
GPSToken: Gaussian Parameterized
Spatially-adaptive Tokenization for

Image Representation and Generation

Zhengqiang Zhang1,2, Rongyuan Wu1,2, Lingchen Sun1,2, Lei Zhang1,2,
†

1The Hong Kong Polytechnic University 2OPPO Research Institute
zhengqiang.zhang,rong-yuan.wu,ling-chen.sun@connect.polyu.hk,

cslzhang@comp.polyu.edu.hk
†Corresponding author

https://github.com/xtudbxk/GPSToken

Abstract

Effective and efficient tokenization plays an important role in image representa-
tion and generation. Conventional methods, constrained by uniform 2D/1D grid
tokenization, are inflexible to represent regions with varying shapes and textures
and at different locations, limiting their efficacy of feature representation. In this
work, we propose GPSToken, a novel Gaussian Parameterized Spatially-adaptive
Tokenization framework, to achieve non-uniform image tokenization by leveraging
parametric 2D Gaussians to dynamically model the shape, position, and textures of
different image regions. We first employ an entropy-driven algorithm to partition
the image into texture-homogeneous regions of variable sizes. Then, we param-
eterize each region as a 2D Gaussian (mean for position, covariance for shape)
coupled with texture features. A specialized transformer is trained to optimize
the Gaussian parameters, enabling continuous adaptation of position/shape and
content-aware feature extraction. During decoding, Gaussian parameterized tokens
are reconstructed into 2D feature maps through a differentiable splatting-based
renderer, bridging our adaptive tokenization with standard decoders for end-to-end
training. GPSToken disentangles spatial layout (Gaussian parameters) from texture
features to enable efficient two-stage generation: structural layout synthesis using
lightweight networks, followed by structure-conditioned texture generation. Exper-
iments demonstrate the state-of-the-art performance of GPSToken, which achieves
rFID and FID scores of 0.65 and 1.50 on image reconstruction and generation tasks
using 128 tokens, respectively. Codes and models of GPSToken can be found at
https://github.com/xtudbxk/GPSToken.

1 Introduction

Recent advances in latent generative models such as VQGAN [11], LDM [29], MaskGIT [3],
DiT [26], SiT [23], VAR [32], and SD3 [10] have revolutionized the research and application of
image generation. Most of these methods adopt a two-stage framework. First, an auto-encoder is
employed to convert original images into compact latent representations with reduced dimensionality
(e.g., 256×256 → 32×32 in LDM), serving as an effective “image tokenizer”. Then, generative
models [11, 29, 3, 26, 23, 32, 10, 40] are trained in the latent space, alleviating computational
burdens while enabling high-quality generation. The primary goal of an image tokenizer is to learn
effective representations through reconstruction tasks, encoding images into a latent space with
minimal loss. Early methods such as VAE [20] transform images into continuous latent spaces.
LDM [29] performs diffusion in the latent space, reducing computational cost while improving visual

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/xtudbxk/GPSToken
https://github.com/xtudbxk/GPSToken

Figure 1: Comparisons between (a) 2D-grid tokens, (b) 1D-grid tokens and (c) our GPS-tokens. (d)
Two visualization examples of the representation and reconstruction results of GPSToken.

quality. In contrast to continuous representation, VQVAE [33] introduces discrete latent codes via
vector quantization. Based on VQVAE, VQGAN [11] and MaskGiT [3] train autoregressive models
and achieve improved image generation performance. Beyond 2D grid tokenization, TiTok [37]
transforms images into compact 1D latent sequences, significantly reducing tokens. FlexTok [1] and
One-D-Piece [24] dynamically adjust counts, enhancing efficiency by concentrating key information
early in the sequence. MAETok [5] shows masked autoencoders yield discriminative latent spaces
suitable for diffusion models.

Despite the significant progress achieved by existing image tokenization methods, the grid-based
tokenization strategy used by them is inefficient and inflexible in representing the different regions
with different contents in natural images. As illustrated in Figs. 1 (a) and (b), 2D-grid tokens represent
local patches of fixed size and at fixed positions, no matter whether the patch has complex structures
or details, while 1D-grid tokens encode globally contextualized information from the entire image,
lacking spatially-adaptive representation ability.

In this paper, we propose GPSToken, a novel Gaussian Parameterized Spatially-adaptive To-
kenization framework, to achieve non-uniform and flexible image tokenization. GPSToken pa-
rameterizes each token with a 2D Gaussian function, encoding both the positions and shapes of
different regions in an image. Specifically, as shown in Fig. 1 (c), each GPS-token consists of two
components: the first component stores the standard deviation and position of the Gaussian function,
representing region shape and location, while the second component represents the textural features of
the region. Inspired by Gaussian Splatting [18], our GPSToken can be rendered into 2D feature maps,
facilitating seamless integration with conventional 2D decoders and enabling end-to-end training.

To achieve spatially-adaptive tokenization, we iteratively partition an image into regions of varying
sizes and shapes. The partitioned regions, though having different shapes and positions, will have a
similar amount of information in terms of entropy. The shape and position of each region are used to
initialize the corresponding Gaussian parameters. Then, we utilize a transformer, for which each query
corresponds to a token, to refine these parameters and extract textural features. The shape-texture
decomposition of GPSToken provides distinct advantages for image generation. With GPSToken,
we can first generate Gaussian parameters that encode spatial layout (region shape/position), then
synthesize texture features conditioned on the Gaussian geometric priors. The Gaussian priors act
as structural constraints, simplifying texture generation while ensuring spatial consistency. This
shape-texture decomposition approach aligns with how humans conceptualize images (structure-first,
details-later), accelerating the model training and improving the generation quality.

Our method achieves significant improvements over existing methods in both image reconstruction
and generation tasks. For image reconstruction, GPSToken achieves “rec. FID”, PSNR and SSIM
scores of 0.65, 24.06 and 0.657 on the ImageNet 256×256 reconstruction task using 128 tokens. For
image generation, our model achieves a state-of-the-art FID of 1.50 on the ImageNet 256 generation
task, surpassing recent methods such as Titok [37], FlexTok [1], One-D-Piece [24] and MAETok [5].
Our contributions are summarized as follows:

2

• We propose GPSToken, an effective Gaussian parameterized spatially-adaptive tokenization method
for image representation and generation. GPSToken leverages 2D Gaussian functions to dynami-
cally model varying region shapes and positions, significantly reducing representation redundancy
in simple regions while achieving finer representation in texture-rich regions.

• With GPSToken, we present a shape-texture decomposition method for image generation, reducing
generation complexity, accelerating model training, and improving generation quality.

• Extensive experiments validate the effectiveness of GPSToken. Our work paves the way toward
effective and efficient spatially-adaptive image representations, benefiting a variety of vision tasks.

2 Related Work

Latent Generative Models. Latent models have gained significant attention in visual generation.
VAE [20] constructs continuous latent spaces with Gaussian priors, while VQVAE [33] couples
codebooks with autoregressive modeling for discrete latent representation. VQGAN [11] incorporates
adversarial training and transformer-based autoregressive components, further improving generative
performance. MaskGiT [3] refines discrete latent generation through scheduled parallel sampling,
significantly accelerating inference. LDM [29] enables high-resolution synthesis by embedding
diffusion in compressed latent spaces. DiT [26] demonstrates transformer scalability in latent
diffusion, and SiT [23] extends DiT with flexible interpolation, offering versatile distribution mapping.

Image Tokenization. Image tokenization aims to create compact representations of high-dimensional
images. Early methods often use VAE [20] for continuous tokenization and VQVAE [33] for discrete
tokenization. VQVAE-2 [28] introduces a multi-scale structure, while RQVAE [21] builds extra
codebooks to quantize residuals. DCAE [7] ensures quality at high compression ratios. MaskBit [34]
proposes an embedding-free autoencoder using bit tokens. Recently, 1D grid-based tokenization
has gained attention for more compact representations. TiTok [37] is among the first to convert 2D
images into 1D latent tokens using masked transformers for encoding and decoding. SoftVQ [6] uses
soft categorical posteriors to combine multiple codewords into one continuous token. FlexTok [1]
and One-D-Piece [24] project 2D images into variable-length, ordered 1D sequences, allowing good
reconstructions. MaeTok [5] leverages mask modeling to learn semantically rich and reconstructive
latent spaces, highlighting the importance of space structure for generation.

Despite the significant progress, grid-based methods remain inefficient and inflexible in capturing
regions with varying content. To address this, we propose GPSToken, which parameterizes each
token using a 2D Gaussian function to encode region positions and shapes, allowing spatially adaptive
alignment with local texture complexity. Note that while GaussianToken [9] also uses 2D Gaussians,
it simply replaces the original tokens in VQVAE with Gaussian distributions without spatial adaptivity.
Besides, our GPSToken can decouple the visual generation process into layout synthesis and texture
feature generation, while GaussianToken does not possess a corresponding generator.

3 Methodology

In this section, we first describe the parameterization of GPSToken using 2D Gaussian functions,
then present the detailed training procedure for obtaining GPSToken. The resulting tokens can be
transformed into pixel-domain images through a decoder. Finally, leveraging the inherent shape-
texture decomposition property of GPSToken, we propose a two-stage image generation pipeline to
accelerate the training of generative models while improving their performance.

3.1 Gaussian Parameterized Tokenization

Processing images in pixel space is computationally expensive and increases model complexity.
To reduce cost, existing methods [33, 28, 37, 5] employ image tokenizers that project an image
x ∈ RH×W×3 into low-dimensional tokens z ∈ Rl×c, with l≪ H ×W . However, current 2D/1D
tokenizers are limited by rigid grid structures, restricting flexible representation of regions with
varying sizes and contents. We propose GPSToken, a novel method that parameterizes tokens using
2D Gaussian functions, enabling adaptive and efficient modeling of complex visual regions.

3

Figure 2: (a) The overall framework of our GPSToken. (b) Spatially-adaptive Token Initialization. (c)
Spatially-adaptive Token Refinement.

2D Gaussian Parameterized Tokens. A standard 2D Gaussian function p(x, y) is given by:

p(x, y) =
p̂(x, y)

Z
=

1

Z
exp

(
− 1

2(1− ρ2)

(
(x− µx)

2

σ2
x

− 2ρ(x− µx)(y − µy)

σxσy
+

(y − µy)
2

σ2
y

))
, (1)

where Z is the normalization constant, σx, σy > 0 are the standard deviations along the x- and y-axes,
and ρ ∈ [−1, 1] denotes the correlation coefficient. The means µx, µy ∈ R determine the center.

To reduce computation and focus on local regions, we modify the standard 2D Gaussian by restricting
its spatial support to a bounded region centered at (µx, µy) and omitting the normalization constant.
This design removes unnecessary computation while preserving fine details in the region of interest.
Specifically, the modified Gaussian function is defined as:

g(x, y) =

{
p̂(x, y), if |x− µx| ≤ sσx and |y − µy| ≤ sσy,

0, otherwise,
(2)

where s is a hyperparameter controlling the spatial support of the Gaussian function.

Using g, we represent an image x via l Gaussian parameterized tokens z ∈ Rl×c, as shown
in Fig. 1 (c). Each token contains two components zi = {gi, fi}. The first component
gi = {σ(i)

x , σ
(i)
y , ρ(i), µ

(i)
x , µ

(i)
y } (gray cuboids in Fig. 1 (c)) encodes spatial position and devia-

tion of the Gaussian function. The second component fi ∈ R(c−5) (orange cuboids) holds texture
features, capturing detailed visual information from the corresponding region. This enables joint
encoding of geometric and visual characteristics across image regions.

Splatting-Based Rendering. Inspired by GS [18, 4], we render GPS-tokens into 2D feature maps
using splatting-based rendering. This is possible because each 2D Gaussian is continuous and can be
sampled into 2D features. For example, given l Gaussian-parameterized tokens {z0, z1, · · · , zl−1},
the k-th channel of the rendered 2D feature map at (x, y) can be obtained as follows:

R(x, y, k) =
∑l−1

i=0
ri(x, y, k) =

∑l−1

i=0
gi(x, y)× fi[k]. (3)

Advantages over Bounding Boxes and Segmentation Maps. Alternative approaches to representing
image regions often rely on bounding boxes or segmentation maps. Bounding boxes define regions
using axis-aligned rectangles, while segmentation maps assign discrete labels to individual pixels.
Compared with them, our Gaussian-parameterized tokenization offers several key advantages. First,
each 2D Gaussian models anisotropic shapes with only five parameters (µx, µy, ρ, σx, σy), enabling
a compact and geometry-adaptive representation that is both expressive and lightweight – reducing

4

the burden on downstream tasks. Second, the Gaussian function provides a smooth, continuous
weight distribution over pixels, naturally capturing uncertainty and modeling soft or ambiguous
boundaries in natural images. Third, GPSToken is fully differentiable, enabling end-to-end training
and seamless integration into existing gradient-based learning frameworks. In contrast, bounding
boxes are restricted to rigid, axis-aligned shapes and exhibit hard, non-differentiable boundaries.
Segmentation maps, while precise, are high-dimensional, discrete, and inherently incompatible with
differentiable optimization.

3.2 Spatially-adaptive GPSToken Learning

Image tokenizers typically use an encoder-decoder framework, where the encoder maps the image x
to a latent representation z = Enc(x), and the decoder reconstructs it as x̂ = Dec(z). Our GPSToken
also follows this framework. As shown in Fig. 2 (a), we first apply an iterative algorithm to partition
the image into regions of varying sizes based on texture complexity. Each region’s position and size
initialize the Gaussian parameters of the corresponding GPS-tokens, providing a coarse spatially-
adaptive representation. Next, a transformer-based encoder refines GPS-tokens for fine-grained
adaptation, adjusting the position, shape, and orientation according to regional textures. Finally, the
GPSTokens are converted back to 2D feature maps and passed through a decoder to reconstruct x̂.

Spatially-adaptive Token Initialization. As shown in Fig. 2 (b), we use an iterative algorithm to
initialize Gaussian parameters aligned with local regions. Specifically, we maintain a dynamic list of
region candidates and iteratively split the most complex regions into simpler sub-regions until the
target number is reached. We measure region complexity using gradient entropy. We compute the
gradient magnitude map E via the Sobel operator [31], then calculate the information entropy H
from the histogram of E. The overall metric is defined as:

m = hw ×Hλ = hw ×
(
−
∑512

i=1
qi log(qi)

)λ

, (4)

where h and w are the spatial size of regions, qi is the probability of gradients in the i-th histogram
bin, and λ balances size and complexity. By integrating region size into the metric, we promote
division of larger regions. A higher m value indicates a larger and more complex region.

Once regions are determined, we associate the i-th GPSToken zi with the i-th region and initialize
its Gaussian parameters as ginit

i = {σ(i)
x , σ

(i)
y , ρ(i), µ

(i)
x , µ

(i)
y } =

{
wi

6 , hi

6 , 0, xi, yi
}

, where hi, wi

are the height and width of regions, and (xi, yi) is its center. Setting σ
(i)
x and σ

(i)
y to 1

6 of wi and hi

ensures full coverage during rendering. Please see Algorithm 1 in the Appendix for more details.

Spatially-adaptive Token Refinement. After obtaining the initialized Gaussian parameters, we em-
ploy a transformer-based encoder to refine these parameters to achieve fine-grained spatial adaptation,
while simultaneously extracting the corresponding texture features f for each region.

As shown in Fig. 2(c), the encoder first projects the initial Gaussian parameters ginit into query
embeddings, which are then processed by attention blocks. To focus each embedding on its corre-
sponding region, we include region-specific features as conditions. Specifically, we extract image
features via residual blocks and use RoIAlign [12] to obtain fixed-size features for each region. These
are added to the query embeddings before each attention block. This ensures that each query interacts
with its local image features, improving alignment with regional textures.

Additionally, self-attention blocks enable query embeddings to interact with each other, considering
the global image layout during training. The encoder outputs residuals ∆g for refining Gaussian
parameters and textual features f for each token. The final GPS-tokens are:

z = {ginit +∆g, f}. (5)

The refined Gaussian parameters g define the spatial layout and overall structure of the image, while
f encode the textual patterns of Gaussians. They work synergistically to represent the whole image.

To illustrate the spatial adaptation of GPSTokens, we visualize ginit and g as Gaussian maps in
Fig. 2. As shown in Fig. 2(a), the initial map ginit aligns with the region partitions. Complex regions
have denser Gaussians, while simpler ones use fewer, larger Gaussians. After encoder refinement, the
parameters better match local textures. While ginit contains only axis-aligned Gaussians, the refined
g includes rotated ones that align better with local structures, such as the dog’s ear edges.

5

Figure 3: The overview of two-stage generation pipeline based on GPSToken.

During decoding, we first render the GPSTokens z into a 2D feature map using Eq. 3, then decode
them into the reconstructed image. Following VQGAN [11], we use a combination of reconstruction
loss Lrec, perceptual loss Lperc, and adversarial loss Ladv during training.

3.3 GPSToken-driven Two-stage Image Generation

The shape-texture decomposition property of GPSToken naturally offers a two-stage image generation
pipeline, which first synthesizes the image layout using the shape information and then generates
the image details using the texture features. This two-stage scheme simplifies the image generation
process and improves the generation quality.

Layout Synthesis. As illustrated in Fig. 3 (a), in the first stage, we focus on generating the overall
structure of the image, which can be represented by the Gaussian parameters.Note that we use the
initial Gaussian parameters ginit, instead of the final parameters g, for layout synthesis. This is
because the initial Gaussian parameters are more decorrelated with the local textures and are easier to
predict, while they are good enough to represent the image rough layout. Specifically, we first generate
the ginit using a simple generative model and then calibrate it to correct potential inaccuracies (see
Fig. 3 (c)). The calibration procedure consists of two steps: calibrate the means {µx, µy} of each
Gaussian to its nearest valid values and recompute {σx, σy, ρ}, obtaining the calibrated Gaussian
parameters ginit

cal . The detailed calibration can be found in Algorithm 2 in the Appendix.

Texture Generation. After synthesizing the overall structure of the image, we enrich the generated
layout with detailed textures (see Fig. 3 (b)) using diffusion models such as SiT [23]. Specifically, we
first convert ginit

cal into embedding vectors and incorporate them as additional inputs in each timestep.
This ensures that the newly generated texture features accurately reflect the constraints of the original
layout while preserving structural consistency and rich details in the final image. In practice, the
model predicts a Gaussian parameter residual ∆g and texture features f . The Gaussian parameters
are updated by g = ginit

cal +∆g, while f captures the specific texture characteristics of each token.
The results can be rendered and reconstructed into natural images using our GPSToken decoder.

The two-stage generation pipeline significantly reduces the complexity of image generation by
decoupling geometric modeling from texture synthesis. The ginit

cal acts as a structural constraint,
simplifying the texture generation task while ensuring spatial consistency. It aligns with the human
perception process (from structure to detail). Additionally, since layout synthesis is much easier than
texture generation, we employ a simple network or cached database to produce results in the first
stage, introducing minimal additional computation compared to existing methods.

4 Experiments

4.1 Experimental Settings

Training Data and Settings. We train all models on the ImageNet dataset [30], which contains 1.28M
training images and 50K validation images. During preprocessing, images are resized to 256× 256
and center-cropped without additional augmentation beyond horizontal flipping. We implement
three variants of GPSToken: GPSToken-S64 (64 tokens), GPSToken-M128 (standard setting, used

6

Table 1: Comparisons of 256 × 256 reconstruction task on Imagenet val set. The top 3 methods
trained only with ImageNet are highlighted in red, blue and green. Note that “SDXL-VAE” is trained
with a rich amount of additional data other than Imagenet.

Method Tokens Params
(M)

sample-level distribution-level
PSNR ↑ SSIM ↑ LPIPS ↓ rec. FID ↓ rec. sFID ↓ FID ↓ sFID ↓

2D Tokenization
SDXL-VAE [27] 32×32 83.6 25.55 0.727 0.066 0.73 2.42 2.35 3.89
GaussianToken [18] 32×32 130.6 22.40 0.597 0.112 1.70 4.62 3.63 4.71
VQVAE-f16 [11] 16×16 89.6 19.41 0.476 0.191 8.01 9.64 10.74 7.38
MaskGIT-VAE [3] 16×16 54.5 18.11 0.427 0.202 3.79 5.81 5.19 4.56
VAVAE [35] 16×16 69.8 25.76 0.742 0.050 0.27 1.72 1.74 3.91
DCAE [7] 8×8 323.4 23.62 0.644 0.092 0.98 4.82 2.59 5.02

1D Tokenization
SoftVQ [6] 64 173.6 21.93 0.568 0.115 0.92 4.52 2.51 4.21
TiTok-B64 [37] 64 204.8 17.01 0.390 0.263 1.75 4.51 2.50 4.21
TiTok-S128 [37] 128 83.7 17.66 0.413 0.220 1.73 7.25 3.25 5.52
MAETok [5] 128 173.9 23.25 0.626 0.096 0.65 3.87 2.01 4.39
FlexTok [1] 256 949.7 17.69 0.475 0.257 4.02 8.00 4.88 6.12
One-D-Piece [24] 256 83.9 17.74 0.420 0.210 1.54 6.96 2.93 5.36
MaskBit [34] 256 54.5 21.07 0.539 0.142 1.29 4.72 3.08 4.09

GPSToken
S64 64 127.5 22.18 0.578 0.111 1.31 5.42 3.02 4.85
M128 128 127.8 24.06 0.657 0.080 0.65 3.28 2.18 3.96
L256 256 128.7 28.81 0.809 0.043 0.22 1.31 1.65 3.77

as default), and GPSToken-L256 (256 tokens). For more details about the training/inference and
network architectures, please refer to Appendix.

Evaluation Metrics. We conduct all evaluations on the validation set of ImageNet. For reconstruction,
we evaluate performance using both sample-level and distribution-level indices. At the sample
level, we use PSNR, SSIM, and LPIPS [39], which measure the similarity between reconstructed and
original images, as metrics. At the distribution level, we adopt FID [13] and sFID [25] to assess the
overall distribution of reconstructed images. Specifically, we report “rec. FID” and “rec. sFID” to
measure the distribution consistency between reconstructed and input images, while using standard
“FID” and “sFID” to evaluate the alignment with natural image distributions. For image generation,
we employ FID to assess generation quality.

4.2 Image Representation

Comparison Results. We evaluate the representation performance of GPSToken using the image
reconstruction task. We compare GPSToken with existing 1D and 2D tokenization methods at
256 × 256 resolution, including SDXL-VAE [11], GaussianToken [9], VQVAE [11], MaskGiT-
VAE [3], VAVAE [35], DCAE [7], TiToK [37], SoftVQ [6], FlexTok [1], One-D-Piece [24], and
MAETok [5]. As shown in Table 1, GPSToken-L256 achieves significantly better performance than
the competing methods across both sample-level and distribution-level metrics, even better than
SDXL-VAE, which utilizes more tokens (1024 vs. 256) and is trained with a rich amount of additional
data. Compared to SDXL-VAE, GPSToken-L256 improves PSNR by 3.26, SSIM by 0.082, and
reduces LPIPS by 0.023. It also achieves a “rec. FID” of 0.22, a “rec. sFID” of 1.31, an FID of
1.65, and an sFID of 3.77, outperforming all competitors. Note that VAVAE [35] leverages vision
foundation models to align latent features, yet it still lags behind GPSToken-L256.

On the other hand, GPSToken-M128 outperforms the competing methods using the same number of
tokens on most metrics, obtaining a “rec. sFID” of 3.28 and LPIPS of 0.080. It also outperforms many
methods that use more tokens. With only 64 tokens, GPSToken-S64 also demonstrates promising
performance, achieving a “rec. FID” score of 1.31, highlighting the scalability of our approach.

7

Figure 4: Visual comparisons on 256× 256 reconstruction task.

Figure 5: Illustration of Spatial Adaptivity (SA). Left to right: the input x, visualization of ginit,
visualization of refined g, the reconstruction x̂ with SA, the reconstruction x̂w/o SA without SA, error
map of x̂, and error map of x̂w/o SA (darker blue indicates larger errors).

We provide visual comparisons among GPSToken and its competitors in Figs. 4. It can be observed
that our GPSToken achieves significantly more accurate and clearer textures in complex regions,
without compromising the performance in simpler areas.

Effectiveness of Spatial Adaptivity. GPSToken possesses spatial adaptivity (SA), enabling a region
adaptive image representation. As shown in Fig. 5, with our SA initialization, the ginit is placed
according to the regional complexity. More Gaussians are assigned to complex regions such as the
human body, while sparse Gaussians are used in simpler regions. Based on this initialization, the
refined g further adjusts its positions, shapes, and orientations to better align with local textures.

8

Figure 6: User-Controllable Adjustment of ginit. By manually setting ginit, our GPSToken can
focus more on semantically important regions (e.g. text and faces) and achieve finer reconstruction.

Figure 7: Adjustable Token Count at Inference. Token count can be adjusted at inference for better
quality-efficiency trade-off, even beyond default training setting (128 tokens).

It can be clearly observed that with SA enabled, the maps exhibit significantly lower errors in
complex regions (Figs. 5(f–g)), while the errors in simple regions (e.g., background) remain largely
unchanged. This demonstrates that our GPSToken improves the representation in complex areas
without compromising the quality in simpler ones.

User-Controllable Adjustment of ginit. Additionally, GPSToken supports manual adjustment of
ginit, allowing users to prioritize semantically important regions (e.g., faces or text). An example is
shown in Fig. 6, where placing denser Gaussians in target areas results in clearer reconstructions.

Adjustable Token Count at Inference. GPSToken supports adjustable token count at inference (see
Fig. 7). Unlike [1, 24], which only supports decreasing the number of tokens at inference, GPSToken
can also increase the number of tokens for improved quality.

Please refer to Appendix for more results of GPSToken on generalization performance, efficiency,
ablation studies, and visualizations.

4.3 Image Generation

Comparison Results. We compare our approach against state-of-the-art tokenizers for image
generation, including MaskGIT [3], TiTok [37], FlexTok [1], SoftVQ [6], ADM [8], One-D-Piece [24],
DiT [26], SiT [23], REPA [38], D2iT [16], and MAETok [5], on 256 × 256 class-conditional
generation tasks. Quantitative results with classifier-free guidance [14] are reported in Tab. 2. Our
two-stage generator with 128 tokens outperforms all competing methods, achieving an FID of 1.50,
highlighting the effectiveness of GPSToken in providing a superior latent space for generative models,
even with fewer tokens. With an equal number of tokens (128), MAETok [5] under-performs our
GPSToken-based generator, suggesting that our Gaussian-parameterized tokenization offers distinct
advantages. In contrast, the one-stage generator slightly under-performs the baseline. This discrepancy
arises from the optimization challenges inherent in the composition of Gaussian parameters g and
textual features f within a single token z. Our two-stage design (first generate g then synthesize f),
effectively addresses this issue, leading to significant enhancement over the baseline.

Faster Training. As illustrated in Fig. 8, our two-stage generator demonstrates significantly acceler-
ated convergence compared to both the baseline and one-stage generator. Specifically, it achieves an
FID-10K score of 25.48 within 100K iterations. In contrast, the SiT-XL/2 and one-stage generator
reach scores of 25.41 and 26.20 after 300K and 500K iterations, respectively, indicating that our
method is approximately 3× and 5× faster than them. This notable speed-up highlights the effec-
tiveness of shape-texture decomposition in simplifying the optimization process. More results on
training efficiency can be found in Appendix.

9

Table 2: Comparisons on 256 × 256 class-conditional image generation. The top 2 methods are
highlighted in red and blue. “+” indicates the baseline.

Method Tokenizer Generator
Params (M) Tokens Params (M) FID ↓

Auto-regressive Models
MaskGIT [3] 54.5 16×16 227 6.18
FlexTok [1] - 256 1,330 2.02
TiTok-S128 [37] 83.7 128 287 1.97
TiTok-B64 [37] 204.8 64 177 2.77
SoftVQ [6] 173.6 64 675 1.78

Diffusion-based Models
ADM [8] - - 23.24 3.94
One-D-Piece [24] 83.9 256 - 2.35
DiT-XL/2 [26] 83.6 32×32 675 2.27
SiT-XL/2+ [23] 83.6 32×32 675 2.06
REPA [38] 83.6 32×32 675 1.79
D2iT [16] - >256 687 1.73
MAETok [5] 173.9 128 675 1.67
Ours (one-stage) 127.8 128 675 2.13
Ours (two-stage) 127.8 128 33+675 1.50

Figure 8: FID-10K training curves. Figure 9: Illustration of two-stage generation pipeline.
Qualitative Analysis of Generation Process. Fig. 9 provides a visual breakdown of the generation
pipeline. Initially, ginit captures a coarse structure but may include incomplete or misaligned regions
in Gaussian maps. Our calibration algorithm addresses these issues and refines ginit into a semantically
coherent and spatially accurate layout ginit

cal . Leveraging this calibrated layout, the second stage
generates Gaussian parameters g that can encode local texture orientation and scale. Consequently,
the final image not only retains the global structure established by ginit but also achieves rich details,
exemplified by the synthesized dog/rabbit images. More results can be found in Appendix.

5 Conclusion

In this paper, we introduced GPSToken, a spatially-adaptive image tokenization approach for effective
image representation and generation. Unlike conventional grid-based 2D/1D tokenizers, GPSToken
leveraged parametric 2D Gaussian distributions to model image content in a non-uniform and content-
aware manner. Our method achieved strong performance using only 128 tokens per image, yielding
rFID and FID scores of 0.65 and 1.50 on image reconstruction and generation tasks, respectively. By
decoupling spatial layout from texture features, GPSToken enabled a two-stage generation pipeline
that supports flexible control over both structural and appearance attributes.

Limitations. While our approach has shown promising results, its heuristic initialization of Gaussian
parameters may not always ensure optimal configurations. Future work could explore learning-
based initialization to address this limitation. Additionally, designing a specialized architecture for
predicting Gaussian parameters in generative tasks could improve layout synthesis and potentially
eliminate the need for post-processing calibration, thereby enhancing overall performance.

10

References
[1] Roman Bachmann, Jesse Allardice, David Mizrahi, Enrico Fini, Oğuzhan Fatih Kar, Elmira

Amirloo, Alaaeldin El-Nouby, Amir Zamir, and Afshin Dehghan. Flextok: Resampling images
into 1d token sequences of flexible length. arXiv preprint arXiv:2502.13967, 2025.

[2] Mattia Balestra, Marina Paolanti, and Roberto Pierdicca. Whu-rs19 abzsl: An attribute-based
dataset for remote sensing image understanding. Remote Sensing, 17(14), 2025.

[3] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked
generative image transformer. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 11315–11325, 2022.

[4] Du Chen, Liyi Chen, Zhengqiang Zhang, and Lei Zhang. Generalized and efficient 2d gaussian
splatting for arbitrary-scale super-resolution. arXiv preprint arXiv:2501.06838, 2025.

[5] Hao Chen, Yujin Han, Fangyi Chen, Xiang Li, Yidong Wang, Jindong Wang, Ze Wang, Zicheng
Liu, Difan Zou, and Bhiksha Raj. Masked autoencoders are effective tokenizers for diffusion
models. arXiv preprint arXiv:2502.03444, 2025.

[6] Hao Chen, Ze Wang, Xiang Li, Ximeng Sun, Fangyi Chen, Jiang Liu, Jindong Wang, Bhiksha
Raj, Zicheng Liu, and Emad Barsoum. Softvq-vae: Efficient 1-dimensional continuous tokenizer.
arXiv preprint arXiv:2412.10958, 2024.

[7] Junyu Chen, Han Cai, Junsong Chen, Enze Xie, Shang Yang, Haotian Tang, Muyang Li, Yao Lu,
and Song Han. Deep compression autoencoder for efficient high-resolution diffusion models.
arXiv preprint arXiv:2410.10733, 2024.

[8] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in neural information processing systems, 34:8780–8794, 2021.

[9] Jiajun Dong, Chengkun Wang, Wenzhao Zheng, Lei Chen, Jiwen Lu, and Yansong Tang.
Gaussiantoken: An effective image tokenizer with 2d gaussian splatting. arXiv preprint
arXiv:2501.15619, 2025.

[10] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini,
Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transform-
ers for high-resolution image synthesis. In Forty-first International Conference on Machine
Learning, 2024.

[11] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution
image synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 12873–12883, 2021.

[12] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of
the IEEE international conference on computer vision, pages 2961–2969, 2017.

[13] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

[14] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

[15] A. Hoover and M. Goldbaum. STructured Analysis of the Retina (STARE) Project. http:
//www.ces.clemson.edu/~ahoover/stare, July 2003.

[16] Weinan Jia, Mengqi Huang, Nan Chen, Lei Zhang, and Zhendong Mao. D2̂it: Dynamic
diffusion transformer for accurate image generation. arXiv preprint arXiv:2504.09454, 2025.

[17] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 4401–4410, 2019.

11

http://www.ces.clemson.edu/~ahoover/stare
http://www.ces.clemson.edu/~ahoover/stare

[18] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian
splatting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[20] Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

[21] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive
image generation using residual quantization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11523–11532, 2022.

[22] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pages 740–755. Springer, 2014.

[23] Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and
Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. In European Conference on Computer Vision, pages 23–40. Springer, 2024.

[24] Keita Miwa, Kento Sasaki, Hidehisa Arai, Tsubasa Takahashi, and Yu Yamaguchi. One-d-piece:
Image tokenizer meets quality-controllable compression. arXiv preprint arXiv:2501.10064,
2025.

[25] Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W Battaglia. Generating images with
sparse representations. arXiv preprint arXiv:2103.03841, 2021.

[26] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 4195–4205, 2023.

[27] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

[28] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images
with vq-vae-2. Advances in neural information processing systems, 32, 2019.

[29] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[30] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211–252, 2015.

[31] Irwin Sobel and Gary Feldman. A 3×3 isotropic gradient operator for image processing. Pattern
Classification and Scene Analysis, pages 271–272, 01 1973.

[32] Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive
modeling: Scalable image generation via next-scale prediction. Advances in neural information
processing systems, 37:84839–84865, 2024.

[33] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

[34] Mark Weber, Lijun Yu, Qihang Yu, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-
Chieh Chen. Maskbit: Embedding-free image generation via bit tokens. arXiv preprint
arXiv:2409.16211, 2024.

[35] Jingfeng Yao, Bin Yang, and Xinggang Wang. Reconstruction vs. generation: Taming optimiza-
tion dilemma in latent diffusion models. arXiv preprint arXiv:2501.01423, 2025.

[36] Jingfeng Yao, Bin Yang, and Xinggang Wang. Reconstruction vs. generation: Taming optimiza-
tion dilemma in latent diffusion models. arXiv preprint arXiv:2501.01423, 2025.

12

[37] Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh
Chen. An image is worth 32 tokens for reconstruction and generation. Advances in Neural
Information Processing Systems, 37:128940–128966, 2024.

[38] Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin,
and Saining Xie. Representation alignment for generation: Training diffusion transformers is
easier than you think. arXiv preprint arXiv:2410.06940, 2024.

[39] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 586–595, 2018.

[40] Zhengqiang ZHANG, Ruihuang Li, and Lei Zhang. Frecas: Efficient higher-resolution image
generation via frequency-aware cascaded sampling. In The Thirteenth International Conference
on Learning Representations.

13

Appendix

In this appendix, we provide the following materials:

A Spatially-adaptive token initialization and Gaussian calibration algorithms (referring to Sec. 3.2
and Sec. 3.3 of the main paper);

B Experimental settings for reconstruction and generation (referring to Sec. 4.1 of the main paper);

C Generalization on higher resolutions and other datasets (referring to Sec. 4.2 of the main paper);

D FLOPs, memory and latency in reconstruction (referring to Sec. 4.2 of the main paper);

E Ablation studies on architecture designs and parameters (referring to Sec. 4.2 of the main paper);

F Training and inference efficiency of GPSToken generators (referring to Sec. 4.3 of the main
paper);

G More visual comparisons and results on reconstruction and generative tasks (referring to Sec. 4.2
and Sec. 4.3 of the main paper);

H Broader impacts of GPSToken and its generator.

A Spatially-adaptive Token Initialization and Gaussian Calibration

The spatially-adaptive token initialization algorithm is described in Sec. 3.1 of the main paper. It
outlines a procedure for segmenting the entire image based on regional complexity and for initializing
the Gaussian parameters of the GPS-tokens accordingly. The algorithm is summarized in Algorithm 1.

Algorithm 1: Spatially-adaptive Token Initialization Algorithm
Input: image I; target token count l; metric hyper-parameter λ; minimal size of region smin.
Output: regions list L; initialized Gaussian parameters {ginit

0 , · · · ,ginit
l−1}.

1 Initialize region candidate list L = {I};
2 while |L| < l do
3 Calculate complexities {m0, · · · ,m|L|−1} for regions in L using Eq. 4 in the main paper;
4 Let L̂ = {Ii ∈ L | at least one side of Ii is greater than smin};
5 Let Imax = argmaxIi∈L̂ mi;
6 Obtain size (w, h) of Imax;
7 if w ̸= h then
8 Equally divide Imax into two sub-regions I1 and I2 along the longer side;
9 Update L by replacing Imax with {I1, I2};

10 else
11 // step1: width-wise division -> compute complexities
12 Divide Imax into I1, I2 along width;
13 Calculate complexities m1,m2 for I1, I2 using Eq. 4 in the main paper;
14 // step2: hidth-wise division -> compute complexities
15 Divide Imax into I3, I4 along height;
16 Calculate complexities m3,m4 for I3, I4 using Eq. 4 in the main paper;
17 // step3: compare the complexities
18 if min(m1,m2) ≤ min(m3,m4) then
19 Update L by replacing Imax with {I1, I2};
20 else
21 Update L by replacing Imax with {I3, I4};
22 end
23 end
24 end
25 Obtain size (wi, hi) and center (xi, yi) for each region Ii ∈ L;
26 Initialize ginit

i = {σ(i)
x , σ

(i)
y , ρ(i), µ

(i)
x , µ

(i)
y } =

{
wi

6 , hi

6 , 0, xi, yi
}

.

14

The Gaussian calibration algorithm is described in Sec. 3.2 of the main paper. It is used to refine the
predicted Gaussians during the layout synthesis phase. The algorithm is summarized in Algorithm 2.

Algorithm 2: Gaussian Calibration Algorithm
Input: predicted Gaussian parameters {g0, · · · ,gl−1}; minimal size of region smin;

image size W ×H .
Output: calibrated Gaussian parameters {gcal

0 , · · · ,gcal
l−1}.

1 // step 1: calibrate the means (µx, µy)
2 Let ∆x = ∆y = smin;
3 Define grid G as all points in [0,W−1]× [0, H−1] spaced by (∆x,∆y);
4 Quantize each mean (µ

(i)
x , µ

(i)
y) ∈ gi to the nearest central point in G, obtaining (µ̂

(i)
x , µ̂

(i)
y);

5 // step 2: re-initialize sigmas via region partitioning
6 Initialize region list L = {(0,W, 0, H)};
7 while |L| < l do
8 Let mi be the count of quantized means in region Ii ∈ L;
9 Let L̂ = {Ii ∈ L | at least one side of Ii is greater than smin};

10 Let Imax = argmaxIi∈L̂ mi;
11 Let x1, x2, y1, y2← Imax and (ŵ, ĥ) = (x2−x1, y2−y1);
12 if ŵ > ĥ then
13 Replace Imax in L with its two equal sub-regions split vertically along the x-axis;
14 elif ŵ < ĥ then
15 Replace Imax in L with its two equal sub-regions split horizontally along the y-axis;
16 else
17 if no Gaussian falls exactly on the split line x = (x1 + x2)//2 then
18 Replace Imax in L with its two equal sub-regions split vertically along the x-axis;
19 else
20 Replace Imax in L with its two equal sub-regions split horizontally along the y-axis;
21 end
22 end
23 end
24 Obtain size (wi, hi) and center (xi, yi) for each region Ii ∈ L;
25 Compute gcal

i = {σcal−(i)
x , σ

cal−(i)
y , ρcal−(i), µ

cal−(i)
x , µ

cal−(i)
y } =

{
wi

6 , hi

6 , 0, xi, yi
}

.

B Experimental Settings

Training and Inference Settings. For the image reconstruction task, we train the encoder-decoder
framework for 1M steps with a batch size of 96. The model is first trained using only the reconstruction
loss Lrec for the initial 600K steps. Subsequently, the perceptual loss Lperc and adversarial loss
Ladv [11] are incorporated for the remaining 400K steps to enhance texture details. We use the Adam
optimizer [19] with a fixed learning rate of 5× 10−5. Additionally, we apply an exponential moving
average (EMA) with a decay rate of 0.9999 to stabilize the training process. We set s = 5 for Eq. 2
(in the main paper), λ = 2.5 for Eq. 4 (in the main paper) and smin = 4 for Algorithm 1.

For the image generation task, we adopt the velocity matching loss from SiT [23] and train the layout
and conditional texture generators sequentially. Specifically, the layout synthesis model is trained
for 500K iterations, and the conditional layout-to-texture generation model for 4M iterations. To
mitigate overfitting to the conditions, we add 0.5 Gaussian noise to the condition during training of
the conditional texture generator. Both models are trained with a batch size of 256 and a learning rate
of 1× 10−4 using the Adam optimizer. All experiments are conducted on eight A100 GPUs. During
inference, we use a 5-step ODE sampler [23] to predict ginit, followed by a 250-step SDE sampler [23],
as used in SiT [23], for texture synthesis. We set the classifier-free guidance strength [14] to 1.5,
following common practice. We set smin = 4 for Algorithm 2.

Network Architecture. In the image reconstruction task, the encoder architecture comprises two
residual blocks for extracting image features, followed by 30 transformation blocks designed to
process initial Gaussian parameters and extract textual features for each region. During the rendering

15

Table 3: Comparisons of 512× 512 and 1024× 1024 reconstruction task on Imagenet val set.

Method Tokens sample-level distribution-level
PSNR ↑ SSIM ↑ LPIPS ↓ rec. FID ↓ rec. sFID ↓

512× 512

SDXL-VAE [27] 64×64 28.42 0.817 0.059 0.271 1.36
VQVAE-f16 [11] 32×32 21.83 0.604 0.172 2.29 7.95
GPSToken-M128 512 26.74 0.764 0.073 0.367 1.93
GPSToken-L256 1024 32.00 0.887 0.039 0.175 0.699

1024× 1024

SDXL-VAE [27] 128×128 33.27 0.909 0.057 0.113 0.561
VQVAE-f16 [11] 64×64 25.41 0.744 0.169 1.40 4.98
GPSToken-M128 2048 31.22 0.873 0.072 0.236 1.24
GPSToken-L256 4096 37.71 0.955 0.031 0.055 0.276

stage, GPS-tokens are mapped into 64×64 2D feature maps. The decoder adopts the same architecture
as the last three stages of the SDXL-VAE [27] decoder but with double channels. GPSToken-M128
utilizes 128 tokens, each with 16 channels, whereas GPSToken-L256 employs 256 tokens, each with
32 channels, to match the capacity of VAVAE [36]. GPSToken-S64 uses only 64 tokens, each with 16
channels, but incorporates 60 transformation blocks within the encoder.

For the image generation task, we adopt the official SiT-S and SiT-XL architectures [23] as our
backbone models. Specifically, SiT-S is utilized for layout synthesis, while SiT-XL is employed for
conditional layout-to-texture generation. To support layout conditions, we use MLPs to transform
these conditions before adding them into each attention block in SiT-XL.

C Generalization of GPSToken on Higher Resolutions and Other Datasets

Higher Resolution. We evaluate pre-trained GPSToken-M128 and GPSToken-L256 – originally
trained on 256× 256 images with 128 and 256 tokens, respectively – on 512× 512 and 1024× 1024
images from the ImageNet validation set. We compare with SDXL-VAE [27] and VQVAE-f16 [11],
two public VAEs supporting reconstruction beyond training resolution. Following their practice, we
scale the token count quadratically with resolution. For example, we use 512 and 2048 tokens for
512× 512 and 1024× 1024 inputs, respectively, when using GPSToken-M128.

As shown in Table 3, GPSToken shows strong generalization performance on resolution. Specifically,
GPSToken-L256 achieves 32.00/0.887 (PSNR/SSIM) at 512 × 512 resolution and 37.71/0.955 at
1024× 1024 resolution, outperforming SDXL-VAE in both settings. On the other hand, all methods
show higher reconstruction performance at higher resolutions. GPSToken-M128 achieves a better
“rec. FID” of 0.236 at 1024× 1024 than that (0.367) at 512× 512. This is because higher resolutions
provide more pixels for the same content, increasing local redundancy and structural consistency.
The denser pixel sampling makes fine details easier to recover, simplifying the reconstruction task
despite the larger input size.

More Datasets. We further evaluate on additional datasets: COCO2017 [22] (natural images),
FFHQ [17] (faces), STARE [15] (medical images), and WHU_RS19 [2] (remote sensing). We
compare GPSToken with VAVAE [36] (256 tokens, 2D) and MAETok [5] (128 tokens, 1D), repre-
senting the state of the art in 2D and 1D tokenization, respectively. As shown in Table 4, GPSToken
consistently outperforms both methods across all metrics and datasets under the same token counts.

Specifically, GPSToken-L256 achieves higher PSNR than VAVAE (256 tokens): 27.41 vs. 25.01 on
COCO, 30.02 vs. 28.06 on FFHQ, 37.60 vs. 36.32 on STARE, and 26.33 vs. 23.57 on WHU_RS19.
GPSToken-M128 also yields better LPIPS than MAETok (128 tokens): 0.083 vs. 0.101 on COCO,
0.050 vs. 0.064 on FFHQ, 0.036 vs. 0.051 on STARE, and 0.127 vs. 0.195 on WHU_RS19. These
results show that GPSToken performs well not only on natural images but also on other domains
– including medical and remote sensing – demonstrating strong generalization, robustness, and
versatility for a wide range of vision tasks.

16

Table 4: Comparison of 256×256 image reconstruction on COCO, FFHQ, STARE, and WHU_RS19.
For STARE and WHU_RS19, we only report PSNR, SSIM, and LPIPS, which are more appropriate
for evaluating reconstruction quality on non-photorealistic images than metrics such as “rec. FID”.

Token Count Method PSNR ↑ SSIM ↑ LPIPS ↓ rec. FID ↓
COCO

128 MAETok 22.67 0.623 0.101 8.91
GPSToken-M128 23.47 0.657 0.083 4.72

256 VAVAE 25.01 0.736 0.052 6.01
GPSToken-L256 27.41 0.794 0.035 2.23

FFHQ

128 MAETok 25.53 0.707 0.064 4.66
GPSToken-M128 26.35 0.745 0.050 3.72

256 VAVAE 28.06 0.808 0.027 1.95
GPSToken-L256 30.02 0.846 0.019 1.51

STARE

128 MAETok 32.98 0.818 0.051 -
GPSToken-M128 34.75 0.868 0.036 -

256 VAVAE 36.32 0.896 0.019 -
GPSToken-L256 37.60 0.915 0.014 -

WHU_RS19

128 MAETok 21.73 0.506 0.195 -
GPSToken-M128 23.20 0.560 0.127 -

256 VAVAE 23.57 0.619 0.142 -
GPSToken-L256 26.33 0.731 0.064 -

Table 5: Comparison of computational cost, memory usage, latency, and throughput for generating
256 × 256 images on an A100 GPU. Batch size is 8 for inference and 16 for training. Latency is
averaged over 20 runs. Throughput is measured in samples per second. Training memory for FlexTok
is unavailable due to the lack of released training code.

Method FLOPs (G) Memory (MB) Latency
(ms)

Throughput
(sample/s)Encoder Decoder Train Inference

VQVAE-f16 556 1014 78222 2627 72 111.44
TiTok-B64 220 973 45892 2359 96 83.44
GPSToken-M128 383 2689 50793 2567 180 44.56
GaussianToken 1706 2285 60781 5352 181 44.32
FlexTok 283 7665 – 7275 2714 2.88

D FLOPs, Memory and Latency for Reconstruction Task

We provide profiling details on FLOPs, memory usage, latency, and throughput for the 256× 256
image reconstruction task. As shown in Table 5, GPSToken incurs moderate computational cost.
Although the FLOPs of GPSToken decoder are higher than those of VQVAE-f16 [33] and TiTok-
B64 [37], its latency is competitive with GaussianToken [9] and significantly better than FlexTok [1],
which employs a heavy autoregressive decoder. In terms of memory, GPSToken uses less GPU
memory than FlexTok and GaussianToken during inference, and less training memory than VQVAE-
f16, demonstrating favorable memory efficiency in both phases.

E Ablation Studies on Spatial Adaptivity Designs

Ablation Studies on Components. As described in Sec. 3.2 of the main paper, our GPSToken em-
ploys spatially-adaptive token initialization (“Init.”) followed by spatially-adaptive token refinement

17

Table 6: Ablation studies of our spatial adaptivity designs on the 256 × 256 reconstruction task.
✓indicates that the component is used. “Init.” and “Refine.” denote the spatially-adaptive token
initialization and spatially-adaptive token refinement, respectively.

Method Components sample-level distribution-level
Init. Refine. PSNR ↑ SSIM ↑ LPIPS ↓ rec. FID ↓ rec. sFID ↓ FID ↓ sFID ↓

baseline 23.52 0.638 0.110 1.02 4.07 2.59 4.34
baseline+ ✓ 24.00 0.654 0.100 0.81 3.59 2.37 4.31
GPSToken ✓ ✓ 24.06 0.657 0.080 0.65 3.28 2.18 3.96

Figure 10: Illustration of “baseline+” and GPSToken. Left to right: the input image, visualization of
Gaussians of “baseline+”, the reconstruction of “baseline+”, visualization of Gaussians of GPSToken,
the reconstruction of GSPToken.

(“Refine.”) to progressively obtain coarse- and fine-grained spatial adaptations. We conduct ablation
studies on GPSToken-M128 to validate the contribution of each component.

Table 6 presents the quantitative results. The baseline refers to the method that uses Gaussian-
parameterized tokens without incorporating any spatially-adaptive components. The term “baseline+”
denotes the method that additionally includes the “Refine.” component. In contrast, GPSToken
integrates both the “Init.” and “Refine.” components. As shown in the table, “baseline+” yields
improvements over the baseline across both sample-level and distribution-level metrics, with a
decrease of 0.01 in LPIPS and a decrease of 0.21 in “rec. FID”. These enhancements indicate
the general improvement achieved by adjusting Gaussians to match local textures. Compared to
“baseline+”, GPSToken significantly improves distribution-level metrics, achieving reductions of 0.19
in FID and 0.35 in sFID, while showing slight improvements in sample-level metrics (an increase of
0.06 in PSNR and 0.003 in SSIM). This demonstrates the effectiveness of “Init.” component, which
reallocates more Gaussians from simple regions to complex ones, thereby capturing finer semantic
details in texture-rich regions without compromising reconstruction performance.

As shown in Fig. 10, without the “Init.” component, the Gaussian maps from “baseline+” still
roughly align in a 2D grid, even after refinement. This limits their ability to fit complex textures, only
capturing edges in simple regions. In contrast, with the “Init.” component, GPSToken aggregates
more Gaussians in texture-rich areas, making it better suited to fit complex structures. This highlights
the importance of “Init.” component in achieving spatially adaptive representation of fine-grained
visual contents.

Ablation Studies on Params. We further conduct experiments on the selection of parameters λ, s,
and smin. The results are shown in Table 7.

• Entropy Threshold λ: As stated in Eq. 4 of the main paper, λ balances region size and complexity.
A larger λ = 5 encourages Gaussians to concentrate on complex regions, leading to only minor
performance degradation. In contrast, setting λ = 0 allocates Gaussians solely based on region
size, resulting in a uniform spatial distribution. This causes a significant drop in performance:

18

Table 7: Hyper-parameter selection on λ, s, and smin.
Hyper-parameter PSNR SSIM LPIPS rec. FID FID

λ
0 23.52 0.638 0.110 1.02 2.59
5 24.06 0.652 0.083 0.68 2.23

s
1 17.55 0.439 0.344 160 165
3 24.07 0.657 0.080 0.66 2.18
7 24.06 0.658 0.080 0.66 2.16

smin
8 24.05 0.656 0.080 0.66 2.18

16 24.03 0.657 0.081 0.66 2.19

ours (λ = 2.5, s = 5, smin = 4) 24.06 0.657 0.080 0.65 2.18

Table 8: Training and Inference Efficiency Comparison between SiT-XL/2 Baseline and GPSToken
generator on ImageNet 256×256 with A100 GPU.

Method Metric 500K 1000K T-Mem T-Thpt I-Mem I-Thpt

Baseline
FID 19.07 14.50

63684 0.63 9126 0.067
Time (h) 219 439

Ours
FID 9.57 7.61

41498 1.09 9636 0.129
Time (h) 128 256

Notes: T-Mem: Training Memory (MB), T-Thpt: Training Throughput (iters/s),
I-Mem: Inference Memory (MB), I-Thpt: Inference Throughput (samples/s)

LPIPS increases from 0.08 to 0.11, and rec.FID rises from 0.65 to 1.02. We set λ to 2.5 based on
experimental experience.

• Support Factor s: As stated in Eq. 2 of the main paper, s controls the effective rendering support
of each Gaussian. Performance degrades significantly when s = 1, but stabilizes for s ≥ 3.
This aligns with the 3σ rule, i.e., 99.7% of the mass of a 2D Gaussian lies within three standard
deviations from the mean. To ensure full coverage, we set s = 5 in all experiments.

• Minimal Region Size smin: We set smin in the calibration algorithm to match its value in the
initialization algorithm, where smin determines the minimum width or height of each region. We
observe that increasing smin from 4 to 16 results in negligible performance degradation. This is
expected because, with 128 tokens representing a 256×256 image, the average spatial extent per
token is approximately 22×22 pixels. Consequently, most of the segmented regions naturally have
a width or height greater than or equal to 16, making the choice of smin within this range largely
inconsequential for the final tokenization.

F Training/Inference Efficiency of GPSToken Generators

We provide comprehensive computational benchmarks comparing the GPSToken generator with the
SiT-XL/2 baseline in both training and inference, as shown in Table 8. At 1M iterations, GPSToken
achieves a significantly lower FID score (7.61 vs. 14.50), with 42% less training time (256h vs.
439h), 73% higher training throughput (1.09 vs. 0.63 iters/s), and 35% lower VRAM consumption
(41,498 MB vs. 63,684 MB). During inference, although VRAM usage increases slightly (9,636
MB vs. 9,126 MB), our method nearly doubles the throughput (0.129 vs. 0.067 samples/s), reducing
latency by approximately half.

These efficiency gains stem from two key design choices: (i) GPSToken reduces the number of effec-
tive tokens, lowering computational and memory overhead; (ii) the two-stage generation framework
simplifies the learning objective and stabilizes optimization, enabling faster convergence to higher-
quality solutions. Overall, GPSToken not only improves generation quality but also substantially
reduces training cost and inference latency.

19

G More Visual Results

G.1 Results for Reconstruction Task

Visual Comparisons. We provide visual comparisons among GPSToken and its competitors in
Figs. 11 and 12. It can be observed that our GPSToken achieves significantly more accurate and
clearer textures in complex regions, without compromising the performance in simpler areas.

Figure 11: Visual comparisons on 256× 256 reconstruction task.

More Visual Results. Further visual results of our spatially adaptive designs are presented in Fig. 13.
Fig. 14 illustrates the adjustment of the initial Gaussian parameters ginit to better focus on the regions
of interest. Fig. 15 shows the flexibility to adjust token counts during inference, demonstrating the
adaptability of our approach under varying length.

G.2 Results for Generation Task

Fig. 16 shows a few images generated by our two-stage generator. One can see that our generator is
capable of synthesizing natural images depicting a wide variety of scenes. For instance, it successfully
generates fine details in objects such as beetles, eagles, trucks, bags, mailboxes, golf balls, dinosaur
fossils, and so on. Furthermore, the generated images exhibit high visual quality - characterized by

20

Figure 12: Visual comparisons on 256× 256 reconstruction task.

sharp details and realistic textures - demonstrating the generator’s strong ability to synthesize diverse
and photo-realistic images.

21

Figure 13: More visual results of spatial adaptivity.
22

Figure 14: More visual results on User-Controllable Adjustment of ginit.

Figure 15: More visual results on Adjustment of Token Count at Inference.

23

Figure 16: Visual result of 256× 256 generation.

24

H Broader Impacts

This work introduces GPSToken, a spatially-adaptive tokenization framework designed to enable
efficient and content-aware image representation. By offering flexible feature modeling, GPSToken
enhances representational capacity, benefiting both computer vision researchers and downstream
applications in domains such as medical imaging and creative design. Furthermore, its two-stage
layout-texture synthesis approach reduces computational barriers for generative tasks, making it
accessible to individual users and small companies.

Despite its potential, the deployment of GPSToken also presents several risks. The ability to gen-
erate high-quality synthetic media may be misused, potentially harming vulnerable populations
through the spread of misinformation or deepfake technologies. Additionally, if trained on biased
datasets, the model may encode disparities in texture and shape representation, which could com-
promise fairness - particularly in sensitive applications such as facial recognition. In safety-critical
domains like autonomous driving or medical diagnosis, failures in accurate tokenization could lead to
misinterpretation of complex visual scenes, with potentially dangerous consequences.

25

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: For example, in the "Experiments" section, we evaluate our method on both
reconstruction and generation tasks to comprehensively validate all claims stated in the
abstract and introduction.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made

in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in “Conclusion” section.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution is
low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

26

Answer: [NA]

Justification: We do not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed experimental settings in “Experiments” section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good
way to accomplish this, but reproducibility can also be provided via detailed instructions
for how to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are appropriate to
the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

27

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the codes and models.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized ver-
sions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed experimental settings in “Experiments” section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We follow same experimental settings and content of previous works, which
do not include such experiments. We will take this into consideration in future works.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

28

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed settings in “Experiments” section, including the type of
GPUs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.

29

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: We follow previous works, which do not include such safeguards. The
safeguards are valuable. We will take this into consideration in future works.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited all the origin papers in the paper.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

30

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release the detailed document of codes and models.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:
• The answer NA means that the core method development in this research does not involve

LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for

what should or should not be described.

32

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Methodology
	Gaussian Parameterized Tokenization
	Spatially-adaptive GPSToken Learning
	GPSToken-driven Two-stage Image Generation

	Experiments
	Experimental Settings
	Image Representation
	Image Generation

	Conclusion
	Spatially-adaptive Token Initialization and Gaussian Calibration
	Experimental Settings
	Generalization of GPSToken on Higher Resolutions and Other Datasets
	FLOPs, Memory and Latency for Reconstruction Task
	Ablation Studies on Spatial Adaptivity Designs
	Training/Inference Efficiency of GPSToken Generators
	More Visual Results
	Results for Reconstruction Task
	Results for Generation Task

	Broader Impacts

