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ABSTRACT

Deployed reinforcement learning agents must satisfy safety requirements that
emerge only at test time—evolving regulations, unexpected hazards, or shifted op-
erational priorities. Current risk-aware methods embed fixed risk models (typically
return variance) during training, but this approach suffers from two fundamen-
tal limitations: it restricts risk expressiveness to trajectory-level statistics, and it
induces uniform conservatism that reduces behavioral coverage needed for effec-
tive deployment adaptation. We propose TRAM (Test-time Risk Adaptation via
Mixture of Agents), a deployment-time framework that composes risk-neutral
source policies to satisfy arbitrary risk specifications without retraining. TRAM
represents risk through occupancy-based functionals that capture spatial constraints,
behavioral drift, and local volatility—risk types that trajectory variance cannot
encode. Our theoretical analysis provides localized performance bounds that
cleanly separate reward transfer quality from risk alignment costs, and proves that
risk-neutral source training is minimax optimal for deployment risk adaptation.
Empirically, TRAM delivers superior safety-performance trade-offs across grid-
world, continuous control, and large language model domains while maintaining
computational efficiency through successor feature implementation.

1 INTRODUCTION

Reinforcement learning has achieved remarkable performance in controlled settings, yet deployed
agents remain vulnerable to unforeseen conditions. Policies trained in simulation or narrow regimes
often fail when facing new deployment constraints—unexpected pedestrian behaviors, sensor mal-
functions, or updated safety regulations in autonomous driving exemplify this brittleness. These
failures represent more than performance degradation; they constitute deployment-time risks that
current RL systems cannot adapt to at test time. The fundamental challenge is that deployment
risks differ systematically from training surrogates: dynamics shift, constraints emerge, and safety
priorities evolve. A warehouse robot optimized for throughput may later face speed limits or spatial
restrictions imposed by updated safety policies. Such risks are dynamic, diverse, and often unknown
during training, making methods that assume fixed reward and risk models fragile in practice.

Why training-time risk modeling is insufficient. Conventional risk-sensitive RL addresses un-
certainty by embedding specific risk objectives (variance penalties, CVaR constraints) directly into
training procedures |Gimelfarb et al.|(2021). This approach presupposes that deployment risks are
both known a priori and stationary over time. When risk profiles shift or are misspecified—common
occurrences in real-world deployment—the learned policy becomes misaligned with actual safety
requirements. Moreover, retraining for every new risk variant is impractical or unsafe in critical do-
mains like robotics, healthcare, and autonomous systems. Training-time risk modeling thus represents
a fundamental mismatch with deployment realities where safety requirements evolve continuously.

The need for test-time risk adaptation. To operate safely under shifting or previously unknown
hazards, agents must adapt their risk-performance trade-offs at deployment time. Rather than
committing to a single risk notion during training, agents should evaluate and synthesize behaviors
using deployment-specific safety constraints—without any additional training or parameter updates.
This capability enables dynamic safety adaptations that respect real-time operational constraints
while preserving task performance.
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Figure 1: Comparison between existing risk-aware adaptation (RaSF|Gimelfarb et al.|(2021]), top)
and TRAM (bottom). TRAM eliminates the need for risk-aware source training, supports general
occupancy-based risk models beyond variance, and synthesizes deployment policies through test-time
composition without parameter updates.

Our approach: TRAM. We introduce TRAM (Test-time Risk Adaptation via Mixture of Agents),
a test-time framework that composes risk-neutral source policies to satisfy deployment-time risk
objectives. TRAM requires no fine-tuning and makes no commitment to specific risk models during
training. Instead, it evaluates each source policy on the target task and selects actions by maximizing
risk-adjusted scores that combine expected return with occupancy-based risk assessments.

Critically, TRAM supports general risk functionals p, possibly defined over state-action occupancy
measures d, including spatial hazards (barrier risk), behavioral constraints (KL divergence from safe
references), and temporal volatility (per-step variance). This occupancy-based formulation captures
domain-specific safety concerns that trajectory-level statistics cannot represent, as demonstrated in
our theoretical analysis and empirical validation across discrete and continuous domains.

Contributions.

1. Test-time risk adaptation framework. We propose TRAM, which constructs risk-aware
deployment policies by composing risk-neutral source agents using general risk functionals.
The approach requires no retraining and enables adaptation to previously unseen risk
specifications at deployment time.

2. Expressive occupancy-based risk modeling. We demonstrate that occupancy measures
d™ (s, a) enable risk specifications that capture spatial hazards, behavioral constraints, and
temporal patterns that trajectory-level statistics cannot represent. Our framework supports
diverse risk types including barrier avoidance, divergence control, and local volatility through
unified occupancy-based functionals.

3. Theoretical foundations and optimality results. We derive localized performance bounds
that decompose approximation error into reward transfer quality and risk alignment costs,
revealing when and why TRAM succeeds. We prove that risk-neutral source training is
minimax optimal for worst-case deployment risk, providing theoretical justification for
TRAM’s design.

4. Computational efficiency and empirical validation. TRAM achieves computational
efficiency through successor feature implementation, enabling one-shot value evaluation via
dot products. Empirical evaluation across gridworld, continuous control, and large language
model domains demonstrates improved safety-performance trade-offs while maintaining
deployment-time computational feasibility.

2 RELATED WORK

Zero-shot and test-time transfer. Zero-shot RL methods learn shared representations for imme-
diate generalization without finetuning |Marom & Rosman| (2018); |Oh et al.| (2017); |Higgins et al.
(2017); [Rezaei-Shoshtari et al.| (2023)); Touati et al.|(2022). While effective for reward transfer, these
approaches assume fixed evaluation objectives and provide no mechanism to inject deployment-time
risk at inference. TRAM explicitly incorporates user-specified risk models at test time.

Risk-sensitive RL. Classical risk-aware RL optimizes training objectives augmented with variance,
CVaR, or related criteria|Bisi et al.| (2019); [Fei et al.| (2020); Jain et al.| (2021b)); Mannor & Tsitsiklis
(2013)); Mao et al.|(2018)); Nass et al.|(2019); |[Shen et al.|(2014); [Tamar et al.| (2016); Whiteson|(2021)).



Table 1: Comparison of TRAM with representative families. Columns: risk sensitivity,
support for risk types beyond variance, cross-task transfer, use of shared task structure, and
little/no test-time compute.

Mmoo (A O TRansR o
Standard RL v X X X X
Zero-shot RL X X 4 X 4
Dual RL v v X X X
Risk-aware v X v X X
Adaptation
TRAM (ours) v v v v v

Refs. Standard RL Bisi et al.| (2019); [Fei et al.| (2020); Jain et al.| (2021b); Mannor & Tsitsiklis
(2013)); Mao et al.| (2018); Nass et al.| (2019); Shen et al.|(2014)); Tamar et al.| (2016)); Whiteson| (2021);
Zero-shot RL|Marom & Rosman|(2018)); (Oh et al.[(2017); [Higgins et al.[(2017); Rezaei-Shoshtari et al.
(2023)); [Touati et al.| (2022); Dual RL Zhang et al.|(2021); Risk-aware Adaptation/SFs|Gimelfarb
et al.|(2021); Turchetta et al.|(2020); |Srinivasan et al.|(2020); Held et al.|(2017); Garcia & Fernandez
(2019); Mankowitz et al.| (2016); Jain et al.| (2021a)); Mankowitz et al.| (2018)); Barreto et al.| (2017}
2018;2020).

These approaches improve robustness when risk is known a priori, but hard-code risk at training and
require retraining when deployment risks shift. Dual formulations broaden risk signalsZhang et al.
(2021)), yet still entail solving optimization problems tailored to specific risks at test time—often
infeasible under tight latency.

Risk-aware adaptation and safety transfer. A complementary line learns teachers/critics for safe
adaptation Turchetta et al.| (2020); Srinivasan et al. (2020), robotics-oriented safety transfer Held et al.
(2017)), probabilistic policy reuse with risk|Garcia & Fernandez|(2019), or hierarchical controllers
with risk-sensitive skills/options|[Mankowitz et al.| (2016); Jain et al.| (2021a); Mankowitz et al.| (2018)).
These methods often assume a particular risk form and/or require nontrivial computation during
adaptation.

Successor features and RaSF. Successor features (SFs) Barreto et al.| (2017;2018;/2020) exploit
shared dynamics to evaluate policies across reward variants via dot products, enabling efficient transfer.
Risk-aware SFs (RaSF) |Gimelfarb et al.[|(2021) extend this idea to mean—variance, but (i) require
risk-aware source training and (ii) remain bound to a narrow risk proxy (return variance). TRAM
differs on both axes: (a) sources are explicitly risk-neutral, which we prove is minimax-optimal for
worst-case Lipschitz deployment risks, and (b) deployment risk is an arbitrary convex mixture of
occupancy-based functionals (e.g., barrier sets, KL-to-reference, per-step volatility), handled in a
single pass without retraining.

Positioning. TRAM occupies the intersection of zero-shot transfer and risk-aware decision-making:
it composes risk-neutral sources at inference, injects occupancy-based risks without retraining, and
provides localized suboptimality guarantees plus a minimax argument for risk-neutral sources.

3 PROBLEM FORMULATION

3.1 DEPLOYMENT SETTING

Deployment-time safety as constrained optimization. We model agent-environment interaction
as an MDP M = (S, A, p, R, ) with state space S, action space A, transition kernel p(- | s, a),
rewards R(s,a, s'), and discount y € [0,1). A policy 7 induces action-value function Q7 (s, a) =
E™[Gy | St = s, Ay = a] where Gy = Y ;27 Ryyi+1 is the discounted return.

At deployment, the agent faces target task Mt = (S, A, p, Rr,) with performance measured
by expected return J(7) = Ex[Y,~ v Rr(St, As, Si41)]. Crucially, deployment also introduces
safety constraints specified only at test time through risk functional p(7), yielding the constrained
optimization problem:

max J(m) subjectto p(m) <4 (3.1)
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Figure 2: Impact of risk-aware versus risk-neutral source training. Two source policies (left)
transfer to a target task (right). The gift symbol represents stochastic rewards (bomb or cash with
equal probability). Top: Risk-aware training produces identical conservative sources that avoid the
upper path, causing the deployed policy to miss the now-optimal route. Bottom: Risk-neutral training
yields diverse sources enabling successful adaptation to the safer, higher-return upper path.
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Figure 3: Failure modes of trajectory return variance. Left: Deterministic dynamics produce zero
return variance despite volatile per-step rewards. Middle: High per-step reward variability creates
genuine risk that trajectory variance cannot detect. Right: Low-variance path crosses danger zone
(yellow) while safer high-variance alternative exists.

where § > 0 is the risk tolerance. Since direct constraint enforcement during test-time adaptation is
challenging, we optimize the penalized surrogate:

max Jo(m) = J(x) —cp(n), ¢>0 (3.2)

Transfer setting: no retraining allowed. Training from scratch on the target task is impractical at
deployment due to sample complexity and time constraints. Instead, we assume access to pre-trained
source policies {7;}”_, from related source tasks M; = (S, A, p, R;, ) that share dynamics p but
differ in rewards. The challenge is composing these fixed policies to approximately solve Eq.[3.2]
without parameter updates.

3.2 WHY VARIANCE-BASED RISK FAILS AT DEPLOYMENT

Current risk-aware adaptation methods rely primarily on trajectory return variance |Gimelfarb et al.
(2021)), optimizing mean-variance objectives. This approach suffers from three fundamental limita-
tions that become apparent in deployment scenarios.

Limitation 1: Conservative training destroys behavioral diversity. When source policies are
trained with variance penalties, they converge to uniformly conservative behaviors that avoid regions
with reward stochasticity (Figure 2] top). This reduces the behavioral repertoire available for test-time
composition, preventing recovery of high-performing policies even when they satisfy deployment-
time constraints. Risk-neutral training preserves diverse behaviors across the performance-risk
spectrum (bottom), enabling adaptive policy selection based on actual deployment conditions.



Limitation 2: Variance degenerates in deterministic settings. With deterministic dynamics and
policies, trajectory return variance equals zero regardless of per-step reward fluctuations (Figure[3]
left-middle). Variance-based selection degenerates to risk-agnostic behavior, providing no safety
guidance even when clear hazards exist. This failure occurs precisely when deployment systems most
need risk awareness—in predictable environments where step-level risks accumulate.

Limitation 3: Variance misrepresents domain-specific risks. Trajectory variance captures outcome
uncertainty but ignores spatial hazards, behavioral constraints, or worst-case scenarios critical for
deployment safety (Figure 3| right). A path with low return variance can traverse dangerous regions
while a safer alternative exhibits higher variance due to benign stochasticity. Real deployment
risks—collision avoidance, toxic content generation, resource constraints—require risk models that
directly encode domain-specific safety concerns.

The need for expressive deployment-time risk modeling. These limitations reveal a fundamental
mismatch between trajectory variance and deployment-time safety requirements. Effective risk-aware
adaptation requires: (1) diverse source behaviors preserved through risk-neutral training, and (2)
expressive risk models that capture domain-specific safety constraints at deployment time.

4 METHOD: TRAM—TEST-TIME RISK ALIGNMENT VIA MULTI-AGENT
COMPOSITION

The limitations in Section [3.2] motivate TRAM’s approach: preserve behavioral diversity through
risk-neutral source training while enabling expressive risk modeling at deployment time.

Occupancy-based risk modeling. TRAM represents risk as functionals over state-action occupancy
measures d” (s, a)—the normalized discounted visitation frequencies under policy 7. This captures
three essential risk categories: Spatial hazards via barrier risk ppamier(d) = —log(7 — d(S)),
penalizing occupancy in danger zones S with smooth penalties that intensify as visitation approaches
tolerance 7. Local volatility via per-step variance pyaiance(d) = E?[(r — E?[r])?], measuring
step-level reward fluctuations that trajectory variance misses. Behavioral drift via divergence risk
pxL(d) = KL(d||d), maintaining proximity to safe reference behaviors d to prevent reward hacking
or unsafe policy drift. These functionals integrate directly into the penalized deployment objective
(Eq.[3-2) while remaining independent of source training.

TRAM policy construction. Given risk-neutral source policies {r; }?:1 and target task M7, TRAM

evaluates each source on the target to obtain both performance Q7 (s,a) and risk p(d™). The
deployment policy combines these through risk-adjusted values:

27 (s,0) = QF (s,0) —ep(d™), 20 @1
Actions are selected by maximizing across all sources:

wr(a| ) € argmaxmax Q7 (5,b) 4.2)

This directly operationalizes our penalized surrogate without any parameter updates, enabling imme-
diate deployment adaptation.

4.1 WHEN AND WHY TRAM WORKS: THEORETICAL FOUNDATIONS

TRAM’s theoretical analysis reveals fundamental insights about test-time risk adaptation: how
approximation quality decomposes into interpretable components and why risk-neutral source training
is provably optimal for deployment flexibility.

The power of localized analysis. Traditional transfer learning bounds require global reward similarity
across all state-action pairs, often yielding pessimistic guarantees. TRAM’s design enables much
finer analysis through trajectory-specific mismatch terms that capture what actually matters—how
well rewards align along paths that policies follow.



Algorithm 1 TRAM: Test-time Risk Adaptation via Mixture of Agents

Require: Source policies {7 }?:1; risk weight ¢ > 0; risk functional p
1: forall (s,a) € S x Ado
2: forj=1tondo

3: Evaluate Q77 (s, a) on target task Mr

4: Compute risk p(d™)

5:  end for

6 a* € argmaxpe 4 maxe(y) (QF (s,0) — cp(d™))
7:  Setwr(a* | s) = 1, all others to 0

8: end for
Ensure: Deployment policy 7p

For any policy 7 starting from (s, a), define the localized reward discrepancy:

oo

AT (s,a) =Y "' Br [[rr(Sh, Ar) = 75(Sk, Ar)| | So = s, Ao = 43)
t=0

This measures cumulative reward mismatch along trajectories the policy actually visits, not across
the entire state space.

Theorem 4.1 (Localized performance guarantee). Let p be L-Lipschitz in occupancy. For TRAM
policy wr and risk-neutral optimal policy 7 on the target task:

Q™ (s,a) — Q™ (s,a) < min {Ag’j)(s, a) + 2Lc} 4.4)
Jj€ln]

where Q™ (s,a) = Q™ (s, a) — ¢ p(d™) are risk-adjusted values.

Key insight: Clean error decomposition. This bound reveals TRAM’s fundamental advantage—the
approximation error separates cleanly into two interpretable components. The transfer quality

Ag’] ) (s,a) depends only on how well the best source task matches the target along trajectories the
optimal policy actually follows. The risk alignment cost 2 Lc quantifies the price of imposing safety
constraints at deployment time. This decomposition enables independent analysis: improve transfer
quality by diversifying sources, control safety costs by tuning c.

From risk-adjusted to standard performance. Many practitioners care about unpenalized per-
formance even when deploying with safety constraints. TRAM’s risk-adjusted guarantees translate
directly to standard Q-value bounds:

Corollary 4.2 (Standard performance bound). Under the assumptions of Theorem 4.1}

Q™ (s,a) — Q™ (s,a) < min {Ag’j)(s, a)} +4Lc 4.5)
jeln]

Key insight: The cost of safety. The factor 4 Lc precisely quantifies the total performance sacrifice
for safety.

Why risk-neutral sources are provably optimal. A natural question is whether source policies
should incorporate some risk awareness during training. We prove this intuition is wrong:

Theorem 4.3 (Minimax optimality of risk-neutral training). Let Sy denote sources trained with
risk weight A > 0. For any class of L-Lipschitz deployment risks and regret metric €, v (-):

sup Ey,v (So) = inf sup &,y (S1) (4.6)
p 20 p

Key insight: Maximum deployment flexibility. Here the regret £, (S5 ) measures the gap between
the best achievable deployment risk under a performance floor V' and the best risk attainable using



the convex hull of source occupancies co(.Sy), i.e.,

Ev(Sy) = f pd) - degg(fsx) p(d),
Jrp (d)2V Jrp ()>V

with D the set of feasible occupancies and J,. the target return. Risk-neutral training (A = 0)
minimizes this worst-case regret across all Lipschitz deployment risks, while adding risk penalties
during source training (A > 0) contracts the reachable occupancy space and strictly worsens adver-
sarial performance. This provides theoretical justification for TRAM’s design choice to defer all
risk considerations to test time, preserving maximum adaptability to unknown or evolving safety
requirements.

4.2 PRACTICAL IMPLEMENTATION: SUCCESSOR FEATURES

TRAM’s deployment requires efficient computation of Q;j (s, a) across multiple source policies in
real-time. Traditional iterative value evaluation scales as (’)(6(17177)), making deployment impractical
for large problems or real-time applications.

One-shot value computation through linear structure. When rewards admit the decomposition

r(s,a,s") = ¢(s,a,s")Tw with shared features ¢ and task-specific weights w, successor features
transform the computational bottleneck:

¢ﬂ—($, Cl) = EW Z’ytqZ)(St,At, St+1) | St = S,At = a (47)
t=0
Q™ (s,a) = ¢ (s,a)Tw 4.8)

Value evaluation reduces to dot products once successor features )™ are precomputed, enabling
simultaneous evaluation across all sources.

Theoretical advantages beyond computational efficiency. Successor features also yield tighter
performance bounds. Under linear rewards with ||¢|| < ¢max:

Q”*(s, a) — Q”T(s, a) < min { Pmax lwr — w2 + 2Lc} 4.9)
j€m (1 —7

Key insight: From rewards to structure. This refined bound shows that TRAM’s performance
depends on weight vector similarity ||wr — w||2 rather than raw reward differences. When tasks
share structural similarity through their feature representations, this often yields dramatically tighter
guarantees than the localized reward bounds. The successor feature framework thus provides both
computational feasibility and theoretical advantages for TRAM deployment.

Implications for practice. The theoretical analysis provides concrete guidance for TRAM de-
ployment. The min; operator in all bounds shows that source diversity is crucial—having even
one well-matched source dramatically improves performance, motivating training on diverse rather
than similar tasks. The linear dependence on c enables principled safety-performance trade-offs.
In successor feature settings, careful design of the feature representation ¢ becomes critical, as it
governs how well structural similarities transfer across tasks. Together, these insights transform
TRAM from a heuristic approach into a principled framework with clear deployment guidelines.

5 EXPERIMENTS

We evaluate TRAM across three domains: gridworld environments that isolate core mechanisms,
continuous control that tests scalability, and large language models where reward hacking presents
realistic deployment risks.

5.1 GRIDWORLD: MECHANISM VALIDATION

Controlled gridworld experiments directly test whether TRAM supports expressive risk models and
avoids training-time conservatism. Agents navigate environments where risk manifests through
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Figure 4: TRAM handles risk types beyond trajectory variance. Spatial hazards (top) and per-step
volatility (bottom) expose trajectory variance limitations. TRAM succeeds through occupancy-based
risk modeling while baselines fail.
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Figure 5: TRAM adapts to changing risk conditions. Top: Risk-free scenario—TRAM exploits
high-reward paths while RaSF remains overly conservative due to training-time variance aversion.
Bottom: Risky scenario—TRAM appropriately becomes conservative while maintaining adaptability.

spatial hazards or per-step volatility. We compare TRAM against RaSF [Gimelfarb et al.| (2021)
(variance-penalized training) and risk-agnostic SF[Barreto et al.| (2017).

Figure [ demonstrates TRAM’s expressive risk modeling. For spatial hazards (top), TRAM uses
barrier risk ppamier(d) = — log(7 — d(S)) to avoid danger zones while RaSF and SF fail because
trajectory variance provides no spatial information. For per-step volatility (bottom), TRAM detects
locally risky paths through step-level variance while trajectory-based approaches miss this fine-
grained structure.

Figure 5] shows adaptive risk sensitivity. TRAM exploits opportunities when risk-free but becomes
conservative when risk appears, while RaSF remains uniformly conservative due to training-time risk
aversion.

5.2 CONTINUOUS CONTROL: SCALABILITY

We evaluate scalability on Reacher (two-joint arm, 4D continuous state, MuJoCo physics). Four
SFDQNs train risk-neutrally on different goals; at test time, new goals introduce danger zones.
TRAM significantly reduces barrier violations compared to risk-neutral transfer while maintaining
goal performance. Successor features enable real-time adaptation: Q7-(s, a) = 1™ (s, a)” wy via dot
products. See Appendix [D|for details.



Table 2: LLM results on Berkeley Nectar. Risk-free optimization maximizes reward through hacking;
TRAM balances performance with alignment.

Method Target Reward GPT-4 Win vs TRAM
Zephyr-Qwen-2-7B 0.40 28.0%
Dolphin-Qwen-2-7B 0.70 31.2%
Risk-free Transfer 0.92 34.5%

TRAM (ours) 0.84 -

5.3 LLM ALIGNMENT: REWARD HACKING PREVENTION

Our most critical evaluation examines TRAM’s effectiveness for large language model alignment,
where reward hacking represents a high-stakes deployment risk that current methods struggle to
address.

Setup and challenge. We use two pre-trained 7B models as source policies: Zephyr-Qwen-2-7B
(truthfulness/helpfulness) and Dolphin-Qwen-2-7B (mathematical reasoning). Target rewards come
from RewardBench Mistral-7B on Berkeley Nectar dialogue tasks. The challenge: maximize target
reward while preventing pathological behaviors that exploit reward models rather than improve
genuine quality.

Risk modeling. We employ KL divergence risk pxp (7) = KL(7||7r) with Zephyr as reference,
maintaining proximity to safe behaviors while allowing target adaptation.

Results. Table 2] reveals the reward hacking problem: risk-free transfer achieves highest reward
scores (0.92) through pathological optimization but loses most GPT-4 preference comparisons.
TRAM achieves competitive reward (0.84) while winning substantially more preference comparisons,
demonstrating successful mitigation of reward hacking through test-time risk modeling.

Key insight. TRAM prevents pathological optimization without retraining, achieving the safety-
performance balance critical for robust Al deployment.

5.4 SUMMARY OF EXPERIMENTS

Our comprehensive evaluation across discrete, continuous, and LLM domains establishes TRAM’s
broad effectiveness and practical applicability. In controlled gridworld environments, TRAM demon-
strates superior risk modeling capabilities that capture spatial, temporal, and behavioral hazards
beyond trajectory variance limitations. Continuous control validation confirms scalability to high-
dimensional domains with complex dynamics while maintaining computational efficiency through
successor features. Large language model experiments reveal practical benefits for alignment and
safety in realistic deployment scenarios where reward hacking poses genuine risks.

These findings collectively support TRAM’s core design principles: risk-neutral source training
preserves behavioral diversity essential for effective adaptation; occupancy-based risk functionals
provide the expressiveness needed to capture domain-specific safety concerns; and test-time composi-
tion enables adaptive risk-performance trade-offs without architectural modifications or retraining
overhead. The consistent performance across diverse domains positions TRAM as a practical solution
for safe Al system deployment under evolving risk requirements.

6 CONCLUSION

We introduce TRAM (Test-time Risk Adaptation via Mixture of Agents), a deployment-time frame-
work that synthesizes risk-aware policies from risk-neutral source agents without retraining. Unlike
existing methods that embed fixed risk models during training, TRAM supports occupancy-based risk
functionals—including spatial barriers, behavioral divergence, and local volatility—specified at test
time. Through successor features, TRAM enables efficient policy composition via dot-product compu-
tations. Our theoretical analysis provides localized performance bounds and proves risk-neutral source
training is minimax optimal for deployment risk adaptation. Experiments demonstrate TRAM’s
ability to capture domain-specific safety constraints while maintaining superior safety-performance
trade-offs.
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APPENDIX

A LINEAR PROGRAMMING VIEWS OF RL AND OCCUPANCY MEASURES

This section formalizes the LP view of policy evaluation/control and explains why occupancy
measures are natural carriers for deployment-time risk in TRAM. We keep a compact catalog of risk
functionals that are directly expressible in terms of discounted occupancies.

A.1 PoLICY EVALUATION VIA LINEAR PROGRAMMING

Consider a finite MDP with state space S, action space A, discount v € (0, 1), transition p(- | s, a),
reward (s, a, s’), and initial distribution p¢. Define

r(s,a) := Eg p(|s,a)[r(s,a,s)], P.(s' | s) = Zw(a | s)p(s' | s,a). (A.1)

a

Primal Q-LP (policy evaluation). For fixed 7,

Q:SHQ%E—)]R (1 - 7) Esow;to, ag~m(-|s0) [Q(507 a’O)} s.t. Q(57 a) > T(Sv a’) + ’YE‘Z/’:IJ,,E(”S;?)) [Q(Sla al)]'

(A2)

Dual: discounted occupancies. Introducing nonnegative multipliers d(s, a) >0 yields

meax d(s,a)r(s,a) s.t. d(s,a) = (1 —~)po(s)m(a|s) + 'yZd(s',a’)p(s | s’ a")m(a | s).

(A3)
At optimality d = d™, where
d"(s,a) =(1—7) Z’yt E’rr(St =s,Ar=al| Sy~ o), (A4)
t=0
and strong duality gives (1 — v) E,, ~[Q™ (S0, Ao)] = (d™,7). If v(s) := >, d(s,a) > 0, a policy
is recovered by 7(a | s) = d(s,a)/v(s).

A.2 RISK-REGULARIZED CONTROL VIA OCCUPANCY OPTIMIZATION

Define the occupancy polytope

D= {deRiéA : Zd(s,a) = (1 —7)uo(s) + fyZd(s’,a’) p(s|s',a), VS}. (A.5)

v(s)
Given a risk functional p : D — R, the penalized control problem is
d,r) —cp(d >0 A.6
max (d,r) —cp(d), 20, (A.6)

whose optimizer induces 7 (a | s) = d*(s, a)/v*(s). For one-step functionals, we use the occupancy-
weighted expectation

Eql¢(s,a,s")] :== Z dl(s_,(;) Zp(s’ | s,a) (s, a,s). (A7)

s,a s’

A.3 RISK FUNCTIONALS ON OCCUPANCIES: COMPACT CATALOG

All functionals below depend only on d (and possibly a fixed reference d) and thus fit equation
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(R1) Set-occupancy constraints (barrier / chance proxy). For danger set S and tolerance § €
(0,1),

pset(d) = —log| o — Zu(s) , valid when Zu(s) < 4, (A.8)
s€S s€S

which acts as a smooth chance-constraint surrogate by penalizing state-mass in S.
(R2) Per-step reward variance (local volatility). Let 7(s,a) := By, o[r(s,a,s)?]. Using
(d,r) = (1 =~)Eq[r],

puar(d) = (d,7) —ﬁ«d,w)z, (A.9)

capturing local instability even when trajectories are deterministic.

(R3) f-divergences to a safe reference (behavioral proximity). For a reference occupancy d with

matching support, the KL case is
d(s,a)
d) = d(s,a)log—= . A.10
pxL(d) ;: (s,a) %8 I(s.a) (A.10)

Other f-divergences (e.g., x2, Rényi) are analogous and remain occupancy-only.

(R4) Integral probability metrics (IPMs), e.g.,, MMD. Let ® be a feature map into an RKHS #:
pmmp (d) = H Z d(s,a)®(s,a) — Zcf(s, a)®(s, a)HH. (A.11)
s,a s,a

This provides a nonparametric proximity to a safe/reference occupancy.

(R5) Entropic (exponential) per-step risk. Given a step risk cost g(s, a, s’) and 6 > 0,
pend) = 31og (Ea[e o)), (A.12)

a convex, tail-sensitive penalty formed directly from E4[-].

(R6) Energy / actuation budgets (control cost). With an action embedding u(s,a) € R™ and
G~ 0,

Penergy (d) = Zd(s,a) u(s,a) " Gu(s,a), (A.13)
s,a
which constrains power, wear, or acceleration magnitudes.

(R7) Transition smoothness / jerk (temporal regularity). Let ¢ (s, a, s’) encode finite differences
(e.g., Au or As),

Psmootn (d) = Ea[|l¢(s, a, s")|3], (A.14)
penalizing oscillatory behaviors via occupancy-weighted transitions.

(R8) Reach-avoid proxy (linear temporal-logic surrogate). For target set 7 and avoid set S,

pra(d) = « Zu(s) + (1 - Z u(s)), a,8 >0, (A.15)

sesS seT

a linear-in-d proxy for STL/LTL reach—avoid objectives.

Design notes. (i) Each p above is a function of (d, d) only; no return distributions or value iterations
are needed. (ii) Many are convex (KL, IPMs, quadratic costs, entropic), preserving tractability
of equation (iii) Lipschitzness in ||d||; (assumed in our analysis) holds for divergences with
bounded density ratios, linear/quadratic costs, and the smooth barrier.
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A.4 CONNECTION TO TRAM

In TRAM, each risk-neutral source 7; is evaluated on the target to obtain its occupancy d™# and risk
score p(d™ ). The risk-adjusted utility

Uj(s,a) = Q™ (s,a) — cp(d™) (A.16)

drives per-state action selection (Eq. without any parameter updates. The occupancy perspective
makes two properties explicit: (1) risk is modularly specified via p on d and can be swapped at
deployment; (2) keeping sources risk-neutral maximizes coverage of the occupancy polytope D,
enabling effective test-time composition under diverse safety requirements.
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B PROOFS AND TECHNICAL GUARANTEES

Common dynamics and discounted occupancies. All tasks share the same state space S,
action space A, discount v € (0, 1), and transition kernel p. For a stationary policy 7, denote its
normalized discounted state—action occupancy

d™(s,a) = (1—7) Z’yt Pr(S;=s, Ay=a),
t=0
so d™ is a probability distribution on S x A ([[d"|l1 = 1). Forrewardr : & x A — R,
define the normalized return J.(m) := (d™,r). (This equals (1 — ~) times the usual infinite-
horizon discounted return.) For a specific starting pair (s, a) and policy 7, define the normalized
conditional occupancy

drlsa(s' d’) = (1—7) Z*yt Pr(S;=s", Ay=ad’ | So=s, Ap=a),
t=0
so that Q7 (s,a) = ﬁ (d™1:% ). We abbreviate task i’s reward as 7; and write Q7 for Q7.
A risk functional p : A(S x A) — R acts on discounted occupancies and is L-Lipschitz
in| -1z |p(d) — p(d)| < L|d— d'||; for all d,d’. Risk-aware value at (s,a) is defined
as Q7 (s,a) = QF(s,a) — cp(d™) for ¢ > 0. Let n™N* ¢ argmax, J,, () and 7¥4* €
arg max,{J, (m) — cp(d™)}.

Localized reward mismatch. For any policy 7 and starting (s, a), define

Agri’j)(sa a) = Z 7t E(St,At)Ntraj(p,Tr)[ | Ti(Sh At) - Tj(Sta At) | } :
t=0 S():S,A(]:a

B.1 BASIC VALUE-DIFFERENCE LEMMAS

Lemma B.1 (Fixed-policy value difference). For any tasks i, j, policy w, and (s, a),
Q;r(s,a)| < Asf’j)(s,a).

Q?(Sv a) -

Proof. Unroll returns under common p: Q7 (s,a) — Q7 (s,a) = 2,507 E[ri(Si, Ar) —
r;(S¢, Ar)]. Apply triangle inequality inside the expectation and sum. (]

Lemma B.2 (Optimal-optimal (localized)). For any i,j and (s, a),
RN

i i i,
Q7 (5.0) = Q)" (s,0)| < min{AT. (s,0), AT (s.0)}.

J

( Proof. Apply Lemma|B.1|with 7 = 7;*"* and with 7 = 7;*"*, then take the minimum. [J l

%

ﬂ_RN*
Lemma B.3 (Optimal-evaluation (localized)). For any i,j and (s,a), ‘ij (s,a) —

Q;’ (s,a)| < A;gjm(s,a).

Proof. Directly Lemma with 7 = Wf‘N*. | J
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Lemma B.4 (TV diameter of occupancies). For any policies 1, 2,

dm™ — d™ |, < 2.

Proof. Each d™ is a probability distribution on S x .A. Their ¢; distance equals 2TV (d™,d™) <
2.0

Lemma B.5 (Lipschitz risk gap). For any 71, o,

p(d™) = p(d™)| < L||d™ — d™||; < 2L.

Proof. Lipschitzness and Lemma[B.4} O

B.2 GREEDY LIFT WITHOUT STEPWISE RISK ASSUMPTIONS

Definition B.6 (Bellman operators). For task ¢ and policy w, (I7Q)(s,a) = mi(s,a) +
YVEg mp(|5,a) Epmr(.|s)[Q(8',b)]. T7 is monotone and a y-contraction in || - ||, with fixed point Q7.
Let T be the optimality operator: (T:*Q)(s,a) = r;(s, a) + YEs max;, Q(s', ).

Action rule and max-score. Define

RN

Qmax(s;a) = max (Q:J (s,a) —cp(d™ 7 ))7 mi(:|s) € arg mélXQmax(s, b).

J€[m]

(We use Qmax only for analysis.)

Lemma B.7 (Lift by optimality monotonicity). With m; greedy w.r.t. Qmax, we have T} 'Qmax =

T Qmax > Qmax. Consequently, by monotone contraction, Q7' = limy_, oo (T} ) Qmax >
Qmax pointwise.

RN*

Proof. By definition of m;, T;”Qmax T Qmax For any fixed j, @, T s a fixed point

RN

ﬂ_RN*
of 7, hence T;(Q;’ ) >1T, ; (QF - ) @ " by monotonicity and the pointwise

. RN
max in 7;. Subtracting the constant c¢p(d™ ) and taking a pointwise max over j yields
T;Qmax 2 Qmax~ D

B.3 MAIN LOCALIZED BOUNDS

Lemma B.8 (Q difference vs. RN sources). For any i, j and (s, a),

’ RN* RN=*

Q:_L (57 a) ’ S mln{AE:I,%JI\?* (5’ a/)) AE:I’{%\?* (37 CL)} + 2Lc.

Proof (step-by-step).
1. Triangle on penalized values:

R

N B Q@RN*
K3

2. Bound the Q-difference using Lemmas [B.2]and [B.3}

‘ RN*

‘ <

RN

Q- Q| <min{ald., AR},

3. Bound the risk term using Lemma[B.5} ¢ [p(:) — p(")| < ¢ - 2L.
Combine the bounds. [
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Theorem B.9 (Main localized bound vs. RN optimal). Define m; by greedifying Qm.x as above.
Then for any (s, a),
~ ~RN=*

Q7" (s,a) — QTi(s,a) < min {mill(ASgg*(s,a), Aggg*(s,a)) + 2Lc}.

J€[m]

- ~ ~RN=
Proof (explicit). By Lemma , Q7 > Qmax, hence —Q7" < —max; Q?J <
. ~RN=
— min; Q;’ . Therefore
~ RN RN= RN

Qi —Qr < mm (@1 -QF ).

Apply Lemma|B.8|and take the min;. [J

Why we compare to RN optimal here. This theorem is completely assumption-minimal: it
never needs to relate a risk-aware optimum to a risk-neutral optimum on the same task, which is
generally impossible to bound without additional structure. The price is that the comparator is
7RN* (not A*).

B.4 STRENGTHENING TO AN RA COMPARATOR UNDER MILD STRUCTURE (OPTIONAL)

We now add mild structure to control how far the source of optimality shifts when adding a risk term.

Structural assumption for RA vs. RN shift. Assume p is differentiable and a-strongly convex
on A(S x A) wrt. || - ||1,1.e., (Vp(d) — Vp(d'),d —d') > a||/d — d'||3. Assume also a uniform
reward bound ||7;||co < Rmax (after scaling, this is standard).

Lemma B.10 (Occupancy shift under strong convexity). Let d*N* € arg maxgca (d, r;) and
d®A* € argmaxgen (d, r;) — cp(d). Then ||d®A* — dBN*||; < 2&,

Proof. Strong concavity of d — (d, r;) — cp(d) (modulus ca)) gives the three-point inequality
(ry, dN* — dRA) —c(p(dBN*) — p(dRA*)) < —<2||dRN* — @RA*||2. Because d™N* maximizes
(d,r;) over A, (ry, d®N* —dRA*) > 0. Thus — c(p(d®N*) — p(dBRA*)) < —L||dRN* —gRA* |2,
By Lipschitzness, p(d®N*) — p(dRA*) < L||d®N* — d®4*||;. Combine and cancel ¢ > 0 to
obtain [|dRN* — dRA*||; < 2L [

Lemma B.11 (RA-RN @ gap under structure). Under the structural assumption above,

aRAx mRN 2L Rpax
|Qiqr (S,CL)—Qi’ (S,CL)| < ;.1_7.

Proof. Using Q7 (s,a) = 72 (d™1*,r;) and ||riflcc < Rumax,

RA* RN+ 1 R

Q7" (s,a) — Q" (S’a)|§deﬂ-i

Ax RN
o2 — i1y o

The mapping 7 — d™!*® is 1-Lipschitz from 7 (in total variation) to occupancy, and the total
shift in occupancies between the maximizing policies is bounded by Lemma|[B.10] Formalizing
via coupling or path arguments gives [|d™ 5@ — g™ |sa|, < [[dRA* — gBN*||,. Apply
Lemma[B10 O
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Theorem B.12 (Localized bound vs. RA optimal (with structure)). Under the structural assump-
tion, for any (s, a),
~ RA* ~

Q" (s,a) — QT (s,a) < min {min(ASﬁkjg*(s,a), Asl;fg*(s,a)) + 2Lc} +

J€[m]

2L Rmax
a 1—7

. xpRAx ~ . ~ RAx ~ pRNx . RA RN

Proof. Split @Q;° — Q" < minj (Ql = Q)7 ) = min, (Ql - Q] +
© RN q

¢ min; (p(d“? N ) — p(d®**)). Add and subtract @;*  inside the first min and use Lemma

p(d”?N*) — p(d®**)| < 2L by Lemrna taking a min

plus Lemma|B.11{ For the risk term,
only helps. [

Interpretation. The extra additive term % %ﬁ;‘ precisely isolates the price of comparing against

R4 instead of 7EN*. Tt vanishes as o — oo (extremely curved risk), or if L and Ry, are

small due to normalization.

B.5 SUCCESSOR-FEATURE SPECIALIZATION

T

‘ Linear rewards. Assume r;(s,a,s’) = ¢(s,a,s’) ' w; with ||¢|l2 < dmax pointwise.

Lemma B.13 (Localized mismatch under linear rewards). For any policy © and (s,a),

A (5 q) < T2 Gmax [Wi — W2

Proof. By Cauchy—Schwarz, |r; — ;| < ||@]l2 |Wi — Wjll2 < @max||Wi — W;]||2 pointwise.
Sum the geometric series. [

Corollary B.14 (SF specialization of Theorem[B.9). For any (s, a),

~ pRN* s . 1
Q;" (s,a) — Q" (s,a) < min { Gmax ||[Wi — Wjll2 + 2Lc} .
je€m] (1 —1

Proof. Apply Lemma[B.13]inside Theorem[B.9} O

About bounded-p variants. If you prefer a non-localized, global display, you may bound
|p(d)| < K and replace the 2Lc term by 2K c. The localized Lipschitz form 2Lc is tighter and
task-agnostic.

B.6 WHY RISK-NEUTRAL SOURCES MINIMIZE WORST-CASE DEPLOYMENT RISK

Setup. Let D = A(S x A) (normalized occupancies; convex, compact). For reward r € RISIAl
and policy occupancy d € D, the normalized return is J,.(d) = (d,r). Source training with
weight A > 0 and convex risk py..: d(r) € arg maxgep(d,r) — X psre(d). Given a compact
set of source rewards R, let Sy = {d*(r) : r € R} and co(S)) its convex hull.

At deployment, fix a target reward 1 and a Lipschitz test risk pr (Lp-Lipschitz in || - ||1). For a
return threshold V', define risk regret

Epry(S3) = if  pr(d) — de(i:g(fsk) pr(d),
Jrp () 2V Jrp (d)>V
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with inf ) = +o0.

Lemma B.15 (Coverage = regret). Let d4(V) € argmin{pr(d) : d € D, J,.(d) > V'}. Then
Epr v (S1) < Ly - dista(d(V), co(S3) N {Jpx 2V}),

where disty (x, A) = infyc 4 |z — y||1.

Proof. Pick d* in the feasible part of co(S)) nearest to d’»(V) in || - ||;. By Lipschitzness,
infaeco(sy), s2v pr(d) < pr(d) < pr(di(V)) + Lrl|d* — d5(V)|1. Rearrange. O

Standing assumptions for source sets. pg,. is a-strongly convex on D; R is compact and
exposes at least two distinct faces of D under linear maximization.

Lemma B.16 (Sensitivity to reward under regularization). For any r,7’ € R and A\ > 0,
[d*(r) = d* ()l < 35 llr =7 lleo-

Proof. Let F)\(d;7) = (d,) — A\psre(d), which is (Aa)-strongly concave in d. Let d = d*(r)
and d = d*(r'). By strong concavity (Baillon-Haddad style inequality for concave case),
(VaF\(d;r) — VaF\(d';7),d — d') < —=Xalld — d'||3. But VaFx(d;r) = 1 — AV pgre(d), s0
LHS equals (r —7/,d —d') = MV pgre(d) — Vpgre(d'),d—d'y < ||r =1 0o ||d — d'||1. Combine
and cancel ||d — d’||; > O (trivial otherwise). OJ

Corollary B.17 (Diameter contraction). Let diam;(S) = sup, ,cg ||z —y||1 and diam(R) =
Sup,. v e |7 = 7'lloo. Then for X > 0, diam; (Sy) < L diame (R).

Lemma B.18 (RN sources expose extreme faces). When A\ = 0, each d°(r) € arg maxgep(d, )
can be chosen at an extreme point of D; varying r over R exposes distinct faces.

Proof. Linear objectives over polytopes attain optima at extreme points; the set of maximizers
over r € R is a union of exposed faces. [

Proposition B.19 (Hull shrinkage for A > 0). Under the standing assumptions, there exists
cx € (0,1) such that diamy (co(Sy)) < ¢ diam; (co(So)).

Proof. By LemmalB.T8] co(.Sy) contains extreme points from at least two faces, giving a positive
diameter. By Cor.|B.17} diam; (S} ) can be made arbitrarily small for fixed R as A grows, hence
strictly smaller than diam; (Sy) for any fixed A > 0 by continuity. Passing to convex hulls
preserves the inequality, yielding ¢\ < 1. J

Theorem B.20 (Minimax advantage of risk-neutral sources). For the class Ry, of L-Lipschitz
test risks, define £} 1, (S\) = sup, cm, Epr,v (). Then, under the standing assumptions,

Eiv(S0) = il ELv(S1),  VA>0: € y(Sh) > ELv(So).
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Proof. By Lemma 7 v(Sx) < L -dist™(co(Sy)), where dist” is the supremum, over
feasible targets, of the /;-distance to the feasible slice of the convex set. Hull shrinkage
(Prop. implies there exists a feasible point d+ whose distance to co(.Sy ) is strictly larger than
its distance to co(Sp), hence dist*(co(Sy)) > dist*(co(Sp)). Tightness follows by choosing the
adversarial test risk pr(d) = L disty(d, co(Se) N {J > V}), which is L-Lipschitz and achieves
equality in Lemma[B.15] O

Takeaway. Risk-neutral source training (A=0) maximizes coverage of the return-feasible region
in occupancy space, which minimizes worst-case Lipschitz deployment risk regret. Adding
source-stage risk (A > 0) contracts coverage and provably worsens the minimax bound.

B.7 Q-ONLY PERFORMANCE GAPS (UNPENALIZED)

We convert our @ bounds into Q-only guarantees by peeling off the risk penalty via Lipschitz
continuity of p.

Same-start occupancy for Q-only comparisons. In this subsection, whenever p(d™) appears in
an inequality used to relate ()-gaps to Q-gaps at a fixed (s, a), we interpret d™ as the same-start
discounted occupancy d™!* associated with that (s,a):

drlsa(s’ a’) = (1 — ) Z’yt lzrr(St =5, Ay =d"|So=s,A40=a).
>0

All Lipschitz/convexity properties of p invoked below are assumed on this simplex.

Lemma B.21 (From Q-gap to Q-gap). Let m, 7' be any policies. For any task i and (s,a),
Q7 (s,0) = QF (s,0) = (QF (s.0) = QF (s,)) = e(p(d™**) = p(d™1**),  B.D)

QT (5,0) — QF (5,0) < GF(s,) — QT (5,0) + e (™) — p(ao)|
< Q7 (s,a) — QT (s,a) + 2Lec. (B.2)

The last step uses Lemmaand the fact that || ™15 — dr'ls-

h <2

Proof. The identity is algebraic from Q = Q — ¢ p(-) at the same start (s, a). The bound follows
by applying Lemma[B.3|to same-start occupancies. (]

Comparator: risk-neutral optimal (assumption-free). We first compare against 7N*; no struc-

tural assumptions are needed.

Theorem B.22 (Q-gap vs. RN optimal). Under the setting of Theorem@ for any (s,a),

Q??N* (s,a) — QT (s,a) < min { min (AE:RJI\?* (s,a), Af:lfl\?* (s, a))} + 4Lc.

JE[m]

K3

Lemma|[B.21|with 7 = 73N* and 7/ = 7;:

i

Proof (explicit). By Theorem Qﬁ’l}m — QT < min, {min(ASﬁJg*, ASR@)) +2Lc}. Apply
@ J

(2

RN ™ A A : : (4,3) (4,3)
Q; -Q < (Q — Q) ) +2Lc < mjm{mm(AWRN*,AWBN*)} +4Lec.
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Comparator: risk-aware optimal (with mild structure). We next compare against 74 using the
structural assumptions from Section |B|(strong convexity of p and bounded reward), now interpreted
on the same-start occupancy simplex.

Theorem B.23 (Q-gap vs. RA optimal (with structure)). Under the structural assumption
preceding Theorem[B.12|(i.e., p is a-strongly convex and ||r;||oc < Rumax), for any (s, a),
RAx 2L Rpax

m —Qr < min { min (A% AGD SoL MR 4 4 Le
Qz (570’) Q’L (S’a’) = ]Igﬁgll]{mln( TriRN* <S’a)’ Tr]RN*(s’a))} + a 177 + ¢

Proof (step-by-step).
1. By Theorem [B:12](same-start interpretation),

Qﬂ'iRA* Rmax
[ 1— v
RA* - RA* ~

2. Apply Lemmawith T=mfM o = Q —QF < (QFF  —QF)+2Lc

i

- o o 27,
—QF < mjin{min(AfféJﬁ* A +2Le} + =.

3. Combine the two displays to obtain the claim. [

SF specialization (linear rewards). Under the linear reward model and feature bound from
Section[B] the localized mismatches simplify.

Corollary B.24 (SF version of Theorems and|[B.23). Assume 7;(s,a,s’) = ¢(s,a,s') w;
and ||¢||2 < Gmax- Then for any (s, a),

RN« . ) 1
Qiz (S,a) 7Qi’i(s’a) S mln {1_’7 ¢max ||W1W]2} + 4LC,

J€[m]

and, under the structural assumption,

2L Rmax
¢max ”W’L - WjQ} + —— + 4Lc.
1—7 « -y

" ) - (sa) < i { :

JjE[m

Proof. Plug Lemma[B.13|into Theorems and O

Interpretation. The 4 Lc term is the price of peeling off the test-time risk penalty in a Q-only
i

comparison (two applications of Lemma 1} once inside the Q bound and once to remove
risk from the comparator). The structural term % Ff%fy" isolates the gap between RA and RN

optimizers; it disappears when comparing to RN optimal or when « is large.
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Figure 6: Effect of variance penalties during source training. Top: Mean—variance training
collapses sources to similar, conservative behaviors. Bottom: Risk-neutral training preserves diverse
trajectories, enabling test-time selection to recover the optimal high-return route when it is also
deployment-safe.

C LIMITATIONS OF CURRENT RISK-AWARE TEST-TIME ADAPTATION

We revisit the state-of-the-art variance-based adaptation framework |Gimelfarb et al.| (2021) and
show three structural limitations that appear at deployment. Together, they motivate TRAM’s design
choices: preserve source diversity via risk-neutral training and enforce expressive, deployment-time
risk models.

C.1 LIMITATION 1: CONSERVATIVE TRAINING REDUCES BEHAVIORAL DIVERSITY

Observation. Training sources with a mean—variance objective nudges all policies toward uniformly
conservative behaviors, collapsing the set of behaviors available for composition at test time.

Mechanism. Variance penalties discourage visiting regions with stochastic rewards; across multiple
tasks, this pressure produces similar trajectories even when those regions are desirable under a later,
deployment-time risk model.

Consequence. With limited behavioral coverage, test-time selection cannot recover high-return,
constraint-satisfying behaviors if no source ever explored those regions.

Iustration. In Fig.[6] variance-aware sources (top) converge to the safe lower corridor; risk-neutral
sources (bottom) retain complementary behaviors (upper vs. lower paths). When the target optimum
lies on the upper corridor, only the risk-neutral pool provides the necessary coverage.

C.2 LIMITATION 2: TRAJECTORY-RETURN VARIANCE COLLAPSES IN DETERMINISTIC
SETTINGS

Observation. Under deterministic dynamics and policies, the trajectory return is a point mass, so
Var[G; | St = s, A; = a] = 0 for all (s, a)—even when step-level rewards exhibit sharp local
fluctuations or trajectories intersect hazards.

Mechanism. Variance is computed over stochasticity in the tozal return, not over per-step instability
or constraint violations. Deterministic rollouts therefore mask fine-grained risk patterns.

Consequence. Variance-based adapters degenerate to risk-agnostic selection precisely in regimes
where deployment systems most need risk awareness (e.g., robotics with near-deterministic control
loops).

IMlustration. Fig. [/|shows two failure modes: (middle) high per-step volatility that leaves trajectory
variance unchanged; (right) a low-variance path that nonetheless violates a safety barrier.
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Figure 7: Failure modes of trajectory-return variance. Left: Deterministic rollouts yield zero
return variance. Middle: Paths with high per-step volatility are indistinguishable by trajectory
variance. Right: A low-variance path traverses a danger zone (yellow), revealing a mismatch between
variance minimization and safety.

C.3 LIMITATION 3: VARIANCE MISREPRESENTS DOMAIN-SPECIFIC RISKS

Observation. Many deployment constraints are categorical or structural (e.g., obstacle avoidance,
restricted regions, behavioral guardrails) and must be respected regardless of outcome variance.

Mechanism. Trajectory variance measures dispersion of total return; it does not encode where the
agent went or how it behaved. Spatial, behavioral, or resource constraints are therefore invisible to
variance.

Consequence. A policy with low return variance may still be unsafe—e.g., it systematically enters a
forbidden zone or drifts away from a vetted behavioral reference.

Example. In Fig. [/| (right), the variance-minimizing path violates a barrier constraint, while a
higher-variance alternative is safe. Variance alone selects the unsafe option.

C.4 IMPLICATIONS FOR DESIGN
These failure modes point to three design requirements that TRAM satisfies:

* Preserve source diversity. Train sources risk-neutrally to maintain broad occupancy
coverage; this enables state-contingent selection at deployment.

» Use expressive deployment risks. Encode safety as functionals over occupancies (e.g.,
barrier penalties, step-level volatility, divergence to a safe reference) rather than trajectory
variance alone.

* Decouple training from deployment. Introduce risk only at test time so the same source
pool can adapt to evolving constraints without retraining.

TRAM operationalizes these principles by composing risk-neutral sources using a deployment-

time penalized objective that evaluates performance and risk on the target, yielding adaptive and
interpretable safety without sacrificing coverage.
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D CoNTINUOUS CONTROL VALIDATION: REACHER WITH DEEP SUCCESSOR
FEATURES

This section validates that TRAM scales beyond tabular domains to high-dimensional continuous
control with deep function approximation. We address: (i) effectiveness under nonlinear MuJoCo
dynamics; (ii) compatibility with deep successor features for real-time selection; and (iii) statistical
robustness, latency, and ablations.

D.1 EXPERIMENTAL SETUP

Environment. REACHER (MuJoCo [Todorov et al.|(2012)) features a planar 2-DOF arm. States
are 4D (joint angles & velocities); we follow established transfer protocols [Barreto et al.| (2017));
Gimelfarb et al.[(2021));[Zhang et al.| (2024)) and discretize torques to 9 actions (min/zero/max per
joint). Rewards are negative distance-to-goal plus a small control penalty; discount v € (0, 1).

Sources (risk-neutral). We train four risk-neutral Successor-Feature DQNs (SFDQNs) [Zhang
et al.| (2024), each optimal for a distinct source goal layout and sharing dynamics with the target.
Each network learns features ¢ and successor features 1™, enabling one-shot target evaluation via
Q7-(s,a) = Y7 (s,a) " wr without iterative value backups. Training hyperparameters (architectures,
optimizer, replay, target updates) are matched to Barreto et al.|(2017) for fair comparison.

Deployment risk (fixed per experiment). At test time, we introduce an unseen goal and a rectangular
danger zone. Episodes fail if the end-effector enters the zone at any step. We instantiate a single
deployment risk for this experiment:

poarier(d) = —log(7 — d(S)), d(S) = Z d(s,a)1{s € S},
with tolerance 7 > 0. TRAM uses weight ¢ = 5 unless otherwise stated.

D.2 EVALUATION PROTOCOL, BASELINES, AND METRICS

Baselines. (i) SF-Transfer (risk-agnostic) Barreto et al.[(2017): argmax, max; Q;j (s,a); (i)
RaSF (mean-variance) Gimelfarb et al.|(2021)): selection by @) — [ - Var(return) (ported to SFs); (iii)
Risk-free Transfer (RFT): greedy by () only (identical to SF-Transfer here, included for reporting
consistency).

TRAM. arg max, max; (Q;j (s, a) — ¢ poarrier (d™ )) Occupancies d™ are estimated once per source
via discounted rollouts (#episodes K = 200, horizon H = 200); estimates are cached for deployment.

Protocol. We evaluate Ng..4s=10 random seeds; per seed we run 100 episodes per method. We report
the mean + 95% CI across seeds.

Metrics. (1) Failure rate (|): proportion of episodes with any barrier violation; (2) Mean distance-
to-goal at termination ({); (3) Discounted return (1); (4) Latency ({): median action-selection time
(ms) and throughput (actions/s).

D.3 RESULTS AND ANALYSIS

Safety. TRAM reduces barrier violations substantially relative to risk-neutral transfer, confirming
effective spatial-risk avoidance in continuous state spaces. RaSF also lowers failures but at the cost
of conservative behavior even when the barrier is far from nominal trajectories.

Task performance. TRAM incurs a modest increase in distance-to-goal and a small return drop
versus SF-Transfer, consistent with the linear “price of safety” predicted by our theory (risk-adjusted
vs. standard bound). RaSF degrades return more noticeably due to training-time conservatism.

Latency. Action selection is dominated by SF dot-products across sources and a constant-time risk
lookup. TRAM’s median per-step latency is within ~ 1.1 x SF-Transfer on our setup (detailed profiler

traces in App. §6).
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(a) (b)

Figure 8: Reacher (MuJoCo) with deployment-time barrier risk. (Left) Setup: four risk-neutral
SFDQN sources (colored trajectories), new target goal (yellow star), and barrier (blue rectangle).
(Right) TRAM achieves substantially lower failures than risk-neutral transfer at comparable distances-
to-goal; RaSF is safer but more conservative even in benign regions. Error bars show 95% CIs across

Nseeds:]-o-

c—sweep. Sweeping ¢ produces a smooth frontier: failures drop monotonically with ¢, while return
decreases approximately linearly over the practical range—mirroring the additive c-dependence in
our bounds.

D.4 ABLATIONS

(A1) Source diversity. We vary source subsets by (i) random subsampling and (ii) diversity-aware
selection (maximize pairwise occupancy TV). TRAM benefits markedly from diversity, tightening
the empirical analogue of the min; term in our guarantees.

(A2) Occupancy estimation. We vary rollout budget (K, H) and compare rollout-based estimation
to a small learned occupancy regressor (2-layer MLP). TRAM is robust for moderate (K, H ); learned
estimators match rollout risk within CIs while reducing runtime variance.

(A3) SF approximation error. We inject noise into ¢™ and observe a predictable shift in the c at
which TRAM becomes conservative; relative ordering across methods is preserved.

D.5 IMPLEMENTATION AND REPRODUCIBILITY

Architectures and training. SFDQNs follow [Barreto et al.|(2017): two hidden layers (ReL.U), target
networks, prioritized replay, e-greedy decay, and identical training schedules across sources.

Fixed test-time configuration. Barrier geometry and position are fixed across seeds; only the random
seed affects exploration and simulation noise. TRAM introduces exactly two deployment-time knobs
(¢, T), which we hold fixed in the main results and sweep in ablations.

Fairness controls. All methods use the identical source pool, value estimators, discretization, and
episode horizons. The sole difference is the action-selection rule.

Artifacts. We release code, seeds, occupancy caches, and profiling scripts to reproduce all numbers,
ablations, and latency traces (see App. §6).
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E LLMs

We used large language models as assistive tools for coding and implementation, writing, discovery
and summarization of related work, and for developing and presenting theoretical results. The authors
take full responsibility for the content.
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F REPRODUCIBILITY

This section provides essential implementation details and computational specifications to enable
reproduction of our experimental results.

F.1 IMPLEMENTATION AND CODE

Base codebase. Our gridworld and continuous control implementations extend the public successor
features repository (Gimelfarb, [2021]).

Modifications. We preserved original training procedures and environment interfaces while adding:
(1) TRAM test-time selection logic implementing Eq.[4.2} (2) risk functional evaluators for barrier,
variance, and KL divergence risks; (3) constraint violation logging and risk-adjusted score tracking;
(4) experimental harnesses for seed-based evaluation. Exact modifications are documented in
supplementary materials with commit hashes and diff files.

Dependencies. Core dependencies include Python 3.11.6, PyTorch 2.3.1, Gymnasium 0.29, MuJoCo
3.1.5, and standard scientific libraries (NumPy, Pandas). LLM experiments use the Transformers li-
brary with model-specific versions. Complete dependency specifications are provided in environment
files.

F.2 COMPUTATIONAL RESOURCES

CPU specifications. Gridworld and Reacher experiments run on Intel Core i7-8550U @ 1.80 GHz
with 4 cores, 8 threads, and 16 GB RAM under Ubuntu 22.04. No GPU acceleration is used for these
experiments.

LLM experiments. Large language model evaluations use NVIDIA RTX A6000 GPUs with
appropriate CUDA-enabled PyTorch builds. Driver versions and CUDA runtime details are logged
for each experimental run.
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