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Abstract

Despite large successes of recent language mod-001
els, they suffer from severe performance degen-002
eration in low-resource settings with limited003
training data available. Many existing works004
tackle this problem by generating synthetic data005
from the training data and then training mod-006
els on them, recently using Large Language007
Models (LLMs). However, in low-resource008
settings, the amount of seed data samples to009
use for data augmentation is very small, which010
makes generated samples suboptimal and less011
diverse. To tackle this challenge, we propose012
a novel method that augments training data by013
incorporating a wealth of examples from other014
datasets, along with the given training data.015
Specifically, we first retrieve relevant instances016
from other datasets, such as their input-output017
pairs or contexts, based on their similarities018
with the given seed data, and prompt LLMs019
to generate new samples with the contextual020
information within and across the original and021
retrieved samples. This approach can ensure022
that the generated data is not only relevant but023
also more diverse than what could be achieved024
using the limited seed data alone. We validate025
our Retrieval-Augmented Data Augmentation026
(RADA) framework on multiple datasets under027
low-resource settings of training and test-time028
data augmentation scenarios, on which it out-029
performs existing data augmentation baselines.030

1 Introduction031

Recent advances in language models (Brown et al.,032

2020; Touvron et al., 2023; OpenAI, 2023; Anil033

et al., 2023), which are trained on general text cor-034

pora, have achieved numerous successes across035

various natural language tasks. The common prac-036

tice to further enhance their performances is to per-037

form fine-tuning on task-specific datasets, which038

has been proven substantially effective regardless039

of model sizes (Gudibande et al., 2023; Lv et al.,040

2023). However, the efficacy of this fine-tuning is041

closely tied to the volume and quality of the data 042

available for training. Meanwhile, in real-world 043

scenarios, particularly in specific domains, there is 044

often a scarcity of training instances. For example, 045

at the beginning of a pandemic such as COVID-19, 046

there are only a few limited training instances to 047

fine-tune language models, despite an urgent need 048

for tasks, such as question answering (Möller et al., 049

2020) (Figure 1, (A)). Yet, the manual annotation 050

of additional training samples is costly and time- 051

consuming, which may require domain experts. 052

To address this challenge, various approaches 053

have been proposed to augment the training data au- 054

tomatically. These methods typically range from al- 055

tering the texts of existing training samples (Sahin 056

and Steedman, 2018; Wei and Zou, 2019b) to lever- 057

aging generative models to produce new instances 058

for training based on initial seed samples (Yao et al., 059

2018; Anaby-Tavor et al., 2020; Lee et al., 2020). 060

Also, many recent approaches have leveraged the 061

capability of LLMs for data augmentation based on 062

prompting, which eliminates the burden of perform- 063

ing task-specific training (Honovich et al., 2023a; 064

Whitehouse et al., 2023; Lee et al., 2023). In par- 065

ticular, Chen et al. (2023a) has utilized the diverse 066

prompting strategies to create a broader set of in- 067

stances. However, in low-resource environments 068

where only a limited number of training instances 069

are available, generating new data from these mini- 070

mal seed samples results in poor diversity and vari- 071

ation (See Figure 1, (B)). We note that a very recent 072

approach attempts to overcome this by iteratively 073

including generated samples as seed data for fur- 074

ther data generation (Wang et al., 2023a). However, 075

this approach is still ill-suited, which is not only 076

constrained by the limited diversity of the initial 077

seed data but also vulnerable to recursively dimin- 078

ishing the quality of subsequent augmentations due 079

to the potential low-quality of prior augmentations. 080

Despite the limited seed data in low-resource 081

settings, there is an abundance of examples and re- 082
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Figure 1: (A) Low-Resource Tasks refer to problems (usually on the specific domains) where there is a limited amount of data
available. (B) Existing Data Augmentation approaches expand the seed data with itself (policy for FMLA), which results in the
limited diversity of the generated data samples (the same FMLA policy). (C) Our Retrieval-Augmented Data Augmentation
(RADA) framework generates the new data with the external context (concurrent usage of FMLA and paternity leave), retrieved
from the external datasets, along with the seed data, yielding more diverse and useful samples (paternity leave). (Upper Right:)
Our RADA outperforms existing data augmentation methods, demonstrating the quality of generated samples. (Lower Right:)
The generated data samples from RADA are more diverse than existing data augmentation, based on the t-SNE visualization.

sources accumulated in existing data pools, which083

can be utilized for data augmentation. Moreover,084

by leveraging the contextual understanding capabil-085

ities of LLMs, we can effectively utilize a mixture086

of samples drawn from the initial seed data, other087

datasets, or a combination of both. This can enable088

the synthesis of new samples, which mirror the089

characteristics of the seed data while being diverse.090

However, not all samples from external datasets091

are useful for data augmentation, as most of them092

may not align with the characteristics of the seed093

data. Thus, inspired by the motivation to use exter-094

nal data instances while overcoming the problem095

of many of their irrelevancies, in this work, we pro-096

pose a novel LLM-powered Retrieval-Augmented097

Data Augmentation (RADA) framework (See Fig-098

ure 1, (C)). Specifically, the input of our data aug-099

mentation approach consists of in-context exam-100

ples containing example instances, along with a101

target context that elicits a new sample generation.102

To be more specific, for open-domain question an-103

swering, which aims to answer a question based on104

information in a document, a sequence of multiple105

triplets of the document, question, and answer is106

used for in-context, while the target context is the107

document from which new question-answer pairs108

are generated. Then, our RADA flexibly employs109

multiple retrieval strategies to construct these in-110

context and target-context with samples from both111

original and external datasets, enabling diverse data112

augmentation, unlike the conventional approaches113

that rely solely on the initial seed data.114

We validate the effectiveness of RADA in aug-115

menting low-resource datasets on multiple domain-116

specific datasets, where we consider both the train-117

ing and test-time data augmentation scenarios. The118

experimental results show that RADA consistently119

surpasses several LLM-powered data augmentation120

baselines on all datasets. In addition, a key finding 121

from our analyses is the dual benefit offered by our 122

RADA: the incorporation of external data sources 123

enhances the diversity of the generated instances, 124

while the retrieval mechanism ensures maintaining 125

their semantic alignment with the initial seed data. 126

Our findings and contributions are threefolds: 127

• We point out the limitation of existing data 128

augmentation approaches that rely on initial 129

seed data alone, leading to a lack of diversity. 130

• We introduce a novel retrieval-augmented data 131

augmentation framework, which performs re- 132

trieval over external data sources to generate 133

diverse data based on information within and 134

across the original and retrieved samples. 135

• We validate our RADA in augmenting data on 136

low-resource settings with training and test- 137

time scenarios, demonstrating its efficacy in 138

generating the diverse and high-quality data. 139

2 Related Work 140

2.1 Large Language Models 141

Large Language Models (LLMs), trained on vast 142

amounts of textual corpora with multiple training 143

strategies along with a large number of parame- 144

ters, have demonstrated remarkable capability of 145

handling diverse tasks (Brown et al., 2020; Tou- 146

vron et al., 2023; OpenAI, 2023; Anil et al., 2023). 147

A notable feature of these models is their ability 148

to perform in-context learning, which means they 149

can understand and learn from examples or instruc- 150

tions provided in the input and then adapt their 151

responses based on this information, without re- 152

quiring retraining for each specific task (Brown 153

et al., 2020; Wei et al., 2022; Min et al., 2022; 154

Chen et al., 2022). Due to its simplicity yet effec- 155

tiveness and versatileness, several approaches have 156
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been introduced to improve the quality of the LLM157

context. In particular, Lyu et al. (2023) constructs158

pseudo-demonstrations, for the case where exam-159

ples in the context are unavailable, by retrieving160

relevant instances from the external corpus based161

on their similarities with the input query. Similarly,162

Ram et al. (2023) and Baek et al. (2023) augment163

LLMs by prepending relevant documents or facts164

retrieved from the external corpus in their input con-165

text, to improve the factuality of LLM responses.166

Lastly, Long et al. (2023) targets adapting LLMs167

with in-context examples (which are adaptively re-168

trieved) for domain adaptation. However, existing169

works do not focus on augmenting the data based170

on the retrieval of its relevant samples from other171

datasets, through in-context learning of LLMs.172

2.2 Data Augmentation173

Despite the notable successes of LLMs, their per-174

formance significantly deteriorates in low-resource175

settings, particularly for domain-specific environ-176

ments where the data available for training is very177

scarce (for instance, in the case of emerging events178

like novel viruses) or, in certain cases, completely179

unavailable (such as in privacy-sensitive enterprise180

contexts) (Ling et al., 2023; Chen et al., 2023b;181

Baldazzi et al., 2023). Further, they are less likely182

to be trained with ones similar to these specialized183

data, leading to constrained capability in handling184

them. To address this challenge, numerous studies185

have proposed to expand the original seed data with186

various data augmentation techniques (Feng et al.,187

2021; Li et al., 2022). Early works utilized token-188

level perturbation approaches, which either alter189

texts (Sahin and Steedman, 2018; Wei and Zou,190

2019b) or interpolate them (Chen et al., 2020; Guo191

et al., 2020). Recent studies have shifted the focus192

towards utilizing the capability of generative lan-193

guage models, since they may internalize the useful194

knowledge to generate samples relevant to the seed195

data. Previous works on this line trained relatively196

smaller language models, based on the input-output197

pairs of the seed data to generate new outputs from198

the input variants (Yao et al., 2018; Anaby-Tavor199

et al., 2020; Lee et al., 2020). Also, more recent200

works have used LLMs, which have much greater201

capability in generating high-quality data (some-202

times surpassing human-level performances) with-203

out requiring task-specific training (Honovich et al.,204

2023a; Whitehouse et al., 2023; Lee et al., 2023).205

Specifically, in information retrieval, some studies206

have generated synthetic queries with LLMs, to207

match the unlabeled documents with them (Boni- 208

facio et al., 2022; Dai et al., 2023b; Saad-Falcon 209

et al., 2023). Similarly, some other studies have pro- 210

posed LLM-powered methods for specific down- 211

stream tasks, such as text classification (Dai et al., 212

2023a; Sahu et al., 2023), reading comprehen- 213

sion (Samuel et al., 2023), or multi-hop question 214

answering (Chen et al., 2023c). This trend also 215

goes to empowering the collection of instruction- 216

tuning and alignment datasets for LLM training, 217

which expands actual data samples with synthetic 218

samples generated from LLMs themselves (Hon- 219

ovich et al., 2023b; Wang et al., 2023a,b; Li et al., 220

2023). However, in the low-resource setting, the 221

seed data samples available to use for data augmen- 222

tation are extremely scarce, which may result in 223

suboptimal quality and limited diversity of the gen- 224

erated data. In this work, we propose to overcome 225

this limitation by augmenting the data generation 226

process with retrieval from larger external samples. 227

3 Methodology 228

In this section, we present a Retrieval-Augmented 229

Data Augmentation (RADA) framework. 230

3.1 Problem Statement 231

We begin with introducing the problem of domain- 232

specific tasks under low-resource settings, followed 233

by describing LLMs for data augmentation. 234

Low-Resource Domain-Specific Tasks Before 235

explaining the low-resource tasks that we focus 236

on, we define conventional natural language tasks. 237

Formally, their goal is to predict a label y given 238

an input x, where x and y are comprised of a 239

sequence of tokens: x = [x1, x2, ..., x|x|] and 240

y = [y1, y2, ..., y|y|]. Then, the training data D can 241

be represented as an aggregation of input-output 242

pairs: D = {(xi,yi)}Ni=1 where its size N can vary 243

widely from just a few dozens to several millions. 244

In this work, we target handling challenging sce- 245

narios where N is notably small, usually referred 246

to as low-resource settings. These settings are par- 247

ticularly prevalent in domain-specific tasks (within 248

legal, medical, or technical fields), where the avail- 249

ability of labeled data is inherently limited due to 250

the specialized nature of the domain or the scarcity 251

of domain experts for annotation; however, its qual- 252

ity and size are crucial to train performant models. 253

LLMs for Data Augmentation A typical way 254

to handle the low-resource domain tasks is to ex- 255

pand the training data D with data augmentation 256
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techniques, which has been recently powered by257

LLMs due to their strong text-generation capabil-258

ities. Formally, let us first describe the LLM as a259

model parameterized by θ, which takes the input260

x and then generates the output y, represented as261

follows: y = LLMθ(x). Here, θ is trained with mas-262

sive text corpora with several training strategies263

and, after that, it usually remains fixed due to the264

costs of further training. Also, x can be any form265

of text, referred to as a prompt, which includes266

task-dependent instructions and contexts (such as267

demonstrations), to guide LLMs in generating out-268

puts that align with the user’s intent, which is data269

augmentation in our work, discussed below.270

The primary goal of data augmentation is to ex-271

pand the diversity and amount of data D available272

for model training (and for testing in certain use273

cases such as test-time adaption), without manually274

collecting the new data, for tackling specific tasks275

especially on low-resource domains. Formally, this276

data augmentation process can be represented as277

follows: D′ = f(D), where f is the model (or278

technique) designed to generate new input-output279

pairs (x′,y′) for the augmented dataset D′, which280

is achieved by leveraging the underlying patterns,281

contexts, and knowledge existing in seed data D.282

However, while there have been great successes in283

advancing the augmentation methods f in several284

different ways, for example, training the generative285

models or further prompting LLMs with the given286

original data, they mainly focus on expanding the287

original data D with itself. On the other hand, we288

can potentially incorporate any external sources of289

information easily available at hand, which could290

introduce greater diversity and quality in generating291

the samples for data augmentation. In addition, es-292

pecially in low-resource settings, the available data293

to use as a source for expansion is largely scarce,294

which poses a significant challenge as the augmen-295

tation method f is operationalized with only lim-296

ited samples, leading to the generation of samples297

that may lack the desired diversity and quality.298

3.2 Retrieval-Augmented Data Augmentation299

To tackle the aforementioned drawbacks of existing300

data augmentation approaches, we propose a novel301

data augmentation method (from a different angle),302

that leverages available external datasets.303

Data Generation with External Resources We304

redefine the concept of previous data augmentation305

to incorporate samples from external resources, rep-306

resented as follows: D′ = f(D, C) where C is an 307

external data store that is composed of input-output 308

pairs (x,y) aggregated from all available datasets. 309

Notably, among the options to instantiate f , we 310

follow a recent trend that uses LLMs with prompt- 311

ing, to harness their capabilities in understanding 312

the longer and complex context (to jointly consider 313

multiple samples from different datasets). This is 314

not easily achievable by traditional smaller models 315

without additional labeling for and excessive train- 316

ing on them. Yet, the different challenge lies not 317

only in the limitation that not all the external data 318

samples can be accommodated within the context 319

length of LLMs, but also in the fact that many of 320

these samples may not be pertinent for generating 321

valuable augmentations for D. Therefore, address- 322

ing these critical issues necessitates answering the 323

question: How can we selectively integrate only the 324

pertinent instances from the extensive data store C? 325

3.2.1 Retrieving Relevant Instances 326

We now turn to answer the question of retrieving 327

contextually relevant instances from the data store 328

C, which is critical as it ensures that the data pro- 329

duced by LLMs is not only diverse and high-quality 330

but also contextually coherent and aligned with the 331

nuances of the target dataset D. In the following, 332

we first provide the general formulation of the re- 333

trieval and then propose our two specific instantia- 334

tions of the retrieval for data augmentation. 335

Formally, for a given input instance q, the goal 336

of a retriever is to identify and fetch a ranked list 337

of k entries from a large corpus, which are deemed 338

most relevant to the input, represented as follows: 339

{ci}ki=1 = Retriever(q, C) where ci ∈ C. Here, 340

q can be a textual query; C is the corpus (which 341

is typically a large collection of documents) from 342

which information is to be retrieved; Retriever is 343

designed with keyword-based search algorithms or 344

neural embedding-based models (Robertson et al., 345

1994; Karpukhin et al., 2020). 346

It is worth noting that, unlike typical retrieval ap- 347

proaches that primarily focus on sourcing relevant 348

documents that are likely to contain the answers 349

to the given query, in the context of our retrieval- 350

augmented data augmentation scenario, we aim at 351

fetching the relevant instances from other datasets, 352

which are used as a source for generating the data 353

along with the original samples. Therefore, these 354

retrieved instances should ideally facilitate the gen- 355

eration of new and enriched samples. In addition, 356

the instances to be retrieved can vary, which can 357
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Construction of LLM Input Text

Context: One of the most effective measures for 
preventing the spread of JN.1, a variant of COVID-19 …

In-Context

Target-Context

Context: COVID-19 symptoms can range from …
Input: Common symptoms of COVID-19?
Output: Fever, cough, and shortness of breath

Context: COVID-19 prevention strategies have …
Input: What are strategies to prevent COVID-19?
Output: Wearing masks, maintaining distance …

…

COVID-QA

External Data Store

Input: JN.1 moved swiftly to 
become the most widely 
circulating variant of COVID-19.

Seed Data

Retriever

Figure 2: RADA Framework Overview. We first retrieve the
external instances (relevant to the seed data) from the external
data store, and construct in-context and target-context of LLM
prompts with the retrieved samples along with the seed data.

be either complete input-output pairs or simply the358

inputs or outputs alone, depending on the specific359

requirements of data augmentation processes. We360

explain how we design retrieval in Section 3.2.2.361

3.2.2 Retrieval for Data Augmentation362

The input to LLMs can be viewed from two differ-363

ent perspectives: in-context learning which refers364

to their ability to learn from the input demonstra-365

tions; and task-solving where the model executes366

specific tasks requested by users (e.g., data augmen-367

tation). According to them, we propose two distinct368

instantiations of retrieval for LLM-powered data369

augmentation below (illustrated in Figure 2).370

Retrieval for In-Context Learning In-context371

learning plays a crucial role in enabling LLMs to372

align their outputs with the contextual cues pro-373

vided in the input examples. Similarly, in the con-374

text of data augmentation, it may enable LLMs to375

learn from examples (e.g., input-output pairs) in the376

seed data, to generate new input-output pairs. How-377

ever, in low-resource settings that we consider, the378

combination of data samples to provide as the ex-379

amples in the input prompt is largely limited. This380

limitation highlights the advantage of our retrieval-381

augmented data augmentation framework, which382

can fill the input demonstrations with samples from383

external datasets. Yet, as not all the samples are rel-384

evant, we retrieve only the relevant samples based385

on the similarity between the sample in seed data D386

and the external sample in data store C, as follows:387

{ci}ki=1 = Retriever(q, C) where q ∈ D1. Math-388

ematically, the combination of demonstrations to389

use as the LLM input is expanded to O((k×|D|)3)390

from O(|D|3), where |D| is typically small in the391

low-resource setting and we assume using 3 demon-392

strations with top-k sample retrievals.393

1The similarity calculation mechanism can vary, and, in
this work, we consider the similarity between input queries.

Retrieval for Target Sample Generation Un- 394

like in-context examples providing background in- 395

formation for data augmentation, the context to be 396

retrieved and used here has a different goal, which 397

should serve as a source for generating a complete 398

input-output pair or one among them when given 399

the other, depending on specific use cases. Specifi- 400

cally, a certain document can be used as a context 401

to derive a query-answer pair, along with their in- 402

context examples. Another example is to provide 403

a question as a context and then generate its an- 404

swers, or vice versa to augment queries. It is worth 405

noting that, while the usage of instances from the 406

store C is different, their retrieval mechanism is the 407

same as how we retrieve instances for in-context 408

examples. Formally, {ci}ki=1 = Retriever(q, C) 409

where q can be either the document or the question 410

from D. Also, the augmented samples generated 411

directly from the retrieved instances are similar in 412

nature to the original samples, as we consider rel- 413

evant top-k instances, ensuring a high degree of 414

contextual coherence with seed samples while be- 415

ing more diverse against the generation with seed. 416

4 Experimental Setups 417

In this section, we outline the experimental setups. 418

We provide additional details in Appendix A. 419

4.1 Tasks and Datasets 420

We validate our RADA on training data augmenta- 421

tion and test-time data augmentation scenarios. 422

Training Data Augmentation The goal of train- 423

ing data augmentation is to expand the given sam- 424

ples, which is useful when new events occur that 425

the model needs to adapt to, while having only lim- 426

ited data available for training. To test RADA with 427

this scenario, we use three low-resource domain- 428

specific datasets: Covid QA (Möller et al., 2020) 429

that is annotated by medical doctors for tackling the 430

COVID-19 pandemic; Policy QA (Ahmad et al., 431

2020) that is designed with specialized policies 432

about website privacy; and Tech QA (Castelli et al., 433

2020) that is constructed with questions on techni- 434

cal public forums for the IT domain. In addition, 435

to simulate the low-resource settings, we sample 436

10, 30, and 100 instances from the training dataset. 437

Test-Time Data Augmentation The assumption 438

of test-time data augmentation is more challenging, 439

considering the case where there is no data avail- 440

able for training due to strict privacy concerns (e.g., 441

users or institutions may not want to share their 442
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Table 1: Training data augmentation results with T5-base as the base model for training. In the second row, 10, 30, and 100
denote the number of initial seed data. We emphasize the statistically significant results under the t-test of p < 0.05 in bold.

Covid QA Policy QA Tech QA Average
Methods 10 30 100 10 30 100 10 30 100 10 30 100

Seed Data 57.07 66.93 68.97 6.25 16.26 28.09 12.28 17.59 33.90 25.2 33.59 43.65
Augment w/ Seed Data 62.74 64.69 65.01 28.08 27.49 25.89 40.20 42.07 42.42 43.67 44.75 44.44
Self-Instruct 63.34 61.90 64.20 27.48 27.50 27.53 33.20 39.13 37.55 41.34 42.84 43.09
QA Generation 51.72 48.98 39.05 20.04 20.46 20.95 30.01 30.99 32.80 33.92 33.48 30.93
CQA Generation 67.00 67.01 67.80 27.30 24.96 25.94 28.08 30.94 31.88 40.79 40.97 41.87
Seed + External Data 62.30 62.81 63.50 25.72 25.60 29.34 34.82 35.46 37.06 40.95 41.29 43.30
PAQ (non-LLM) 65.23 66.55 66.72 24.37 25.87 27.48 24.03 25.65 29.89 37.88 39.36 41.36
RADA (Ours) 67.55 67.95 68.36 28.83 28.25 28.88 40.44 44.41 45.81 45.61 46.87 47.68

private data to train models) (Jeong et al., 2023).443

For this scenario, we select and use three specific444

domains from the MMLU dataset (Hendrycks et al.,445

2021) as it does not have direct training instances446

(aligned with our validation purpose), as well as447

using previous Covid QA, Policy QA, and Tech QA448

with no training samples available for this setup.449

External Resources for Retrieval We construct450

the external data store serving as a retrieval source451

by aggregating samples from other datasets. Specif-452

ically, for Covid QA, Policy QA, and Tech QA de-453

signed for open-domain Question Answering (QA),454

we use Natural Questions (NQ) (Kwiatkowski et al.,455

2019) and labeled subset (Xu et al., 2020) of MS456

MARCO (Nguyen et al., 2016), covering broad457

domains with questions asked on web search. For458

MMLU that targets multi-choice QA, we use its of-459

ficial auxiliary data collected from similar datasets.460

4.2 Baselines and Our Model461

We compare our approach to several LLM-powered462

data augmentation baselines to ensure a fair evalua-463

tion. Also, we include non-LLM-based approaches464

for reference purposes, contrasting them with LLM-465

based methods (See Appendix B for further dis-466

cussion and results on them). 1. Seed Data – It467

uses only the seed data for training models with-468

out extra data augmentation steps. 2. Augment w/469

Seed Data – It expands the seed data by generat-470

ing new data instances from the seed data samples,471

where samples for in-context learning and target–472

context selection are randomly picked. 3. Self-473

-Instruct – It (Wang et al., 2023a) aims to boot-474

strap new tasks only with limited seed examples,475

by incorporating the generated data instances in476

the data pool and leveraging them along with the477

seed data iteratively, where the samples in the pool478

are used to construct the in-context and target sam-479

ples. 4. CQA Generation – It (Samuel et al., 2023)480

generates a context and then, based on it, subse-481

quently generates a question-answer pair, where482

Table 2: Test-time data augmentation results on subdomains
of MMLU and domain-specific QA datasets. We use Llama2-
7B as the base model for MMLU and T5-base for others.

MMLU CS Biology Law Average

5-Shots w/ Training 32.00 47.74 64.46 48.07
External Data 48.00 54.52 66.12 56.21
RADA (Ours) 49.00 55.48 70.25 58.24

Domain-Specific QA Covid Policy Tech Average

External Data 54.02 19.32 12.97 28.77
PAQ (non-LLM) 61.22 25.03 19.83 35.36
RADA (Ours) 66.03 29.14 29.17 41.45

existing seed data samples are used for in-context 483

learning. Its variant (QA Generation) generates a 484

question-answer pair with in-context learning (Ye 485

et al., 2022). 5. Seed + External Data – It trains 486

the models with the seed data instances as well 487

as all the instances available in the external data 488

pool. 6. PAQ (non-LLM) It (Lewis et al., 2021) is 489

a state-of-the-art non-LLM-based method, which 490

selects passages, extracts answers, generates ques- 491

tions, and filters some of them, with conventional 492

NER tools and smaller LM. 7. RADA – This is our 493

model that generates samples by retrieving samples 494

(relevant to the seed data) from the external corpus 495

and using them for in-context and target context. 496

We note that, for the test-time data augmentation 497

scenario, since the samples having complete input- 498

output pairs are unavailable, we cannot compare 499

against the baselines requiring in-context examples; 500

yet, RADA can run with only the target context. 501

4.3 Implementation Details 502

We use Llama2-7B-Chat (Touvron et al., 2023) as 503

the basis for data augmentation across all methods. 504

For fine-tuning we use either T5-base (Raffel et al., 505

2020) or Llama2-7B, to measure the effectiveness 506

of different approaches directly without worrying 507

about data contamination as they are not trained 508

on any downstream tasks/datasets. For the num- 509

ber of data augmented, unless otherwise stated, we 510

produce samples amounting to 30 times that of the 511

seed data and train models with the seed and gener- 512

ated data. A retriever used to retrieve instances is 513
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Figure 3: Breakdown results of retrieved instances on three domain-specific QA
datasets, where samples in the retrieval pool are one of Biomedical, Computing, Film,
Finance, Law, and Music domains, as well as NQ (which covers general domains).

Domains Covid QA Tech QA

All 67.55 40.44

Biomedical 67.75 40.09
Computing 66.70 42.67

Table 3: Results of the hand-crafted
data store, selectively using only the
most suitable external domain as the
retrieval pool for domain-specific QA.

Policy QA
Seed Data
Augment w/ Seed Data
RADA (Ours)

Tech QA

Figure 4: Embedding-space visualization results of sam-
ples including the seed data and augmented data, with t-SNE.
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Figure 5: Results of ROUGE-L score distributions mea-
sured between the seed data and generated data on Tech QA.

DistilBert TAS-B (Hofstätter et al., 2021). We re-514

port results with the F1 score for Covid QA, Policy515

QA, and Tech QA datasets, and the accuracy for516

MMLU, following standard evaluation protocols.517

We provide prompts used to elicit data augmenta-518

tion and answer generation in Appendix A.519

5 Experimental Results520

Main Results We conduct experiments on two521

different data augmentation scenarios and report522

the results of training data augmentation in Table 12523

and the test-time augmentation results in Table 2524

(See Table 9 and Table 10 for standard deviations).525

As shown in them, RADA substantially outper-526

forms all baselines except for a few settings, while527

none of the baselines achieve statistically signif-528

icant results, demonstrating the effectiveness of529

RADA. In addition, two particular superior points530

of baselines are not an unexpected result, since the531

number of initial seed data (100) is already large.532

Also, the baseline of Augment w/ Seed Data is fur-533

ther coupled with a large number of external data534

samples (117,580), which may provide sufficient in-535

formation to handle the task, which is much larger536

than the data used for RADA (30,100). We note537

that the average score of the non-LLM-based PAQ538

approach is low, compared to LLM-based methods,539

which confirms the effectiveness of using LLMs540

for data augmentation perhaps thanks to their prior541

knowledge (See Appendix B for more results and542

discussion). Moreover, as shown in Table 2, RADA543

is highly effective in the challenging test-time data544

augmentation scenario (where no data is available545

for training), outperforming the model trained with546

2We observe that the performance of Llama2 even after
fine-tuning on the seed data and the augmented data is much
inferior to T5-base on domain-specific QA; thus, we report
results for them with T5 and further discuss it in Appendix B.

all the external data instances. This may be due to 547

our retrieval strategy, which results in generating 548

samples that are relevant to the test data. 549

Analysis of Retrieval To understand which data 550

instances are retrieved for data augmentation and 551

what are their effectiveness, we conduct a com- 552

prehensive analysis. Firstly, we visualize the cat- 553

egories of retrieved instances for domain-specific 554

QA in Figure 3, which shows that (mostly) only 555

the relevant instances are retrieved and used for 556

data augmentation for each specific task. For exam- 557

ple, the Biomedical domain is the dominant field 558

of retrieval source for Covid QA; meanwhile, the 559

Computing domain is for Tech QA. In addition, to 560

see the contribution of relevant retrieval, we restrict 561

the retrieval domain to the one that is the most rele- 562

vant to the given specific dataset. For example, we 563

use only the Biomedical domain for Covid QA and 564

the Computing domain for Tech QA. As shown in 565

Table 3, we observe that when manipulating the re- 566

trieval pool, the performance further increases (as 567

instances from irrelevant domains are not retrieved), 568

which reaffirms the effectiveness of retrieval and 569

its room for improvement for data augmentation. 570

Analysis of Augmented Data Diversity A no- 571

table advantage of RADA is that it intuitively can 572

generate more diverse samples than what could be 573

achieved by existing data augmentation approaches 574

that use the seed data alone, by augmenting this pro- 575

cess with the retrieval from external data samples. 576

To measure this ability, we visualize the embedding 577

space of the augmented samples across different 578

models in Figure 4 and report their lexical overlaps 579

in Figure 5. Specifically, for the visualization, we 580

first embed the generated instances with Sentence- 581

BERT (Reimers and Gurevych, 2019a) into the 582
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Figure 6: Results of varying the augmentation size on domain-specific QA, where
we increase the size by factors of 1, 3, 5, 10, 30, and 100 relative to the seed data size.

Methods Tech QA

RADA (Ours) 44.41
w/o In-context Retriever 41.24
w/o Target-context Retriever 34.42
w/o All Retrievers 30.38

Table 4: Ablation study of the proposed
RADA on the Tech QA dataset.

latent space and project them with t-SNE (van der583

Maaten and Hinton, 2008). From this, we observe584

that, unlike Augment w/ Seed Data whose gener-585

ated samples are close to the seed data, the samples586

generated from RADA are broadly dispersed across587

the space. Further, we measure the max ROUGE-L588

scores between the seed instances and the gener-589

ated instances where lower scores indicate higher590

diversity. As shown in Figure 5, RADA generates591

distinct samples to the seed data thanks to retriev-592

ing and utilizing the external contexts beyond the593

seed data, unlike baselines that rely solely on it.594

Analysis of Augmented Data Size To see how595

the performance changes as a function of the size596

of augmented data samples, we vary the augmenta-597

tion size relative to the seed data size by a factor of598

1, 3, 5, and up to 100 times and report the results in599

Figure 63. Firstly, when the amount of augmented600

data is very small, baseline performances are com-601

parable with RADA since the data samples that can602

be generated from the seed data alone can have a603

certain diversity level as we augment only a small604

amount. Yet, as the size of augmentation expands,605

RADA consistently outperforms baselines, show-606

casing its ability to generate broader and richer607

samples through retrieval augmentation, while the608

performance saturates after a 30-time increase.609

Ablation Study To see how each component of610

RADA affects the overall performance, we conduct611

an ablation study where we replace our in-context612

and target-context retrieval modules with random613

retrievals. As shown in Table 4, we observe that,614

without retrieving relevant instances, the perfor-615

mances drop substantially since irrelevant samples616

(to the target tasks/datasets) are used to construct617

the in-context examples and target context, leading618

to generating the samples not useful for them. Fur-619

thermore, the target-context retriever is particularly620

important for data augmentation, since this context621

is used to directly derive the instances for training.622

Analysis of Using Different LLMs Finally, we623

conduct an auxiliary analysis to see whether the624

3Due to the cost of running Self-Instruct, we are not able
to generate its samples for the 100 times augmentation-level.

Table 5: Results of another LLM (ChatGPT) for data aug-
mentation on domain-specific QA with seed examples of 10.

Covid Policy Tech Average

Self-Instruct 57.86 26.20 33.42 39.16
CQA Generation 65.64 27.20 34.16 42.33

RADA (Ours) 67.19 28.59 36.17 43.98

superiority of RADA is consistent across different 625

LLMs, compared to existing baselines. In partic- 626

ular, we use ChatGPT 3.5 (released on June 13, 627

2023) as the basis model for data augmentation, 628

and report the results in Table 5. From this, we 629

observe that RADA significantly outperforms base- 630

lines with another LLM, demonstrating its robust- 631

ness across different LLMs for data augmentation. 632

6 Conclusion 633

In this work, we pointed out the limitation of exist- 634

ing data augmentation approaches that use the seed 635

data alone for low-resource domain tasks, leading 636

to generating suboptimal and less diverse instances, 637

despite the existence of plenty of external samples 638

available. Inspired by this, we proposed the LLM- 639

powered Retrieval-Augmented Data Augmentation 640

(RADA) framework, which augments the seed data 641

by leveraging the samples retrieved from the exter- 642

nal data store based on their relevance with the seed 643

data, during data augmentation. Specifically, the in- 644

put to LLMs for data augmentation can be viewed 645

from two different angles of in-context examples 646

and task-solving context, and we constructed them 647

through samples from within and across the seed 648

data and the retrieved data. Through extensive eval- 649

uation results on multiple datasets with training and 650

test-time data augmentation scenarios, we showed 651

that RADA outperforms strong LLM-powered data 652

augmentation baselines substantially. In addition, 653

our findings reveal that the data samples gener- 654

ated from our approach are much more diverse 655

against baselines while being relevant to the seed 656

data, due to leveraging retrieval for data augmenta- 657

tion. We believe that RADA will pave the way for 658

enhancing the model performances on realistic low- 659

resource domain-specific tasks, which have arisen 660

as very important problems recently due to the lim- 661

ited availability and privacy concerns of data. 662
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Limitations663

In this section, we faithfully discuss some remain-664

ing room for improvements to our RADA frame-665

work. First of all, the effectiveness of our retrieval-666

augmentation approach (by its nature) depends on667

the quality and relevance of the external data store.668

Thus, the performance of RADA may degenerate669

if the retrieval source is not truly aligned with our670

seed data, and we leave exploring this new setting671

as future work. Also, investigating the scenario of672

continuously updating the retrieval pool over time673

would be interesting for future work as well. On674

the other hand, due to the heavy cost of fine-tuning675

LLMs, data sample efficiency (i.e., reducing the676

amount of samples to train while maintaining the677

model performance) becomes an important agenda.678

While we do have some preliminary results on fil-679

tering augmented samples in Appendix B, it would680

be interesting to developing more on this direction.681

Ethics Statement682

While our RADA is superior in generating more683

diverse and high-quality samples (compared to ex-684

isting data augmentation approaches), its perfor-685

mance is not flawless: the retriever might retrieve686

offensive or harmful instances for data augmenta-687

tion, and the generator might produce plausible yet688

factually incorrect instances. Therefore, it may be689

carefully used for mission-critical domains, such as690

biomedical or legal fields, (perhaps with the help of691

domain-experts during the augmentation process).692
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Figure 7: Results of ROUGE-L score distributions mea-
sured between the seed data and generated data on Covid QA.

A Additional Experimental Setups1148

Fine-tuning Details We provide more details on1149

how to fine-tune models on the seed and augmented1150

data samples. Firstly, for T5-base, we train it over1151

5 epochs with a batch size of 8 and a learning rate1152

of 3×10−5, selecting the best epoch to report the1153

performance with inference. For Llama-7B, to train1154

it with our computational resources available, we1155

use the QLORA (Dettmers et al., 2023) technique,1156

on which we use the epoch size of 30, the batch1157

size of 1, and the learning rate of 2×10−4. Lastly,1158

we report the fine-tuning results with three runs.1159

Prompts The prompt used to elicit the data aug-1160

mentation is provided in Table 12. For the domain-1161

specific datasets including Covid QA, Policy QA,1162

and Tech QA, we use the following prompt to gen-1163

erate the answer: "Context: { } Question: { } An-1164

swer: ". For the MMLU dataset, we use the fol-1165

lowing prompt: "Question: { } Answer Options: {1166

} Answer:" where 5-shot examples prepended are1167

the same as the one in the official code repository4.1168

Computational Resources and Time We train1169

and inference all baselines and our model by using1170

one of the TITAN RTX, NVIDIA GeForce RTX1171

3080, NVIDIA GeForce RTX 3090, NVIDIA RTX1172

A4000, NVIDIA RTX A5000, and Quadro RTX1173

8000 GPUs, depending on their availability at the1174

time of run. The time required for training RADA1175

ranges from a few minutes to about one and half1176

day, which also depends on the number of the aug-1177

mented data used for model fine-tuning.1178

Deep Learning Libraries In our experiments,1179

we utilize the deep learning libraries as follows:1180

PyTorch (Paszke et al., 2019), Transformers (Wolf1181

et al., 2020), SentenceTransformers (Reimers and1182

Gurevych, 2019b), and BEIR (Thakur et al., 2021).1183

We will release the specific requirements for repro-1184

ducing our results, upon releasing the code.1185

4https://github.com/hendrycks/test
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Figure 8: Results of ROUGE-L score distributions mea-
sured between the seed data and generated data on Policy QA.

Table 6: The average ROUGE-scores between the original
data samples and the augmented data samples.

Covid Policy Tech

Augment w/ Seed Data 0.34 0.29 0.39
Self-Instruct 0.33 0.28 0.32

RADA (Ours) 0.30 0.25 0.24

Table 7: Training time results on Covid QA, where we use T5
and Llama as the base for fine-tuning on augmented data.

# of seed Bases 0-shot 5-shot Seed RADA (Ours)

10 T5 N/A N/A 53.94 67.49
Llama2 12.79 16.43 50.62 56.50

30 T5 N/A N/A 66.50 68.15
Llama2 12.79 16.43 55.48 53.62

B Additional Experimental Results 1186

More Analysis of Data Diversity In addition to 1187

the result of ROUGE-L score distributions on Tech 1188

QA in Figure 5, we provide results on Covid QA 1189

and Policy QA in Figure 7 and Figure 8, respec- 1190

tively. From this, we consistently observe that the 1191

proposed RADA generates diverse instances dur- 1192

ing data augmentation, compared to other baselines. 1193

In addition, we provide more quantitative results 1194

reporting the average of ROUGE-scores between 1195

the original data samples and the augmented data 1196

samples in Table 6, reaffirming the advantage of 1197

our RADA in generating more diverse samples. 1198

Results of Llama on Domain-Specific QA Here 1199

we discuss the training data augmentation results of 1200

Llama on domain-specific QA data (such as Covid 1201

QA). Specifically, in Table 7, we report its 0-shot 1202

and 5-shot performances, as well as its fine-tuning 1203

performances on seed data and augmented data. As 1204

shown in Table 7, despite the large number of pa- 1205

rameters that Llama2-7B has (which is ten times 1206

larger than T5), we observe that Llama2 is inferior 1207

to T5. We conjecture that this may be because the 1208

general massive corpus used to pre-train Llama2 1209

has little (to no) overlap or relevance with instances 1210

in domain-specific tasks. In other words, eliciting 1211

the domain-specific ability of Llama2 with fine- 1212

tuning may be largely suboptimal, when it does 1213

not have internalized knowledge about its corre- 1214
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Table 8: Results of various filtering mechanisms on domain-specific QA datasets with training data augmentation settings.

Covid QA Policy QA Tech QA Average

Methods 10 30 100 10 30 100 10 30 100 10 30 100

RADA (Ours) 67.49 68.15 68.57 29.23 28.49 29.18 40.81 44.37 46.93 45.84 47.00 48.23
w/ ROUGE-based Filtering 66.21 67.25 66.84 28.35 28.09 28.31 37.75 44.64 46.74 44.10 46.66 47.30
w/ Embedding-based Filtering 67.19 67.67 67.27 28.62 28.13 28.65 40.02 44.64 46.74 45.27 46.82 47.55

w/o Answer Filtering 66.78 66.65 67.09 28.78 28.44 29.12 40.55 42.43 42.56 45.37 45.84 46.26

Table 9: Training data augmentation results where we report the standard deviations in parentheses and the statistically significant
results (under the t-test of p-value < 0.05) in bold.

Covid QA Policy QA Tech QA

Methods 10 30 100 10 30 100 10 30 100

Seed Data 57.07 (2.76) 66.93 (0.38) 68.97 (0.46) 6.25 (1.21) 16.26 (3.46) 28.09 (0.49) 12.28 (2.37) 17.59 (0.48) 33.90 (2.34)

Augment w/ Seed Data 62.74 (1.41) 64.69 (0.01) 65.01 (0.51) 28.08 (0.41) 27.49 (0.47) 25.89 (0.16) 40.20 (0.92) 42.07 (1.52) 42.42 (1.01)
Self-Instruct 63.34 (1.58) 61.90 (0.18) 64.20 (0.24) 27.48 (0.53) 27.50 (0.13) 27.53 (0.27) 33.20 (0.75) 39.13 (0.76) 37.55 (0.53)
QA Generation 51.72 (1.15) 48.98 (1.82) 39.05 (1.91) 20.04 (0.77) 20.46 (0.55) 20.95 (0.22) 30.01 (0.13) 30.99 (0.23) 32.80 (0.78)
CQA Generation 67.00 (0.32) 67.01 (0.18) 67.80 (0.17) 27.30 (0.26) 24.96 (0.17) 25.94 (0.70) 28.08 (0.92) 30.94 (0.68) 31.88 (0.95)
Seed + External Data 62.30 (0.44) 62.81 (0.28) 63.50 (0.55) 25.72 (0.41) 25.60 (1.07) 29.34 (0.12) 34.82 (0.21) 35.46 (0.94) 37.06 (0.02)
PAQ (non-LLM) 65.23 (0.66) 66.55 (0.24) 66.72 (0.47) 24.37 (0.18) 25.87 (0.60) 27.48 (0.46) 24.03 (0.48) 25.65 (1.39) 29.89 (0.35)

RADA (Ours) 67.55 (0.15) 67.95 (0.20) 68.36 (0.25) 28.83 (0.37) 28.25 (0.21) 28.88 (0.50) 40.44 (0.53) 44.41 (0.45) 45.81 (0.97)

Table 10: Test-time data augmentation results where we report
the standard deviations in parentheses and the statistically
significant results (under the t-test of p-value < 0.05) in bold.

Domain-Specific QA Covid Policy Tech

External Data 54.02 (0.42) 19.32 (0.11) 12.97 (0.52)
PAQ (non-LLM) 61.22 (0.22) 25.03 (0.34) 19.83 (0.83)

RADA (Ours) 66.03 (0.15) 29.14 (0.18) 29.17 (0.98)

sponding domain-specific tasks. In addition, this1215

result may further highlight the fact that not all1216

the larger models perform always better than the1217

smaller models in low-resource settings, which1218

gives us a promise to take advantage of computa-1219

tional efficiency, especially when dealing with ex-1220

treme domain-specific tasks, or that specific LLMs1221

may be required to handle each specific domain.1222

Results with Filtering We try various filtering1223

approaches on the augmented data to fine-tune mod-1224

els with only the samples of high quality. Specifi-1225

cally, to further promote diversity in the generated1226

samples from our RADA, we filter samples if they1227

are similar to the already generated samples, based1228

on their ROUGE scores or their embedding-level1229

distances. Then, as shown in Table 8, these filtering1230

techniques do not improve the model performance.1231

This may further strengthen our claim that the aug-1232

mented instances from RADA are already very di-1233

verse but also relevant to the seed data, which does1234

not necessitate additional filtering mechanisms. On1235

the other hand, if we relax the assumption that the1236

passage should include the answer to the question1237

for domain-specific QA, and subsequently do not1238

apply the filtering strategy (checking the inclusive-1239

ness), the performance drops slightly in Table 8.1240

Table 11: Comparison results of our LLM-powered RADA
approach against non-LLM-based methods on the challenging
TechQA dataset, with the training time augmentation scenario.
We report the standard deviations in parentheses and the sta-
tistically significant results (under the t-test) in bold.

10 30 100

PAQ 24.03 (0.48) 25.65 (1.39) 29.89 (0.35)
GENIUS 12.28 (2.37) 26.90 (0.50) 43.55 (0.45)
EDA 38.27 (0.53) 41.93 (0.26) 45.21 (0.64)
AEDA 38.86 (0.30) 41.98 (0.30) 45.24 (0.16)

RADA (Ours) 40.44 (0.53) 44.41 (0.45) 45.81 (0.97)

More Results of Non-LLM-based Baselines It 1241

is worth noting that making a comparison of LLM- 1242

based approaches (including our RADA) over non- 1243

LLM-based methods is unfair since different LMs 1244

have different capabilities in generating outputs, 1245

which leads to far different quality of augmented 1246

samples. Therefore, to ensure a fair comparison 1247

across all data augmentation approaches, we set 1248

Llama2 as the basis for data augmentation. Nev- 1249

ertheless, to see the efficacy of non-LLM-based 1250

approaches, we compare our RADA against sev- 1251

eral recent and popular (non-LLM-based) methods, 1252

namely PAQ (Lewis et al., 2021), GENIUS (Guo 1253

et al., 2022), EDA (Wei and Zou, 2019a), and 1254

AEDA (Karimi et al., 2021), on the most challeng- 1255

ing dataset (TechQA) that we observe in Table 1. 1256

Then, we report the results in Table 11. From this, 1257

we observe that RADA significantly outperforms 1258

previous non-LLM-based methods, demonstrating 1259

the effectiveness of using the LLM-based approach 1260

for data augmentation under low-resource settings, 1261

which may be due to LLM’s prior knowledge. 1262

Quantitative Analysis In Table 13, 14, 15, we 1263

provide examples of the augmented instances 1264
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across different methods on Covid QA, Policy QA,1265

and Tech QA. A key finding from these results is1266

that the existing approach that uses only the seed1267

data results in a limited diversity of generated sam-1268

ples, unlike our RADA which generates distinct yet1269

contextually coherent samples with the seed data,1270

thanks to the retrieval of relevant external samples.1271
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Table 12: A list of prompts that we use for data augmentation with the proposed RADA framework. It is worth noting that the
variable inside the parentheses {} is replaced with its actual string (e.g., context, question, answer options, and answer). Also,
the last sentence of the prompt represents the target context, which is used as the main source of information to generate the
augmented instance. For MMLU, we use the combinations of Version 1 and Version 2 for data augmentation.

Types Prompts

Domain-
specific QA

I want you to act as a question and answer generator. Your goal is to create an extractive
question-answer pair based on a given context. The answer to the question must be a
specific span from the given context.
Context: {context 1}
Question: {question 1}
Answer: {answer 1}
Context: {context 2}
Question: {question 2}
Answer: {answer 2}
Context: {context 3}
Question: {question 3}
Answer: {answer 3}
Context: {context}

MMLU
(Version 1)

I want you to act as an answer options and answer generator. Your goal is to create four
answer options and the answer pair based on a given question. The answer must be one of
the generated answer options.
Question: {question 1}
Answer Options: {answer options 1}
Answer: {answer 1}
Question: {question 2}
Answer Options: {answer options 2}
Answer: {answer 2}
Question: {question 3}
Answer Options: {answer options 3}
Answer: {answer 3}
Question: {question}

MMLU
(Version 2)

I want you to act as a question and answer generator. Your goal is to create an extractive
question-answer pair based on the given answer options. The answer to the question must
be selected from the given answer options.
Answer Options: {answer options 1}
Question: {question 1}
Answer: {answer 1}
Answer Options: {answer options 2}
Question: {question 2}
Answer: {answer 2}
Answer Options: {answer options 3}
Question: {question 3}
Answer: {answer 3}
Answer Options: {answer options}
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Table 13: The example question-answer pairs generated from different models on Covid QA.

Types Samples

Augment
w/ Seed Data

Context: polymerase chain reaction testing, the time lag between hospitalization and
reporting was longer for early cases compared with that of more recent cases. Among the
seven locations reporting importation, the total volume of inbound passengers from China
was m = 63.1 million per year in 2017 [9] , of which 100q = 2.1% were from Wuhan [10] ,
a home of n = 19.0 million people as the catchment population of Wuhan airport.
Generated Question: What was the total volume of inbound passengers from China to
the seven locations reporting importation in 2017?
Generated Answer: 63.1 million per year

Self-Instruct

Context: polymerase chain reaction testing, the time lag between hospitalization and
reporting was longer for early cases compared with that of more recent cases. Among the
seven locations reporting importation, the total volume of inbound passengers from China
was m = 63.1 million per year in 2017 [9] , of which 100q = 2.1% were from Wuhan [10] ,
a home of n = 19.0 million people as the catchment population of Wuhan airport.
Generated Question: What is the total volume of inbound passengers from China?
Generated Answer: m = 63.1 million per year in 2017

RADA (Ours)

Context: MYTH: The flu is just a bad cold. Influenza may cause bad cold symptoms,
like sore throat, runny nose, sneezing, hoarseness, and cough. But in the United States
alone, 36,000 people die and more than 200,000 are hospitalized each year because of the
flu. During the 2017/18 flu season, flu activity has significantly increased throughout the
majority of the country with the A(H3N2) viruses predominating so far, according to the
Centers for Disease Control (CDC).
Generated Question: What are the consequences of getting the flu?
Generated Answer: 36,000 people die and more than 200,000 are hospitalized each year
because of the flu.

Table 14: The example question-answer pairs generated from different models on Policy QA.

Types Samples

Augment
w/ Seed Data

Context: IP Addresses. We use your IP address to help diagnose problems with our
server, and to administer our Web site. Your IP address is used to help identify you and,
in the case of the Coffee Review Marketplace, your shopping cart and to gather broad
demographic information in the interest of improving our site and service.
Generated Question: How does the company use IP addresses?
Generated Answer: to help diagnose problems with our server, and to administer our
Web site.

Self-Instruct

Context: IP Addresses. We use your IP address to help diagnose problems with our
server, and to administer our Web site. Your IP address is used to help identify you and,
in the case of the Coffee Review Marketplace, your shopping cart and to gather broad
demographic information in the interest of improving our site and service.
Generated Question: What information does the company use IP addresses for?
Generated Answer: to help diagnose problems with our server, and to administer our
Web site. Your IP address is used to help identify you and, in the case of the Coffee
Review Marketplace, your shopping cart and to gather broad demographic information in
the interest of improving our site and service.

RADA (Ours)

Context: The 1998 Data Protection Act sets the rules for how UK businesses can gather,
store and use people confidential data. The Act is organised around eight principles of
data protection. They include the idea that personal data should be obtained and processed
fairly and lawfully, that only the right data should be used, that data should be accurate
and so on. Principle Seven covers data security. It states:
Generated Question: What is the main purpose of the 1998 Data Protection Act?
Generated Answer: The 1998 Data Protection Act sets the rules for how UK businesses
can gather, store and use people confidential data.
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Table 15: The example question-answer pairs generated from different models on Tech QA.

Types Samples

Augment
w/ Seed Data

Context: VULNERABILITY DETAILS

CVEID: CVE-2015-1920 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-
1920]
DESCRIPTION: WebSphere Application Server could allow a remote attacker to execute
arbitrary code by connecting to a management port and executing a specific sequence of
instructions.
CVSS Base Score: 9.3
CVSS Temporal Score: See https://exchange.xforce.ibmcloud.com/vulnerabilities/102404
[https://exchange.xforce.ibmcloud.com/vulnerabilities/102404] for the current score
CVSS Environmental Score*: Undefined
CVSS Vector: (AV:N/AC:M/Au:N/C:C/I:C/A:C)
Generated Question: What is the CVSS Base Score of the vulnerability in IBM Web-
Sphere Application Server?
Generated Answer: The CVSS Base Score of the vulnerability in IBM WebSphere
Application Server is 9.3.

Self-Instruct

Context: VULNERABILITY DETAILS

CVEID: CVE-2015-1920 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-
1920]
DESCRIPTION: WebSphere Application Server could allow a remote attacker to execute
arbitrary code by connecting to a management port and executing a specific sequence of
instructions.
CVSS Base Score: 9.3
CVSS Temporal Score: See https://exchange.xforce.ibmcloud.com/vulnerabilities/102404
[https://exchange.xforce.ibmcloud.com/vulnerabilities/102404] for the current score
CVSS Environmental Score*: Undefined
CVSS Vector: (AV:N/AC:M/Au:N/C:C/I:C/A:C)
Generated Question: What is the CVSS score for the vulnerability in WebSphere
Application Server?
Generated Answer: CVSS Base Score 9.3.

RADA (Ours)

Context: The Wii Homebrew Applications (such as The Homebrew Channel, Emulators,
Games, Media players, etc.), USB Loader GX’s NAND emulation feature and DIOS
MIOS (Lite) require a FAT32 partition format. You can use a FAT32 SD/SDHC card for
that purpose and set your USB hard drive as NTFS or Ext partition format.
Generated Question: What partition format is required for certain Wii Homebrew
applications?
Generated Answer: FAT32
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