
Few-shot image classification by generating natural language rules

Wai Keen Vong and Brenden M. Lake
Center for Data Science

New York University
New York, NY, United States

Abstract

The ability to generate rules and hypotheses
plays a key role in multiple aspects of human
cognition including concept learning and ex-
planation. Previous research has framed this
ability as a form of inference via probabilis-
tic program induction. However, this approach
requires careful construction of the right gram-
mar and hypothesis space for a particular task.
In this work, we propose an alternative compu-
tational account of rule generation and concept
learning that sidesteps some of these issues.
By leveraging advances in multimodal learning
and large language models, we extend the la-
tent language framework from Andreas et al.
(2017) to work in a zero-shot manner. Taking
naturalistic images as input, our computational
model is capable of generating candidate rules
that are specified in natural language, and veri-
fying them against the observed data. We show
that our model can generate, in a zero-shot man-
ner, plausible rules for visual concepts in two
domains.

1 Introduction

Humans can generate a wide variety of rules and hy-
potheses to make sense of the world, ranging from
perceptual rules that distinguish between safe and
poisonous plants to complex scientific hypotheses
(Schulz, 2012). Where do these hypotheses come
from? Within the last decade, there has been a
resurgence of interest in rule and hypothesis genera-
tion, led by accounts positing concept learning as a
form of probabilistic program induction (Goodman
et al., 2008; Piantadosi and Jacobs, 2016; Bramley
et al., 2018). Such approaches have been success-
ful at capturing human concept learning in domains
such as hand-written characters (Lake et al., 2015)
and logical concepts (Piantadosi et al., 2016).

However, these approaches have important lim-
itations. First, these models are often instantiated
with a minimal grammar to construct novel con-
cepts, whereas humans can leverage their knowl-

edge of pre-existing lexical concepts to guide the
rule generation process. Second, the grammars
used in these with are often domain-specific, re-
quiring researcher effort to reverse-engineer from
behavioral data or to transfer to different domains.

In this paper, we outline an alternative account
of rule-based concept learning that attempts to over-
come some of the above limitations. We combine
two key ideas in our approach. First, rather than
specifying a domain-specific grammar, we leverage
natural language as a domain-general representa-
tional medium for rules, inspired by the latent lan-
guage framework from Andreas et al. (2017). Sec-
ond, we utilize recent advances from multimodal
neural networks (Radford et al., 2021; Li et al.,
2022) and large language models (Brown et al.,
2020), to instantiate a few-shot image classification
model via latent language, allowing it to classify
images via generating sensible rules specified in
natural language without any additional training.
We demonstrate our model’s ability to generate
rules in a zero-shot manner across two kinds of
visual concept learning tasks.

2 Related Work

Within cognitive science, our work builds off a
long history of research into rule and hypothesis
generation approaches to concept learning (Nosof-
sky et al., 1994; Goodman et al., 2008; Piantadosi
et al., 2016; Bramley et al., 2018; Ellis et al., 2020).
Many of these accounts treat concept learning as
a form of probabilistic program induction, sam-
pling hypotheses or rules from an grammar-based
hypothesis space. However, these models are speci-
fied with a minimal starting representation that is in
stark contrast to the vast library of concepts already
available from natural language.

Within machine learning, our work is related
to models of few-shot visual classification (Lake
et al., 2015; Snell et al., 2017; Mu et al., 2020), but
especially the work of Andreas et al. (2017), which



leverages natural language as a representational bot-
tleneck for performing visual classification. Within
few-shot learning, there also exist models that al-
low the use of auxiliary class information for zero-
shot classification (Snell et al., 2017), but in this
work our model generates the relevant semantic
class label information itself from the support ex-
amples. We also take advantage of recent work in
multimodal neural networks (Radford et al., 2021;
Li et al., 2022) which have been shown to con-
tain extensive knowledge of multimodal concepts
(Goh et al., 2021), and can be used to perform tasks
like image captioning and zero-shot image classi-
fication, and large language models (Brown et al.,
2020) which offer complementary strengths such
as reasoning in natural language.

3 Model

Our model extends the Learning with Latent Lan-
guage (L3) approach from Andreas et al. (2017).
The L3 model consists of a proposal model gϕ
that generates candidate natural language rules via
an image captioning system, and an interpreta-
tion model hη that provides a numerical similar-
ity score between a natural language rule and an
image, allowing one to check the goodness of a
sampled rule. Training the L3 model first required
a language learning phase where domain-specific
language annotations were used to train each com-
ponent separately, which could then be utilized at
test time by generating candidate language descrip-
tions for new concepts. In this work, we skip the
language learning phase, and instead leverage and
combine existing pre-trained multimodal and large
language models to perform both the proposal and
interpretation steps. Additionally, the use of nat-
ural language as a representational bottleneck in
this architecture means that different multimodal or
language models that take natural language as in-
put, or generate natural language as output, can be
stitched together despite not being trained jointly.
1

To generate proposals, Andreas et al. (2017) used
the mean embedding across multiple images as in-
put to a trained image captioning model to propose
natural language rules. However, pre-trained image
captioning models are generally trained to predict

1Zeng et al. (2022) concurrently proposed Socratic Models,
a similar approach for combining together different pre-trained
models via natural language as the medium for communicating
between models to solve other kinds of multimodal reasoning
tasks.
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Figure 1: Latent Language Model. Given a set of sup-
port images, our model first lifts these images into natu-
ral language via a pre-trained image captioning model.
Second, we prompt GPT-3 to convert these instance-
level captions into an abstract natural language rule,
sampling multiple candidate rules in the process. Fi-
nally, these proposed rules are interpreted against the
support images via image-text matching to determine
the best rule (rules in darker text are better).

captions from a single image, not across multiple
images. Furthermore, these captions are typically
only applicable to that particular image, and do not
describe what might be common amongst multiple
images, which is our intended goal.

To alleviate these issues, we split the proposal
model into two separate steps in our model, as
shown in Figure 1. First, in the captioning step,
we use BLIP (Li et al., 2022), a recent pre-trained
multimodal transformer, to generate captions for
each image in the support set separately. Second,
in the abstraction step, we leverage large language
models like GPT-3 (Brown et al., 2020) to propose
natural language rules that convert these instance-



level captions to an abstract rule specified in natural
language. Specifically, we provided GPT-3 with a
prompt consisting of a task description followed by
some examples of descriptions and a natural lan-
guage rule for how these descriptions were related,
and then appended each of the generated captions
in a random order to the prompt and asked it to
generate a corresponding rule (see Appendix A).
Across the experiments reported, we run the cap-
tioning step once and sample multiple rules via
prompting GPT-3.

Adapting the interpretation step for the zero-
shot setting is relatively straightforward. The
image-text matching procedure from L3 is very
similar to how image-text matching is used to train
contrastive image-text models (Radford et al., 2021;
Li et al., 2022). For convenience purposes, we re-
use the BLIP architecture from the captioning step,
but instead use the separate image-text contrastive
head as hη. The interpretation model takes in an
image and text as input, and outputs a cosine simi-
larity score describing the match between the given
image and text. The interpretation model is used to
determine the best generated rule by averaging over
the cosine similarities between each of the sampled
rules against all of the support examples. Once a
given rule is chosen as the best amongst the set of
sampled rules, that same rule is then used with the
interpretation model for prediction on new query
examples.

4 Experiments

ShapeWorld. We adapted the ShapeWorld visual
reasoning dataset which has been used to investi-
gate few-shot visual concept learning (Kuhnle and
Copestake, 2017; Andreas et al., 2017; Mu et al.,
2020). While the kinds of images in this dataset
are relatively simple abstract shapes of varying
colors, one important difference is that our model
has not been trained directly on any images from
ShapeWorld, and needs to determine the relevant
dimensions to generate valid rules from the ob-
served exemplars without any prior experience in
this domain.

Using 8 colors and 7 shapes, we generated three
types of concepts consisting of either a single prim-
itive shape concept (where color could vary), or a
primitive color concept (where shape could vary),
or a conjunction of shape and color primitives (e.g.
a blue triangle, or a red square).

Since the concepts generated in this domain con-

Model Overall S C S+C
Prototype 89.7 92.9 77.1 98.1
L3 (1 rules) 64.6 70.4 63.5 60.3
L3 (10 rules) 88.3 86.7 89.6 88.7
L3 (oracle) 91.0 90.8 91.7 90.6

Table 1: ShapeWorld set completion results (as percent
correct). S refers to shape concepts, C refers to color
concepts, and S+C refers to shape and color concepts

sist of a single class of positive examples, we opted
to test the model via set completion (Andonian
et al., 2020) rather than few-shot classification.
Given with a set of support images that follow some
rule, set completion involves selecting one image
out of many from a separate query set that matches
the concept from the support set. Given a set of four
support images from a given concept, we used the
captioning model to generate four captions, which
were passed into GPT-3 to generate 10 candidate
natural language rules. The best rule was deter-
mined by the rule with the highest average cosine
similarity to the set of support examples using the
interpretation model hη. From a separate query
set of another four examples, this rule was subse-
quently used to select the example from the query
set that matched the concept from the support set.
We sampled 300 concepts roughly split between
the three different types for testing.

Results. Results are shown in Table 1. Overall, our
model performed quite well at the set completion
task in this domain, and allowing the model to gen-
erate multiple candidate rules led to a substantial in-
crease in accuracy. Qualitatively, the kinds of rules
generated were sensible and matched the underly-
ing concepts (e.g. “a purple triangle”, “squares
on a black background”), whereas incorrect rules
often specified the wrong target feature (such as
color instead of shape).

Overall performance was similar to a baseline
prototype model, that predicted the matching
exemplar based on the cosine similarity of each
query example to the mean embedding from the
visual representations of the support examples
from BLIP’s vision encoder. Breaking down
performance for the different rule types showed
interesting differences. Although performance in
our model was the same across the three types of
concepts, the prototype-based model was more
accurate at classifying conjunctive concepts, likely
because both shape and color dimensions were cor-



related leading to examples being clustered more
tightly in the visual embedding space. However, its
performance on shape versus color was lower, with
color concepts being substantially more difficult.
This suggests that generating candidate natural
language rules might be especially helpful with
determining the relevant axis of generalization
compared to a model that generalizes from fixed
visual representations, and allowing for more
flexible kinds of generalizations.

Abstract Rules. In the second experiment, we
explored two kinds of more challenging rules us-
ing naturalistic images. We were interested to see
whether our model could generate sensible rules,
and whether using these natural language rules for
classification would be more beneficial than im-
age features alone. We filtered a subset of the
COCO training dataset (Lin et al., 2014), for im-
ages with annotations with either one or two ani-
mals. We used this subset to create few-shot clas-
sification splits for determining whether images
contained one vs. two animals, or determining
whether an image contained two same vs. differ-
ent animals, an analogue of the same-different task
that has been extensively studied in cognitive sci-
ence (Carstensen and Frank, 2021). Both of these
kinds of rules are more challenging since they rely
on picking up relational properties across objects
in a single image, rather than more salient features
like color or shape.

Out of the 10 animal classes in COCO, we ran-
domly split half to be sampled as images for sup-
port examples, and the other half to be sampled
as query examples.2 For both types of rules, we
sampled 6 exemplars of each class to form a set of
support examples, and repeated this process to cre-
ate 10 different instances of each concept split. To
evaluate the models, we sampled 6 additional exem-
plars from each class as query examples. Due to the
added complexity of the rules in this experiment,
we allowed the model to sample up to 20 rules
(sampling one rule for each class separately), and
selected the best rule on the basis of classification
on the support set. Initial testing showed that the
previous prompt to GPT-3 used in the ShapeWorld
domain was not sufficient generating sensible rules,
and required an adaptation to the original prompt
for this task with slightly modified examples (see

2Any images that contained one animal from the support
animal classes, and one from the query animal classes was
discarded during this sampling process.

Model One vs. Two Same vs. Diff
Prototype 63.3 52.5
L3 (20 rules) 59.1 70.0
L3 (oracle) 87.5 85.8

Table 2: COCO few-shot classification results (as per-
cent correct).

Appendix A for details).
Results. Results are shown in Table 2. Com-

pared to the ShapeWorld domain, we observed
more variability in the results for this simulation.
Even with the ability to generate 20 candidate rules,
performance on both tasks was quite variable, de-
pending on the quality of the rules generated in
each separate instance.3 For the one vs. two con-
dition, the model often generalized too strictly, e.g.
“two giraffes” which led to incorrect classifications
on the query set that involved other animals, and its
overall performance was similar to the prototype
model. Interestingly, for same vs. different, the
model showed reasonable classification accuracy
relative to the chance-level performance observed
in the prototype model, and was able to generate
plausible rules like “animals in a pair“, or “a cou-
ple of something“ for the same instances. Further-
more, providing the model with ground truth rules
in the oracle model resulted in high classification
performance in both tasks, suggesting that classi-
fication via natural language rules might be espe-
cially effective for more abstract visual properties.
Of course, the model must reliably generate com-
pelling rules to succeed, or learn these distinctions
by receiving natural language rules from another
person in a social context (Chopra et al., 2019; Ac-
quaviva et al., 2021).

5 Discussion

In this paper, we extended the learning from la-
tent language (L3) framework from Andreas et al.
(2017) to enable generation of natural language
rules in a zero-shot manner, and demonstrated its
use in two few-shot image classification settings.
By combining large-scale pre-trained neural net-
works to act as proposal and interpretation models,
we constructed a system that could generate natural
language rules across a number of concept learning

3We also noticed that even in the context of a single rule,
classification responses demonstrated a graded nature, for
example, an image with two animals but one partially occluded
would be more confusable than an image with two distinct
animals.



tasks by generating valid yet interpretable rules in
natural language. Our results highlight the flexi-
bility of using natural language for generalization:
our model was better at generalizing to color con-
cepts than a baseline prototype model that relied on
visual features alone, as well as to more abstract re-
lational rules in the second experiment (particularly
when it was provided with the underlying rule to
use), suggesting that natural language can modulate
generalization and classification behavior.

One limitation of the current approach is that is
reliant on the text captions to generate proposed
rules, and thus the quality of the generated rules
is dependent on what aspects or features the pre-
trained captioning model chooses to highlight and
describe. Some ways to overcome this issue might
be using a model trained to caption multiple im-
ages directly (Hernandez et al., 2022), or incorpo-
rating images directly into the abstraction prompt
via multimodal few-shot learning (Tsimpoukelli
et al., 2021). Second, the method we prompted
GPT-3 to propose rules only used captions from
one support class as a time, performing a compari-
son within captions of that class (and repeating this
process independently for the other class). How-
ever, it is very likely that adapting the prompt to
allow for comparison across captions from multi-
ple classes would also be beneficial, as that could
allow the language model to better reason about the
relevant distinction for classification (Williams and
Lombrozo, 2010; Edwards et al., 2019). Finally,
given the generality of the proposed approach, in
future work we hope to test this model more exten-
sively against other kinds of concepts such as ones
from Bongard Problems (Bongard, 1970; Nie et al.,
2020), to determine whether natural language rules
can explain other kinds of human-like generaliza-
tion behavior.
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A Appendix

A.1 ShapeWorld

The following prompt was used to pass the
individual captions into GPT-3 to generate rules:

Task: given a list of
descriptions, predict what they
have in common
List: a bowl of apples | a
photograph of some cherries |
a person eating a banana |
Rule: fruit
List: people on a soccer field |
a cricket game | a basketball |
Rule: sports that involve a ball
List: {caption_1} | {caption_2}
| ... | {caption_n} |
Rule:

For all concepts we use the
text-davinci-001 version of GPT-3
with a temperature setting of 0.7.

A.2 Abstract Rules

The adapted prompt passed into GPT-3 for both
rules in the Abstract Rules simulations was as
follows:

Task: given a list of captions,
predict what they have in common
List: a red apple in a bowl | a
child in a crib | coffee in a mug
|
Rule: things inside of another
object
List: a flock of seagulls | a
swarm of bees | a collection of
books
Rule: things in a collection
List: {caption_1} | {caption_2}
| ... | {caption_n} |
Rule:

For all concepts we use the
text-davinci-001 version of GPT-3



with a higher temperature setting of 1.0 to
encourage different rules for each class.


