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Figure 1: We propose Mitty, a paradoxical in-context learning—based video generation method built
on Diffusion Transformers. It can convert human demonstration videos into robotic manipulation
videos and achieves high task success rates.

ABSTRACT

Robots that can learn directly from human demonstration videos promise scal-
able cross-task and cross-environment generalization, yet existing approaches rely
on intermediate representations such as keypoints or trajectories, losing critical
spatio-temporal detail and suffering from cumulative error. We introduce Mitty,
a Diffusion Transformer framework that enables video In-Context Learning for
end-to-end human-to-robot video generation. Mitty leverages the powerful visual
and temporal priors of the pretrained Wan 2.2 video model, compressing human
demonstration videos into condition tokens and fusing them with robot denoise
tokens through bidirectional attention during diffusion. This design bypasses ex-
plicit action labels and intermediate representations, directly translating human
actions into robotic executions. We further mitigate data scarcity by synthesiz-
ing high-quality paired videos from large egocentric datasets. Experiments on the
Human-to-Robot and EPIC-Kitchens datasets show that Mitty achieves state-of-
the-art performance, strong generalization to unseen tasks and environments, and
new insights for scalable robot learning from human demonstrations.

1 INTRODUCTION

Humans excel at rapidly acquiring new skills by observing others. If robots could directly learn
manipulation policies from a single human demonstration video and generate corresponding robot-
execution videos, this would provide a critical path toward cross-task and cross-environment gener-
alization. Yet achieving this has long been a highly challenging goal in robotics.

Existing approaches typically rely on intermediate representations such as keypoints, trajectories, or
depth maps to bridge human and robot videos. They first extract keypoints or trajectories from the
human demonstration and then condition a rendering module to synthesize robot execution videos.



Under review as a conference paper at ICLR 2026

While intuitive, this approach fails to fully exploit the rich information embedded in demonstration
videos and struggles to capture the fine-grained spatio-temporal dynamics essential for robust gen-
eralization. Moreover, errors accumulated in the intermediate estimation stage can further degrade
performance. This raises a natural question: can we bypass intermediate representations and directly
achieve end-to-end human-to-robot video generation?

This task presents several key challenges: (1) Appearance and scene consistency—the generated
robot video must match the scene of the human demonstration while preserving a stable, plausible
robot embodiment; (2) Action and strategy alignment—the robot’s actions must follow the human
demonstration yet adapt to structural differences between human hands and robot arms; (3) Data
scarcity—despite abundant human and robot videos separately, finely aligned human—robot video
pairs are extremely rare. The only public H2R dataset currently contains just 2,600 video pairs
across nine tasks, making it difficult to learn generalizable skills from limited data.

To alleviate this scarcity, we propose an automatic paired-data synthesis pipeline using egocentric
human videos. Starting from large-scale human activity datasets such as EPIC-Kitchens, we estimate
3D hand keypoints, remove human hands, and inpaint clean backgrounds. We then map keypoint
sequences to robot end-effector poses and render robot arms into the video, producing high-quality
human-robot paired videos. This approach bypasses traditional intermediate representations and
significantly improves both scale and fine-grained temporal consistency, providing stronger training
and generalization capacity for our model.

Building on this foundation, we introduce Mitty, a Diffusion Transformer framework for video
In-Context Learning. In-context learning (ICL) has shown promise for fewshot learning, offering
data-efficient and rapid adaptation at test time. By simply conditioning on one human demonstra-
tions, ICL can predict robot actions to achieve novel tasks at test time without expensive retrain-
ing. Our method conditions directly on human demonstration videos to generate corresponding
robot-execution videos in an end-to-end manner, requiring no explicit action labels. Mitty leverages
Wan 2.2, a powerful video generation model pretrained on massive natural video corpora, to inherit
strong visual and temporal priors. Concretely, we compress the human demonstration into condition
tokens via a VAE (kept noise-free) and concatenate them with the robot denoise tokens through a
bidirectional attention mechanism during diffusion, enabling cross-domain action translation. Mitty
supports two inference modes—first-frame-controlled and zero-frame generation—offering greater
flexibility in deployment. We further conduct a systematic evaluation across models and settings to
provide actionable insights for the community.

Across both the Human-to-Robot dataset and EPIC-Kitchens, Mitty significantly outperforms exist-
ing baselines and demonstrates strong generalization. We summarize our contributions as follows:

1. We propose Mitty, the first end-to-end human-to-robot video generation framework built upon a
Video Diffusion Transformer.

2. Technically, we leverage in-context learning to achieve both appearance and scene consistency
as well as action consistency, significantly improving cross-task generalization.

3. We design an efficient data synthesis strategy and combine it with existing datasets for mixed
training, which markedly enhances the model’s generalization ability on unseen tasks and envi-
ronments. Extensive experiments demonstrate the effectiveness and superiority of our approach
in terms of generation quality and cross-task consistency.

2 RELATED WORKS

2.1 VIDEO GENERATION MODELS

Video generation models have evolved rapidly from early GAN-based approaches|Pan et al.|(2017)),
UNet-based approaches |Guo et al.[(2023); Xu et al.| (2024); |Song et al.| (2024) to today’s Diffusion
Transformer architectures Peebles & Xie|(2023); [Wan et al.| (2025); [Zheng et al.[(2024); Jiang et al.
(2025)). Modern Diffusion Transformers can generate high-quality, temporally coherent videos con-
ditioned on text, images, or multi-modal inputs, enabling applications such as controllable video
generation |Lin et al.|(2025)); Jiang et al.|(2025) and world modeling|Gao et al.[(2025). Many recent
studies also leverage large pretrained video generation models for tasks in robotics and mechani-
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cal manipulation [Fu et al.| (2025)), highlighting their potential for cross-domain generalization and
interactive learning.

2.2 LEARNING FROM HUMAN VIDEOS

A growing body of work investigates how large human-centric video datasets can be used to im-
prove robot policy learning Xie et al.| (2025); Shah et al.| (2025). Compared to costly and time-
consuming teleoperation, large-scale human videos provide a scalable and diverse source of demon-
strations. Earlier studies focused on extracting visual representations |Chen et al.| (2025), deriving
reward functions|Guzey et al.|(2025), or directly estimating motion priors from human videos Wang
et al.| (2023); |Qiu et al.| (2025). However, many approaches still rely on additional robot data or
specialized hardware such as VR and hand-tracking devices, limiting scalability. Recent progress
in 3D hand pose estimation |Cheng et al.|(2024) helps extract action information directly from RGB
videos, but cross-embodiment transfer remains difficult. Humanoid robots can partially alleviate
this gap due to their kinematic similarity to humans. Building on these trends, we propose Mitty,
which achieves end-to-end generation of robot videos directly from human demonstrations without
extracting intermediate representations such as pose, trajectories, or depth, and better leverages the
fine-grained details contained in the original human demonstration videos.

2.3 IN-CONTEXT LEARNING

In-context learning (ICL) [Brown et al.| (2020); |Alayrac et al.| (2022) has demonstrated remarkable
capability for adapting models to new tasks at inference time. In the visual generation domain, recent
approaches have leveraged ICL to achieve high-quality image generation|Huang et al.|(2024); Zhang
et al.[ (2025azb)); |Song et al.| (2025); Huang et al.| (2025)); |Gong et al.[ (2025) and video generation
Zhang et al.[(2024)); Kim et al.|(2025); |Yu et al|(2025)). In robotics, preliminary studies Shah et al.
(2025) have explored applying ICL to visuomotor policies using either teleoperation or simulation
data. However, these methods are constrained by data collection costs and limited task diversity,
making large and heterogeneous datasets essential for effective adaptation. We adopt an In-Context
Learning framework built on the Wan 2.2 video diffusion model to translate human demonstration
videos into robot-arm executions, ensuring visual and action consistency throughout generation.

3 METHOD

In this section, we first define our problem formulation and pverall architecture in Sec. then we
describe in detail how video in-context learning is achieved via bidirectional attention in Sec. [3.2]
and finally explain our synthetic paired-data construction pipeline in Sec.[3.3]

3.1 OVERALL ARCHITECTURE

We formulate human-to-robot video generation as a conditional denoising problem. Given paired
data consisting of a human demonstration video VH = {vff ... v} and the corresponding
robot execution video VE = {vf ... vL}, our objective is to model the conditional distribution
po(VE|VH) that captures fine-grained spatio-temporal correspondences between human actions and
robot executions. We consider two settings: (i) H2ZR(Human-to-Robot Video Generation), where the
model directly generates a robot execution video from a human demonstration without providing any
initial robot frame; and (ii) HI2ZR(Human-and-Initial-Image-to-Robot Video Generation), which ex-
tends H2R by additionally supplying an initial robot frame to define the robot’s initial state and
guide embodiment and motion planning.

We implement this formulation in a single unified framework built upon Wan 2.2Wan et al.|(2025),
a state-of-the-art diffusion-based video generation model pretrained on large-scale natural videos.
Both human and robot videos are encoded into latent tokens using the same VAE-based video en-
coder. Human latents act as clean conditioning tokens, while robot latents act as denoising targets.
These tokens are concatenated along the temporal dimension and fed into a Diffusion Transformer
enhanced with bidirectional attention, enabling information to flow between modalities at each
denoising step. This unified design supports both zero-frame generation (H2R) and first-frame-
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conditioned generation (HI2R), sharing parameters and priors across both settings while allowing
fine-grained control over the robot’s initial state and stable motion planning across diverse tasks.
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Figure 2: Overall architecture of Mitty. We build Mitty on a Diffusion Transformer—based video
generation model and employ an In-Context Learning paradigm. The human demonstration video
(input) and the noisy robot video latents (denoise stream) are concatenated, with noise injected only
into the robot branch. A bidirectional attention mechanism enables cross-modal information flow,
allowing the model to learn to generate robotic videos directly from human operation demonstra-
tions.

3.2 VIDEO IN-CONTEXT LEARNING VIA BIDIRECTIONAL ATTENTION

To achieve cross-domain video in-context learning between human and robot modalities, we enhance
the Diffusion Transformer with a bidirectional attention mechanism linking human-condition to-
kens and robot-denoise tokens. This allows the model to dynamically align temporal cues, motion
patterns, and object interactions across domains while leveraging the strong visual-temporal priors
from the pretrained video backbone.

Diffusion Process and Noise Injection. Let z} = VAE,.(V) denote the robot video latent.
During training, we progressively add noise only to the robot latents while keeping the human latents

clean:
xt = a el +V1—ae, e~N(0,). (1)

with cumulative noise schedule
t
ar=[Jas teft,.... T} )
s=1

This setup enables us to model the conditional distribution pg (V| V) without requiring explicit
action or trajectory labels.

Token Representation and Embeddings. Let z)' = VAE,,.(V!!) denote the human video latent.
Tokens are formed as

C = 7§ + Eime + Enoan), D = X" + Eiime + Emoa(r)- 3)
Here d denotes the token/channel dimension and Epe, En04(.) are temporal and modality embed-
dings.
Bidirectional Attention Coupling. At each layer, we exchange information in both directions (row-
wise softmax):

C= Softmax(%)D, D= Softmax(D—\%T)C. 4

The updated tokens [C; ]5] are concatenated along the token dimension and fed to subsequent Trans-
former blocks.

Denoising and Reverse Update. The network predicts €y(x*, C,t) on the robot branch and per-
forms

1 11—«
Xy = \/OTt(Xf - Jl_i(;ee(xf,ci)) +oz, z~N(0,I), )
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1. Input a human 2. Detect hands 3. Segment hands and 4. Detect hand keypoints. 5. Inpaint the removed 6.Rendering the
demonstration video. using Detectron 2. arms using SAM 2. hand regions. robot arms.

Figure 3: Starting from a human demonstration video, we first detect hands using Detectron2 and
then segment hands and arms using Segment Anything. Next, we perform hand keypoint detection
and inpaint the removed hand regions to obtain clean background frames. We then apply inverse
kinematics solving to map the detected hand keypoints to robot arm poses and render the robot
arms into the videos. Finally, with a human-in-the-loop filtering process, we curate over 6,000 high-
quality synthetic human—robot paired videos to support the training of our Mitty model.

with o, given by the variance schedule. The final video is
V= VAE .. (2). (6)

This models the conditional generation without action labels, and supports both H2R (Zero-frame)
and HI2R (First-frame conditioned) modes defined in Sec. 3.1} enabling either generation from
human demonstrations or controlled execution with an initial robot frame.

3.3 DATASET CONSTRUCTION

A key bottleneck in robotic learning lies in data acquisition: collecting real-world robot manipulation
data is costly and slow, which limits generalization across large-scale tasks. Meanwhile, ego-centric
human activity datasets such as EPIC-KitchensDamen et al.| (2020), Ego4DGrauman et al.| (2022),
and EgoExo4DGrauman et al.| (2024) have accumulated millions of high-quality demonstrations
covering diverse actions and environments. Effectively transferring these large-scale human videos
into robotic learning is critical to overcoming the current data bottleneck.

To alleviate the scarcity of human—robot paired videos, we build upon the data rendering approach
proposed in the MasqueradeLepert et al.| (2025)) paper and introduce an automated pipeline. This
pipeline takes egocentric human videos as input and produces robot-arm rendered results through
the following steps.

Hand Pose Estimation: We use models such as HaMeR for 3D Hand Mesh Recovery to extract 3D
hand keypoints and motion trajectories from ego-centric videos.

Hand Segmentation and Removal: We first use Detectron2[Wu et al.|(2019) to detect human hands,

and then apply Segment Anything 2 (SAM2) (2024) to perform fine-grained segmentation
and remove the detected hands and forearms from the video.

Video Inpainting: We apply E2FGVILi et al.| (2022), a video inpainting model to fill the removed
regions across frames, producing clean background videos without hands.

Pose Mapping: The predicted hand keypoints are mapped to robot end-effector poses, including
target position (midpoint between thumb and index finger), target orientation (plane normal plus
fitted vector), and gripper opening (thresholded thumb-index distance).

Robot Arm Rendering: Using RobotSuite (2020), we render robot arms corresponding to
the mapped poses into the inpainted videos. Fine-tuning of poses and data cleaning/filtering further
improves the fidelity of the resulting paired videos.

Given the multi-step nature of our automated data generation pipeline, cumulative errors and in-
consistencies can arise across segments. To mitigate these issues, we employ a human-in-the-loop
filtering mechanism to rigorously audit and remove low-quality samples, thereby enhancing data
fidelity and internal consistency. After filtering, each resulting video is segmented into clips of 81
frames sampled at equal intervals, yielding approximately 6,000 video clips that form our training
and testing sets. This procedure produces a high-quality human—robot paired dataset that furnishes
robust training support for In-Context Diffusion Transformer models such as Mitty and provides a
solid foundation for reliable cross-task and cross-environment generalization.
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4 EXPERIMENTS.

4.1 SETUP.

We build on the pretrained Wan 2.2 TI2V-5B dense model and additionally train on the Wan 2.2
TI2V-14B MoE model. We adopt a LoRA-based fine-tuning strategy, simultaneously adapting both
high-noise and low-noise branches. The TI2V-5B model is trained for 20k steps, while the larger
TI2V-14B model is trained for 5k steps due to computational cost considerations. The LoRA rank
is set to 96 with a fixed learning rate of 1 x 10~%. All experiments are conducted on two H200
GPUs. Both training and inference operate on 81 frames per clip at a resolution of 416x224, with
an effective batch size of 4.

4.2 DATASETS AD BENCHMARK.

We evaluate Mitty on two primary datasets. Human2Robot (H2R) Xie et al.| (2025)contains 2,600
paired human-robot videos collected via VR teleoperation, covering diverse manipulation tasks
with fine-grained temporal alignment. We exclude videos shorter than 81 frames, resulting in 1,019
videos for training and 255 videos for testing. EPIC-KITCHENS [Damen et al.|(2020) is a large-scale
egocentric kitchen dataset. Using our pipeline in Sec.[3.3] we render robot arms into kitchen scenes,
producing 5,373 training videos and 597 testing videos. All quantitative evaluations reported in this
paper are computed on the respective held-out test sets to ensure fair and consistent benchmarking
across datasets.

4.3 METRIC.

We evaluate performance with two criteria. First, video quality is assessed using standard met-
rics—Fréchet Video Distance (FVD), PSNR, MSE, and SSIM—and further evaluated on the test
sets of both datasets. Second, task success rate serves as our primary metric: we predefine failures
as cases with obvious visual artifacts, temporal discontinuities or distortions, or incorrect robot-arm
motions. Three human experts independently review and score each generated video; disagreements
are resolved via discussion to reach consensus.

4.4 BASELINE METHODS.

All baselines are instantiated on the Wan 2.2 TI2V framework. Our primary setup uses the TI2V-5B
backbone with first-frame conditioning and human reference videos, which forms the core configu-
ration of Mitty. To study model scaling, we also evaluate a larger T2V-14B configuration under the
same setting.

We then consider the ablated variants used in the application study: (i) first-frame only — the model
predicts subsequent frames using only the initial robot frame and the task description (the human
reference video is removed); (ii) fext-free — the task description is removed while keeping the initial
robot frame and the human reference video. Finally, we assess training strategies by comparing sep-
arate training (a dedicated model per dataset) versus mixed training (joint training on both datasets).

Table 1: Video generation quality metrics across Human2Robot and EPIC-Kitchens datasets. Lower
FVD and MSE indicate better quality, while higher PSNR, SSIM, and SR (Success Rate, %) indicate
better reconstruction fidelity and task performance. The best results are highlighted in bold.

Dataset Method / Setting FVD, PSNRt SSIM{ MSE| SRt

TI2V 5B (w/o first frame)  102.4 21.5 0.835 0.00837 87.8
Human2Robot  TI2V 5B (w first frame) 90.2 21.7 0.837 0.00806 90.6
T2V 14B 87.0 22.7 0.851  0.00649 93.7

TI2V 5B (w/o first frame)  396.6 14.9 0.686 0.0399  79.7
EPIC-Kitchens  TI2V 5B (w first frame) 301.2 14.5 0.682 0.0405 834
T2V 14B 290.5 15.7 0.693 0.0326  86.3
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Figure 4: Mitty’s generation results on Human2Robot and EPIC-Kitchens datasets. In each group
of results, the first row shows the human demonstration videos, the second row shows the outputs
generated by our method, and the third row shows the ground-truth robot execution videos.

4.5 RESULTS.

Quantitative Evaluation

Figure [5] shows Mitty’s qualitative results on Human2Robot and EPIC-Kitchens. Each group con-
tains three rows: the first row is the human demonstration, the second row is Mitty’s zero-frame
generation without first-frame conditioning, and the third row is the ground truth robot-execution
video. We observe that Mitty accurately preserves scene layout and object interactions while pro-
ducing smooth, temporally coherent robot motions. Thanks to its In-Context Learning design, Mitty
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Figure 5: Comparison with Masquerade. Masquerade uses a multi-stage pipeline—detecting hu-
man hand joint chains, implanting hands, and rendering robot arms—which is prone to cumulative
errors such as implanting failures or inaccurate joint detection, resulting in lower success and us-
ability rates. In contrast, our approach is a streamlined end-to-end method that directly maps human
demonstrations to robot executions, achieving higher reliability and consistency. The red boxes
highlight the regions where Masquerade encounters problems.

also generalizes robustly to unseen tasks and environments, maintaining strong visual consistency,
action consistency, and background stability.

Qualitative Results

Table [I] summarizes our results on the Human2Robot and EPIC-Kitchens datasets. Across both
datasets, adding the first-frame condition consistently reduces FVD and MSE while slightly in-
creasing PSNR, SSIM, and SR, demonstrating more stable and faithful video generation. On Hu-
man2Robot, our larger T2V 14B model achieves the best overall performance, yielding the lowest
FVD and MSE and the highest PSNR, SSIM, and SR compared to TI2V 5B. In contrast, the EPIC-
Kitchens dataset presents more diverse scenes, more complex environments, and moving camera
viewpoints, which make the task significantly more challenging. Consequently, performance met-
rics on EPIC-Kitchens are generally lower than on Human2Robot, reflecting the increased difficulty
of achieving high-fidelity generation under such conditions.

Table 2: Ablation study on Human2Robot and EPIC-Kitchens datasets under three settings: (1) w/o
ref video, (2) w/o task description, and (3) Full model with separate or mixed training. Lower FVD
and MSE indicate better perceptual and reconstruction quality, while higher PSNR, SSIM, and SR
indicate better fidelity. The best results are highlighted in bold.

Dataset Method / Setting FVD| PSNR{T SSIM{ MSE| SR?T
w/o ref video 237.6 22.0 0.858 0.0091 64.7
w/o task description 94.2 21.4 0.837  0.0091 87.5
Human2Robot

Full (Mixed training) 255.4 16.6 0.742  0.0238 722
Full (Separate training)  90.2 21.7 0.837  0.0081 90.6

w/o ref video 381.4 13.6 0463  0.0528 635
w/o task description 364.1 14.5 0.682  0.0398 81.1
Full (Mixed training) 377.4 139 0.664 0.0467 71.2
Full (Separate training)  301.2 14.6 0.689  0.0405 83.4

EPIC-Kitchens

4.6 ABLATION STUDY.

Table [2] presents the ablation results on the Human2Robot and EPIC-Kitchens datasets using the
TI2V-5B model. Considering the additional training and inference cost, we adopt the TI2V-5B with
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Table 3: Comparison between our method and Masquerade on task-level SR (Success Rate) and
human preference. The best results are highlighted in bold.

Method Task-level SR (%) Human Preference (%)
Masquerade 31.2 23.7
Ours 93.7 76.3

first-frame conditioning as our default baseline. When the human reference video is removed, the
model predicts subsequent frames using only the initial robot frame and task description, resulting
in clear degradation in FVD, PSNR, SSIM, and SR on both datasets. In contrast, removing task
description prompts causes only minor changes, indicating that Mitty relies more on visual demon-
strations than textual cues. Notably, the impact of removing the human reference video is more
severe on EPIC-Kitchens due to its more diverse scenes and moving camera viewpoints, further
emphasizing the importance of strong visual conditioning under complex environments. Finally,
because the two datasets differ substantially in tasks and environments (e.g., single-arm vs. dual-
arm manipulation and varying scene complexity), the full model trained separately on each dataset
outperforms mixed training.

4.7 COMPARE WITH MASQUERADE.

Masquerade employs a multi-stage pipeline—hand segmentation and pose estimation, background
inpainting, and robot-arm rendering—that leverages large-scale human videos but accumulates er-
rors at each step. Typical failure cases include inaccurate hand or pose predictions, limited robot-arm
reach due to rendering constraints, missing depth cues that confuse hand—object relationships, and
incomplete inpainting of accessories such as watches that leaves artifacts. These issues lead to unre-
alistic or misaligned robot motions. In contrast, our approach is end-to-end, directly mapping human
demonstrations to robot executions without intermediate steps. This streamlined design produces
more coherent and plausible robot behaviors. For human preference evaluation, three independent
experts each reviewed and scored 100 generated video samples, expressing their preference between
our method and Masquerade. The final scores were obtained by aggregating their independent judg-
ments. Table|3[shows that our method substantially outperforms Masquerade in both task-level SR
and human preference.

5 LIMITATION AND FUTURE WORK.

Although Mitty demonstrates strong performance and generalization, it still has several limitations.
At present, Mitty can only generate robot-arm execution videos and cannot explicitly predict action
sequences, which limits its direct applicability to real-world robot policy execution. Future work
will explore integrating action prediction into the framework, leveraging larger-scale real human
demonstration data, and extending to more complex tasks and embodiments to improve long-term
temporal consistency and real-world applicability.

6 CONCLUSION

We presented Mitty, a Diffusion Transformer framework enabling in-context learning for end-to-
end human-to-robot video generation. Leveraging Wan 2.2 and a paired-data synthesis pipeline,
Mitty bypasses intermediate representations and directly translates human demonstrations into robot
videos. Experiments on Human-to-Robot and EPIC-Kitchens show state-of-the-art performance and
strong generalization. We also conducted comprehensive ablation studies across multiple variants,
providing quantitative evidence and actionable insights into the contribution of each component.
Furthermore, we compared Mitty with rendering-based approaches such as Masquerade: unlike
their multi-stage pipelines prone to accumulated errors, Mitty’s streamlined end-to-end design pro-
duces smoother, temporally coherent, and more reliable robot motions. These results demonstrate
the potential of diffusion-based in-context learning for scalable, robust robot learning from human
videos.
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CODE OF ETHICS

The authors have read and acknowledge adherence to the ICLR Code of Ethics.

ETHICS STATEMENT

All datasets used in this work are publicly available and widely adopted in the research community.
We comply with dataset licenses and usage guidelines. Human figures appear only as part of these
existing benchmarks to evaluate generalization across diverse visual domains. No private or newly
collected human data was used.

REPRODUCIBILITY STATEMENT.

All datasets, model configurations, and training details used in this work are described in the paper.
We will release the synthetic paired human—robot dataset, model checkpoints, and inference scripts
upon publication to facilitate full reproducibility. Hyperparameters, architecture details, and evalua-
tion metrics are explicitly documented. We also provide ablation studies to clarify the effect of each
component. Together, these measures ensure that researchers can replicate and extend our results
without ambiguity.

USE OF LARGE LANGUAGE MODELS

We only used large language models such as GPT-4 and GPT-5 to assist with English grammar re-
finement and error correction at the writing stage. All technical content—including method design,
experimental setup, and quantitative results—was independently conceived, implemented, and veri-
fied by the authors. Large language models were not used to modify any experimental data or code.
This guarantees the scientific integrity and originality of this work.
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A APPENDIX

In the appendix, we provide extended qualitative results and additional video demonstrations to
complement the figures and tables in the main paper. For anonymity, we host all videos on two
anonymous links. The original full-resolution videos are included in the supplementary material to
allow reviewers to inspect the generated results in detail.

Video 1 showcases our Mitty model’s generated robot-execution videos across Human2Robot and
EPIC-Kitchens, illustrating its visual consistency, action coherence, and robustness across diverse
tasks.

Video 2 presents a side-by-side comparison between Mitty and Masquerade, enabling a direct quali-
tative assessment of differences in motion quality, temporal stability, and scene fidelity. From top to
bottom, the three rows correspond to the human demonstration video, the Masquerade results, and
our Mitty results.

The anonymous links are:

* Anonymous Link 1 (Mitty results): https://limewire.com/d/bCrCQ#
D41sgOngJdz

* Anonymous Link 2 (Mitty vs. Masquerade): https://limewire.com/d/20wUH#
gVP5tFneoA
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