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Abstract

Deep image prior (DIP) and its variants have shown remarkable potential to solve inverse
problems in computational imaging (CI), needing no separate training data. Practical DIP
models are often substantially overparameterized. During the learning process, these models
first learn the desired visual content and then pick up potential modeling and observational
noise, i.e., performing early learning then overfitting. Thus, the practicality of DIP hinges
on early stopping (ES) that can capture the transition period. In this regard, most previous
DIP works for CI tasks only demonstrate the potential of the models, reporting the peak
performance against the ground truth but providing no clue about how to operationally
obtain near-peak performance without access to the ground truth. In this paper, we set to
break this practicality barrier of DIP, and propose an effective ES strategy that consistently
detects near-peak performance across several CI tasks and DIP variants. Simply based on
the running variance of DIP intermediate reconstructions, our ES method not only outpaces
the existing ones—which only work in very narrow regimes, but also remains effective when
combined with methods that try to mitigate overfitting.

1 Introduction

Inverse problems (IPs) are prevalent in computational imaging (CI), ranging from basic image denoising,
super-resolution, and deblurring, to advanced 3D reconstruction and major tasks in scientific and medical
imaging (Szeliski, 2022). Despite the disparate settings, all these problems take the form of recovering a
visual object x from y = f(x), where f models the forward process to obtain the observation y. Typically,
these visual IPs are underdetermined: x cannot be uniquely determined from y. This is exacerbated by
potential modeling (e.g., linear f to approximate a nonlinear process) and observational (e.g., Gaussian or
shot) noise, i.e., y ≈ f(x). To overcome nonuniqueness and improve noise stability, researchers often encode
a variety of problem-specific priors on x when formulating IPs.

Traditionally, IPs are phrased as regularized data fitting problems:

min
x

ℓ(y, f(x)) + λR(x) ℓ(y, f(x)) : data-fitting loss, R(x) : regularizer (1)

where λ is the regularization parameter. Here, the loss ℓ is often chosen according to the noise model,
and the regularizer R encodes priors on x. The advent of deep learning (DL) has revolutionized the way
IPs are solved. On the radical side, deep neural networks (DNNs) are trained to directly map any given
y to an x; on the mild side, pre-trained or trainable DL models are taken to replace certain nonlinear
mappings in numerical algorithms for solving Eq. (1) (e.g. plug-and-play and algorithm unrolling); see
recent surveys Ongie et al. (2020); Janai et al. (2020) on these developments. All of these DL-based methods
rely on large training sets to adequately represent the underlying priors and/or noise distributions. This
paper concerns another family of striking ideas that require no separate training data.

Deep image prior (DIP) Ulyanov et al. (2018) proposes parameterizing x as x = Gθ(z), where Gθ is
a trainable DNN parameterized by θ and z is a frozen or trainable random seed. No separate training
data other than y are used! Plugging the reparametrization into Eq. (1), we obtain

min
θ

ℓ(y, f ◦Gθ(z)) + λR ◦Gθ(z). (2)
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Gθ is often “overparameterized”—containing substantially more parameters than the size of x, and
“structured”—e.g., consisting of convolution networks to encode structural priors in natural visual objects.
The resulting optimization problem is solved via standard first-order methods for modern DL (e.g., (adap-
tive) gradient descent). When x has multiple components with different physical meanings, one can naturally
parametrize x using multiple DNNs. This simple idea has led to surprisingly competitive results in numerous
visual IPs, from low-level image denoising, super-resolution, inpainting (Ulyanov et al., 2018; Heckel & Hand,
2019; Liu et al., 2019) and blind deconvolution (Ren et al., 2020; Wang et al., 2019; Asim et al., 2020; Tran
et al., 2021; Zhuang et al., 2022a), to mid-level image decomposition and fusion (Gandelsman et al., 2019;
Ma et al., 2021), and to advanced CI problems (Darestani & Heckel, 2021; Hand et al., 2018; Williams et al.,
2019; Yoo et al., 2021; Baguer et al., 2020; Cascarano et al., 2021; Hashimoto & Ote, 2021; Gong et al., 2022;
Veen et al., 2018; Tayal et al., 2021; Zhuang et al., 2022b); see the survey Qayyum et al. (2021).

Figure 1: The “early-learning-then-overfitting”
(ELTO) phenomenon in DIP for image denoising.
The quality of the estimated image climbs first to a
peak and then drops once the noise is picked up by
the model Gθ(z) also.

Overfitting issue in DIP A critical detail that
we have glossed over is overfitting. Since Gθ is of-
ten substantially overparameterized, Gθ(z) can rep-
resent arbitrary elements in the x domain. Global
optimization of equation 2 would normally lead to
y = f ◦ Gθ(z), but Gθ(z) may not reproduce x,
e.g., when f is non-injective, or y ≈ f(x) so that
Gθ(z) also accounts for the modeling and obser-
vational noise. Fortunately, DIP models and first-
order optimization methods together offer a bless-
ing: in practice, Gθ(z) has a bias towards the de-
sired visual content and learns it much faster than
learning noise. Therefore, the quality of reconstruc-
tion climbs to a peak before the potential degrada-
tion due to noise; see Fig. 1. This “early-learning-
then-overfitting” (ELTO) phenomenon has been re-
peatedly reported in previous works and is also sup-
ported by theories on simple Gθ and linear f (Heckel
& Soltanolkotabi, 2020b;a). The successes of the DIP models claimed above are conditioned on
that appropriate early stopping (ES) around the performance peaks can be made.

Is ES for DIP trivial? Natural ideas trying to perform ES can fail quickly. (1) Visual inspection:
This subjective approach is fine for small-scale tasks involving few problem instances, but quickly becomes
infeasible for many scenarios, such as (a) large-scale batch processing, (b) recovery of visual contents tricky
to visualize and/or examine by eyes (e.g. 3D or 4D visual objects), and (c) scientific imaging of unfamiliar
objects (e.g., MRI imaging of rare tumors and microscopic imaging of new virus species); (2) Tracking full-
reference/no-reference image quality metrics (FR/NR-IQMs) or fitting loss: Without the ground
truth x, computing any FR-IQM and hence tracking their trajectories (e.g., the PNSR curve in Fig. 1) is out
of the question. We consider tracking NR-IQMs as a family of baseline methods in Sec. 3.1; the performance
is much worse than ours. We also explore the possibility of using the loss curve for ES here, but are unable
to find correlations between the trend of the loss and that of the PSNR curve, shown in Fig. 14; (3) Tuning
the iteration number: This ad hoc solution is taken in most previous work. But since the peak iterations
of DIP vary considerably across images and tasks (see, e.g., Figs. 4 and 11 and Appendices A.7.3 and A.7.5),
this could entail numerous trial-and-error steps and lead to suboptimal stopping points; (4) Validation-
based ES: ES easily reminds us of validation-based ES in supervised learning. The DIP approach to IPs,
as summarized in Eq. (2) is not supervised learning, as it only deals with a single instance y, without
separate (x, y) pairs as training data. There are recent ideas (Yaman et al., 2021; Ding et al., 2022) that
hold part of the observation y out as a validation set to emulate validation-based ES in supervised learning,
but they quickly become problematic for nonlinear IPs due to the significant violation of the underlying i.i.d.
assumption; see Sec. 3.3.
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Prior work addressing the overfitting There are three main approaches for countering overfitting of
DIP models. (1) Regularization: Heckel & Hand (2019) mitigates overfitting by restricting the size of Gθ

to the underparameterized regime. Metzler et al. (2018); Shi et al. (2022); Jo et al. (2021); Cheng et al. (2019)
control the network capacity by regularizing the norms of layer-wise weights or the network Jacobian. Liu
et al. (2019); Mataev et al. (2019); Sun (2020); Cascarano et al. (2021) use additional regularizer(s) R(Gθ(z)),
such as the total-variation norm or trained denoisers. These methods require the right regularization level—
which depends on the noise type and level—to avoid overfitting; with an improper regularization level, they
can still lead to overfitting (see Fig. 4 and Sec. 3.1). Moreover, when they indeed succeed, the performance
peak is postponed to the last iterations, often increasing the computational cost severalfold. (2) Noise
modeling: You et al. (2020) models sparse additive noise as an explicit term in their optimization objective.
Jo et al. (2021) designs regularizers and ES criteria specific to Gaussian and shot noise. Ding et al. (2021)
explores subgradient methods with diminishing step size schedules for impulse noise with the ℓ1 loss, with
preliminary success. These methods do not work beyond the types and levels of noise they target, whereas
our knowledge of the noise in a given visual IP is typically limited. (3) Early stopping (ES): Shi et al.
(2022) tracks progress based on a ratio of no-reference blurriness and sharpness, but the criterion only works
for their modified DIP models, as acknowledged by the authors. Jo et al. (2021) provides noise-specific
regularizer and ES criterion, but it is not clear how to extend the method to unknown types and levels of
noise. Li et al. (2021) proposes monitoring DIP reconstruction by training a coupled autoencoder. Although
its performance is similar to ours, the extra autoencoder training slows down the whole process dramatically;
see Sec. 3. Yaman et al. (2021); Ding et al. (2022) emulate validation-based ES in supervised learning by
splitting elements of y into “training” and “validation” sets so that validation-based ES can be performed.
But in IPs, especially nonlinear ones (e.g., in blind image deblurring—BID, y ≈ k ∗ x where ∗ is linear
convolution), elements of y can be far from being i.i.d., and so validation may not work well. Moreover,
holding out part of the observation in y can substantially reduce the peak performance; see Sec. 3.3.

Our contribution We advocate the ES approach—the iteration process stops once a good ES
point is detected, as (1) the regularization and noise modeling approaches, even if effective, often do
not improve peak performance but push it until the last iterations; there could be ≥ 10× more iterations
spent than climbing to the peak in the original DIP models; (2) both need deep knowledge about the noise
type/level, which is practically unknown for most applications. If their key models and hyperparameters
are not set appropriately, overfitting probably remains, and ES is still needed. In this paper, we build
a novel ES criterion for various DIP models simply by monitoring the trend of the running
variance of the reconstruction sequence. Our ES method is (1) Effective: The gap between our
detected and the peak performance, i.e., the detection gap, is typically very small, as measured by standard
visual quality metrics (PSNR and SSIM); (2) Efficient: The per-iteration overhead is a fraction—the
standard version in Algorithm 1, or negligible—the variant in Algorithm 2, relative to the per-iteration cost
of Eq. (2); (3) General: Our method works well for DIP and its variants, including deep decoder (Heckel &
Hand, 2019, DD) and sinusoidal representation networks (Sitzmann et al., 2020, SIREN), on different noisy
types / levels and in 5 visual IPs, both linear and nonlinear. Furthermore, our method can help several
regularization-based methods, e.g., Gaussian process-DIP (Cheng et al., 2019, GP-DIP), DIP with total
variation regularization (Liu et al., 2019; Cascarano et al., 2021, DIP-TV) to perform reasonable ES when
they fail to prevent overfitting; (4) Robust: Our method is relatively insensitive to the two hyperparameters,
i.e. window size and patience number. We keep the same hyperparameters for all experiments Secs. 2 and 3
except for the ablation study (see Sec. 3.4). By contrast, the hyperparameters of most of the methods
reviewed above are sensitive to the noise type/level.

2 Our Early-Stopping Method

Intuition for our method We assume: x is the unknown ground-truth visual object of size N ,
{θt}t≥1 is the iterate sequence and {xt}t≥1 the reconstruction sequence where xt .= Gθt(z). Since
we do not know x, we cannot access the PNSR or any FR-IQM curve. But we observe that (Fig. 2)
generally the MSE (resp. PSNR; recall PSNR(xt) = 10 log10 ∥x∥

2
∞/MSE(xt)) curve follows a U (resp.
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bell) shape: ∥xt − x∥2
F initially drops quickly to a low level and then climbs back due to the noise ef-

fect, i.e. the ELTO phenomenon in Sec. 1; we hope to detect the valley of this U-shaped MSE curve.

Figure 2: Relationship between the PSNR, MSE,
and VAR curves. Our method relies on the VAR
curve, whose valley is often well aligned with the
MSE valley, to detect the MSE valley—that cor-
responds to the PSNR peak.

Then how to gauge the MSE curve without knowing
x? We consider the running variance (VAR):

VAR(t) .= 1
W

W −1∑
w=0
∥xt+w − 1/W ·

W −1∑
i=0

xt+i∥2
F . (3)

Initially, the models quickly learn the desired visual con-
tent, resulting in a monotonic, rapidly decreasing MSE
curve (see Fig. 2). So we expect the running variance of
{xt}t≥1 to also drop quickly, as shown in Fig. 2. When
the iteration is near the MSE valley, all xt’ s are near,
but scattered around x. So 1

W

∑W −1
i=0 xt+i ≈ x and

VAR(t) ≈ 1
W

∑W −1
w=0 ∥xt+w − x∥2

F . Afterward, the noise
effect kicks in and the MSE curve bounces back, leading
to a similar bounce back in the VAR curve as the xt sequence gradually moves away from x.

Table 1: ES-WMV (our method) on real-world
image denoising for 1024 images: mean and
(std) on the images. (D: detected)

ℓ (loss) PSNR (D) PSNR Gap SSIM (D) SSIM Gap

MSE 34.04 (3.68) 0.92 (0.83) 0.92 (0.07) 0.02 (0.04)

ℓ1 33.92 (4.34) 0.92 (0.59) 0.93 (0.05) 0.02 (0.02)

Huber 33.72 (3.86) 0.95 (0.73) 0.92 (0.06) 0.02 (0.03)

This argument suggests a U-shaped VAR curve and the
curve should follow the trend of the MSE curve, with
approximately aligned valleys, which in turn are aligned
with the PSNR peak. To quickly verify this, we ran-
domly sample 1024 images from the RGB track of the
NTIRE 2020 Real Image Denoising Challenge (Abdel-
hamed et al., 2020), and perform DIP-based image de-
noising (i.e. min ℓ(y, Gθ(z)) where y denotes the noisy
image). Tab. 1 reports the average detected PSNR/SSIM and the average detection gaps based on our ES
method (see Algorithm 1) which tries to detect the valley of the VAR curve. On average, the detection gaps
are ≤ 0.95 in PSNR and ≤ 0.02 in SSIM, barely noticeable by the eyes! More details are given in Fig. 3, and
Sec. 3 and Appendix A.7.3.

Algorithm 1 DIP with ES–WMV
Input: random seed z, randomly-initialized θ0, win-

dow size W , patience P , empty queue Q, iteration
counter k = 0, VARmin =∞

Output: reconstruction x∗

1: while not stopped do
2: update θ via Eq. (2) to obtain θk+1 and xk+1

3: push xk+1 to Q, pop queue if |Q| > W
4: if |Q| = W then
5: compute VAR of elements in Q via Eq. (3)
6: if VAR < VARmin then
7: VARmin ← VAR, x∗ ← xk+1

8: end if
9: if VARmin stagnates for P iterations then

10: stop and return x∗

11: end if
12: end if
13: k = k + 1
14: end while

Detecting transition by running variance
Our lightweight method only involves computing the
VAR curve and numerically detecting its valley—
the iteration stops once the valley is detected.
To obtain the curve, we set a window size parame-
ter W and compute the windowed moving variance
(WMV). To robustly detect the valley, we introduce
a patience number P to tolerate up to P consecutive
steps of variance stagnation. Obviously, the cost is
dominated by the calculation of variance per step,
which is O(WN) (N is the size of the visual object).
In comparison, a typical gradient update step for
solving Eq. (2) costs at least Ω(|θ|N), where |θ| is
the number of parameters in the DNN Gθ. Since |θ|
is typically much larger than W (default: 100), our
running VAR and detection incur very little compu-
tational overhead. Our entire algorithmic pipeline
is summarized in Algorithm 1. To confirm the effec-
tiveness, we provide qualitative samples in Figs. 3
and 4, with more quantitative results included in
the experiment part (Sec. 3; see also Tab. 1). Fig. 3
shows on image denoising with different noise types/levels, our ES method can detect ES points that achieve
near-peak performance. Similarly, our method remains effective in several popular DIP variants, as shown
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in Fig. 4. Note that although our detection for DIP-TV in Fig. 4 is a bit far from the peak in terms of
iteration count (as the VAR curve is almost flat after the peak), the detection gap is still small (∼ 1.29dB).

Figure 3: Our ES-WMV method on DIP for denoising “F16" with different noise types and levels (top:
low-level noise; bottom: high-level noise). Red curves are PSNR curves, and blue curves are VAR curves.
The green bars indicate the detected ES point.

Seemingly similar ideas Our running variance and its U-shaped curve are reminiscent of the classical
U-shaped bias-variance tradeoff curve and, therefore, validation-based ES (Geman et al., 1992; Yang et al.,
2020). But there are crucial differences: (1) our learning setting is not supervised; (2) the variance in
supervised learning is with respect to the sample distribution, while our variance here pertains to the {xt}t≥1
sequence. As discussed in Sec. 1, we cannot directly apply validation-based ES, although it is possible to
heuristically emulate it by splitting the elements in y (Yaman et al., 2021; Ding et al., 2022)—which might be
problematic for nonlinear IPs. Another line of related ideas is the detection of variance-based online change
points in time series analysis (Aminikhanghahi & Cook, 2017), where the running variance is often used to
detect mean-shift assuming the means are piecewise constant. Here, the piecewise constancy assumption
does not hold for our {xt}t≥1.

Figure 4: ES-WMV on DD, GP-DIP, DIP-TV, and SIREN for denoising "F16" with different levels of
Gaussian noise (top: low-level noise; bottom: high-level noise). Red curves are PSNR curves, and blue
curves are VAR curves. The green bars indicate the detected ES point. (We sketch the details of the DIP
variants above in Appendix A.5)

Theoretical justification We can make our heuristic argument in Sec. 2 more rigorous by restricting
ourselves to additive denoising, that is, y = x + n, and appealing to the popular linearization strategy (i.e.
neural tangent kernel Jacot et al. (2018); Heckel & Soltanolkotabi (2020b)) in understanding DNN. The idea
is based on the assumption that during DNN training θ does not move much away from initialization θ0, so
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that the learning dynamic can be approximated by that of a linearized model, i.e. suppose that we take the
MSE loss,

∥y −Gθ(z)∥2
2 ≈

∥∥y −Gθ0(z)− JG

(
θ0)(θ − θ0)∥∥2

2
.= f̂(θ), (4)

where JG

(
θ0) is the Jacobian of G with respect to θ in θ0, and Gθ0(z) + JG

(
θ0)(θ − θ0) is the first-order

Taylor approximation to Gθ(z) around θ0. f̂(θ) is simply a least-squares objective. We can directly calculate
the running variance based on the linear model, as shown below.
Theorem 2.1. Let σi’s and wi’s be the singular values and left singular vectors of JG(θ0), and suppose
that we run a gradient descent with step size η on the linearized objective f̂(θ) to obtain {θt} and {xt} with
xt .= Gθ0(z) + JG(θ0)(θt − θ0). Then, provided that η ≤ 1/ maxi(σ2

i ),

VAR(t) =
∑

i

CW,η,σi
⟨wi, ŷ⟩2

(
1− ησ2

i

)2t
, (5)

where ŷ = y −Gθ0(z), and CW,η,σi ≥ 0 depend only on W , η, and σi for all i.

The proof can be found in Appendix A.2. Theorem 2.1 shows that if the learning rate (LR) η is sufficiently
small, the WMV of {xt} decreases monotonically. We can develop a complementary upper bound for the
WMV that has a U shape. To this end, we make use of Theorem 1 of Heckel & Soltanolkotabi (2020b),
which can be summarized (some technical details omitted; precise statement is reproduced in Appendix A.3)
as follows: consider the two-layer model GC(B) = ReLU(UBC)v, where C ∈ Rn×k models 1× 1 trainable
convolutions, v ∈ Rk×1 contains fixed weights, U is an upsampling operation and B is the fixed random
seed. Let J be a reference Jacobian matrix solely determined by the upsampling operation U , and σi’s and
wi’s the singular values and left singular vectors of J . Assume x ∈ span {w1, . . . , wp}. Then, when η is
sufficiently small, with high probability,

∥GCt(B)− x∥2 ≤
(
1− ησ2

p

)t ∥x∥2 + E(n) + ε∥y∥2, (6)

where ε > 0 is a small scalar related to the structure of the network and E(n) is the error introduced by
noise: E2(n) .=

∑n
j=1((1 − ησ2

j )t − 1)2⟨wj , n⟩2. So, if the gap σp/σp+1 > 1, ∥GCt(B)− x∥2 is dominated
by
(
1− ησ2

p

)t ∥x∥2 when t is small and then by E(n) when t is large. However, since the former decreases
and the latter increases as t grows, the upper bound has a U shape with respect to t. On the basis of this
result, we have the following.
Theorem 2.2. Assume the same setting as Theorem 2 of Heckel & Soltanolkotabi (2020b). With high
probability, our WMV is upper bounded by

12
W
∥x∥2

2

(
1− ησ2

p

)2t

1− (1− ησ2
p)2 + 12

n∑
i=1

((
1− ησ2

i

)t+W −1 − 1
)2

(w⊺
i n)2 + 12ε2∥y∥2

2. (7)

Figure 5: The exact and upper bounds
predicted by Theorems 2.1 and 2.2.

The exact statement and proof can be found in Appendix A.3. Us-
ing a reasoning similar to above, we can conclude that the upper
bound in Theorem 2.2 also has a U shape. To interpret the results,
Fig. 5 shows the curves (as functions of t) predicted by Theorems 2.1
and 2.2. The actual VAR curve should lie between the two curves.
These results are primitive and limited, similar to the situations for
many DL theories that provide loose upper and lower bounds; we
leave a complete theoretical justification for future work.

A memory-efficient variant While Algorithm 1 is already
lightweight and effective in practice, we can modify it slightly to
avoid maintaining Q and therefore saving memory. The trick is to
use exponential moving variance (EMV), together with exponential
moving average (EMA), shown in Appendix A.4. The hard window
size parameter W is now replaced by the soft forgetting factor α: the larger the α, the smaller the impact
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of the history, and hence a smaller effective window. We systematically compare ES-WMV with ES-EMV
in Appendix A.7.10 for image denoising tasks. The latter has slightly better detection due to the strong
smoothing effect (α = 0.1). For this paper, we prefer to remain simple and leave systematic evaluations of
ES-EMV on other IPs for future work.

3 Experiments

Figure 6: Baseline ES vs our ES-WMV on denoising with
low-level noise. For NIMA, we report both technical qual-
ity assessment (NIMA-q) and aesthetic assessment (NIMA-
a). Smaller PSNR gaps are better.

We test ES-WMV for DIP in image denois-
ing, inpainting, super-resolution, MRI
reconstruction, and blind image deblur-
ring, spanning both linear and nonlinear
IPs. For image denoising, we also systemat-
ically evaluate ES-WMV in the major vari-
ants of DIP, including DD (Heckel & Hand,
2019), DIP-TV (Cascarano et al., 2021), GP-
DIP (Cheng et al., 2019), and demonstrate ES-
WMV as a reliable helper in detecting good
ES points. Details of the DIP variants are dis-
cussed in Appendix A.5. We also compare ES-
WMV with the main competing methods, in-
cluding DF-STE (Jo et al., 2021), SV-ES (Li
et al., 2021), DOP (You et al., 2020), SB (Shi
et al., 2022), and VAL (Yaman et al., 2021;
Ding et al., 2022). Details of the main ES-
based methods can be found in Appendix A.6.
We use both PSNR and SSIM to assess the
reconstruction quality and report PSNR and
SSIM gaps (the difference between our de-
tected and peak numbers) as indicators of our detection performance. Common acronyms, pointers
to external codes, detailed experiment settings, results on real-world denoising, inpainting,
and super-resolution are in Appendices A.1, A.7.1, A.7.2 and A.7.7 to A.7.9, respectively.

Figure 7: Visual comparisons of NR-IQMs and ES-WMV. From top to bottom: shot noise (low), shot noise
(high), speckle noise (low), speckle noise (high).
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3.1 Image denoising

Prior work dealing with DIP overfitting mostly focuses on image denoising but typically only evaluates their
methods on one or two kinds of noise with low noise levels, e.g., low-level Gaussian noise. To stretch our
evaluation, we consider 4 types of noise: Gaussian, shot, impulse, and speckle. We take the classical 9-image
dataset (Dabov et al., 2008), and for each noise type, generate two noise levels, low and high, i.e., level 2 and
4 of Hendrycks & Dietterich (2019), respectively. See also Tab. 1 and Appendix A.7.7 about the performance
of our ES-WMV on real-world denoising evaluated on large-scale datasets.

Comparison with baseline ES methods It is natural to expect that NR-IQMs, such as the classical
BRISQUE (Mittal et al., 2012), NIQE (Mittal et al., 2013) and modern DNN-based NIMA (Esfandarani
& Milanfar, 2018), can be used to monitor the quality of intermediate reconstructions and hence induce
natural ES criteria. Therefore, we set 3 baseline methods using BRISQUE, NIQE, and NIMA, respectively,
and seek the optimal xt using these metrics. Fig. 6 presents the comparison (in terms of PSNR gaps) of
these 3 methods with our ES-WMV on denoising with low-level noise; results on high-level noise and also
as measured by SSIM are included in Appendix A.7.4. Visual comparisons between our ES-WMV and the
baseline methods are shown in Figs. 7 and 15. While our method enjoys favorable detection gaps
(≤ 2) for most tested noise types/levels (except for Baboon, Kodak1, Kodak2 for certain noise types/levels;
DIP itself is suboptimal in terms of denoising such images with substantial high-frequency components),
detection gaps by the baseline methods can get huge (≥ 10).

Figure 8: Comparison of DF-STE and ES-WMV for Gaus-
sian and shot noise in terms of PSNR.

Competing methods DF-STE (Jo et al.,
2021) is specific for Gaussian and Poisson de-
noising, and noise variance is needed for their
tuning parameters. Fig. 8 presents the com-
parison with DF-STE in terms of PSNR; SSIM
results are in Appendix A.7.5. Here, we di-
rectly report the final PSNRs obtained by
both methods. For low-level noise, there is
no clear winner. For high-level noise, ES-
WMV outperforms DF-STE by consid-
erable margins. Although the right variance
level is provided to DF-STE in order to tune their regularization parameters, DF-STE stops after only very
few epochs, leading to very low performance and almost zero standard deviations—they return almost the
noisy input. However, we do not perform any parameter tuning for ES-WMV. Furthermore, we compare the
two methods on the CBSD68 dataset in Appendix A.7.5 with a similar conclusion.

Table 2: Wall-clock time (secs) of DIP and three ES
methods per epoch on NVIDIA Tesla K40 GPU : mean
and (std). The total wall clock time should contain
both DIP and a certain ES method.

DIP SV-ES ES-WMV ES-EMV
Time 0.448 (0.030) 13.027 (3.872) 0.301 (0.016) 0.003 (0.003)

We report the results of SV-ES in Appendix A.7.5
since ES-WMV performs largely comparable to SV-
ES. However, ES-WMV is much faster in wall-clock
time, as reported in Tab. 2: for each epoch, the
overhead of our ES-WMV is less than 3/4 of the
DIP update itself, while SV-ES is around 25× of
that. There is no surprise: while our method only
needs to update the running variance of {xt}t≥1 each time, SV-ES needs to train a coupled autoencoder
which is extremely expensive.

Table 3: Comparison between ES-WMV and SB for
image denoising on the CBSD68 dataset with varying
noise level σ. The higher PSNR detected and earlier
detection are better, which are in red: mean and (std).

σ = 15 σ = 25 σ = 50

PSNR Epoch PSNR Epoch PSNR Epoch

WMV 28.7(3.2) 3962(2506) 27.4(2.6) 3068(2150) 24.2(2.3) 1548(1939)

SB 29.0(3.1) 4908(1757) 27.3(2.2) 5099(1776) 23.0(1.0) 5765(1346)

DOP is designed specifically just for impulse
noise, so we compare ES-WMV with DOP on
impulse noise (see Appendix A.7.5). The loss is
changed to ℓ1 to account for the sparse noise. In
terms of the final PSNRs, DOP outperforms DIP
with ES-WMV by a small gap, but even the peak
PSNR of DIP with ℓ1 lags behind DOP by about
2dB for high noise levels.
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The ES method in SB is acknowledged to fail for vanilla DIP (Shi et al., 2022). Moreover, their
modified model still suffers from the overfitting issue beyond the very low noise levels, as shown in Fig. 21.
Their ES method fails to stop at appropriate places when the noise level is high. Hence, we test both ES-
WMV and SB on their modified DIP model in (Shi et al., 2022), based on the two datasets they test: the
classic 9-image dataset (Dabov et al., 2008) and the CBSD68 dataset (Martin et al., 2001). The qualitative
results on the 9 images are shown in Appendix A.7.5; detected PSNR and stop epochs on the CBSD68
dataset are reported in Tab. 3. For SB, the detection threshold parameter is set to 0.01. It is evident that
both methods have similar detection performance for low noise levels, but ES-WMV outperforms SB when
the noise level is high. Also, ES-WMV tends to stop much earlier than SB, saving computational cost.

Figure 9: Comparison of VAL and ES-WMV for Gaussian
and impulse noise in terms of PSNR.

We compare VAL with our ES-WMV on the
9-image dataset with low-/high-level Gaussian
and impulse noise. Since Ding et al. (2022)
takes 90% pixels to train DIP and this usu-
ally decreases the peak performance, we report
the final PSNRs detected by both methods (see
Fig. 9). The two ES methods perform very
comparably in image denoising, which is
probably due to a mild violation of the i.i.d.
assumption only, and also to a relatively low
degree of information loss due to data split-
ting. The more complex nonlinear BID
in Sec. 3.3 reveals their gap.

Figure 10: Performance of ES-WMV on DD, GP-DIP, DIP-
TV, and SIREN for Gaussian denoising in terms of PSNR
gaps. L: low noise level; H: high noise level.

ES-WMV as a helper for DIP variants
DD, DIP-TV, and GP-DIP represent different
regularization strategies to control overfitting.
However, a critical issue is setting the right hy-
perparameters for them so that overfitting is
removed while peak-level performance is pre-
served. Therefore, practically, these methods
are not free from overfitting, especially when
the noise level is high. Thus, instead of treat-
ing them as competitors, we test whether ES-
WMV can reliably detect good ES points for
them. We focus on Gaussian denoising and
report the results in Fig. 10 (a)-(c) and Ap-
pendix A.7.6. ES-WMV is able to attain
≤ 1 PNSR gap for most of the cases,
with few outliers; we provide a detailed analy-
sis about some of the outliers in Appendix A.8.

ES-WMV as a helper for implicit neu-
ral representations (INRs) INRs, such as
Tancik et al. (2020) and Sitzmann et al. (2020),
use multilayer perceptrons to represent highly
nonlinear functions in low-dimensional problem domains and have achieved superior results on complex 3D
visual tasks. We further extend our ES-WMV to help the INR family and take SIREN (Sitzmann et al.,
2020) as an example. SIREN parameterizes x as the discretization of a continuous function: this function
takes in spatial coordinates and returns the corresponding function values. Here, we test SIREN, which
is reviewed in Appendix A.5, as a replacement of DIP models for Gaussian denoising, and summarize the
results in Fig. 10 and Fig. 22. ES-WMV is again able to detect near-peak performance for most
images.

9
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3.2 MRI reconstruction

Table 4: ConvDecoder on MRI reconstruction for
30 cases: mean and (std). (D: Detected)

PSNR(D) PSNR Gap SSIM(D) SSIM Gap
32.63 (2.36) 0.23 (0.32) 0.81 (0.09) 0.01 (0.01)

We further test ES-WMV on MRI reconstruction, a clas-
sical linear IP with a nontrivial forward mapping: y ≈
F(x), where F is the subsampled Fourier operator, and
we use ≈ to indicate that the noise encountered in practi-
cal MRI imaging may be hybrid (e.g., additive, shot) and
uncertain. Here, we take the 8-fold undersampling and parameterize x using “Conv-Decoder" (Darestani &
Heckel, 2021), a variant of DD. Due to the heavy over-parameterization, overfitting occurs and ES is needed.
Darestani & Heckel (2021) directly sets the stopping point at the 2500-th epoch, and we run our ES-WMV.
We visualize the performance on two random cases (C1: 1001339 and C2: 1000190 sampled from Darestani
& Heckel (2021), part of the fastMRI datatset (Zbontar et al., 2018)) in Fig. 11 (quality measured in SSIM,
consistent with Darestani & Heckel (2021)). It is clear that ES-WMV detects near-peak performance for
both cases and is adaptive enough to yield comparable or better ES points than heuristically fixed ES points.
Furthermore, we test our ES-WMV on ConvDecoder for 30 cases from the fastMRI dataset (see Tab. 4),
which shows the precise and stable detection of ES-WMV.

3.3 Blind image deblurring (BID)

Figure 11: Detection on MRI reconstruc-
tion

In BID, a blurry and noisy image is given, and the goal is to
recover a sharp and clean image. The blur is mostly caused
by motion and/or optical non-ideality in the camera, and the
forward process is often modeled as y = k ∗ x + n, where k
is the blur kernel, n models additive sensory noise, and ∗ is
linear convolution to model the spatial uniformity of the blur
effect (Szeliski, 2022). BID is a very challenging visual IP due
to bilinearity: (k, x) 7→ k ∗ x. Recently, Ren et al. (2020);
Wang et al. (2019); Asim et al. (2020); Tran et al. (2021) have
tried to use DIP models to solve BID by modeling k and x as
two separate DNNs, i.e., minθk,θx ∥y −Gθk

(zk) ∗Gθx(zx)∥2
2 +

λ∥∇Gθx
(zx)∥1/∥∇Gθx

(zx)∥2, where the regularizer is to pro-
mote sparsity in the gradient domain for the reconstruction of x, as standard in BID.

Figure 12: Top left: ES-WMV in BID; top right: vi-
sual results of ES-WMV; bottom: quantitative results
of ES-WMV and VAL, respectively

We follow Ren et al. (2020) and choose multilayer
perceptron (MLP) with softmax activation for Gθk

,
and the canonical DIP model (CNN-based encoder-
decoder architecture) for Gθx

(zx). We change their
regularizer from the original ∥∇Gθx(zx)∥1 to the
current, as their original formulation is tested only
on a very low noise level σ = 10−5 and no overfitting
is observed. We set the test with a higher noise level
σ = 10−3, and find that its original formulation does
not work. The benefit of the modified regularizer on
BID is discussed in Krishnan et al. (2011).

First, we take 4 images and 3 kernels from the stan-
dard Levin dataset (Levin et al., 2011), resulting in
12 image-kernel combinations. The high noise level
leads to substantial overfitting, as shown in Fig. 12
(top left). However, ES-WMV can reliably detect
good ES points and lead to impressive visual recon-
structions (see Fig. 12 (top right)). We systemati-
cally compare VAL and our ES-WMV on this difficult nonlinear IP, as we suspect that nonlinearity can break
down VAL as discussed in Sec. 1, and subsampling the observation y for training-validation splitting may
be unwise. Our results (Fig. 12 (bottom left/right)) confirm these predictions: the peak performance
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detected by VAL is much worse after 10% of elements in y are removed for valiation. In contrast,
our ES-WMV returns quantitatively near-peak performance, much better than leaving the process to overfit.
In Tab. 12, we further test both low- and high-level noise on the entire Levin dataset for completeness.

3.4 Ablation study

Figure 13: Effect of W and P

The window size W (default: 100) and the patience
number P (default: 1000) are the only hyperparam-
eters for ES-WMV. To study their impact on ES de-
tection, we vary them across a range and check how
the detection gap changes for Gaussian denoising on
the classic 9-image dataset (Dabov et al., 2008) with
medium-level noise, as shown in Fig. 13 for PSNR
gaps and Fig. 26 for SSIM gaps. Our method is ro-
bust to these changes, and it appears that larger W
and P can produce a marginal improvement.

4 Discussion

We have proposed a simple yet effective ES detection method (ES-WMV, and the ES-EMV variant) that
works robustly across multiple visual IPs and DIP variants. In comparison, most competing ES methods are
noise or DIP-model specific and only work for limited scenarios; Li et al. (2021) has comparable performance
but slows down the running speed too much; validation-based ES (Ding et al., 2022) works well for the simple
denoising task while significantly lags behind our ES method on nonlinear IPs, e.g. BID. As for limitations,
our theoretical justification is only partial, sharing the same difficulty of analyzing DNNs in general; our
ES method struggles with images with substantial high-frequency components; our detection is sometimes
off the peak in terms of iteration numbers when helping certain DIP variants, e.g. DIP-TV with low-level
Gaussian noise (Fig. 4), but the detected PSNR gap is still small. DIP variants typically do not improve peak
performance and also do not necessarily avoid overfitting, especially for high-level noise. We recommend the
original DIP with our ES method for visual IPs discussed in this paper for the best performance and overall
speed.
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A Appendix

A.1 Acronyms

List of Common Acronyms (in alphabetic order)
CI computational imaging

CNN convolutional neural network
DD deep decoder
DIP deep image prior

DIP-TV DIP with total variation regularization
DL deep learning

DNN deep neural network
ELTO early-learning-then-overfitting

ES early stopping
EMA exponential moving average
EMV exponential moving variance

FR-IQM full-reference image quality metric
GP-DIP Gaussian process DIP

INR implicit neural representations
IP inverse problem

MSE mean squared error
NR-IQM no-reference image quality metric

PSNR peak signal-to-noise ratio
SIREN sinusoidal representation networks
SOTA state-of-the-art
VAR variance

WMV windowed moving variance

A.2 Proof of 2.1

Proof. To simplify the notation, we write ŷ
.= y−Gθ0(z), J

.= JG

(
θ0), and c

.= θ−θ0. So, the least-squares
objective in Eq. (4) is equivalent to

∥ŷ − Jc∥2
2 (8)

and the gradient update reads

ct = ct−1 − ηJ⊺
(
Jck−1 − ŷ

)
, (9)

where c0 = 0 and xt = Jct + Gθ0(z). The residual at time t can be computed as

rt .= ŷ − Jct (10)
= ŷ − J

(
ct−1 − ηJ⊺

(
Jθt−1 − ŷ

))
(11)

= (I − ηJJ⊺)
(
ŷ − Jct−1) (12)

= (I − ηJJ⊺)2 (
ŷ − Jct−2) = . . . (13)

= (I − ηJJ⊺)t (
ŷ − Jc0) (using c0 = 0) (14)

= (I − ηJJ⊺)t
ŷ. (15)

Assume that the SVD of J is as J = W ΣV ⊺. Then

rt =
(
I − ηW Σ2W ⊺

)t
ŷ =

∑
i

(
1− ησ2

i

)t
w⊺

i ŷwi (16)

16



Under review as submission to TMLR

and so

Jct = ŷ − rt =
∑

i

(
1−

(
1− ησ2

i

)t
)

w⊺
i ŷwi. (17)

Consider a set of W vectors V = {v1, . . . , vW }. We have the empirical variance.

VAR(V) = 1
W

W∑
w=1

∥∥∥∥∥∥vw −
1

W

W∑
j=1

vj

∥∥∥∥∥∥
2

2

= 1
W

W∑
w=1
∥vw∥2

2 −

∥∥∥∥∥ 1
W

W∑
w=1

vw

∥∥∥∥∥
2

2

. (18)

Therefore, the variance of the set
{

xt, xt+1, . . . , xt+W −1}, same as the variance of the set{
Jct, Jct+1, . . . , Jct+W −1}, can be calculated as

1
W

W −1∑
w=0

∑
i

(w⊺
i ŷ)2

(
1−

(
1− ησ2

i

)t+w
)2
− 1

W 2

∑
i

(w⊺
i ŷ)2

(
W −1∑
w=0

1−
(
1− ησ2

i

)t+w

)2

(19)

= 1
W 2

∑
i

(w⊺
i ŷ)2

W

W −1∑
w=0

(
1−

(
1− ησ2

i

)t+w
)2
−

(
W −1∑
w=0

1−
(
1− ησ2

i

)t+w

)2 (20)

= 1
W 2

∑
i

(w⊺
i ŷ)2

[(
W 2 + W

(1− ησ2
i )2t(1− (1− ησ2

i )2W )
1− (1− ησ2

i )2 − 2W
(1− ησ2

i )t(1− (1− ησ2
i )W )

ησ2
i

)

−

W 2 − 2W
(1− ησ2

i )t(1− (1− ησ2
i )W )

ησ2
i

+

(
1− ησ2

i

)2t
(

1−
(
1− ησ2

i

)W
)2

η2σ4
i


 (21)

= 1
W 2

∑
i

⟨wi, ŷ⟩2 (1− ησ2
i )2t

ησ2
i

[
W

1− (1− ησ2
i )2W

2− ησ2
i

− (1− (1− ησ2
i )W )2

ησ2
i

]
. (22)

So the constants CW,η,σi
’s are defined as

CW,η,σi

.= 1
W 2ησ2

i

[
W

1− (1− ησ2
i )2W

2− ησ2
i

− (1− (1− ησ2
i )W )2

ησ2
i

]
. (23)

To see they are nonnegative, it is sufficient to show that

W
1− (1− ησ2

i )2W

2− ησ2
i

− (1− (1− ησ2
i )W )2

ησ2
i

≥ 0

⇐⇒ ησ2
i W
(
1− (1− ησ2

i )2W
)
−
(
2− ησ2

i

)
(1− (1− ησ2

i )W )2 ≥ 0. (24)

Now consider the function.

h(ξ, W ) = ξW
(
1− (1− ξ)2W

)
− (2− ξ)(1− (1− ξ)W )2 ξ ∈ [0, 1], W ≥ 1. (25)

First, one can easily check that ∂W h(ξ, W ) ≥ 0 for all W ≥ 1 and all ξ ∈ [0, 1], that is, h(ξ, W ) increases
monotonically with respect to W . Thus, to prove CW,η,σi ≥ 0, it suffices to show that h(ξ, 1) ≥ 0. Now

h(ξ, 1) = ξ
(
1− (1− ξ)2)− (2− ξ)ξ2 = 0, (26)

completing the proof.
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A.3 Proof of 2.2

We first re-state Theorem 2 in Heckel & Soltanolkotabi (2020b).
Theorem A.1 (Heckel & Soltanolkotabi (2020b)). Let x ∈ Rn be a signal in the span of the first
p trigonometric basis functions, and consider a noisy observation y = x + n, where the noise n ∼
N
(
0, ξ2/n · I

)
. To denoise this signal, we fit a two-layer generator network GC(B) = ReLU(UBC)v, where

v = [1, . . . , 1,−1, . . . ,−1]/
√

k, and B ∼iid N (0, 1), and U is an upsampling operator that implements circu-
lar convolution with a given kernel u. Denote σ

.= ∥u∥2|F g(u⊛u/∥u∥2
2)|1/2 where g(t) = (1− cos−1(t)/π)t

and ⊛ denote the circular convolution. Fix any ε ∈ (0, σp/σ1], and suppose that k ≥ Cun/ε8, where Cu > 0
is a constant depending only on u. Consider gradient descent with step size η ≤ ∥F u∥−2

∞ (F u is the Fourier
transform of u ) starting from C0 ∼iid N

(
0, ω2), entries ω ∝ ∥y∥2√

n
. Then, for all iterations t obeying

t ≤ 100
ησ2

p
, the reconstruction error obeys

∥GCt(B)− x∥2 ≤
(
1− ησ2

p

)t ∥x∥2 +

√√√√ n∑
i=1

((1− ησ2
i )t − 1)2(w⊺

i n)2 + ε∥y∥2

with probability at least 1− exp
(
−k2)− n−2.

Note that since B ∼iid N (0, 1) and hence is full-rank with probability one, the original Theorem 1 & 2 of
Heckel & Soltanolkotabi (2020b) rename BC to C ′ and state the result directly on C ′, that is, assume that
the model is ReLU(UC ′)v. It is easy to see that the original theorems imply the version stated here.

With this, we can obtain our Theorem 2.2, stated in full technical form here:
Theorem A.2. Let x ∈ Rn be a signal in the span of the first p trigonometric basis functions, and consider a
noisy observation y = x + n, where the noise n ∼ N

(
0, ξ2/n · I

)
. To denoise this signal, we fit a two-layer

generator network GC(B) = ReLU(UBC)v, where v = [1, . . . , 1,−1, . . . ,−1]/
√

k, and B ∼iid N (0, 1),
and U is an upsampling operator that implements circular convolution with a given kernel u. Denote
σ

.= ∥u∥2|F g(u⊛u/∥u∥2
2)|1/2 where g(t) = (1−cos−1(t)/π)t and ⊛ denotes the circular convolution. Fix any

ε ∈ (0, σp/σ1], and suppose k ≥ Cun/ε8, where Cu > 0 is a constant only depending on u. Consider gradient
descent with step size η ≤ ∥F u∥−2

∞ (F u is the Fourier transform of u ) starting from C0 ∼iid N
(
0, ω2),

entries ω ∝ ∥y∥2√
n

. Then, for all iterates t obeying t ≤ 100
ησ2

p
, our WMV obeys

WMV ≤ 12
W
∥x∥2

2

(
1− ησ2

p

)2t

1− (1− ησ2
p)2 + 12

n∑
i=1

((
1− ησ2

i

)t+W −1 − 1
)2

(w⊺
i n)2 + 12ε2∥y∥2

2 (27)

with probability at least 1− exp
(
−k2)− n−2.

Proof. We make use of the basic inequality: ∥a− b∥2
2 ≤ 2∥a∥2

2 +2∥b∥2
2 for any two vectors a, b of compatible

dimension. We have

1
W

W −1∑
w=0
∥GCt+w (B)− 1

W

W −1∑
j=0

GCt+j (B)∥2
2 (28)

= 1
W

W −1∑
w=0
∥GCt+w (B)− x + x− 1

W

W −1∑
j=0

GCt+j (B)∥2
2 (29)

≤

(
2

W

W −1∑
w=0
∥GCt+w (B)− x∥2

2

)
+ 2∥x− 1

W

W −1∑
j=0

GCt+j (B)∥2
2 (30)

≤ 2
W

W −1∑
w=0
∥GCt+w (B)− x∥2

2 + 2
W

W −1∑
j=0
∥GCt+j (B)− x∥2

2 (31)
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(z 7→ ∥z − x∥2
2 convex and Jensen’s inequality)

= 4
W

W −1∑
w=0
∥GCt+w (B)− x∥2

2. (32)

In view of Theorem A.1,

∥GCt+w (B)− x∥2
2 ≤ 3

(
1− ησ2

p

)2t+2w ∥x∥2
2 + 3

n∑
i=1

((
1− ησ2

j

)t+w − 1
)2

(w⊺
i n)2 + 3ε2∥y∥2

2. (33)

Thus,

W −1∑
w=0
∥GCt+w (B)− x∥2

2

≤ 3∥x∥2
2

W −1∑
w=0

(
1− ησ2

p

)2t+2w + 3
W −1∑
w=0

n∑
i=1

((
1− ησ2

i

)t+w − 1
)2

(w⊺
i n)2 + 3Wε2∥y∥2

2 (34)

≤ 3∥x∥2
2

(
1− ησ2

p

)2t (1− (1− ησ2
p)2W )

1− (1− ησ2
p)2 + 3W

n∑
i=1

((
1− ησ2

i

)t+W −1 − 1
)2

(w⊺
i n)2 + 3Wε2∥y∥2

2 (35)

≤ 3∥x∥2
2

(
1− ησ2

p

)2t

1− (1− ησ2
p)2 + 3W

n∑
i=1

((
1− ησ2

i

)t+W −1 − 1
)2

(w⊺
i n)2 + 3Wε2∥y∥2

2, (36)

completing the proof.

A.4 ES-EMV algorithm

The exponential moving variance version of our method is summarized in Algorithm 2.

Algorithm 2 DIP with ES–EMV
Input: random seed z, randomly-initialized Gθ, forgetting factor α ∈ (0, 1), patience number P , iteration

counter k = 0, EMA0 = 0, EMV0 = 0, EMVmin =∞
Output: reconstruction x∗

1: while not stopped do
2: update θ via Eq. (2) to obtain θk+1 and xk+1

3: EMAk+1 = (1− α)EMAk + αxk+1

4: EMVk+1 = (1− α)EMVk + α(1− α)∥xk+1 − EMAk∥2
2

5: if EMVk+1 < EMVmin then
6: EMVmin ← EMVk+1, x∗ ← xk+1

7: end if
8: if EMVmin stagnates for P iterations then
9: stop and return x∗

10: end if
11: k = k + 1
12: end while

A.5 More details on major DIP variants

Deep Decoder (DD) (Heckel & Hand, 2019) differs from DIP mainly in terms of network architecture:
It is typically a under-parameterized network consisting mainly of 1×1 convolutions, upsampling, ReLU and
channel-wise normalization layers, while DIP uses an over-parameterized, U-net like convolutional network.
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GP-DIP (Cheng et al., 2019) uses the original DIP (Ulyanov et al., 2018) network and formulation, but
replaces stochastic gradient descent (SGD) by stochastic gradient Langevin dynamics (SGLD) in the gradient
update step. i.e., for the generic gradient step for optimizing Eq. (2) reads:

θ+ = θ − t∇θ[ℓ(y, f(Gθ(z))) + λR(Gθ(z))] + η (37)

where η is zero-mean Gaussian with an isotropic variance level t.

DIP-TV (Cascarano et al., 2021) uses the original DIP (Ulyanov et al., 2018) network, with a Total
Variation (TV) regularizer added. Then, the proposed objective is solved with the Alternating Direction
Method of Multipliers (ADMM) framework.

SIREN (Sitzmann et al., 2020) treats the object directly as a continuous function on R2 or R3 (or higher-
dimensional spaces depending on the application) and hence parameterizes it as a multi-layer perceptron
(MLP): 1) the input to SIREN is the 2D/3D coordinate of each pixel instead of random values, and 2) the
network uses a sinusoidal activation function instead of the commonly used ReLU. When substituting the
DIP network with SIREN and solve Eq. (2) problems, similar overfitting issue is still observed.

A.6 More details on major ES methods

Here, we provide more details on the main competing methods.

Spectral Bias (SB) Shi et al. (2022) operates on DD models and proposes two modifications to change the
spectral bias: (1) controlling the operator norm of the weight w for each convolutional layer by normalization

w′ = w

max
(

1, ∥w∥op/λ
) , (38)

ensuring that ∥w′∥op ≤ λ, which in turn controls the Fourier spectrum of the underlying function represented
by the layer; (2) performing Gaussian upsampling instead of the typical bilinear upsampling to suppress the
smoothness effect of the latter. These two modifications with appropriate parameter setting (λ, and σ
in Gaussian filtering) can improve the learning of the high-frequency components by DD, and allow the
blurriness-over-sharpness stopping criterion.

∆r
(
xt
)

= 1
W

∣∣∣∣∣
W∑

w=1
r
(
xt−w

)
−

W∑
w=1

r
(
xt−W −w

)∣∣∣∣∣, (39)

where r(x′) = B(x′)/S(x′), and B(·) and S(·) are the blurriness and sharpness metrics in Crete et al. (2007)
and Bahrami & Kot (2014), respectively. In other words, the criterion in Eq. (39) measures the change in
the average blurriness-over-sharpness ratios in consecutive windows of size W , and small changes indicate
good ES points. But, as mentioned, this criterion only works for modified DD models and not for other DIP
variants, as acknowledged by the authors in Shi et al. (2022) and confirmed in our experiment (see Sec. 3.1).

DF-STE Jo et al. (2021) targets Gaussian denoising with known noise levels (i.e. y = x + n, where n is
the i.i.d. Gaussian noise) and considers the objective.

min
θ

1
n2 ∥y −Gθ(y)∥2

F + σ2

n2 tr JGθ
(y), (40)

where tr JGθ
(y) is the trace of the network Jacobian with respect to the input, that is, the divergence term

in Jo et al. (2021). The divergence term is a proxy for controlling the capacity of the network. The paper
then proposes a heuristic zero-crossing stopping criterion that stops the iteration when the loss starts to
cross zero into negative values. Although the idea works reasonably well on Gaussian denoising with low
and known noise level (the variance level σ2 is explicitly needed in the regularization parameter ahead of
the divergence term), it starts to break down when the noise level increases even if the right noise level is
provided; see Sec. 3.1. Also, although the paper has extended the formulation to handle Poisson noise, it is
unclear how to generalize the idea for handling other types of noise, as well as how to move beyond simple
additive denoising problems.
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SV-ES Li et al. (2021) proposes training an autoencoder online using the reconstruction sequence {xt}t≥1:

min
w,v

∑
t≥1

ℓAE
(
xt, Dw ◦ Ev

(
xt
))

. (41)

Any new xt passes through the current autoencoder and the reconstruction error ℓAE is recorded. They
observe that the error curve typically follows a U-shaped shape and that the valley of the curve is approx-
imately aligned with the peak of the PNSR curve. Therefore, they design an ES method by detecting the
valley of the error curve. This method works reasonably well for different IPs and different DIP variants. A
major drawback is efficiency: the overhead caused by the online training of the autoencoder is on an order
of magnitude higher than the cost of the DIP update itself, as shown in Tab. 2.

DOP You et al. (2020) considers only additive sparse noise (e.g., salt and pepper noise) and proposes
modeling the clean image and noise explicitly in the objective:

min
θ,g,h

∥y −Gθ(z)− (g ◦ g − h ◦ h)∥2
F , (42)

where the overparameterized term g◦g−h◦h (◦ denotes the Hadamard product) is meant to capture sparse
noise, where a similar idea has been shown to be effective for sparse recovery in Vaskevicius et al. (2019).
Different properly tuned learning rates for the clean image and sparse noise terms are necessary for success.
The downside includes the prolonged running time, as it pushes the peak reconstruction to the very last
iteration, and the difficulty to extend the idea to other types of noise.

A.7 Additional experimental details & results

A.7.1 External codes

• DIP: https://github.com/DmitryUlyanov/deep-image-prior

• DD: https://github.com/reinhardh/supplement_deep_decoder

• DIP-TV: https://github.com/sedaboni/ADMM-DIPTV

• GP-DIP: https://people.cs.umass.edu/~zezhoucheng/gp-dip/

• DF-STE: https://github.com/gistvision/dip-denosing

• SV-ES: https://github.com/sun-umn/Self-Validation

• DOP: https://github.com/ChongYou/robust-image-recovery

• SB: https://github.com/shizenglin/Measure-and-Control-Spectral-Bias

• CBSD68: https://github.com/clausmichele/CBSD68-dataset

A.7.2 Experiment Settings

Our default setup for all experiments is as follows. Our DIP model is the original from Ulyanov et al. (2018);
the optimizer is ADAM with a learning rate 0.01. For all other models, we use their default architectures,
optimizers, and hyperparameters. For ES-WMV, the default window size W = 100, and the patience number
P = 1000. We use both PSNR and SSIM to access the reconstruction quality and report PSNR and SSIM
gaps (the difference between our detected and peak numbers) as an indicator of our detection performance.
For most experiments, we repeat the experiments 3 times to report the mean and standard
deviation; when not, we explain why.

Noise generation Following the noise generation rules of Hendrycks & Dietterich (2019)1, we simulate
four types of noise and three intensity levels for each type of noise. The detailed information is as follows.

• Gaussian noise: 0 mean additive Gaussian noise with variance 0.12, 0.18 and 0.26 for low, medium
and high noise levels, respectively;

1https://github.com/hendrycks/robustness
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• Impulse noise: also known as salt-and-pepper noise, replacing each pixel with probability p ∈ [0, 1]
in a white or black pixel with half chance each. Low, medium and high noise levels correspond to
p = 0.3, 0.5, 0.7, respectively;

• Speckle noise: for each pixel x ∈ [0, 1], the noisy pixel is x(1 + ε), where ε is zero-mean Gaussian
with a variance level 0.20, 0.35, 0.45 for low, medium, and high noise levels, respectively;

• Shot noise: also known as Poisson noise. For each pixel, x ∈ [0, 1], the noisy pixel is Poisson
distributed with the rate λx, where λ is 25, 12, 5 for low, medium, and high noise levels, respectively.

A.7.3 Denoising examples

We explore the possibility of using the fitting loss for ES here, but we are unable to find correlations between
the trend of the loss and that of the PSNR curve, shown in Fig. 14

Figure 14: Our ES-WMV method on DIP for denoising “F16" with different noise types and levels (top:
low-level noise; bottom: high-level noise). Red curves are PSNR curves, and brown curves are loss curves.

A.7.4 Comparison with baseline methods

To further compare with baseline methods, we report the PSNR gaps in high-level noise cases and the SSIM
gaps in low- and high-level noise cases in Fig. 16,Fig. 17 and Fig. 18, respectively, which show a trend similar
to the results of PSNR gaps. The detection gaps of our method are very marginal (< 0.02) for most types
and levels of noise (except Baboon and Kodak1 for certain types / levels of noise), while the baseline methods
can easily exceed 0.1 for most cases. In addition, we provide some visual detection results in Figs. 7 and 15.
Our ES-WMV significantly outperforms the four baseline methods visually.

A.7.5 Comparison with competing methods

Comparison between ES-WMV with DF-STE for Gaussian and shot noise on the 9 image dataset in terms of
SSIM is reported in Fig. 19. Furthermore, we also test our ES-WMV and DF-STE on CBSD68 in Tab. 5. Our
ES-WMV wins in high-level noise cases but lags behind DF-STE in the low-level cases. The gaps between our
ES-WMV and DF-STE for all noise levels mostly come from the peak performance between the original DIP
and DF-STE—modifications in DF-STE have affected peak performance, positively for low-level cases and
negatively for high-level cases, not much from our ES method, as evident from the uniformly small detection
gaps reported in Tab. 5. Moreover, DF-STE can only handle Gaussian and Poisson noise for denoising, and
the exact noise level is a required hyperparameter for their method to work.
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Figure 15: Visual comparisons of NR-IQMs and ES-WMV. From top to bottom: Gaussian noise (low),
Gaussian noise (high), impulse noise (low), impulse noise (high).

Figure 16: High-level noise detection performance in terms of PSNR gaps. For NIMA, we report both
technical quality assessment (NIMA-q) and aesthetic assessment (NIMA-a). Smaller PSNR gaps are better.
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Figure 17: Low-level noise detection performance in terms of SSIM gaps. For NIMA, we report both
technical quality assessment (NIMA-q) and aesthetic assessment (NIMA-a). Smaller SSIM gaps are better.

Figure 18: High-level noise detection performance in terms of SSIM gaps. For NIMA, we report both
technical quality assessment (NIMA-q) and aesthetic assessment (NIMA-a). Smaller SSIM gaps are better.
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Figure 19: Comparison of DF-STE and ES-WMV for Gaussian and shot noise in terms of SSIM.

Figure 20: Low- and high-level noise detection performance of SV-ES and ours in terms of PSNR gaps.

Then we compare our ES-WMV and SV-ES in Fig. 20. The DIP results with ES-WMV versus DOP in
impulse noise are shown in Tab. 6. For SB, part of the qualitative detection results on the 9 images2 are
reported in Fig. 21.

Table 5: Comparison between ES-WMV and DF-STE for image denoising on the CBSD68 dataset with
varying noise level σ: mean and (std). PSNR gaps below 1.0 are colored as red.

σ = 15 σ = 25 σ = 50

ES-WMV 28.7(3.2) 27.4(2.6) 24.2(2.3)

DIP (Peak) 29.7(3.0) 28.0(2.4) 24.9(2.3)

PSNR Gap 1.0(0.7) 0.7(0.5) 0.7(0.5)

DF-STE 31.4(1.8) 28.4(2.2) 21.1(2.5)

A.7.6 ES-WMV as a helper

Performance of ES-WMV on DD, GP-DIP, DIP-TV, and SIREN for Gaussian denoising in terms of SSIM
gaps (see Fig. 22).

2http://www.cs.tut.fi/~foi/GCF-BM3D/index.html#ref_results
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Table 6: DIP with ES-WMV vs. DOP on impulse noise: mean and (std).
Low Level High Level

PSNR SSIM PSNR SSIM

DIP-ES 31.64 (5.69) 0.85 (0.18) 24.74 (3.23) 0.67 (0.19)

DOP 32.12 (4.52) 0.92 (0.07) 27.34 (3.78) 0.86 (0.10)

F16Peppers Lena

Figure 21: Comparison between ES-WMV and SB for image denoising (top: σ = 15; middle: σ = 25;
bottom: σ = 50). The red and blue curves are the PNSR and the ratio metric curves. The orange and green
bars indicate the ES points detected by our ES-WMV and SB, respectively.
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Figure 22: Performance of ES-WMV on DD, GP-DIP, DIP-TV, and SIREN for Gaussian denoising in terms
of SSIM gaps. L: low noise level; H: high noise level

Figure 23: Comparison of VAL and ES-WMV for Gaussian and impulse noise in terms of SSIM.
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A.7.7 Performance on real-world denoising

Table 7: DIP with ES-WMV on real image denoising on the PolyU Dataset: mean and (std). (D: Detected)
PSNR(D) PSNR Gap SSIM(D) SSIM Gap

DIP (MSE) 36.83 (3.07) 1.26 (1.22) 0.98 (0.02) 0.01 (0.01)

DIP (ℓ1) 36.20 (2.81) 1.64 (1.58) 0.97 (0.02) 0.01 (0.01)

DIP (Huber) 36.76 (2.96) 1.28 (1.09) 0.98 (0.02) 0.01 (0.01)

As stated from the beginning, ES-WMV is designed with real-world IPs, targeting unknown noise types and
levels. Given the encouraging performance above, we test it on a common real-world denoising dataset—
PolyU Dataset Xu et al. (2018), which contains 100 cropped regions of 512×512 from 40 scenes. The results
are reported in Tab. 7. We do not repeat the experiments here; the means and standard deviations are
obtained over the 100 images of the PolyU dataset. On average, our detection gaps are ≤ 1.64 in PSNR and
≤ 0.01 in SSIM for this dataset across various losses. The absolute PNSR and SSIM detected are surprisingly
high.

A.7.8 Image Inpainting

In this task, a clean image x0 ∈ [0, 1]H×W is contaminated by additive Gaussian noise ε, and then only
partially observed to yield the observation y = (x0 + ε)⊙m, where m ∈ {0, 1}H×W is a binary mask and ⊙
denotes the Hadamard product. Given y and m, the goal is to reconstruct x0. We consider the formulation
reparametrized by DIP, where Gθ is a trainable DNN parametrized by θ and z is a frozen random seed:

ℓ(θ) = ∥(Gθ(z)− y)⊙m∥2
F . (43)

Mask m is generated according to an i.i.d. Bernoulli model with a rate of 50%, i.e., half of pixels not observed
in expectation. The noise ε is set to the medium level, i.e., additive Gaussian with 0 mean and 0.18
variance. We test our ES-WMV for DIP on the inpainting dataset used in the original DIP paper Ulyanov
et al. (2018). PSNR gaps are ≤ 1.00 and SSIM gaps are ≤ 0.05 for most cases (see Tab. 8). We also visualize
two examples in Fig. 24.

Figure 24: Visual detection performance of ES-WMV on image inpainting.
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Table 8: Detection performance of DIP with ES-WMV for image inpainting: mean and (std). PSNR gaps
below 1.00 are colored as red; SSIM gaps below 0.05 are colored as blue. (D: Detected)

PSNR(D) PSNR Gap SSIM(D) SSIM Gap

Barbara 21.59 (0.03) 0.20 (0.03) 0.67 (0.00) 0.00 (0.00)

Boat 21.91 (0.10) 1.16 (0.18) 0.68 (0.00) 0.03 (0.01)

House 27.95 (0.33) 0.48 (0.10) 0.89 (0.01) 0.01 (0.00)

Lena 24.71 (0.30) 0.37 (0.18) 0.80 (0.00) 0.01 (0.00)

Peppers 25.86 (0.22) 0.23 (0.05) 0.84 (0.01) 0.02 (0.00)

C.man 25.26 (0.09) 0.23 (0.14) 0.82 (0.00) 0.01 (0.00)

Couple 21.40 (0.44) 1.21 (0.53) 0.63 (0.01) 0.04 (0.02)

Finger 20.87 (0.04) 0.24 (0.17) 0.77 (0.00) 0.01 (0.01)

Hill 23.54 (0.08) 0.25 (0.11) 0.70 (0.00) 0.00 (0.00)

Man 22.92 (0.25) 0.46 (0.11) 0.70 (0.01) 0.01 (0.00)

Montage 26.16 (0.33) 0.38 (0.26) 0.86 (0.01) 0.03 (0.01)

A.7.9 Image Super-Resolution

In this task, a degraded observation y is obtained as the downsampled version of a noisy image: y =
Dt(x0 + ε), where Dt(·) : [0, 1]3×tH×tW → [0, 1]3×H×W is a downsampling operator that resizes an image by
the factor t. Then given y and t, the goal is to reconstruct x0. We consider the formulation reparameterized
by DIP, where Gθ is a trainable DNN parameterized by θ and z is a frozen random seed:

ℓ(θ) = ∥Dt(Gθ(z))− y∥2
F . (44)

The noise ε is again set to the medium level, i.e., additive Gaussian with 0 mean and 0.18 variance.
We test our ES-WMV for DIP on the super-resolution dataset used in the original DIP paper Ulyanov et al.
(2018). The PSNR gaps are ≤ 1.00 and the SSIM gaps are ≤ 0.05 for most cases (see Tab. 9). Our ES-WMV
is again able to detect near-peak performance for most images.

Table 9: Detection performance of DIP with ES-WMV for 4× image super-resolution: mean and (std).
PSNR gaps below 1.00 are colored as red; SSIM gaps below 0.05 are colored as blue. (D: Detected)

PSNR(D) PSNR Gap SSIM(D) SSIM Gap

Baboon 17.82 (0.02) 0.10 (0.04) 0.38 (0.00) 0.01 (0.01)

Barbara 19.93 (0.05) 0.04 (0.01) 0.59 (0.01) 0.01 (0.00)

Bridge 18.04 (0.04) 0.33 (0.09) 0.43 (0.00) 0.00 (0.00)

Coastguard 20.76 (0.05) 0.17 (0.13) 0.53 (0.01) 0.02 (0.01)

Comic 16.70 (0.07) 0.06 (0.06) 0.45 (0.01) 0.00 (0.00)

Face 21.67 (0.12) 0.63 (0.12) 0.56 (0.01) 0.06 (0.01)

Flowers 18.96 (0.08) 0.12 (0.03) 0.56 (0.01) 0.02 (0.00)

Foreman 20.62 (0.04) 0.35 (0.07) 0.69 (0.00) 0.06 (0.00)

Lena 22.40 (0.07) 0.30 (0.08) 0.70 (0.00) 0.04 (0.00)

Man 19.94 (0.07) 0.22 (0.05) 0.52 (0.00) 0.02 (0.01)

Monarch 19.68 (0.90) 1.40 (0.90) 0.72 (0.00) 0.03 (0.00)

Pepper 21.20 (0.14) 0.14 (0.04) 0.67 (0.01) 0.04 (0.01)

Ppt3 17.55 (0.10) 0.19 (0.10) 0.71 (0.01) 0.01 (0.00)

Zebra 19.09 (0.08) 0.10 (0.05) 0.56 (0.01) 0.01 (0.01)
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A.7.10 ES-WMV vs. ES-EMV

We now consider our memory-efficient version (ES-EMV) as described in Algorithm 2, and compare it with
ES-WMV, as shown in Fig. 25. Besides the memory benefit, ES-EMV runs around 100 times faster than
ES-WMV, as reported in Tab. 2 and does seem to provide a consistent improvement on the detected PSNRs
for image denoising tasks on NTIRE 2020 Real Image Denoising Challenge (Abdelhamed et al., 2020), PolyU
dataset Xu et al. (2018) and the classic 9-image dataset (Dabov et al., 2008) (see Tabs. 10 and 11 and Fig. 25),
due to the strong smoothing effect (we set α = 0.1). In this paper, we prefer to keep it simple and leave
systematic evaluations of these variants for future work.

Table 10: Detection performance comparison between DIP with ES-WMV and DIP with ES-EMV for real
image denoising on 1024 images from the RGB track of NTIRE 2020 Real Image Denoising Challenge (Ab-
delhamed et al., 2020): mean and (std). Higher PSNR and SSIM are in red. (D: Detected)

PSNR(D)-WMV PSNR(D)-EMV SSIM(D)-WMV SSIM(D)-EMV

DIP (MSE) 34.04 (3.68) 34.96 (3.80) 0.92 (0.07) 0.93 (0.07)

DIP (ℓ1) 33.92 (4.34) 34.83 (4.35) 0.93 (0.05) 0.94 (0.05)

DIP (Huber) 33.72 (3.86) 34.72 (4.04) 0.92 (0.06) 0.93 (0.06)

Table 11: Detection performance comparison between DIP with ES-WMV and DIP with ES-EMV for real
image denoising on the PolyU dataset Xu et al. (2018): mean and (std). Higher PSNR and SSIM are in red.
(D: Detected)

PSNR(D)-WMV PSNR(D)-EMV SSIM(D)-WMV SSIM(D)-EMV

DIP (MSE) 36.83 (3.07) 37.32 (3.82) 0.98 (0.02) 0.98 (0.03)

DIP (ℓ1) 36.20 (2.81) 36.43 (3.22) 0.97 (0.02) 0.97 (0.02)

DIP (Huber) 36.76 (2.96) 37.21 (3.19) 0.98 (0.02) 0.98 (0.02)

Figure 25: Detected PSNR comparison between DIP with ES-WMV and DIP with ES-EMV on the classic
9-image dataset (Dabov et al., 2008).

A.7.11 Blind image deblurring (BID)

In this section, we systematically test our ES-WMV and VAL on the entire standard Levin dataset for both
low-level and high-level cases. We set the maximum number of iterations to 10, 000 to ensure sufficient
optimization. The detected images of our ES-WMV are substantially better than those of VAL, as shown in
Tab. 12.
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Table 12: BID detection comparison between ES-WMV and VAL on the Levin dataset for both low-level
and high-level noise: mean and (std).Higher PSNR is in red and higher SSIM is in blue. (D: Detected)

Low Level High Level

PSNR(D) SSIM(D) PSNR(D) SSIM(D)

WMV 28.54(0.61) 0.83(0.04) 26.41(0.67) 0.76(0.04)

VAL 18.87(1.44) 0.50(0.09) 16.69(1.39) 0.44(0.10)

A.7.12 Ablation study

We vary the window size W (default 100) and patience number P (default: 1000) across a range and check
how the detection gap changes for Gaussian denoising with medium-level noise on the classic 9-image dataset
(see:Fig. 26).

Figure 26: Effect of patience number and window size on detection in terms of SSIM gaps

A.8 Analysis of failure cases

We note that there are some occasional failure cases when applying our ES on some DIP variants in Fig. 10.
In this section, we provide VAR curves for these cases. For the failure of GP-DIP on the "House (L)" image
in Fig. 10, GP-DIP has a weird multi-valley, gradual descending pattern in the VAR curve, corresponding
to a multi-peak, gradual ascending pattern in the PSNR curve. The first major valley in the VAR curve is
roughly aligned with the first major peak, not the final best peak, in the PSNR curve. Therefore, although our
valley detection method successfully detects the first major valley, the PSNR gap is relatively large. Overall,
although our ES method works well with GP-DIP for most of the test cases, we would not recommend
GP-DIP for practical use. The concern is speed: as a method trying to mitigate the overfitting, the best
reconstruction of GP-DIP tends to be around the very last iterates. The failure on the "Lena(L)" image is
due to a similar multivalley pattern in the VAR curve.

For both cases, we observe that using smaller learning rates for GP-DIP and DD helps to smooth out their
curves and mitigate the multi-valley phenomenon, which likely will lead to much smaller detection gaps. We
hesitate to refine in this direction, as our focus of this paper is on the ES method itself.
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Figure 27: VAR curves of failure cases. Left: DD for “Lena(L)"; Right: GP-DIP for “House(L)" in Fig. 10.
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