeatedly feed forward the input data de-
pendent on time t ∈ [0, 1] and then output the final output. The core idea is to learn a probabilistic
model that can generate samples from a target distribution π1 by gradually transporting a distribution
π0 through a sequence of diffusion steps. Therefore, during training, these models target mimicking
trajectories from the real distribution to a random distribution. For example, the well-known method
DDPM (Ho et al., 2020) trains the model with

min
θ

Et,x1,ϵ

[
∥ϵ− vθ(

√
α̂tx1 +

√
1− α̂tϵ, t)∥2

]
, (1)

where vθ is the model parameterized by θ, x1 denotes the real data and ϵ = x0 is the random
noise. Intuitively,

√
α̂tx1 +

√
1− α̂tϵ is the interpolation of x1 ∼ π1 and ϵ ∼ π0. Recently, Liu

(2022) proposes to simplify the training objective by converting the trajectories to straight lines and
removing the noise on the trajectories. Concurrent works (Lipman et al., 2022; Liu et al., 2022)
analyze more variants and theoretical results, and we introduce more details in the Section 3.
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3 METHOD

Local Chemical Environments as Inputs We aim to identify the amino acid sequence that aligns
with a specific protein backbone structure. In this study, we diverge from the traditional full back-
bone structure approach to inverse folding. Instead, we focus solely on the local chemical envi-
ronment as our input. Consequently, for a single protein sequence’s backbone, we partition it into
M distinct micro-environments, each corresponding to an amino acid in the sequence. Our goal is
to explore whether the overarching global structure or the intricate local structure has difference in
achieving the desired target fold.

Consider a local chemical environment within a protein’s backbone structure. This environment is
represented by a set of atoms, Env = {ai}Ni=1 where each atom ai = {ci, oi, pi} comprises its atom
type oi, the 3D coordinate ci and the physical properties pi. Our objective is to determine the target
amino acid X given all the atoms {ai}Ni=1 as inputs. X ∈ F20

2 is a set of one-hot encoded vectors
for the 20 amino acid (side chain) type, F2 = {0, 1} is a finite space.

Training Probability Flow Network We employ the rectified flow (Liu, 2022; Liu et al., 2022)
to construct a conditional generative model that generates amino acid types based on the provided
micro-environment. Our model starts with a Gaussian noise X0 ∈ RM×20 at t = 0 and uses an ODE
to update it to X1 ∈ RM×20, which matches the data distribution. We relax X to the continuous
space R instead of F2 and use vθ to denote the velocity field network, which is defined by the
following process

dXt︸︷︷︸
drift

= vθ(Xt, t | Env)︸ ︷︷ ︸
velocity

dt︸︷︷︸
time interval

, with t ∈ [0, 1], (2)

where Xt is the interpolated amino acid type at time t and the velocity filed vθ is a neural network
with θ as its parameters and Env, the local micro-environment, is the conditional information. The
optimal direction at any time t is X1 − X0. Thus, we can encourage our velocity field to directly
follow the optimal ODE process dXt = (X1 −X0)dt by optimizing

min
θ

∫ 1

0

E
[
∥(vθ(Xt, t | Env)− (X1 −X0)∥2

]
dt,

where Xt = tX1 + (1− t)X0 t ∈ [0, 1].

(3)

Empirically, we do not optimize the loss in (3) with the integration on t ∈ [0, 1] directly. Instead,
for each data sample X1, we randomly draw a X0 from random Gaussian noise, a t from [0, 1], and
minimize the following loss,

min
θ

Et∼U(0,1),(X1,Env)∼D,X0∼N (0,1)

[
∥(vθ(Xt, t | Env)− (X1 −X0)∥2

]
, (4)

where D denotes the training data. After the neural velocity field vθ is well-trained, samples can be
generated by discretizing the ODE process with Euler solver in (2) into N steps (e.g., N = 1000),

X ′
t̂+1/N

←− X ′
t̂
+

1

N
vθ(X

′
t̂
, t̂), (5)

the time step t̂ is defined as t̂ ∈ [0, 1]. Here X ′
1 denotes our generated samples and X ′

0 = X0.
Intuitively, the Euler solver will be more accurate with a large N and a better solver can come to
more accurate results.

ReFlow for Efficient Inference As discussed in Liu (2022) and Liu et al. (2022), once we can get a
one-step model that can generate data by

X ′
1 = X ′

0 + vθ(X
′
0, t = 0 | Env), (6)

and it will be easy to embed the amino acids into latent space and do editing for the one-step model
since we create a one-to-one function. For this purpose, we follow (Liu, 2022; Liu et al., 2022) to
use ReFlow to refine the neural ODE process learned with vθ in the previous stage. We construct
the objective as follows,

min
θ

E
[
∥(vθ(X ′

t, t | Env)− (X ′
1 −X0)∥2

]
, t ∼ U(0, 1), (7)

where X ′
1 is generated from our first model optimized with (4) and X ′

t = tX ′
1 + (1− t)X0. In our

experiments, we observed that ReFlow improves the data quality generated by a single-step model.
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Data Augmentation To harness the generative models’ capability for diverse outputs, we suggest
augmenting the wild-type protein sequence with others that have high sequence similarity. Based
on the principle that sequence dictates structure, a high sequence similarity, such as 90%, often in-
dicates that two protein sequences might share structural similarities. For every protein sequence in
our training dataset, we extract the top-5 sequences from the Uniref100 dataset (sourced on Novem-
ber 24, 2021) (Suzek et al., 2007) using MMseqs2 1, yielding an average sequence similarity of
approximately ∼ 85%. Throughout the training process, we augment the ground-truth protein se-
quence with these 5 additional sequences.
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Figure 1: We demonstrate the training and inference framework of our algorithm. Left. We display
that, during training, we linearly combine the wild-type and noise as input and calculate the loss
in (4). the model’s input during training is Xt, a linear combination of X0 (random noise) and X1

(one-hot label). The subtraction of X1 and X0 symbolizes the drift from X0 to X1. t denotes the
time step. Right. The right figure shows the inference process, in which we start from random noise
X0 and update it with (5). t denotes the time step.

Model Architecture Our architecture is based on the graph transformer neural network architecture
proposed for self-supervised mask prediction in Diaz et al. (2023). Specifically, we use this archi-
tecture to construct vθ, which takes the local atom-level environment surrounding the target amino
acid as input. The neural network takes in the coordinates, atom types, and physical properties of
the atoms, and applies an embedding layer to convert the categorical atom types and physical prop-
erties into continuous representations. The embeddings of atom types and physical property types
are concatenated to form the input features, which then pass through several attention blocks. In
each attention block, there are two attention layers and one MLP layer. The attention layers use the
atom-wise Euclidean distance to calculate the attention bias. We refer the reader to Appendix A for
more details about the architecture.

Algorithm We summarize and visualize our method in Figure 1. Generally speaking, we cre-
ate a conditional generative model, which generates the amino acid types when given the micro-
environment. We use the atom type and additional physical properties as inputs and calculate the
atom-wise distance as the attention bias information. After we train the model, we use ReFlow to
reduce the generation step into 1 to make the inference more efficient.

4 EXPERIMENTS

In order to evaluate the performance of MeFlow, we conduct a comprehensive set of experiments
addressing pivotal queries. ➀ We examine the accuracy and diversity of our method and compare it
to other state-of-the-art methods. We highlight comparison with two baselines, one is a classification
model with micro-environment as input, the other is diffusion model with micro-environment as
input. ➁ We train our MeFlow on the interface dataset (d’Oelsnitz et al., 2023), and measure the
recovery ratio on multi-domain test sets. ➂ We carry out zero-shot single-point mutation fitness
prediction tests to showcase our model’s potential benefits. Our findings suggest that diversity is
crucial in this context, and underscore that models with high accuracy don’t always translate to
optimal design outcomes.

1https://github.com/soedinglab/MMseqs2
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4.1 AMINO ACID PREDICTION

Datasets and Experiment Settings We first train our method on commonly-used benchmarks and
measure the recovery ratio and diversity. We first evaluate on CATH (Pearl et al., 2003) (Class, Ar-
chitecture, Topology, Homology) database, which is a hierarchical classification of protein domain
structures based on their evolutionary relationships, structural and functional features. The CATH
4.2 includes over 20k protein structures. We follow the same data splitting in (Jing et al., 2020)
to split the train and test dataset. To measure the quality of generated sequence (or sub-sequence),
we report the recovery ratio (accuracy) by averaging the results on three random noise inputs and
the AlphaFold scores on multiple suggested sequences. To measure the diversity, we first calculate
the hamming distance. We further measure diversity by encoding sequence with ESM2 (Lin et al.,
2022) and measure their difference in the latent space.

We generate another micro-environment dataset, Interface. For each protein sequence, we sample all
residues at the interface (within 5Å) of ligands with at least 3 carbon atoms, nucleotides, halogens,
and cations and then randomly sampled to backfill up to 200 residues or half the length of the protein
sequence. The intent is to ensure that we sample the limited amount of non-interface data in the PDB
while not oversampling large proteins. Finally, we do a 90/10 split and combine to create our training
and test datasets. We make a training set with 2.2M micro-environments and generate multiple
domains (e.g., metal interface, RNA interface, etc.) test datasets to verify the model performance.
We refer the readers to d’Oelsnitz et al. (2023) for more details about the dataset. In general, our
method, which utilizes atom-level micro-environments as inputs, offers great flexibility for various
use cases. By simply adding or removing information from the micro-environment, our method can
easily accommodate different requirements, making it highly versatile. We further elucidate that
models trained on this dataset are adept protein engineering tools.

Hyper-parameter Settings In all our experiments, we set the number of blocks to 8, the maximum
number of atoms to 256, the number of channels to 128, and batch size 256 (256 different micro-
environments) with 300K iterations training with (4) and 100K iterations training with (7). On four
A100 GPUs, it takes approximately 1.5 days to train the model on different datasets and settings.

Model Perplexity Recovery Ratio (%)
Short ↓ Single-chain ↓ All ↓ Short ↑ Single-chain ↑ All↑

StructGNN (Ingraham et al., 2019) 8.29 8.74 6.40 29.44 28.26 35.91
GCA (Tan et al., 2022) 7.09 7.49 6.05 32.62 31.10 37.64
GVP (Jing et al., 2020) 7.23 7.84 5.36 30.60 28.95 39.47
AlphaDesign (Tan et al., 2022) 7.32 7.63 6.30 34.16 32.66 41.31
ESM-IF∗ (Hsu et al., 2022) 8.18 6.33 6.44 31.30 38.50 38.30
ProteinMPNN (Dauparas et al., 2022) 6.21 6.68 4.61 36.35 34.43 45.96
PiFold (Gao et al., 2022) 6.04 6.31 4.55 39.84 38.53 51.66
Classifier 5.85±0.12 6.02±0.11 4.26±0.09 46.41±0.45 45.24±0.36 55.37±0.48
Diffusion 6.71±0.42 6.82±0.54 5.23±0.47 40.17±0.43 39.58±0.42 50.52±0.44
MeFlow 6.35±0.39 6.46±0.48 4.72±0.44 42.58±0.33 42.14±0.35 53.53±0.45
MeFlow w/ Sequence Augmentation 6.62±0.35 6.68±0.52 5.03±0.47 41.10±0.29 40.87±0.35 51.59±0.42

Table 1: We demonstrate the recovery ratio (accuracy) and perplexity averaged on three trials on
CATH 4.2 different subsets. All baselines are reproduced by (Gao et al., 2022). ∗ indicates that the
results are reported on CATH 4.3. For probaility flow models (e.g. Diffusion, Flow), the perplexity
is estimated with the method proposed in neural ODE (Chen et al., 2018).

Method MeFlow ESM-IF ProteinMPNN PiFold
Recovery Ratio (%) ↑ 61.22 44.47 49.28 60.84
RMSD (Å) ↓ 1.64 1.83 1.70 1.66

Table 2: For 50 randomly picked single-chain proteins, we report the recovery ratio accuracy and
RMSD. We generate the stucture with OpenFold (Ahdritz et al., 2022).

Main Results on Quality Measurement ❶ As described in Table 1, our proposed method surpasses
other state-of-the-art approaches, including ESM-IF (Hsu et al., 2022), PiFold (Gao et al., 2022), and
ProteinMPNN (Dauparas et al., 2022), in terms of recovery ratio. ❷ Compare with Classification
Model: The classification model is trained using cross-entropy loss and lacks random noise in the
input. Throughout both training and inference, it takes the micro-environment as input and outputs
the corresponding amino acid class. When we use the same model architecture, we notice that we
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(a) Efficiency v.s. Accuracy (b) pLDDT Score (c) pTM score
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Figure 2: In (a), our MeFlow achieves the highest recovery ratio and lowest inference cost in the
inverse folding task, as compared to other existing methods. The inference cost is measured on 100
amino acid sequences with an average length of approximately 1.6k on an NVIDIA A100. We do
not compare with (Mao et al., 2023) since they train with larger datasets. In (b) and (c), we generate
amino acid sequences, and run AlphaFoldV2 to calculate the pLDDT and pTM scores, respectively.
We calculate 500 data points. Compared with wild-type sequences, our model’s designed sequences
show linearly-correlated in terms of Pearson correlation, similar pLDDT and pTM scores.

can achieve the highest recovery ratio, which outperforms all the baseline methods. ❸ Compare
with Diffusion Model: Keep the same architecture, we use diffusion model to construct the learn-
ing objective. Using one step to inference, we notice that our flow model outperforms the baseline
diffusion model, and we further compare the performance with different inference step later. ❹ Ef-
ficiency v.s. Accuracy: Our inference process is highly efficient, as it relies solely on atoms in the
micro-environment. This enables faster inference speeds, especially for long protein sequences as
shown in Figure 2(a). We observe that our method delivers optimal performance when balancing
efficiency and accuracy. ❺ AlphaFold Metrics: In real protein design problems, a given backbone
can come to multiple potential sequences, and our interest is to identify these candidate sequences.
Therefore, only giving one target sequence and measuring the perplexity and recovery accuracy de-
pending is not a good practice. Considering the importance of generating non-wildtype sequences in
protein design, we adopt a valuable approach to further validate the quality of our model predictions
by applying OpenFold (Jumper et al., 2021) to get the 3D structures for our self-design sequences.
We first measure AlphaFold metrics, pLDDT and pTM. pLDDT represents the per-residue accuracy
of the structure while pTM provides a measure of the error for the predicted structure in 3D. For a
given protein structure, we predict the amino acid sequences based on the target fold Then, we feed
the wild-type sequences and the predicted sequences into OpenFold and get the pLDDT and pTM
scores. As demonstrated in Figure 2(b) and (c), the predicted sequences achieve comparable scores
as the original ones. In terms of Pearson correlation, the difference between our method and PiFold
is not significant.

❻ Measure and Compare RMSD: We conduct an additional experiment examining the RMSD values
(specifically, RMSD of the Carbon alpha atomic coordinates) between the structure of ground truth
sequence and the structure of our model output predicted by OpenFold. We randomly select 50
single-chain proteins (e.g., 1qp2, 1f0m, 2wnm, 5jrt, 2qff), comparing the original OpenFold folding
results and the folded results of model predicted sequence. As demonstrated in Table 2, we notice
that our MeFlow can achieve better recovery ratio and RMSD (Root Mean Square Deviation) scores.
We slightly improve the PiFold results while improve ESM-IF by a large margin (e.g., recovery ratio
is improved from 44.47% to 61.22%, RMSD is improved from 1.82Å to 1.64Å).

Method MeFlow MPNN (Beam Search) MPNN (Temperature) Pifold
Recovery Ratio (%) ↑ 61.22 46.43 43.27 57.46
RMSD (Å) ↓ 1.64 1.73 1.78 1.68
Relative Hamming Distance ↑ 0.18 0.12 0.18 0.09
Cosine Similarity ↓ 0.85 0.88 0.83 0.92

Table 3: Here, we apply all the methods to 50 backbone structures, generate 10 protein sequences
for each case, and then pass all sequences through ESM to get hidden representations for calculating
cosine similarity. MPNN denotes ProteinMPNN.
Evaluate Diversity Setting: As demonstrated in Table 3, we evaluate the diversity of different
method. To assess diversity, we first consider the relative Hamming distance since there is no inser-
tion or deletion operation in the design space. In addition to sequence space, we also aim to evaluate
diversity within a meaningful hidden space. we measure the similarity with the pretrained ESM2
(Lin et al., 2022) latent space.
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Recovery Ratio 100-Step 10-Step 1-Step Reflow 1-step
Diffusion 53.34±0.42 52.23±0.48 50.52±0.44 -
MeFlow 53.68±0.48 53.56±0.52 53.25±0.46 53.53±0.45

Table 4: We showcase the recovery ratio (accuracy) on CATH using varying step models for both
MeFlow and the diffusion model. Leveraging ReFlow, we achieve a reduction in inference time,
while preserving the recovery ratio at levels comparable to multi-step inference approaches.

Baseline Setup: In autoregressive models, beam search can generate diverse candidate sequences.
Adjusting the softmax temperature and implementing random sampling can also introduce diversity;
we employ a temperature setting and we set T = 2 to do random sampling. On the other hand, non-
autoregressive models like PiFold can introduce diversity through inference-time dropout. In our
experiments, we benchmark ProteinMPNN using two strategies: a beam search with a size of 10
and random sampling. For PiFold, we apply inference-time dropout with p = 0.1.

Results: As demonstrated in Table 3, our MeFlow achieves the best trade-off between diversity
and quality. MeFlow consistently outperforms all the baselines in terms of achieving a favorable
balance between quality and diversity. Besides, compared to beam search, temperature softmax and
random sampling can get better diversity. While MeFlow has similar diveristy socres as temperature
softmax, we get better recovery ratio and RMSD.

Compare with Diffusion Model Our observations in Table 4 indicate that, in our problem settings,
reducing the number of flow steps to one does not compromise accuracy for our MeFlow. Contrarily,
the performance of the diffusion model significantly diminishes upon reducing the inference step.
While we use enough number of steps to do inference, these two models achieve almost the same
performance. Notably, we notice that employing a one-step model with ReFlow leads to a slightly
higher recovery ratio (53.53%) compared to directly apply one time step (53.25%). In conclusion,
MeFlow consistently surpasses the diffusion model across all the settings with different time steps.

Evaluate on Interface Dataset Beyond the widely-used CATH benchmark, we have curated our
own dataset and present results across multiple domains. When trained on the Interface dataset
and evaluated on various domain test sets, MeFlow consistently exhibits robust performance on di-
verse protein interfaces, as illustrated in Table 5. We detail the recovery ratios for distinct interface
scenarios; for instance, ’RNAs’ reveals the recovery ratio specific to the protein-RNA interface. Sub-
sequent experiments further affirm that by leveraging the interface dataset, we can achieve enhanced
capabilities in zero-shot protein engineering.

4.2 PROTEIN ENGINEERING TASKS (ZERO-SHOT ∆∆G PREDICTION)

Experiment Settings To further verify the ability of protein engineering, ➀ we apply zero-shot
∆∆G prediction on FireProtDB (Stourac et al., 2021) cleaned by Chen et al. and two other com-
monly used benchmark, P53 (Danziger et al., 2009) and Myolobin (Montanucci et al., 2019). The
problem is predicting whether ‘if a mutation can potentially improve a protein phenotyp. Following
literature (Lin et al., 2022; Notin et al., 2022), we apply log(pmut/pwt) as the zero-shot score to
predict whether a mutation is good. pmut stands for the probability of the mutated amino acid, and
pwt represents the probability of wild-type amino acid. ➀ To verify the generalization, we use two
different 3D structure files for P53, one is the most commonly-used structure with pdb code 2ocj and
the other is 3q05 which has the binded DNA structure. ➂ We evaluate our model using both Pearson
and Spearman correlations. Additionally, we employ a range of other classification and regression
metrics to evaluate our model’s enhancements.

Results We predict the change in protein stability (i.e., ∆∆G) upon amino acid substitutions without
requiring any experimental measurements or prior training on specific mutations. ➀ Table 6 shows
the performance of different models on zero-shot ∆∆G prediction on several different benchmarks.

AEMetal CarbonHyprate Metal RNAs AlkaiMetal Halogen TransitionMetal Antigen Ligand
#Amino Acids (k) 3.6 0.8 7.5 1.9 1.5 3.0 3.9 0.4 28.6
MeFlow 67.3±0.3 64.0±0.3 69.5±0.3 61.3±0.3 59.4±0.3 54.4±0.3 72.9±0.3 49.0±0.3 54.8±0.2
Classifier 67.8±0.2 64.7±0.1 70.8±0.1 62.1±0.2 59.9±0.2 55.0±0.2 73.4±0.2 49.5±0.2 55.6±0.1

Table 5: We assess the performance (recovery ratio) of our model on multiple test domains. ‘#Amino
Acids’ denotes the number of micro-environments.
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Dataset FireProtDB P53 (2ocj) P53 (3q05) Myoglobin
Pearson ↑ Spearman ↑ Pearson ↑ Spearman ↑ Pearson ↑ Spearman ↑ Pearson ↑ Spearman ↑

ProteinMPNN 0.24 0.28 0.35 0.40 0.37 0.42 0.35 0.35
PiFold 0.18 0.20 0.34 0.34 0.33 0.33 0.18 0.22
ESM-1b 0.22 0.25 0.35 0.37 - - 0.28 0.30
Stability Oracle 0.58 0.62 0.73 0.62 - - 0.62 0.62
ThermoNet - - 0.45 - - - 0.38 -
Classifier 0.24 0.27 0.34 0.37 0.33 0.37 0.32 0.32
MeFlow 0.27 0.30 0.38 0.40 0.45 0.42 0.47 0.41
MeFlow w/ Dropout 0.26 0.28 0.36 0.37 0.42 0.44 0.43 0.41
MeFlow w/ Aug 0.29 0.41 0.42 0.49 0.45 0.50 0.44 0.44
MeFlow w/ Aug (Interface) 0.31 0.33 0.45 0.55 0.51 0.59 0.48 0.47

Table 6: We assess the performance of different models on zero-shot fitness (∆∆G) prediction tasks.
ThermoNet and Stability Oracle are supervised models , and the numbers are from their paper.

The table reports two evaluation metrics: spearman correlation coefficient and pearson correlation
coefficient, to make a comprehensive evaluation. ➁ The first two rows of the table report the perfor-
mance of two baseline models, ProteinMPNN and PiFold. We notice that, while PiFold surpasses
ProteinMPNN in the recovery ratio, ProteinMPNN is a better model for zero-shot ∆∆G prediction.
➂ We observe that by transforming the classifier into a generative model, termed MeFlow, there’s
an improvement across all metrics. While the classifier model exhibits a higher recovery ratio, it
falls short as an effective zero-shot predictor for ∆∆G. By introducing our proposed sequence aug-
mentation and training on our Interface dataset, we notice further improvements on these correlation
metrics. ➃ In Figure 3, we further compare classifier model and our best generative model with
more metrics. Remarkably, we observe substantial enhancements in both regression and classifica-
tion metrics. For example, MeFlow improves the binary classification accuracy for ∆∆G (whether
the mutation is stable or not) in all four datasets. ➄ In summary, our observations reveal that while
the classifier model surpasses MeFlow in recovery ratio (as seen in Table 1), PiFold exceeds Pro-
teinMPNN in the same metric, PiFold outperforms ProteinMPNN in recovery ratio, MeFlow and
PiFold get better metrics for zero-shot ∆∆G prediction tasks. Our MeFlow achieves the best results
in zero-shot ∆∆G prediction.

FireProtDB P53 (2ocj) P53 (3q05) Myolobin
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Figure 3: We compare MeFlow and the classifier model with the same architecture. For all the
metrics, larger is better. Detailed numbers are shown in the appendix.

5 CONCLUSION

In this research, we present the MeFlow framework, tailored for protein engineering based on target
folds. MeFlow stands out by offering enhanced computational efficiency and a superior ability to
produce varied sequences. Our empirical findings underscore MeFlow’s proficiency in generating
an array of sequences tailored to a specific protein scaffold. From our investigations, two notable
insights emerge: ❶ First, our model, when provided with local chemical environments instead of the
complete backbone as inputs, can attain comparable or even superior recovery ratios. This revelation
propels a deeper question: Can protein inverse folding challenges be proficiently addressed using
just the local chemical environment? How can we effectively harness the benefits of the complete
backbone? ❷ Secondly, when evaluating various models on zero-shot ∆∆G prediction, we find that
achieving a higher recovery ratio doesn’t invariably translate to superior zero-shot performance. This
brings forth another contemplative query: Should inverse folding primarily focus on maximizing the
recovery ratio? Moving forward, we plan to verify the relation between recovery ratio and protein
engineering performance. Moreover, We foresee the potential to broaden the application of our
flow-based generative model, aiming to address a wider range of conditional generation challenges
within protein research, such as protein folding and multiple sequence alignment (MSA).
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A ARCHITECTURE

Atom Elements
Atom  Coordinates

Atom  Physical Properties

Q K V

Linear Linear Linear

Matmul

Distance Type Matrices
(Discrete)

Scale

Add

Matmul

MLP:Linear - Activation - Linear X 4

... Amino Acid
Likelihoods

Softmax

MLP:Linear - Activation - Linear

multi-head

Attention Bias Matrix 
1 per Attention Head

Microenvironment
Embedding

RBF Distance Matrices
(Continous)

Em
be

d 
an

d 
A

dd
Classifier

8Å Distance Pooling

Feature
Extractor

Classification
Head

Microenvironment

Target
AA( )+ Time

Figure 4: We demonstrate the detailed neural network architecture used in this paper.

Our architecture is based on the graph transformer neural network architecture proposed in (Diaz
et al., 2023) and we demonstrate the details in Figure 4. Specifically, we use this architecture to
construct vθ, which is designed to capture the local environment surrounding the target amino acid.
The graph transformer model takes this environment as input, allowing us to generate accurate pre-
dictions. Specifically, we define the Carbon-α as the center and extract all the atoms within a radius
of nȦ. The neural network takes in the coordinates, atom types, and physical properties of the
atoms, and applies an embedding layer to convert the categorical atom types into continuous rep-
resentations. Once we do not have the side chain information, we cannot have accurate physical
properties, and therefore we only introduce little information in our model. Our included physical
properties contain two channels, the partial charges and the surface or core information. The phys-
ical properties contain categorized partial charge (negative, neutral and positive) and whether the
amino acid is on the surface (true or false). The embeddings of atom types and physical property
types are concatenated to form the input features, which then pass through several attention blocks.
In each attention block, there are two attention layers and one MLP layer. The attention layers use
the atom-wise euclidean distance to calculate the attention bias, which is based on distance matrices
and RBF functions. For masked amino acid predictions, we remove every atom in the target amino
acids and predict the corresponding amino acid type. For inverse folding, we remove all the side
chains in a micro-environment and only give the backbone atoms.

Encoder-Decoder Architecture We also propose an Encoder-Decoder architecture as shown in
Figure 5. We notice that it takes the encoder-decoder architecture a longer time to train while the
final results cannot outperform our current architecture.

Impact of Physical Properties In this work, except for atom types and coordinates, we also in-
troduce physical properties as the input feature. We use 1) three-class charge information, negative,
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Figure 5: The alternative architecture: encoder-decoder architecture, in which we create three
different distance map for encoder-only, decoder-only and encoder-decoder attentions. During in-
ference, the input to the decoder is pure random noise, and we pass the decoder model multiple
times to get the output amino acids.

neutral, or positive; 2) two-class surface information, on the surface or in the core. In practice,
we notice that these features help us to train the model faster. Without these features, we can still
achieve a similar recovery ratio. As shown in Table 7, with longer training time, without physical
property model finally achieves a similar recovery ratio.

#Iterations Recovery Ratio
w/ pp 300K 53.53±0.45
w/ pp 1000K 53.75±0.42
w/o pp 300K 45.88±0.44
w/o pp 1000K 48.93±0.49

Table 7: We show that physical properties help us get similar results with fewer training cost.

B EXPERIMENT SETTINGS

AlphaFold Scores We report pLDDT and pTM scores in the experiments. To calculate these
scores, we run five models and average their output pLDDT and pTM to get the score for one input
sequence. Both the pLDDT and pTM scores provide an assessment of the quality and accuracy of
the predicted protein structure by AlphaFold. Higher scores indicate better predictions, while lower
scores indicate lower confidence in the predicted structures.

ESM-2 Embedded Scores We convert the protein sequences into hidden representations using
the ESM-2 model. We then extract the hidden representations (embeddings) of the target amino
acid sequences from the ESM-2 model and then do average pooling. These hidden representations
encode the sequence information and capture important characteristics of the proteins. Finally, we
apply cosine similarity and provide a quantitative measure of how similar or dissimilar the protein
sequences are.

Zero-shot ∆∆G Prediction To calculate the zero-shot ∆∆G, we get the pmut and pwt from our
model. In practice, for diffusion and flow generative models, we random sample 100 noise, average
the outputs, and apply softmax to get the proability. Then, we calculate the log ratio score =
log pmut

pwt
. Once score > 0, it indicates that this is a stabilizing mutation (∆∆G ¡ 0).

For the FireProt dataset, We follow (Chen et al.), and filter out neutral mutations where |∆∆G| <
0.5. We also filter out data points with standard deviation > 0.25 who have been measured by
multiple times while the results are very diverse. Finally, we get 1, 721 data points. For the other
datasets, we follow (Diaz et al., 2023) to process the data.
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C WEAKNESSES

We recognize the disparity between machine learning-based sequence generation and the tangible
processes involved in real protein engineering within wet labs. To enhance clarity, we underscore
the necessity for additional steps dedicated to facilitating the seamless transition from in silico pre-
dictions to practical implementation in wet-lab settings.
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