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Abstract

A hallmark of human intelligence is the ability
to learn new concepts purely from language.
While recent advances in training machine
learning models via natural language explana-
tions show promise, these approaches still fall
short on modeling the the intricacies of natu-
ral language (such as quantifiers) or in mim-
icking human behavior in learning a suite a
tasks with varying difficulty. In this work, we
present QuExEnt, to learn better zero-shot clas-
sifiers from explanations by using three strate-
gies - (1) model the semantics of quantifiers
present in explanations (including exploiting
ordinal strength relationships, such as ‘always’
> ‘likely’), (2) aggregating information from
multiple explanations using an attention-based
mechanism, and (3) model training via curricu-
lum learning from tasks with simple explana-
tions to tasks with complex explanations. With
these strategies, QuExEnt outperforms prior
work showing an absolute gain of up to 7%
on the recently proposed CLUES benchmark in
generalizing to unseen classification tasks.

1 Introduction

Learning from language is a new paradigm of ma-
chine learning whereby machines are taught to per-
form tasks through language instructions/explana-
tions (Arabshahi et al., 2020). Remarkably, this
form of language supervision to train classification
models has been shown to be effective in few-shot
(Srivastava et al., 2017; Hancock et al., 2018), and
zero-shot settings (Srivastava et al., 2018). More re-
cently, Menon et al. (2022) introduce a benchmark,
CLUES and a model, ExEnt to learn generalizable
classifiers guided by explanations.

While recent approaches like ExEnt show
promise in learning from explanations, they still
fall short on modeling the intricacies of natural
language or in mimicking human behaviour in
learning a suite of tasks with varying difficulty.
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Figure 1: We present improved techniques to learn clas-
sifiers from natural language explanations. Our pro-
posed techniques makes use of Curriculum Learning
to progressively learn easy to hard tasks, Attention to
identify the most salient explanations for classifying an
example, and modeling Quantifier Semantics to account
for explanation confidences.

First, ExEnt fails to capture semantics of quanti-
fiers present in the explanations. Quantifiers are an
ubiquitous part of natural language and can dictate
the vagueness and perceived confidence of rela-
tions expressed in a statement (Solt, 2009; Moxey
and Sanford, 1986). Second, prior work does not
completely mimic human learning, where humans
learn ‘simpler’ concepts first and then gradually
build towards ‘harder’ concepts (Newport, 1990).
While curriculum learning (Bengio et al., 2009) has
been shown to be a fruitful in numerous machine
learning tasks (Platanios et al., 2019; Tay et al.,
2019; Narvekar et al., 2017), it is yet to be explored
in the context of learning from explanations. The
deteriorating generalization performance of classi-
fiers with increasing complexity of explanations in
prior work (Menon et al., 2022) further motivates
the need of curriculum learning in the context of
training classifiers from explanations.

To address the first shortcoming, we present
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Figure 2: QuExEnt models quantifier semantics and uses attention over multiple explanations to aggregate class logits. As shown
in the figure, our approach allows us to re-weight the logits from the NLI step, thus strengthening/weakening the contribution of
an explanation towards assigning the label (mentioned in the explanation) to the input. ⃝⋆ denotes the operations described in
§3.1 for assignment of class logits using the outputs from the NLI step. Curriculum learning (not shown in the figure) entails
training QuExEnt progressively on easy-to-hard tasks.

QuExEnt that extends ExEnt by modeling quan-
tifier semantics explicitly. We explore learning
quantifier semantics directly from labeled classifi-
cation data and use weak supervision in the form of
ordinal relations describing the relative strengths
of quantifiers (e.g. ‘always’ > ‘often’). Second,
QuExEnt also uses an attention mechanism for ag-
gregating the effect of different explanations cor-
responding to a task. Finally, we consider differ-
ent axes of explanation complexities and empiri-
cally evaluate the utility of curriculum learning on
three different curricula. Through experiments on
the CLUES benchmark we demonstrate the effec-
tiveness of our introduced strategies. Our model,
QuExEnt outperforms prior work on generalising
better to novel classification tasks.

2 Preliminaries

2.1 Setup

We employ a cross-task generalization setup
(Mishra et al., 2022; Sanh et al., 2022, inter alia),
and train models using multi-task training over a set
of tasks Tseen and evaluate for zero-shot generaliza-
tion on a new task, t ∈ Tnovel (Tnovel∩Tseen = ϕ).
For experiments, we utilize the recently proposed
CLUES benchmark (Menon et al., 2022) . In CLUES,
the inputs are structured in nature, i.e., they are col-
lection of attribute name-attribute value pairs. We
encode each structured data example, x, as a text se-
quence of attribute-name and attribute-value pairs
separated by [SEP] tokens (referred to as ‘Features-
as-Text’ or ‘FaT’ in Menon et al. (2022)). Addi-
tional details on CLUES can be found in App. A.

2.2 Dataset

We use the synthetic and real-world classification
datasets from CLUES Benchmark (Menon et al.,
2022). On analysis, we observed that preconditions
of the explanations were satisfied for only 30% of
the samples on average in CLUES-Synthetic. In
other words, using explanations we can only clas-
sify 30% of the samples and thus only this fraction
of samples would be effective for learning quanti-
fier semantics. Our initial experiments revealed a
need for more samples where explanations would
be applicable. Thus, we re-created the synthetic
tasks, now with around 50-60% of the samples
where explanations are applicable.

2.3 ExEnt

In the cross-task generalization setting, Menon et al.
(2022) identified that a simple concatenation of
explanations with the input was insufficient to en-
dow pre-trained language models with the ability
to generalize to novel tasks. Hence, they intro-
duce ExEnt, a model which uses NLI1 as an in-
termediate step. The operations in ExEnt can be
broadly grouped into three steps: (a) NLI step:
obtain scores from an entailment prediction model
(RoBERTa+MNLI-finetuned) for the alignment be-
tween the input and each explanation available for a
task; (b) Entailment → Classification scores con-
version: convert the entailment scores for each
input-explanation pair into classification scores
based on the nature of the explanation; and (c)
Aggregation: aggregate classification scores from
each input-explanation pair using mean to obtain
an overall score for classification. The aggregated

1Natural Language Inference
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Figure 3: Performance of QuExEnt as compared to the baseline models. We see that QuExEnt outperforms ExEnt (Menon
et al., 2022) on the synthetic datasets that contain explanations with quantifiers.

scores are then converted to probabilities using soft-
max, and the model is trained using cross-entropy
loss. For further details, we refer the reader to
Menon et al. (2022).

3 QuExEnt

3.1 Modeling Quantifier Semantics
Prior work in cognitive science (Chopra et al.,
2019; Steinert-Threlkeld, 2021) and machine learn-
ing (Srivastava et al., 2018; Menon et al., 2022)
show that people use quantifiers often in learning
or teaching tasks to express varying strength of rela-
tions in a statement. To the best of our knowledge,
prior work has not explored learning quantifier se-
mantics in a data-driven way. Here, we devise
methods to explicitly model the differential seman-
tics of quantifiers present in explanations to guide
classifier training.

To formalize our approach to modeling quan-
tifier semantics, consider a task t with the set of
class labels L and set of explanations E. Given
the Feature-as-Text (FaT) representation of a struc-
tured data example x ∈ t and an explanation
ej ∈ E, our model takes FaT(x) and ej as input and
passes it through a pretrained RoBERTa+MNLI
model, similar to previous work (Menon et al.,
2022). For each example-explanation pair, the NLI
model outputs entailment, neutral, and contradic-
tion scores (denoted as sje, sjn, and sjc respectively).
In the next step, we incorporate quantifier seman-
tics to assign logits to the set of class labels, L,
using the outputs of the NLI model. In this work,
we model the semantics of a quantifier by a proba-
bility value signifying the strength of the quantifier,
i.e., the confidence of the quantifier in conveying
the beliefs expressed in the explanation. The as-
signment of class logits is done as follows. If:
• Explanation ej mentions a label lexp: An il-

lustrative example is ‘If head equal to 1, then
dax’, where ‘dax’ is the label mentioned (lexp).

Let pquant denote the probability of the quantifier
mentioned in the explanation2 and P(l) denote
the probability of any label l ∈ L. Then,

log(P(lexp)) ∝ pquant × sje

+ (1− pquant)× sjc + sjn/|L| (1)

∀ l ∈ L \ {lexp},
log(P(l)) ∝ pquant × sjc

+ (1− pquant)× sje + sjn/|L| (2)

Note: If quantifiers are absent in the explanations,
we assume pquant is 1.

• Explanation ej mentions negation of a label
‘lexp’ (NOT lexp): An illustrative example is ‘If
head equal to 1, then not dax", where ‘dax’ is the
label mentioned (lexp). The roles of sjc and sje as
described in the previous equations are reversed.

Following this step, we average the class logits
from each example-explanation pair to aggregate
the decisions. Finally, we apply a softmax over the
resulting class scores to obtain a distribution over
class labels and train the model to minimize the
cross-entropy loss, LCE .

Approaches to learn quantifier semantics We
experiment with the following approaches to learn
the quantifier probabilities:
• Finetuning pre-defined probability values:

We initialize the quantifier probability values
(pquant) then fine-tuning them while training
QuExEnt. These initial probabilities can be spec-
ified from domain knowledge or by an expert.
In this work, we adopt the pre-defined quantifier
values from LNQ (Srivastava et al., 2018).

• Learning probability values for the quantifiers
from scratch: We start from random initializa-
tion and then learn the probability values of each

2We assume that explanations contain a single quantifier.
This assumption also holds true with the explanations found
in CLUES.
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Figure 4: Quantifier probability values learned by the different approaches mentioned in §3.1. The solid line and the shaded
region denote the mean and standard deviation respectively of the learned probabilities for a given approach across 48 synthetic
task complexities in CLUES-Synthetic. The dotted-line denotes (1) probability values used by Menon et al. (2022) to create
synthetic tasks of CLUES-Synthetic and (2) the quantifier probability initialization values for QuExEnt (predefined init).

quantifier while training the classifier. Techni-
cally, we learn a real-valued number correspond-
ing to each quantifier and then map it to range
[0,1] to model probability associated with the
corresponding quantifier.

• Weak supervision in form of ordinal ranking:
We explore a weaker form of supervision by spec-
ifying ordinal ranks between quantifiers based on
their relative strengths (‘always’ > ‘likely’). We
start from random initialization of the probabil-
ity values and leverage ordinal relations in the
form of a ranking loss. Following Pavlakos et al.
(2018) we define our ranking loss for a pair of
quantifiers qi and qj (i ̸= j) as :

Li,j =

{
log(1 + exp(pqi − pqj )), p∗

qi
> p∗

qj

(pqi − pqj )
2, p∗

qi
= p∗

qj

where, p∗
q refers to the subjective probability

value of a quantifier, q. Further, we define

Lrank =
∑

(qi,qj)∈Q

Li,j (3)

where, Q denotes the full set of quantifiers
present in the explanations of CLUES (§A.1). The
final loss is a weighted sum of classification loss
(LCE) and ranking loss (Lrank).

Ltotal = LCE + λLrank (4)

where, λ denotes the weight of ranking loss.

Performance of QuExEnt on synthetic tasks
We experiment on the expanded set of synthetic
tasks in CLUES-Synthetic (i.e., 80 train and 20
test datasets per synthetic complexity) to judge the
effectiveness of modeling quantifier semantics ex-
plicitly. Figure 3 shows the results of different vari-
ants of QuExEnt and baselines across the different
synthetic task types. We find that explicit mod-
eling of quantifier semantics is generally helpful

and outperforms prior work in most task types con-
taining quantifiers. Note that QuExEnt and ExEnt
perform same on task types not containing quanti-
fiers as pquant is 1 in such cases making QuExEnt
functionally same as ExEnt. The generalization
ability of the models decrease with the increasing
complexity of explanations due to changes in struc-
ture of explanations or presence of negations.We
leave modeling of negations to future work.

3.2 Improving aggregation across
explanations using attention

By design, using mean to aggregate class logits re-
sulting from different explanations corresponding
to an input considers all explanations to be equally
important for classifying the input. In order to
model the varying importance of each explanation
towards deciding the class label, we use an atten-
tion mechanism for the aggregation step (see §2.3).

We obtain the attention weights by using a feed-
forward network over the [CLS] representations
obtained from the intermediate NLI model. The
attention weights are then normalized using soft-
max. The final aggregated class logits for the label
l is

∑m
j=1 ajzj , where aj is the attention weight for

each explanation ej , and zj denotes the classifica-
tion logits resulting from ej .

We train two variants of QuExEnt (scratch), one
using mean and the other using attention to ag-
gregate over explanations. We find that QuExEnt
with attention has better generalization ( relative
improvement of 10%) than QuExEnt using mean
for aggregation over explanations. We refer the
reader to Figure 7(a) in the Appendix.

3.3 Curriculum learning

We define ‘complexity’ of an explanation under
three axes - (1) type of classification task (binary
vs multiclass), (2) presence of negations, and (3)
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Figure 6: Classification accuracy on novel real-world classi-
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structure of the explanation (presence of conjunc-
tion/disjunctions or nested clauses). Drawing moti-
vation from success of curriculum learning (Ben-
gio et al., 2009) in training on an array of increas-
ingly complex tasks, we explore its utility when
learning a classifier from explanations. We empir-
ically evaluate if pre-training on a classification
task with ‘easier’ explanations gives any advantage
when learning a task with ‘hard’ explanations on
the following curriculums:

• Binary to multiclass : We first train classifiers on
binary classification tasks and then finetune them
on multiclass classification tasks.

• No-negations to negations : We begin with tasks
that have no negations in their explanations.
Gradually, we add tasks with explanations con-
taining negations.

• Simple explanations to explanations containing
conjunctions/disjunctions or nested clauses: We
train first on tasks without any conjunctions/dis-
junctions in their explanations. Following this,
we train on tasks having explanations that contain
one conjunction/disjunction and then on tasks
with explanations that contain nested clauses.

Figure 5 shows the results of curriculum learning
on the synthetic tasks of CLUES. We find that cur-
riculum learning is effective in all the three curric-
ula when we pre-train the quantifier semantics on
the simplest binary task with quantifiers and keep
the semantics fixed for the remaining curriculum.
Notably, we find curriculum learning to be most
effective in handling negations.

4 Performance on real-world tasks

In the previous sections, we established the effec-
tiveness of our proposed strategies on a large num-
ber of synthetic tasks from CLUES. Here, we em-
pirically evaluate QuExEnt on the 36 real-world
classification tasks from CLUES using the afore-
mentioned strategies. Figure 6 shows the gener-
alization performance of QuExEnt and the base-
lines on CLUES-Real. We find that directly try-
ing to train QuExEnt fails to surpass the baselines
(even with attention to aggregate over explanations)
as the comparatively low number of explanations
in CLUES-Real hinders the model from learning
quantifier semantics and classification from expla-
nations jointly. To alleviate this issue, we pre-
train on CLUES-Synthetic and then fine-tune the
learned model on CLUES-Real. We find that pre-
training on synthetic tasks (QuExEnt (syn2real))
gives a relative gain of 6.7% in generalization ac-
curacy over ExEnt. Next, we evaluate the utility
of curriculum learning on real tasks. We start with
a pre-trained QuExEnt on synthetic tasks and then
fine-tune it first on binary tasks of CLUES-Real fol-
lowed by the multiclass tasks of CLUES-Real. We
find that curriculum learning (QuExEnt (syn2real
+ curriculum)) results in the best generalization,
performing significantly better than ExEnt (rela-
tive gain of 12.7%; p < 0.005, paired t-test) on
CLUES-Real.

5 Conclusion

We present three effective and generalizable strate-
gies to learn classifiers from language explana-
tions. Our strategies focus on modeling quanti-
fier semantics and mimicking human behaviour
through curriculum learning setting. Our model,
QuExEnt trained under this improved setup outper-
forms prior work showing better generalizing on
tasks of the CLUES benchmark. Future work can
explore other open challenges such as explicit mod-
eling of negations, conjunctions and disjunctions
for learing from explanations.
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Appendix

A Details on CLUES

CLUES (Menon et al., 2022) is a recently pro-
posed benchmark of classification tasks paired
with natural language explanations. The bench-
mark consists of 36 real-world classification tasks
(CLUES-Real) as well 144 synthetic classification
tasks (CLUES-Synthetic). The explanations for
the real-world tasks are obtained through crowd-
sourcing while they are programmatically gener-
ated for CLUES-Synthetic. In this work, we fol-
low the train and test splits for CLUES-Real from
Menon et al. (2022). Additionally, we train on
70% of the labeled examples of the seen tasks and
perform zero-shot generalization test over the 20%
examples of each task in CLUES-Real. For the ex-
tremely small Wikipedia tasks, similar to (Menon
et al., 2022), we use the entire set of examples for
zero-shot testing.

A.1 List of quantifiers
The full list of quantifiers along with their associ-
ated probability values are shown in Table 1.

QUANTIFIERS PROBABILITY

"always", "certainly", "definitely" 0.95
"usually", "normally", "generally",
"likely", "typically" 0.70

"often" 0.50
"sometimes", "frequently", 0.30
"occasionally" 0.20
"rarely", "seldom" 0.10
"never" 0.05

Table 1: Probability values used for quantifiers in CLUES.
These values are based on Srivastava et al. (2018).
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Figure 7: (a) Generalization accuracy on
CLUES-Synthetic ablating the use of attention
to combine results from multiple explanations in
QuExEnt. (b) Mean attention scores of explanations
from QuExEnt vs explanation length (# of tokens).

B Utility of attention for aggregating
across explanations

In this section we discuss the utility of using atten-
tion instead of mean for aggregating across expla-
nations. Further, we discuss the attention weights
observed for different types of synthetic explana-
tions.
Performance on CLUES-Synthetic: Fig-
ure 7(a) shows the generalization performance on
CLUES-Synthetic for two variants of QuExEnt,
one using mean and the other using attention for
aggregation. We find that using attention for aggre-
gation across explanations results in significantly
better generalization accuracy (50.68% vs 46.04%
; p < 0.1, paired t-test). While technically simple,
we see that this modification allows the model to
behave in conceptually sophisticated ways.
Attention weight analysis: Figure 7(b) shows
a histogram of average attention weights from
QuExEnt for different explanation lengths. We find
that longer explanations (typically explanations
containing nesting of conjunctions and disjunc-
tions) get lower attention weights on average. This
seems reasonable and intuitive, since more complex
explanations are likely harder for the model to in-
terpret correctly, and hence relying overly on them
may be riskier. Further, we find that explanations
containing a quantifier receive higher attention on
average than explanations without quantifier (0.44
vs 0.35), further highlighting the value of modeling
quantifiers in explanations. Explanations contain-
ing ‘definitely’ and ‘frequently’ received higher
attention than explanations containing other quan-
tifiers. Somewhat surprisingly, we found that the
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Figure 8: Progression of generalization accuracies on task complexities as we move forward in the curriculum
for all three curricula (from left to right: Classes, Negations and Conjunctions curriculum). The text on each bar
indicates the evaluation complexity, while the x-axis indicates the complexity that the model has been currently
trained on in the curriculum.

average attention weights were comparable for ex-
planations with and without negation.

C Forgetting in Curriculum Learning

In Figure 8, we show the trajectories of general-
ization performance as we increase the complexity
along three independent axes in the three curricula.
Briefly, our results indicate that in learning tasks
with more classes, generalization increases on mul-
ticlass classification tasks at the expense of a slight
performance decrease on the more straightforward
binary tasks. In the curriculum focused on nega-
tions, QuExEnt underperforms on tasks with expla-
nations that have ‘label negations’ after training
on the relevant training datasets for that complex-
ity. However, on further analysis, we observe that
this trend is more pronounced when ‘label nega-
tions’ are paired with multiclass classification tasks.
By contrast, QuExEnt improves through training
on the relevant training datasets of binary classi-
fication tasks with ‘label negations’ in concepts.
Lastly, training progressively on more structurally
complex tasks resulting from conjunctions/disjunc-
tions in explanations shows improvements during
evaluation across all conjunction types without for-
getting how to solve simpler tasks.

D Training details

In this section we proved details about implemen-
tation such as hyperparameter details, and details
about hardware and software used along with an
estimate of time taken to train the models.

D.1 Hyper-parameter settings

For all the transformer based models we use the im-
plementation of HuggingFace library (Wolf et al.,
2020). All the model based hyper-parameters are
thus kept default to the settings in the HuggingFace
library. We use the publicly available checkpoints
to initialise the pre-trained models. For RoBERTa

based baselines we use ‘roberta-base’ checkpoint
available on HuggingFace. For our intermediate en-
tailment model in ExEnt, we finetune a pretrained
checkpoint of RoBERTa trained on MNLI corpus
(‘textattack/roberta-base-MNLI’)

When training on CLUES-Synthetic, we use a
maximum of 64 tokens for our baseline RoBERTa
w/o Exp. and ExEnt.

We used the AdamW (Loshchilov and Hutter,
2019) optimizer commonly used to fine-tune pre-
trained Masked Language Models (MLM) mod-
els. For fine-tuning the pre-trained models on our
benchmark tasks, we experimented with a learning
rate of 1e−5. Batch sizes was kept as 2 with gradi-
ent accumulation factor of 8. The random seed for
all experiments was 42. We train all the models for
20 epochs. Each epoch comprises of 100 batches,
and in each batch the models look at one of the
tasks (in a sequential order) in the seen split.

For QuExEnt (ordinal), to weight the ranking
loss we use λ = 10, chosen using validation per-
formance.

D.2 Hardware and software specifications
All the models are coded using Pytorch 1.4.03

(Paszke et al., 2019) and related libraries like
numpy (Harris et al., 2020), scipy (Jones et al.,
2001–) etc. We run all experiments on a Tesla
V100-SXM2 GPU of size 16GB, 250 GB RAM
and 40 CPU cores.

D.3 Training times
• Training on CLUES-Real: The baseline

RoBERTa w/o Exp model typically takes 3 sec-
onds on average for training on 1 batch of ex-
amples. In 1 batch, the model goes through 16
examples from the tasks in seen split.

• Training on CLUES-Synthetic: All the models
take comparatively much lesser time for train-
ing on our synthetic tasks owing to lesser num-

3https://pytorch.org/

https://pytorch.org/


ber of explanations on average for a task. For
training on 1 batch, all models took 1 seconds
or less to train on 1 batch of examples from
CLUES-Synthetic.


