
Evo-NeRF: Evolving NeRF for Sequential
Robot Grasping of Transparent Objects

Justin Kerr, Letian Fu, Huang Huang, Yahav Avigal, Matthew Tancik,
Jeffrey Ichnowski, Angjoo Kanazawa, Ken Goldberg

University of California, Berkeley

Abstract: Sequential robot grasping of transparent objects, where a robot re-
moves objects one by one from a workspace, is important in many industrial and
household scenarios. We propose Evolving NeRF (Evo-NeRF), leveraging recent
speedups in NeRF training and further extending it to rapidly train the NeRF rep-
resentation concurrently to image capturing. Evo-NeRF terminates training early
when a sufficient task confidence is achieved, evolves the NeRF weights from
grasp to grasp to rapidly adapt to object removal, and applies additional geometry
regularizations to make the reconstruction smoother and faster. General purpose
grasp planners such as Dex-Net may underperform with NeRF outputs because
there can be unreliable geometry from rapidly trained NeRFs. To mitigate this
distribution shift, we propose a Radiance-Adjusted Grasp Network (RAG-Net),
a grasping network adapted to NeRF’s characteristics through training on depth
rendered from NeRFs of synthetic scenes. In experiments, a physical YuMi robot
using Evo-NeRF and RAG-Net achieves a 89% grasp success rate over 27 trials on
single objects, with early capture termination providing a 41% speed improvement
with no loss in reliability. In a sequential grasping task on 6 scenes, Evo-NeRF
reusing network weights clears 72% of the objects, retaining similar performance
as reconstructing the NeRF from scratch (76%) but using 61% less sensing time.
See https://sites.google.com/view/evo-nerf for more materials.

1 Introduction

Sequentially grasping transparent objects is critical in industry, pharmaceuticals and households.
Sensing these objects is difficult; since camera-based sensors see through transparent objects from
most angles, assumptions underlying traditional disparity and structure-from-motion-based methods
break. Data driven approaches rely on large synthetic and real-world datasets to address this prob-
lem. ClearGrasp [1] trains a CNN to infer local surface normals on transparent objects from RGBD
images based on Blender synthetic examples. They show impressive results on 3-5 transparent ob-
jects separated by 2cm, but note challenges with open-top containers, partial occlusions in clutter,
background distractors, and transparent objects’ shadows.

Neural Radiance Fields (NeRFs) [2] are a 3D representation originally designed for novel view
synthesis which can reconstruct traditionally challenging-to-model scenes that include transparent
objects. Dex-NeRF [3] uses NeRF to grasp transparent objects, but costs hours of computation
per grasp. Recent dramatic advancements in NeRF training speed have opened the door for real-
time usage [4, 5, 6]. We propose Evo-NeRF, a method for rapidly training NeRF for grasping, and
RAG-Net, a neural network for robustly computing grasps from NeRF rendered depth images. We
apply Evo-NeRF in a purely online setting to sequentially grasp transparent objects in clutter in the
time-span of 10s of seconds, as required in dish loading, table clearing, and other household tasks.

To make NeRF practical for robotic grasping, we build on Instant-NGP [6], a fast variant of NeRF.
Rather than training on a fixed set of images, we incrementally optimize over a stream of images
as they are captured during a robot motion. Due to NeRF’s varying convergence speed on different
difficulty scenes, we propose a method to terminate image capture upon achieving sufficient task

Correspondence to justin kerr@berkeley.edu

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

https://sites.google.com/view/evo-nerf


Figure 1: Sequential object removal. (a) The YuMi moves the camera through a hemisphere trajectory (red
arrow) to capture a scene of 5 glass objects, training a NeRF simultaneously. (b) The robot immediately plans
and executes a grasp from the NeRF after camera capture (c) Short camera trajectories are used to evolve the
NeRF between grasps (d) Evo-NeRF first reconstructs the whole scene (1) with the camera trajectory shown in
(a), then progressively updates the scene with small camera captures shown in (c) as objects are removed.

confidence. We further adapt NeRF to sequential grasping by re-using NeRF weights from grasp
to grasp and demonstrate its rapid adaptability to object removal. Since we propose that the robot
captures images and trains a NeRF as it moves, motion blur, kinematic limitations, and speed con-
siderations reduce the quality of the recovered geometry and introduce prominent spurious geometry
known as floaters. We propose adding geometry regularization to the training objective, which im-
proves the recovered geometry, but out-of-the-box grasp planners still struggle to find quality grasps
due to remaining artifacts. Dex-NeRF [3] on the other hand, could use an out-of-the-box grasp
sampler because it used diverse, high-quality, calibrated, still images captured in an offline process.

To mitigate the lower-quality NeRF reconstructions, we propose a novel pipeline to train a grasp-
ing network on depth maps directly from NeRFs, which are trained on photorealistic renderings of
transparent objects. We find the grasping network transfers well to real-world NeRF reconstructions.
This pipeline utilize the training speed of Instant-NGP—without it, the pipeline would be compu-
tationally infeasible. Real robot experiments using an actuatable camera to capture images suggest
that Evo-NeRF can reconstruct graspable scene geometry rapidly and reliably, when combined with
RAG-Net achieving a 89% success rate on single objects within 9.5 seconds of image capturing.

The contributions of this paper are: (1) novel usage of NeRF in a sequential setting, rapidly evolv-
ing the NeRF representation between grasps, (2) improvements in scene geometry reconstruction
speed built on existing methods, (3) an approach based on task confidence to efficiently stop image
capturing early, (4) a novel training pipeline in simulation to acclimate a grasping planner to NeRF
geometry characteristics, (5) a dataset of 8667 Blender rendered scenes of transparent objects with
robust grasps, and (6) experimental data suggesting that Evo-NeRF enables rapid grasping on NeRF.

2 Related Work

Neural Radiance Fields (NeRF) NeRF [2] is a neural-network scene representation that enables
photorealistic synthesis of novel views of a scene given a set of images and camera matrices. The
representation is a function of location and view angle, and returns a density and view-dependent
color. Densities and colors sampled along a camera ray are aggregated using volumetric render-
ing to produce a pixel color. NeRF is popular in the computer vision and graphics communities
with the applications in dynamic scene reconstruction [7, 8], image synthesis [9, 10, 11], pose es-
timation [12, 13, 14], and more. Optimizing NeRF to reconstruct a single scene can take hours
or days—making it impractical for many robotics applications. Instant-NGP [6] and others [4, 15]
speed up NeRF by using voxel feature grids instead of multi-layer perceptions to simplify or re-
move [5] a computational bottleneck. We build on Instant-NGP [6], which uses a learnable hash
encoding and highly optimized CUDA implementation to speed up NeRF training from the order
of hours to seconds. Others have also sped up NeRF by reusing computation between scenes by
utilizing priors. Existing methods [16, 17, 18, 19, 20] use convolutional neural networks (CNNs)
to extract image features as input to a shared network that predicts the NeRF. Tancik et al. [21] and

2



1

2
3

(a) Early Stopped Image Capture (c) Grasp(b) Online Training of Evo-NeRF

1 2 3

2 sec 4 sec 7 sec
Confidence 10% Confidence 45% Confidence 87%

Figure 2: Evo-NeRF for rapid grasping: (a) The robot begins capturing images along a hemisphere trajectory
(red arrow) (b) Evo-NeRF trains a NeRF during arm motion, building graspable geometry of the wineglass.
Grasp confidence from RAG-Net builds as NeRF learns geometry, reaching the stopping threshold at (3). (c)
The robot executes the grasp predicted by RAG-Net at the early stop point.
Gao et al. [22] speed up NeRF training using meta-learning to initialize network weights to ones
that converge faster for likely scenes. In this work, we propose using past reconstructions of a scene
as an initialization for the current reconstruction, allowing rapid adaptation to changes in the scene.

NeRFs in Robotics Recent research has shown NeRFs to be a promising scene representation for
downstream robotics tasks such as navigation and SLAM [23, 24, 25] and manipulation [26, 3, 27].
Yen-Chen et al. [12] and Tseng et al. [28] use a trained NeRF model to estimate an object’s 6-DOF
pose by minimizing the residuals between a rendered image and a given observed image. Driess
et al. [29] train a graph neural network to learn a dynamics model in a multi-object scene represented
through a NeRF model, while Li et al. [26] condition a NeRF model on a learned latent dynamics
model to plan to visual goals in simulated environments. We propose building on advances in NeRF
and its applications to robotics to speed up NeRF-based grasping for practical uses.

Grasping Transparent Objects: Most closely related to this paper are two recent works leveraging
NeRFs to manipulate objects that cannot be detected by commodity RGBD sensors. Yen-Chen et al.
[27] use a NeRF model offline to train dense object descriptors and manipulate thin and reflective
objects. Ichnowski et al. [3] show that manually constructing an offline dataset of a given scene then
training NeRF allows off-the-shelf grasp planners [30] to compute successful grasps on transparent
objects. ClearGrasp [1] trains a Sim2Real depth prediction network on RGB images, then uses
this network in real environments to estimate surface geometry for grasps. This idea has been
extended to pointclouds and with more efficient real-world data collection [31, 32]. GraspNeRF
[33] explores neural rendering as supervision to train a multi-view feature volume network similar
to Kar et al. [34] on photorealistic simulated scenes, which is used for grasping. In contrast, using
NeRF directly in real-time does not require a prior on the scene at hand for reconstruction, and has
superior performance on thin surfaces, occlusions, and complex backgrounds.

3 Problem Statement

Given a set of transparent objects resting on a planar workspace, the objective is for the robot to find,
grasp, and remove each object quickly. Objects are placed close to each other (2.5 cm) and the robot
has an actuatable camera and a parallel jaw gripper (Fig. 1). The focus is on finding robust grasps
rapidly, with grasp success measured as transporting an object without dropping.

We assume (1) objects rest in graspable stable poses on a flat surface, (2) objects are in the reachable
workspace of the robot with a known forward kinematic model, (3) the camera-to-arm transform is
known and stable, and (4) the robot can follow a known obstacle-free trajectory to capture images.

4 Method

To rapidly compute robust grasps, we propose Evo-NeRF and RAG-Net. Evo-NeRF, or Evolving
NeRF, builds on Instant-NGP [6], a fast implementation of NeRF, and modifies it to train concur-
rently to image capturing, to re-use NeRF weights between grasps and to terminate training and
image collection early when sufficient task confidence if achieved. RAG-Net, or Radiance-Adjusted
Grasp Network, is a network trained to compute grasps from geometry reconstructed from a NeRF.

3



Figure 3: Visual comparison of Evo-NeRF’s training over time vs Instant-NGP on the exact same camera tra-
jectory. Evo-NeRF’s geometry regularization improves the convergence of geometry reconstruction, resulting
in fewer floaters, smoother surfaces, and ultimately faster grasps.

4.1 Evo-NeRF

To shorten the time to get a trained NeRF, we propose Evo-NeRF, a method that pipelines image
capture with NeRF training, reuses weights in sequential grasping, adds regularization to counter
effects from rapid capture, and includes an early stopping condition to start a grasp when the grasp
network has high confidence.

Image capture: The Evo-NeRF method starts with the robot moving a camera around its workspace
to capture images. Heuristically, hemispherical captures are ideal for NeRF since they maximally
vary the view angles of the scene. The Evo-NeRF capture trajectory sweeps the camera through
a discretized hemisphere centered at a location of interest while pointing at the center. First, the
camera sweeps around the z-axis to maximize the variance of viewing angle early in the capture
sequence. In experiments, we capture images every 3 cm while moving at 20 cm/s.A full capture
trajectory takes 16 seconds and includes 80 images with trajectory shown in Fig. 1. Though images
have motion blur, stopping to take each image is time-consuming and would result in fewer images,
yielding lower quality reconstructions. For dataset generation in simulation, we capture 52 images
per scene since we prioritize having a large variety of scenes and rendering is time consuming.

Continual NeRF training: NeRF training, even sped up by Instant-NGP, is a bottleneck. We
propose continually training NeRF from the moment the first image is captured, and incrementally
adding images to the NeRF training dataset as the camera moves to new viewpoints. This effectively
pipelines the image-capture and NeRF-training processes, and allows for usable NeRF representa-
tions quickly after (and sometimes before) the capture process finishes.

During each capture motion we train NeRF in batches of 48 steps, adding new images between
each batch when available. This is akin to other online neural implicit methods like iMAP [23]
and NICE-SLAM [35], who also update the image sets between training batches. We compute the
camera frame using the forward kinematics and pair it with each image. In practice, this yields pose
error around 1 cm, which NeRF accounts for by optimizing the camera extrinsics.

Reusing NeRF weights: In sequential grasping scenarios, scenes often change by only the removal
of the last object grasped. To take advantage the information already trained, we use the NeRF
network weights from the previous grasp in the subsequent grasp. In implementation, we remove
the old images from the training dataset and start capturing and training on images for the next grasp.

Geometry regularization: A well-known artifact of NeRF’s volumetric rendering loss are floaters,
spurious regions of density floating in space. When using NeRF for view synthesis, floaters can
go unnoticed, but in grasping, floaters can lead to grasp failures. We apply 2 regularizations which
increase the speed and smoothness of geometry reconstruction, visualized in Fig. 3.

First, we adapt the total-variation regularization loss (TV-loss) from Plenoxels [36] to discourage
floaters and encourage smooth scene geometry. During training, at each step Evo-NeRF sample N
random points pi using rejection sampling to constrain samples to locations with non-trivial density
values. Evo-NeRF then queries the density at all 8-connected neighbors nj at a radius r. The final
TV-loss is Ltv =

∑N
i=1

∑8
j=1 λtv(σ(pi) − σ(nij))

2, where σ is the raw, pre-activation output from
the density network, and λtv is a loss scaling factor.

4



Scene Generation

Blender Rendering Evo-NeRF Training

Simulated NeRF 
Grasp Dataset

Depth Rendering

Grasps Generation

Grasps on Synthetic DepthGrasps Sampling

Scene Rendering

Figure 4: Dataset Generation. Each scene in the grasping dataset includes a subset of the training objects
in simulation (Fig. 5). Top: Grasp generation samples grasps on the object meshes and projects them to a
top-down view. Bottom: We render multiple views of each scene using Blender, then train Instant-NGP and
render a top-down depth image. We accumulate NeRF depth rendering and projected grasps into a dataset.

Second, sampling along each ray more coarsely during training reduces floaters and quickly acquires
meaningful geometry. By training with coarse samples, the NeRF is incentivized to learn a low
frequency representation of the scene to minimize reconstruction error. See Appendix A.3

Efficient perception stopping: In scenes where NeRF is able to recover usable geometry before
the full camera trajectory has terminated, Evo-NeRF can terminate the capture phase early to speed
task completion. In Sec. 5.2 we present experiments showing this by querying grasp confidence of
RAG-Net in a closed loop while the robot moves the camera and trains NeRF. When confidence
exceeds a threshold, the capture stops early and the robot executes the grasp.

4.2 Grasp Planning Network

When NeRF is trained to completion with dense camera viewpoints, grasp planners trained on
ground truth depth in simulation like Dex-Net [37] produce usable grasps on NeRF-rendered depth.
However, in an online setting where viewpoints are limited and NeRF training terminates early,
depth images rendered from NeRF appear significantly different from the ground truth depth images
in simulation. To mitigate this test-time distribution shift and enable reliable grasping from online
NeRFs, we train a network to predict grasps directly on NeRF-rendered depth maps.

Network Architecture: We train a location neural networks to predict the center of the grasp loca-
tion when given a NeRF-rendered image; and we train a rotation network to predict the discretied
grasp angle when given a cropped patch around the grasp location. We adapt the grasping architec-
ture proposed by Zhu et al. [38], which suggests that an equivariant convolutional neural network
learns to perform top-down grasps in fewer samples than standard networks. We train location and
rotation networks on a static grasp dataset, in contrast to the online setting in Zhu et al. [38].

Dataset Generation: We generate the training dataset in simulation using 7 object meshes that
are representative of the common household transparent objects which are graspable by the YuMi
robot, shown in Fig. 5a. We model all objects with the same density as glass (2500 kg/m3). We
assemble scenes with labeled grasp qualities by randomly placing objects in stable poses on a planar
surface and analytically sampling antipodal grasp closure axes based on mesh surface normals as in
Dex-Net [39]. We use a soft point-contact model [40], and evaluate the probability of grasp success
using wrench resistance [41], a common analytic measure for grasp success that is computationally
inexpensive (0.02 sec per grasp) and has high precision [42]. We densely sample 1000 collision free
grasps for each stable pose and use Blender to render the scenes.

Training: To train RAG-Net, we project sampled grasps onto the depth images and store at each
pixel the maximum grasp confidence over all rotations, resulting in confidence heatmaps. We dilate
and blur these heatmaps with a 3x3 kernel to smooth the predictions, and randomly augment both
the depth images and the confidence heatmaps with translation, shear and scale transformations. To
train the rotation network, we sample crops from grasps above 0.7 quality, and use a cross-entropy
loss on the output rotation probabilities.

Grasp Planning: To execute a grasp from RAG-Net we render a depth image from NeRF of size
144 × 256 from the camera pose used during dataset generation, using the ray transmittance trun-

5



(a) Training objects (Blender) (b) In-distribution real objects (c) Out-of-dist. objects (d) Clutter

Figure 5: Training and testing objects. (a) shows Blender rendering of the 7 objects we use in data generation
for computing grasps and rendering in various stable poses. Objects in (b) are real objects we considered in-
distribution with the training objects. We also test on out-of-distribution objects shown in (c). To test grasping
in clutter, we setup various testing scenes with objects in and out of distribution, with examples shown in (d).

Dex-Net Success RAG-Net Success Time

Full Capture 56 % 89 % 16s

Early Stop 11 % 89 % 9.5s

Table 1: Single objects results: each cell reports the average over 27 different trials. We compare success rates
for full capture trajectories vs trajectories which stopped early because of sufficient grasp confidence. Early
stopping results in a 41 % speed improvement with no drop in success rate for RAG-Net. Dex-Net struggles to
reliably grasp on geometry rendered so early in NeRF training.

cation of Dex-NeRF [3]. We query the location network on this depth image to obtain a heatmap
over the image of grasp confidence, then crop a patch of the depth image centered at the argmax
of this heatmap. The rotation network takes this crop and outputs 8 grasp angle probabilities, and
we take the weighted average of the argmax with its neighbors to produce the final grasp angle. We
determine grasp depth by analyzing a local deprojected pointcloud from the depth image at the grasp
location, and subtracting a static 1.5 cm grasp depth from the highest point.

5 Experiments

We evaluate the reliability of Evo-NeRF paired with RAG-Net vs Dex-Net [37], evaluate the speed
improvements from early stopping captures and Evo-NeRF’s reuse of weights, and ablate aspects
of the system including NeRF modifications and training on NeRF depth vs ground-truth depth.
We compare to Dex-Net to highlight the improvement in reliability gained from training on NeRF-
rendered depth rather than ground-truth depth, and note that in Dex-NeRF [3], the NeRF model was
trained for 1900x longer, with an offline, manually captured set of images with precisely calibrated
poses from Colmap [43, 44]. This difference in view quality and training length from rapid capture
results in a notable drop in raw Dex-Net grasp robustness because of lower quality reconstructions.

5.1 Physical Setup

We evaluate on a physical YuMi robot with a ZED Mini camera. The pose of the ZED relative to
the arm holding it is calibrated with a chessboard once before all experiments. We surround the
robot with a kitchen-like workspace containing printed images of a countertop and shelves, where
test objects are positioned near the center of the workspace. The workspace has 3 LED floodlights
positioned across from the robot aiming at the workspace. We use one NVIDIA GeForce RTX 3080
GPU for NeRF training and grasp network inference. We evaluate on 9 different objects, both in
distribution and out of distribution with respect to the train set in Fig. 5a. We note that in general,
RAG-Net performance in simulated scenes is worse than in real scenes because the synthetic dataset
contains fewer camera angles than real scenes (52 vs. 80) and more difficult background textures,
resulting in more floaters.

5.2 Rapid single object retrieval

We apply confidence-based capture early stopping (4.1) with a threshold of 70% to execute a grasp
as quickly as possible as shown in Fig. 2. We place each of the 9 test objects near the center of
the workspace, and report grasp success and total time spent capturing images. We repeat each

6



0 1 2 3 4 5
Number of Objects Left

0

5

10

N
o.

 T
ri

al
s

RAG-Net:
NeRF from scratch

0 1 2 3 4 5
Number of Objects Left

0

5

10 RAG-Net:
NeRF updated

0 1 2 3 4 5
Number of Objects Left

0

5

10 Dex-Net: NeRF updated

(a) Histogram of remaining objects after decluttering.

0.0

0.5

1.0

C
ap

tu
re

 R
at

io

(b) Capture time ratio.

Figure 6: Decluttering results. (a) Histograms show the number of objects remaining after each trial for RAG-
Net and Dex-Net (lower is better). (b) Reusing and updating the NeRF between grasps (red, blue) rather than
recapturing the scene (green) reduces capture time by 61% (lower is better).

Instant-NGP Evo-NeRF -TV Evo-NeRF -Coarse Evo-NeRF

% Trajectory Used 80.3 % 64.8 % 62.0 % 52.6 %

Table 2: Ablations of Evo-NeRF regularizations. We query Dex-Net continuously through camera capture
trajectories and report the percent of the trajectory needed until the highest probability grasp is on an object. We
compare vanilla Instant-NGP with Evo-NeRF, as well as ablating TV-loss and coarse ray sampling. Evo-NeRF
produces successful grasps the earliest.

experiment 3 times and compare RAG-Net with Dex-Net [37] and evaluate with and without early
capture stopping. Since Dex-Net does not output grasp confidence we use the same stopping point
for both networks, as determined by RAG-Net. An experiment is successful if the robot grasps and
places the object into the storage bin.

Table 1 summarizes the results. Using RAG-Net for early stopping results in a capture time reduction
of 41 %, with no drop in reliability. On average, the robot grasps objects within 9.5 seconds with
an 89% success rate over 54 trials. RAG-Net outperforms Dex-Net in grasp success by 1.6x even
with a full capture of the scene as a result of its habituation to NeRF density. RAG-Net’s primary
failure cases are on out-of-distribution objects, specifically missing grasps on the lightbulb and tape
dispenser, likely because the training set has no small profile items. In addition, some grasps failed
on the sideways wineglass because it rolled out of the jaws before they closed.

5.3 Sequential decluttering

We evaluate on a decluttering task where multiple transparent objects are placed within 2cm in stable
poses, and the robot must grasp and place all objects in the bin one by one (Fig. 1). We consider
three tiers of experiment difficulties with two scenes for each tier, resulting in 6 different scenes
(Fig. 5). We repeat each scene 3 times and compare against Dex-Net [37]. At the beginning of each
experiment, the robot executes a full capture of the scene (Fig. 1a). After each consecutive grasp, the
robot executes a much smaller capture centered at the grasp location to update the NeRF (Fig. 1c).
We allow only as many grasp attempts as objects in the scene.

Results are summarized in Fig 6, showing the number of remaining objects after each trial and
the speedup from updating the NeRF rather than retraining. Evo-NeRF with RAG-Net clears 72 %
of test objects across all tiers while Dex-Net clears 48 % of objects. Evo-NeRF takes 39% of the
capture time compared to rebuilding the NeRF from scratch with full capture trajectories after each
grasp, while maintaining similar performance (76 %). This suggests Evo-NeRF retains graspable
geometry over successive updates, despite their short duration. The primary grasp failure modes
for this experiment are the same as in single object experiments, but sometimes the method failed
to remove an object if it was moved by more than 2-3cm from accidental contact, which wasn’t
detected by the smaller deletion captures used between grasps.

5.4 Graspability ablation

We ablate the changes made to NeRF speeding geometry graspability. We capture 9 single-object
and 3 multi-object scenes, then continuously train NeRF as it captures, using the same static im-
ages and holding all other hyperparameters constant. We measure the capture time needed until the
highest confidence grasp output from Dex-Net lands on a real object as a proxy for graspability con-
vergence. Table 2 shows the percent of the capture trajectory needed, and Fig. 3 shows a timelapse

7



of visual qualities over a capture. Results suggest that the proposed method produces graspable
geometry faster, with a 32 % reduction in capture time needed to grasp using Dex-Net.

The grasp success labels used in this experiment were manually evaluated, where a human labeled
a grasp as successful if its centerpoint lies on graspable geometry. To evaluate its reliability we
executed grasps for single-object scenes from Evo-NeRF in the real world. All grasps labeled as
successful were in fact successful (9/9), suggesting the metric used is physically reliable.

5.5 NeRF Depth vs Ground Truth Depth

This section investigates the distribution shift between training on ground-truth depth and testing
on NeRF-rendered depth, to make the argument for training a grasp network directly on NeRF-
rendered depth. We compare RAG-Net with two grasp planners: 1) Dex-Net, which is trained on
a large dataset with ground-truth depth, and 2) GT-Net, which has the same architecture as RAG-
Net but is trained only on ground-truth depth generated in simulation with pyrender [45]. We test
on the held-out test set of NeRF-rendered depth images and report average grasp confidence using
the soft-point-contact model and wrench resistance. We calibrate the grasp planners’ performance
by evaluating GT-Net on ground-truth depth images, a scenario with no distribution shift, and then
normalize the results of all planners with respect to this performance.

GT-Net, RAG-Net and Dex-Net achieves 0 %, 42 % and 0.1% success respectively, suggesting a
large distribution shift between training on ground-truth depth to testing on NeRF-rendered depth.
On low quality grasps with lower than 0.1 wrench resistance, the mean depth estimation error is
2.7cm, compared to 3-5mm for values over 0.1, suggesting a failure reason here is grasping floaters.

6 Conclusion

We introduced Evo-NeRF, a method that rapidly captures and trains NeRFs for practical robotic
grasping. While its image capture produces lower-quality reconstructions than prior work, we pro-
pose reusing trained weights in sequential grasping, geometry regularization, and continual training
to obtain better 3D reconstructions. We further propose a novel training pipeline to train grasp net-
works on NeRF rendered depth images in simulated environments, which can predict high quality
grasps in the physical environment. In experiments, Evo-NeRF and RAG-Net can grasp transparent
objects within 10s of seconds with 89 % success on singulated objects.

6.1 Limitations and future work

RAG-Net uses rendered depth images, throwing away much of the rich 3D information present in
NeRF. Future work should explore 3D grasp planner inputs from NeRF such as density voxel grids,
akin to VGN [46]. While hemispherical captures are efficient for reconstructing small workspaces,
it may be unsuited to tasks like finding and extracting a target object from a large scene. Though we
have shown that NeRF is adaptable to geometry deletion, NeRF still resists adding new geometry
because of hash collisions in the positional encoding and the density gradient being pushed towards
0 in empty regions. In our experiments we observed a failure case where an object was toppled over
by the grasped object, changing the scene’s geometry. Future work in adapting NeRF to changing
scenes would greatly improve the practicality of real-time usage. The speed of this method is also
unsuitable for industrial applications requiring sub-second cycle times, and is mainly practical for
household applications such as tidying which do not have such rapid requirements.

Acknowledgments

This research was performed at the AUTOLab at UC Berkeley in affiliation with the Berkeley AI
Research (BAIR) Lab and the CITRIS “People and Robots” (CPAR) Initiative. The authors were
supported in part by donations from Google, Siemens, Toyota Research Institute, and Autodesk and
by equipment grants from PhotoNeo, NVidia, and Intuitive Surgical. This material is based upon
work supported by the National Science Foundation Graduate Research Fellowship Program under
Grant No. DGE 2146752. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the sponsors or
National Science Foundation.

8



References
[1] S. S. Sajjan, M. Moore, M. Pan, G. Nagaraja, J. Lee, A. Zeng, and S. Song. Cleargrasp: 3d

shape estimation of transparent objects for manipulation. CoRR, abs/1910.02550, 2019. URL
http://arxiv.org/abs/1910.02550.

[2] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. NeRF:
Representing scenes as neural radiance fields for view synthesis. In European Conference on
Computer Vision, pages 405–421. Springer, 2020.

[3] J. Ichnowski, Y. Avigal, J. Kerr, and K. Goldberg. Dex-nerf: Using a neural radiance field to
grasp transparent objects. In 5th Annual Conference on Robot Learning, 2021. URL https:
//openreview.net/forum?id=zOjU2vZzhCk.

[4] C. Sun, M. Sun, and H.-T. Chen. Direct voxel grid optimization: Super-fast convergence
for radiance fields reconstruction. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5459–5469, 2022.

[5] S. Fridovich-Keil, A. Yu, M. Tancik, Q. Chen, B. Recht, and A. Kanazawa. Plenoxels: Radi-
ance fields without neural networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5501–5510, 2022.

[6] T. Müller, A. Evans, C. Schied, and A. Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Trans. Graph., 2022.

[7] K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman, S. M. Seitz, and R. Martin-Brualla.
Nerfies: Deformable neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5865–5874, 2021.

[8] Z. Li, S. Niklaus, N. Snavely, and O. Wang. Neural scene flow fields for space-time view
synthesis of dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6498–6508, 2021.

[9] K. Schwarz, Y. Liao, M. Niemeyer, and A. Geiger. Graf: Generative radiance fields for 3D-
aware image synthesis. In Advances in Neural Information Processing Systems (NeurIPS),
volume 33, 2020.

[10] E. R. Chan, M. Monteiro, P. Kellnhofer, J. Wu, and G. Wetzstein. pi-gan: Periodic implicit gen-
erative adversarial networks for 3d-aware image synthesis. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 5799–5809, 2021.

[11] J. Gu, L. Liu, P. Wang, and C. Theobalt. Stylenerf: A style-based 3d-aware generator for
high-resolution image synthesis. arXiv preprint arXiv:2110.08985, 2021.

[12] L. Yen-Chen, P. Florence, J. T. Barron, A. Rodriguez, P. Isola, and T.-Y. Lin. inerf: Inverting
neural radiance fields for pose estimation. In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1323–1330. IEEE, 2021.

[13] Q. Meng, A. Chen, H. Luo, M. Wu, H. Su, L. Xu, X. He, and J. Yu. Gnerf: Gan-based
neural radiance field without posed camera. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6351–6361, 2021.

[14] C.-H. Lin, W.-C. Ma, A. Torralba, and S. Lucey. Barf: Bundle-adjusting neural radiance fields.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 5741–
5751, 2021.

[15] A. Chen, Z. Xu, A. Geiger, J. Yu, and H. Su. Tensorf: Tensorial radiance fields. arXiv preprint
arXiv:2203.09517, 2022.

[16] Q. Wang, Z. Wang, K. Genova, P. Srinivasan, H. Zhou, J. T. Barron, R. Martin-Brualla,
N. Snavely, and T. Funkhouser. Ibrnet: Learning multi-view image-based rendering. In CVPR,
2021.

9

http://arxiv.org/abs/1910.02550
https://openreview.net/forum?id=zOjU2vZzhCk
https://openreview.net/forum?id=zOjU2vZzhCk


[17] A. Trevithick and B. Yang. Grf: Learning a general radiance field for 3d representation and
rendering. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 15182–15192, 2021.

[18] A. Chen, Z. Xu, F. Zhao, X. Zhang, F. Xiang, J. Yu, and H. Su. Mvsnerf: Fast generaliz-
able radiance field reconstruction from multi-view stereo. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 14124–14133, 2021.

[19] J. Chibane, A. Bansal, V. Lazova, and G. Pons-Moll. Stereo radiance fields (srf): Learning
view synthesis for sparse views of novel scenes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7911–7920, 2021.

[20] A. Yu, V. Ye, M. Tancik, and A. Kanazawa. pixelnerf: Neural radiance fields from one or
few images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4578–4587, 2021.

[21] M. Tancik, B. Mildenhall, T. Wang, D. Schmidt, P. P. Srinivasan, J. T. Barron, and R. Ng.
Learned initializations for optimizing coordinate-based neural representations. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2846–2855,
2021.

[22] C. Gao, Y. Shih, W.-S. Lai, C.-K. Liang, and J.-B. Huang. Portrait neural radiance fields from
a single image. arXiv preprint arXiv:2012.05903, 2020.

[23] E. Sucar, S. Liu, J. Ortiz, and A. J. Davison. imap: Implicit mapping and positioning in real-
time. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
6229–6238, 2021.

[24] M. Adamkiewicz, T. Chen, A. Caccavale, R. Gardner, P. Culbertson, J. Bohg, and M. Schwa-
ger. Vision-only robot navigation in a neural radiance world. IEEE Robotics and Automation
Letters, 7(2):4606–4613, 2022.

[25] J. Abou-Chakra, F. Dayoub, and N. Sünderhauf. Implicit object mapping with noisy data.
arXiv preprint arXiv:2204.10516, 2022.

[26] Y. Li, S. Li, V. Sitzmann, P. Agrawal, and A. Torralba. 3d neural scene representations for
visuomotor control. In Conference on Robot Learning, pages 112–123. PMLR, 2022.

[27] L. Yen-Chen, P. Florence, J. T. Barron, T.-Y. Lin, A. Rodriguez, and P. Isola. Nerf-
supervision: Learning dense object descriptors from neural radiance fields. arXiv preprint
arXiv:2203.01913, 2022.

[28] W.-C. Tseng, H.-J. Liao, L. Yen-Chen, and M. Sun. Cla-nerf: Category-level articulated neural
radiance field. arXiv preprint arXiv:2202.00181, 2022.

[29] D. Driess, Z. Huang, Y. Li, R. Tedrake, and M. Toussaint. Learning multi-object dynamics
with compositional neural radiance fields. arXiv preprint arXiv:2202.11855, 2022.

[30] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg. Dex-
net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp
metrics. 2017.

[31] H. Xu, Y. R. Wang, S. Eppel, A. Aspuru-Guzik, F. Shkurti, and A. Garg. Seeing glass: Joint
point cloud and depth completion for transparent objects. CoRR, abs/2110.00087, 2021. URL
https://arxiv.org/abs/2110.00087.

[32] T. Weng, A. Pallankize, Y. Tang, O. Kroemer, and D. Held. Multi-modal transfer learning
for grasping transparent and specular objects. CoRR, abs/2006.00028, 2020. URL https:
//arxiv.org/abs/2006.00028.

[33] Q. Dai, Y. Zhu, Y. Geng, C. Ruan, J. Zhang, and H. Wang. Graspnerf: Multiview-based 6-
dof grasp detection for transparent and specular objects using generalizable nerf, 2022. URL
https://arxiv.org/abs/2210.06575.

10

https://arxiv.org/abs/2110.00087
https://arxiv.org/abs/2006.00028
https://arxiv.org/abs/2006.00028
https://arxiv.org/abs/2210.06575


[34] A. Kar, C. Häne, and J. Malik. Learning a multi-view stereo machine. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
9c838d2e45b2ad1094d42f4ef36764f6-Paper.pdf.

[35] Z. Zhu, S. Peng, V. Larsson, W. Xu, H. Bao, Z. Cui, M. R. Oswald, and M. Pollefeys. Nice-
slam: Neural implicit scalable encoding for slam. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2022.

[36] A. Yu, S. Fridovich-Keil, M. Tancik, Q. Chen, B. Recht, and A. Kanazawa. Plenoxels:
Radiance fields without neural networks. CoRR, abs/2112.05131, 2021. URL https:
//arxiv.org/abs/2112.05131.

[37] V. Satish, J. Mahler, and K. Goldberg. On-policy dataset synthesis for learning robot grasping
policies using fully convolutional deep networks. IEEE Robotics and Automation Letters,
2019.

[38] X. Zhu, D. Wang, O. Biza, G. Su, R. Walters, and R. Platt. Sample efficient grasp learning
using equivariant models. arXiv preprint arXiv:2202.09468, 2022.

[39] J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry, K. Kohlhoff, T. Kröger,
J. Kuffner, and K. Goldberg. Dex-net 1.0: A cloud-based network of 3d objects for robust
grasp planning using a multi-armed bandit model with correlated rewards. In 2016 IEEE
international conference on robotics and automation (ICRA), pages 1957–1964. IEEE, 2016.

[40] Y. Zheng and W.-H. Qian. Coping with the grasping uncertainties in force-closure analysis.
The international journal of robotics research, 24(4):311–327, 2005.

[41] J. Mahler, S. Patil, B. Kehoe, J. Van Den Berg, M. Ciocarlie, P. Abbeel, and K. Goldberg.
Gp-gpis-opt: Grasp planning with shape uncertainty using gaussian process implicit surfaces
and sequential convex programming. In 2015 IEEE international conference on robotics and
automation (ICRA), pages 4919–4926. IEEE, 2015.

[42] C. M. Kim, M. Danielczuk, I. Huang, and K. Goldberg. Simulation of parallel-jaw grasping
using incremental potential contact models. arXiv preprint arXiv:2111.01391, 2021.

[43] J. L. Schönberger and J.-M. Frahm. Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016.

[44] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm. Pixelwise view selection for
unstructured multi-view stereo. In European Conference on Computer Vision (ECCV), 2016.

[45] M. Matl. Pyrender. https://github.com/mmatl/pyrender, 2019.

[46] M. Breyer, J. J. Chung, L. Ott, R. Siegwart, and J. I. Nieto. Volumetric grasping network:
Real-time 6 DOF grasp detection in clutter. CoRR, abs/2101.01132, 2021. URL https:
//arxiv.org/abs/2101.01132.

[47] L. Ma, X. Li, J. Liao, Q. Zhang, X. Wang, J. Wang, and P. V. Sander. Deblur-nerf: Neural
radiance fields from blurry images. arXiv preprint arXiv:2111.14292, 2021.

[48] Dawson-Haggerty et al. trimesh. URL https://trimsh.org/.

[49] J. Mahler, M. Matl, X. Liu, A. Li, D. Gealy, and K. Goldberg. Dex-net 3.0: Computing robust
vacuum suction grasp targets in point clouds using a new analytic model and deep learning. In
2018 IEEE International Conference on robotics and automation (ICRA), pages 5620–5627.
IEEE, 2018.

[50] J. Pan, S. Chitta, and D. Manocha. Fcl: A general purpose library for collision and proximity
queries. In 2012 IEEE International Conference on Robotics and Automation, pages 3859–
3866. IEEE, 2012.

11

https://proceedings.neurips.cc/paper/2017/file/9c838d2e45b2ad1094d42f4ef36764f6-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/9c838d2e45b2ad1094d42f4ef36764f6-Paper.pdf
https://arxiv.org/abs/2112.05131
https://arxiv.org/abs/2112.05131
https://github.com/mmatl/pyrender
https://arxiv.org/abs/2101.01132
https://arxiv.org/abs/2101.01132
https://trimsh.org/


(a) Slow 35 (b) Slow 52 (c) Slow 68 (d) Fast 68

Figure 7: Motion Blur. Top-down depth images rendered using models trained on different datasets. We
capture the Slow datasets (a, b and c) from fixed views while the camera is held statically, and the Fast dataset
(d) while the camera is in motion.

A Evo-NeRF

A.1 NeRF and scene parameters

We use the default Instant-NGP parameters except for the following changes: (1) we use a learning
rate of 0.02 instead of 0.01 (2) we use a hash table size of 217 feature vectors instead of 219 (3) we use
a density network with 16 hidden neurons instead of 64. These changes made small improvements
in geometry learning speed. We also increase the frequency of extrinsic optimization gradient steps
(n steps between cam updates parameter) to every step, improving the speed of convergence on
noisy camera poses added during arm motion. The scene bounds (“aabb scale”) are set to a 2 meter
cube to fit the entire workspace inside, with a scene scale of 1.0. We set the near distance for
raymarching during NeRF training to be 0, to avoid missing objects if they are close to the camera.

A.2 Capture trajectory

The full capture trajectory is centered at the center of the workspace, with θ values ranging from 85◦

to 75◦ (θ rotates about the z axis upwards from the table, such that x points away from the robot).
The φ range, which describes inclination from the table surface, goes from 15◦ to 50◦. The arm
makes 3 sweeps about the z axis, linearly varying the φ value between the range on each sweep, as
visualized by the red arrow in Fig. 1. We use 1280x720 images, with a whitebalance and exposure
which are held static after an auto-calibration from the camera.

A.3 Evo-NeRF parameters

For TV-regularization, we sample N = 256000 points at each iteration with a rejection sampling
threshold of 0.01 for minimum local density. The sampling radius r we use is 0.3mm, and the loss
scaling λtv is 15

N . TV-loss is implemented as a set of CUDA kernels for speed, resulting in only about
a 10% slowdown of training.

In Instant-NGP the distance between samples grows proportional to distance along the ray, and we
scale this distance to be 10x larger. To implement coarser ray sampling, the value of the parameter
which controls sample acceleration, (“cone angle constant” in Instant-NGP) is 0.04, up from the
default value of 0.004.

A.4 Motion Blur

In this experiment we investigate the effect of motion blur on the quality of the top-down depth
image rendered with Evo-NeRF. We qualitatively compare depth images rendered using models
that were trained with four different datasets: Slow 35, Slow 52 and Slow 68 that were trained
on 35, 52 and 68 images captured while the camera was static, and Fast 68 trained on 68 images
captured while the camera was in motion (as described in Sec 4.1), all within 1.5 cm between the
Fast and Slow datasets. Fig 7 shows the top-down rendered depth images. Results suggest that the
depth quality is higher when the model is trained on a large dataset, and that there is no significant
difference in depth quality between the Fast and Slow capturing methods. Though motion blur has

12



Figure 8: Random worksurace texture (left) and glass texture (right) in blender. We use textures to randomize
the background and simulate imperfection in glass.

a known negative affect on NeRF quality[47], for the speed our arm moves at this appears to not be
a significant problem.

B Dataset generation

We choose the 7 object meshes based on the three criteria: (1) likely to be made of glass, (b) fit
within the workspace of YuMi, (c) has a watertight mesh with outward-facing surface normals.

For grasp generation, we calculate the stable pose orientations of each mesh and rank them by their
quasi-static probabilities using Trimesh [48]. Based on the ranking, we select the top 10 stable poses
to sample 1000 grasps. We ignore stable poses where no grasp exists. We analytically calculate grasp
success via robust wrench resistance [49]. We perturb the grasp pose with small translation noise
(from a normal distribution with µ = 0, σ = 0.003m) and small rotation noise (from a normal dis-
tribution with µ = 0, σ = 0.003 rad) and calculate wrench resistance on 10 samples for estimating
the grasp success probability. We create multi-object scenes based on single-object scenes. To do
so, we sequentially sample objects on different stable poses and randomly generate a SE(2) trans-
form that will not collide with the objects that have already been placed on the planar surface. We
define the z–axis as normal and pointing outward from the worksurface. We sample x and y posi-
tion from a uniform distribution between ±0.2m and the z–axis rotation from a uniform distribution
between ±π

2 . We reuse the grasps sampled for single object scenes and filter out the grasps that are
in collision. We check collision between objects and grasps with the Flexible Collision Library [50].
We meshify the grasps for collision checking by using a YuMi gripper mesh model under the rigid
transform given by the grasp pose.

To reflect the reachable workspace of the robot for capturing images, we record the camera intrinsics
and 52 camera poses along the image capture trajectory with the physical robot. We use fewer views
during dataset generation than physical capture trajectories to speed Blender rendering. For each of
the simulated environments, we render images at the recorded camera poses with small translation
noise (±5 mm) and rotation noise (±5◦). We randomize the number of lights between 1 and 5, light
location, and total wattage. To speed up rendering, we reduce the numbers of rays cast to a minimum
level to achieve realistic renders, and use CUDA-based renderer in Blender.

To randomize background and simulate real-world imperfections found in glass, we use two textures
in Blender (Fig. 8). We use a randomized texture for the background consists of two blended random
“Voronoi” nodes to produce both high and low frequency patterns. For the glass texture, we create a
transparent material with an index of refraction that matches glass and many plastics. We also add
random textures to simulate hazy glass and scratches. Prior work observed that NeRF performed
better on real-world glass than simulated glass, observing that simulated glass had no imperfections.

We then train a NeRF model for each scene for 1000 steps, comparable to the number used on the
robot in real-time, and render depth images from NeRF. We also generate ground-truth depth images
using Pyrender [45] for each scene, using the same camera extrinsics as the NeRF rendered depth
image. In experiments, each scene has between 1 and 3 objects and there are a total of 8667 distinct
scenes, 237 held out as a test set.

13



Figure 9: Heatmap output for objects including upside-down glasses. In this scene the top 3 objects are upside-
down (and hence ungraspable) and the bottom 3 are graspable. The left image shows depth rendered from
NeRF and the right image shows the location heatmap output by RAG-Net. Note how the heatmap activates
much less on upside-down objects (<15% confidence) compared to graspable glasses (80% confidence).

C RAG-Net

C.1 Depth rendering

When rendering depth from NeRF, we use a minimum transmittance threshold of 0.9, which means
that rays which have passed through a total of 0.1 density terminate. This extra sensitivity is to allow
perceiving depth from transparent objects. Because density has physical meaning, in practice the
value of this parameter is reusable across all scenes, in our experience not requiring tuning. During
depth rendering we ignore density which exists more than 35cm above the workspace surface, a
value 2x larger than the largest test object, to help in removing floaters far above the scene.

C.2 Architecture details

The architecture we use is identical to Zhu et al. [38], except for adding an additional fully-connected
layer at the output of the rotation prediction network to be more agnostic to input patch sizes. The
location prediction network uses an equivariant U-Net architecture, and the rotation network is a
9-layer equivariant ResNet. The rotational equivariance operates on the cyclic group C8 for the
location prediction network and on the quotient group C16/C2 for the rotation network as top-down
grasp rotation is invariant to rotations by π radians.

C.3 Training details

We use PyTorch Lightning for training, with a batch size of 64 for the rotation network and 32 for
the location network. We use the Adam optimizer with learning rate 1e-3 and weight decay 1e-5.
Models are trained for 100 epochs with an exponential learning rate decay of 0.994. The patches
used as input to the rotation network are augmented by 5 pixels of random translation, and the
location depth images are augmented by 10% translation, ±5◦ shear, and a scale range of 80% to
100%.

C.4 Upside down glasses

In all of our experiments we test on graspable, upright objects. So, a natural question is whether
RAG-Net has learned a trivial grasp function, like grasping at the edge of any round object. To an-
swer this question we explore what RAG-Net outputs on ungraspable, upside-down objects to sanity
check its output. To do this we run a decluttering task with 3 upright and 3 upside down glasses, and
inspect the confidence outputs on upside down glasses compared to upright. Given 3 actions, the
system correctly removes the 3 graspable glasses and leaves the upside-down ones untouched. Fig 9
shows RAG-Net’s output on this scene before the first grasp. Although the upside down glasses have
ring-like heatmap outputs similar to upright cups, the highest activation on upside down glasses is
15%, which suggests that RAG-Net seems to have learned a non-trivial grasp function. Ideally, con-
fidence on impossible grasps would be near 0, a shortcoming that could perhaps be a result of an
imbalanced dataset, where more objects are upright than upside down. Cultivating a dataset with
equal numbers of graspable and ungraspable poses could address this issue.

14



Objects DexNet RAG-Net
Early Stop Full Capture Early Stop Full Capture

Wineglass Upright 0/3 3/3 3/3 3/3
Whiskey Glass 0/3 1/3 3/3 3/3

Wineglass Sideway 0/3 2/3 2/3 2/3
Plastic Cup 0/3 0/3 3/3 3/3

Bowl 0/3 2/3 3/3 3/3
Tape Dispenser 3/3 3/3 1/3 2/3
Square Bowl 0/3 1/3 3/3 3/3

Tall Glass 0/3 3/3 3/3 3/3
Light Bulb 0/3 0/3 3/3 2/3

Average 11% 56% 89% 89%
Table 3: Detailed single object retrieval results. For each object, the experiment is repeated 3 times. The
number show the success grasps out of the 3 grasps. The last row show the average success grasp over all
objects. Note that all of RAG-Net’s failures come from the sideways wineglass, tape dispenser, and lightbulb.
The latter two suffer in performance because they are highly out of distribution shaped objects, and the former
experiences a 66% success rate because grasp precision is much more important for grasping the stem or base,
where a small pose error can knock the wineglass out of position.

Scene (N objects) Dex-Net, NeRF updated RAG-Net, NeRF from scratch RAG-Net, NeRF updated
0(4) 1,4,3 4,4,4 4,4,4
1(5) 1,4,2 3,4,4 4,4,4
2(4) 1,3,4 3,4,0 0,3,3
3(4) 1,3,0 2,4,2 3,3,3
4(5) 2,3,3 4,3,2 4,2,4
5(4) 1,1,1 4,4,4 3,2,3

Table 4: Detailed decluttering results. Each scene is repeated 3 times and the method is given as many grasp
attempts as the number of objects. Numbers in the parenthesis show the number of objects in this scene.
Numbers in the table show the number of objects extracted after all actions finish (higher is better). Scene 2
seems to be an outlier in performance for RAG-Net, with 2 runs where no objects were cleared. This is due to
a specific wineglass which RAG-Net consistently collided with during grasps, resulting in an early failure for
the trial.

D Experiments details

D.1 Single object

Table 3 reports the per-object success for RAG-Net and Dex-Net on early-stopped and full capture
trajectories, along with a discussion of their implications in the caption.

D.2 Decluttering

Table 4 reports per-scene success for all scenes for Dex-Net and RAG-Net on Evo-NeRF as well as
training NeRF from scratch, along with a discussion of the results in the caption.

15


	Introduction
	Related Work
	Problem Statement
	Method
	Evo-NeRF
	Grasp Planning Network

	Experiments
	Physical Setup
	Rapid single object retrieval
	Sequential decluttering
	Graspability ablation
	NeRF Depth vs Ground Truth Depth

	Conclusion
	Limitations and future work

	Evo-NeRF
	NeRF and scene parameters
	Capture trajectory
	Evo-NeRF parameters
	Motion Blur

	Dataset generation
	RAG-Net
	Depth rendering
	Architecture details
	Training details
	Upside down glasses

	Experiments details
	Single object
	Decluttering


