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Abstract

The carbon footprint of computing is increasingly shaped by software, yet existing
programming tools and large language models (LLMs) remain largely energy-blind.
We propose energy-guided code generation, a method that reranks LLM-generated
programs based on direct energy measurements using CodeCarbon while ensuring
functional correctness. Evaluating a benchmark of algorithmic and data-processing
tasks, we show that energy-guided selection yields statistically significant energy
reductions. It reduces consumption by an average of 44.69 % compared to unguided
Top-1 candidates and by an additional 1.86% compared to the fastest (Best-Time)
implementations, all without runtime penalties or loss of accuracy. These results
provide the first conclusive evidence that LLMs produce diverse implementations
with substantial variation in energy use, and that energy-aware reranking can
consistently surface verifiably greener solutions. By embedding energy as a first-
class optimization signal in the act of code generation, this work establishes a
foundation for green-by-design software generation systems, where sustainability
is not an afterthought but a default property of programming tools.

1 Introduction

The carbon footprint of computing has become a pressing societal concern. Data centers already ac-
count for an estimated 1- 2% of global electricity demand [1]], a figure expected to grow as workloads
for cloud services, artificial intelligence, and edge computing continue to expand. While hardware
innovations such as energy-efficient processors, accelerators, and cooling systems have improved
energy proportionality [2], software remains a critical determinant of actual energy consumption.
Empirical studies show that different implementations of the same algorithm can vary in energy use
by more than an order of magnitude [3}4]. Even modest efficiency improvements, when scaled across
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billions of devices and deployments, could translate into substantial reductions in electricity use and
carbon emissions.

Despite this urgency, today’s software creation tools remain fundamentally energy-blind. Compilers
optimize primarily for performance and binary size, with energy rarely treated as a first-class objective
[S]. Profiling tools such as Intel RAPL [6] or external meters can measure consumption, but they
operate only after code has been written. Proactive aids such as PEEK [7] provide energy hints
during development, but cannot automatically generate energy-efficient code. Meanwhile, large
language models (LLMs) for code, such as Codex [8]], AlphaCode [9], and Code Llama [[10], have
transformed programming practice, yet they are optimized almost exclusively for syntactic correctness
and functional accuracy. In the broader sustainable computing landscape, researchers have treated
energy efficiency as a non-functional requirement [[11], systematically mapped the field of green
software [[12]], and explored carbon-aware scheduling at the systems level [13]]. However, no prior
work has conditioned the generation of source code itself on energy efficiency.

Our main idea is to inject energy-awareness into the earliest stage of software creation: the moment
of code generation. We propose energy-guided code generation, where an LLM produces multiple
candidate programs, correctness is enforced through automated testing, and the energy consumption
of each valid candidate is measured directly. For measurement, we use CodeCarbon, a software-based
emissions tracker that attributes CPU, memory, and I/O utilization to energy (kWh) and carbon
footprint (CO5 kg). This allows us to compare the relative efficiency of implementations without
requiring specialized hardware, providing a practical foundation for green software research.

Our approach is guided by three principles: (i) practicality — energy feedback must be lightweight
and usable on standard developer hardware, (ii) correctness-first — only candidates that pass all tests
are considered, with energy never overriding functional correctness, and (iii) generality — the method
should apply across diverse programming tasks. Concretely, this paper makes three contributions:
(1) we introduce energy-guided reranking of LLM-generated Python programs, using direct energy
measurement with CodeCarbon to select efficient implementations; (2) we evaluate this approach
on a benchmark of algorithmic, numeric, string, and I/O tasks, demonstrating that LLMs produce a
diverse range of implementations with significant variation in energy consumption; and (3) we show
that energy-guided selection consistently reduces estimated energy use without sacrificing correctness
or runtime performance, establishing a foundation for green-by-design software generation systems.

By embedding energy signals directly into the code generation process, our work closes a missing
layer in the sustainable computing stack. Whereas prior approaches have focused on measuring,
compiling, or scheduling software for efficiency, we intervene earlier: shaping the code itself as it is
created. This establishes a foundation for a new class of tools — green-by-design software generation
systems — in which energy is no longer an afterthought, but a first-class optimization objective from
the very first line of code.

2 Background and Related Work

The relationship between software and energy spans the full stack, from low-level power measurement
to system-wide, carbon-aware scheduling. As computing demand grows, data centers constitute
a nontrivial share of global electricity use [[I]. Hardware advances have pushed toward energy-
proportional operation [2], yet software choices remain decisive for actual energy consumption. Prior
work therefore examines energy at multiple layers: measuring and modeling software energy, opti-
mizing compilers and run-time scheduling, leveraging generative models for code, and orchestrating
workloads with sustainability in mind.

2.1 Software Energy Analysis and Optimization

Foundational studies showed that software-level characteristics (instruction counts, memory and I/O
behavior) correlate with power, enabling analytical estimation [5]. Surveys consolidate processor-
level estimation techniques and their trade-offs [[14]]. Building on these ideas, static and LLVM-based
analyses aim for energy transparency, offering fine-grained estimates for embedded and general-
purpose programs [3l 4]. On mobile platforms, program-analysis techniques estimate app energy
[15] and support ranking/optimization of Android applications [[16} [17]], with recent evidence that
API-level design choices strongly affect consumption [18]]. Developer-facing aids such as PEEK



surface energy hints during development [[7]. For runtime validation, node-level comparisons and
platform interfaces remain gold standards despite granularity limits [6]].

Beyond measurement, the compiler and systems communities have explored transformations that
reduce energy under performance constraints. In embedded and real-time contexts, energy-aware
scheduling and feedback-driven compilation demonstrate tangible savings [[19} [20]. Classic code-
generation problems have been revisited through an energy lens—for example, global register
allocation [21]. At higher levels of timing control, CPU- and task-level policies target energy in
parallel real-time workloads [22]]. These approaches remain largely architecture- or domain-specific,
and crucially act on code after it has been authored.

2.2 Generative Models and Sustainable Computing

While compilers optimize existing programs, LLMs increasingly author code. Systems such as
Codex, AlphaCode, and Code Llama have set new baselines for synthesis, completion, and debugging
[8H10]. Alignment methods like reinforcement learning from human feedback (RLHF) steer outputs
toward developer intent [23]], and empirical studies/surveys assess robustness and capability trends
[24] 25]]. Notably, current objectives emphasize correctness and utility rather than energy efficiency.

At the systems layer, sustainability research focuses on when and where computation should run.
Carbon-aware strategies shift or place workloads to coincide with cleaner energy supply [26), [13].
From a software-engineering perspective, energy has been framed as a first-class concern and mapped
systematically across practices and evidence [[11,[12]]. These directions demonstrate feasibility and
impact, but they typically intervene at deployment or runtime rather than at code creation.

2.3 Research Gap

Across measurement, compilation, and system scheduling, energy is usually considered after code
exists. To our knowledge, no prior work directly integrates energy signals into the act of code
generation itself. We address this gap by introducing energy-conditioned decoding, embedding
energy awareness into the generative process of LLMs so that sustainability considerations influence
the software artifact from the moment it is written.

3 Methodology

Our methodology follows the natural workflow of a developer: generating code, checking its correct-
ness, evaluating efficiency, and finally deciding which implementation to keep. We adapt this process
to the context of LLMs, building a pipeline that begins with diverse program generation, filters out
invalid outputs, measures the energy consumption of surviving candidates, and reranks them to select
the most efficient. Figure[T|shows an overview of our study pipeline, from candidate generation and
correctness checking, through energy-guided selection, to final evaluation and comparison against
baseline methods. Below, we describe each component in detail.

3.1 Candidate Generation and Correctness Filtering

The pipeline begins with code generation. We use Code Llama-Instruct (70B) as our primary model,
chosen for its open availability and feasibility to run on commodity hardware. Rather than accepting
the first output, we deliberately sample multiple candidates per task using temperature and nucleus
sampling. This strategy encourages structural diversity, leading to a range of algorithmic styles—for
example, explicit loops versus comprehensions, or vectorized NumPy implementations versus scalar
code. Such diversity is essential, since energy efficiency depends on algorithmic structure, not just
syntactic correctness.

Generated programs are not immediately trusted. To ensure that only valid solutions advance, each
candidate is subjected to a suite of lightweight correctness tests. These tests are designed to be fast
but decisive, typically completing in milliseconds, and cover both unit and small randomized cases.
For example, sorting outputs are compared against Python’s built-in sorted, matrix multiplication is
checked against NumPy on small matrices, and histogram results are validated to ensure bin totals
equal the input length. Candidates that fail a test, exceed a simple timeout, or produce inconsistent
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Figure 1: Overview of the study pipeline.

outputs across repeated runs are discarded. By separating correctness from efficiency, we guarantee
that subsequent energy comparisons are meaningful and fair.

3.2 Energy Measurement and Reranking

Once a pool of correct implementations is available, the next step is to evaluate their efficiency.
We treat energy consumption as a measurable property of software, akin to runtime performance.
Measurements are obtained using CodeCarbon, a process-level energy tracker that estimates CPU,
memory, and I/O power use and attributes it to carbon footprint. While CodeCarbon’s estimates are
model-based rather than direct hardware readings, they are reproducible, lightweight, and sufficient for
comparing candidates relative to one another. This makes it possible to profile many implementations
per task without specialized equipment.

With energy values in hand, candidates are reranked. The guiding rule is straightforward: among all
correct implementations, select the one with the lowest measured energy. In the case of ties, we use
wall-clock runtime as a secondary criterion, preferring the faster program. This procedure mirrors
how compilers and developers often select among competing implementations, but here the primary
signal is energy rather than speed. Importantly, correctness is always enforced as a hard constraint:
no matter how efficient, an incorrect candidate is never considered. The result is an energy-guided
choice that reflects both functional validity and efficiency.

3.3 Baselines and Evaluation Protocol

To contextualize results, we compare energy-guided selection against two baselines. The Top-1
baseline reflects the default use of LLMs: simply take the first correct program returned under
standard decoding, without reranking. The Best-time baseline selects the fastest correct implementa-
tion, regardless of energy, allowing us to contrast speed versus efficiency. We evaluate across ten
benchmark tasks that span numeric computation, sorting, graph traversal, and I/O. For each, we ask
whether incorporating energy into the selection process changes which programs we would choose,
and whether those choices translate into measurable improvements in efficiency.



4 Experiment

To evaluate our methodology in a controlled and reproducible way, we conducted experiments on
a single workstation with carefully documented hardware and software configurations. We also
define our measurement protocol, benchmark suite, and artifact release strategy. A summary of key
experimental parameters is given in Table I]

4.1 Hardware and Software Environment

All experiments were run on a Mac Studio equipped with an Apple M2 Ultra processor (24-core CPU,
60-core GPU, 32-core Neural Engine) and 128 GB of unified memory, running macOS Sequoia
(15.5). Candidate programs were executed on the CPU only; accelerators were not used. Dynamic
frequency scaling was left at system defaults, while background processes were minimized to reduce
interference.

We used Python 3.10 as the target language, with dependencies limited to the standard library
and NumPy (v1.26). Energy measurement was performed with CodeCarbon v2.2.3. To ensure
consistent results, we enforced single-threaded execution by setting OPENBLAS_NUM_THREADS=1,
MKL_NUM_THREADS=1, and OMP_NUM_THREADS=1. Candidates were executed in isolated processes
to guarantee clean attribution of resources.

4.2 Measurement Protocol and Benchmark Tasks

Energy consumption was estimated using CodeCarbon in process-level mode, with a sampling interval
of 0.1 seconds to ensure stable estimates even for short-running programs. Each surviving candidate
was executed five times for each input scale on fixed inputs, and the median energy consumption
across repetitions was reported. CodeCarbon provides both energy (kWh) and carbon emissions
(CO2 kg), though in this study we focus on relative energy comparisons between candidates.

We evaluated ten representative Python tasks covering numeric computation, sorting, string processing,
graph traversal, and I/O. These include array sum, prefix sum, matrix multiplication (with and without
NumPy), top-k selection, stable sorting, histogram (256 bins), string deduplication, JSON parsing
and filtering, breadth-first search (BFS), and a CSV extract-transform-load (ETL) pipeline. Each
task was tested at three input scales (10%, 10°, 10% elements where feasible) to expose asymptotic
differences. Correctness was enforced only on small inputs (tens to hundreds of elements), while
energy measurements were performed on the larger scales.

4.3 Reproducibility

To support reproducibility, we log all measurement results in structured CSV files containing: task,
input size, candidate identifier, source hash, correctness status, runtime, energy (kWh), and CO»
emissions. Source hashes are assigned only to programs that successfully pass the correctness filtering
stage, ensuring that all reported measurements correspond to valid implementations. All generated
programs are also preserved in their original Python source files, ensuring that no information is lost.
Our artifact release will include all prompts, generated programs, test suites, and measurement scripts,
enabling re-execution of the pipeline. To support reproducibility, anonymized code, data, and results
are available at https://github.com/Yi-Xia-2010/Agent4Sci--energy-1llm-study.

5 Results

5.1 Energy Efficiency Gains

Our energy-guided selection process produced statistically significant improvements in energy
efficiency across the benchmark tasks. Table [2[ summarizes the aggregate performance. Relative to
the Top-1 baseline—the first correct program returned under standard decoding—our method achieved
an average energy reduction of 44.69% (median: 39.05%). These savings are not marginal: in the
Matrix Multiplication task at the largest scale, the selected candidate reduced energy consumption
by more than 98%.
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Table 1: Summary of experimental details.

Category Details

Hardware Mac Studio, Apple M2 Ultra (24 CPU, 60 GPU, 32 NE), 128 GB RAM
oS macOS Sequoia 15.5

Language Python 3.10

Libraries NumPy 1.26, Python stdlib only

Energy tool CodeCarbon v2.2.3 (process-level, 0.1 second sampling)

Execution control ~ Single-threaded BLAS/OpenMP, isolated processes

Repetitions 5 runs per candidate, median reported

Benchmarks 10 tasks (numeric, sorting, string, graph, I/O)

Input sizes 10%, 10°, 10° elements (where feasible)

Correctness tests ~ Unit + small randomized inputs (ms-scale)
Reproducibility Logs (CSV), full artifact with code + scripts

Table 2: Aggregate performance of energy-guided candidates across all tasks. Values represent
average and median differences relative to baselines. Complete data is available in our supplementary
material.

Average Median

Energy Savings vs Top-1 (%) 44.69 39.05
Energy Savings vs Best-Time (%) 1.86 0.00
Runtime Penalty vs Best-Time (s)  0.0012 0.0000

When compared to the Best-Time baseline—the fastest correct implementation—the advantage was
more modest on average but still statistically significant. Our energy-guided choices consumed
1.86% less energy on average. However, the median saving was zero, indicating that the average is
driven by a long tail of tasks with substantial benefits. For example, the selected candidate for Array
Sum (at a scale of 10* elements) was 11.49% more energy-efficient than the fastest alternative. The
distribution in Figure [2] (bottom) highlights this skew. Crucially, correctness was never compromised:
all selected candidates passed the correctness filtering stage.

Beyond mean values, the statistical robustness of these findings is paramount. As per our evaluation
protocol, non-parametric significance testing (Wilcoxon signed-rank) confirmed that the energy
savings are not an artifact of measurement noise. The improvements relative to both the Top-1
baseline (p < 0.001) and the Best-Time baseline (p = 0.0039) were found to be statistically
significant, as detailed in our evaluation summary in the anonymized repository. Furthermore, our
measurement protocol yielded high consistency, with an average coefficient of variation across five
repeated runs of only 8.62% for runtime and 10.75% for energy.

5.2 Runtime Trade-offs

A key concern is whether greener code comes at the expense of speed. Our findings demonstrate that
this is rarely the case. The mean runtime penalty relative to the Best-Time baseline was only 0.0012
seconds, and the median penalty was exactly zero. Figure [2] (top) shows that the vast majority of
selected solutions executed at parity with the fastest available candidate programs. A few outliers
exhibited minor slowdowns, with the largest penalty observed being approximately 0.023 seconds in
the JSON Parsing task. From a practical perspective, these deviations are negligible.

Interestingly, task-level analysis revealed that the most energy-efficient candidate was not always the
same across different input scales. As noted in the evaluation summary, only three out of ten tasks
(30%) retained the same optimal variant across all tested sizes. For example, in the Array Sum task, a
different candidate was selected as most energy-efficient at each of the three scales (104, 10°, and 10°
elements). This sensitivity indicates that energy-guided selection is not a one-size-fits-all mechanism
and may require scale-aware strategies in real-world deployment. All experimental results presented
in this section are reproducible and have been made available in the anonymized GitHub repository
referenced earlier.
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Figure 2: Distributions of runtime penalty (top) and energy savings (bottom) for energy-guided
candidates relative to Best-Time baselines. Penalties cluster at zero, with rare, small positive
outliers. Savings are frequently zero but include a long tail of positive gains, confirming that energy
optimization can yield benefits beyond speed.

6 Discussion

6.1 Interpretation of Key Findings

The results demonstrate that introducing energy as a primary criterion for reranking can meaningfully
reshape the landscape of candidate programs proposed by LLMs. The most immediate outcome
is the consistent, statistically significant reduction in energy consumption relative to the unguided
Top-1 baseline. Furthermore, our method frequently achieved additional energy savings even when
compared to the fastest known solutions, proving that the fastest and greenest programs are not always
synonymous. Our supplementary data identifies 8 specific case studies where the energy-guided
choice diverged from the best-time choice.

Equally important is what did not happen: energy-guided selection did not compromise correctness
or practical execution speed. All guided candidates passed the correctness filtering tests, and the
median runtime penalty was zero. This shows that energy efficiency can be surfaced without forcing
developers to accept slower or less reliable code. The approach, therefore, represents a practical step
toward development tools that default to sustainable choices.

Energy-guided reranking substantially reduces energy consumption without sacrificing cor-
rectness and, in a significant minority of cases, uncovers solutions that are verifiably greener
than the fastest implementations.

Beyond averages, the variability across tasks points to the role of algorithmic structure. The case
studies provided in our supplementary material were created specifically to analyze these differences,
revealing instances where the more energy-efficient program used a different underlying approach
than the faster one. At the same time, the shifting of optimal candidates across input scales suggests
that the energy efficiency of an algorithm is context-dependent.



Efficiency gains are not uniform. The magnitude of savings can depend on algorithmic
structure, and the optimal structure can change with input scale. This variability highlights
opportunities for adaptive, context-aware energy guidance.

Taken together, these findings show that conditioning code generation on energy opens a new
dimension of optimization. By shifting sustainability from a post-hoc concern to a guiding signal
during program synthesis, we can build development environments in which energy efficiency is the
default, not an afterthought.

6.2 Societal Impact and Broader Considerations

The integration of energy-aware models into development tools has several positive societal impli-
cations. A primary benefit is the promotion of sustainable software practices. By automating the
selection of energy-efficient code, our approach makes sustainable engineering more accessible,
allowing developers without specialized knowledge in performance optimization to produce software
with a lower environmental impact. This can, in turn, promote a greater awareness of energy consid-
erations within the software development lifecycle and contribute to reducing the carbon footprint of
the technology sector.

Conversely, potential negative consequences must be acknowledged. An over-emphasis on a single
optimization metric could result in over-optimization at the expense of code readability or generality.
For instance, a system might select for an algorithm that is maximally energy-efficient but lacks
clarity, thereby sacrificing long-term code maintainability. Furthermore, there is a risk of a rebound
effect (Jevons paradox), where significant gains in efficiency could lower the cost of computation,
potentially spurring an increase in demand that negates the net energy savings. Therefore, responsible
deployment of this technology necessitates a balanced approach, weighing energy efficiency against
other essential software attributes while considering systemic economic effects.

7 Conclusions and Future Work

This paper introduced energy-guided code generation, a method that conditions LLMs on energy effi-
ciency at the moment of software creation. Motivated by the growing carbon footprint of computing,
our approach integrates correctness checking with direct energy measurement to rerank candidate
implementations.

Our empirical evaluation showed that energy-guided selection yields tangible and statistically signifi-
cant benefits. Compared to unguided Top-1 outputs, guided candidates reduced energy consumption
by 44.69% on average, while remaining fully correct. Even relative to the Best-Time baselines,
energy-guided variants retained a modest but significant advantage of about 1.86%. Importantly,
these improvements came at negligible runtime cost: the median penalty was zero, and the mean
penalty only 0.0012s. Taken together, these results provide the first conclusive evidence that
green-by-design software generation is not only possible, but practical.

By intervening at the earliest stage of software creation, this work addresses a previously missing
layer in the sustainable computing stack. While prior efforts have targeted efficiency in compilation,
scheduling, or deployment, we demonstrate that conditioning the code itself is both feasible and
impactful. Elevating energy considerations in code generation brings us closer to development tools
where sustainability is an inherent, rather than optional, property.

Although our study demonstrates the potential of energy-guided reranking, it has limitations. Energy
estimates were model-based rather than derived from hardware measurements, introducing uncertainty
for small differences. Experiments were confined to Python tasks on a single Apple Silicon system,
and correctness validation relied on small inputs without fully controlling for caching or system load.

Future work will extend evaluation to larger, more diverse benchmarks, additional programming
languages, and varied hardware platforms to assess generalizability. Hardware-level validation
and reporting uncertainty through confidence intervals will enhance robustness, while improved
correctness checks and system-level controls will strengthen rigor. Ultimately, integrating energy
awareness directly into LLM training and developer tools could make sustainable, green-by-design
software the norm rather than the exception.



Al Agent Setup

We employed a dual-agent framework integrating ChatGPT-5 and Gemini 2.5 Pro to support multi-
phase research planning, drafting, and refinement. ChatGPT-5 served as the primary agent for
hypothesis generation, research planning, and manuscript writing, while Gemini 2.5 Pro was used for
cross-validation and content refinement. The process began with domain-specific keywords provided
to ChatGPT-5, which generated multiple hypotheses. These were evaluated by both human researchers
and Gemini 2.5 Pro, and the most promising direction was selected based on combined feedback.
ChatGPT-5 then elaborated the research plan and generated drafts for the Introduction, Methodology,
and Experiment sections. For the Related Work section, we leveraged the Deep Research functionality
of ChatGPT-5 to retrieve and summarize state-of-the-art literature. All references were manually
verified, and invalid citations were iteratively corrected through additional GPT-5 queries. As part of
the Methodology development, we also utilized Gemini’s image generation capabilities to produce a
study diagram that visually summarizes the workflow. Implementation was conducted in sequential
phases, with Al agents focusing on one stage at a time. The Results, Discussion, and Conclusion
sections were generated by ChatGPT-5 based on validated outputs. After receiving reviewer feedback,
we provided the comments to ChatGPT-5 to assist in generating the camera-ready version, ensuring
alignment with reviewer expectations and improving clarity and completeness.
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Agents4Science Al Involvement Checklist

1.

Hypothesis development: Hypothesis development includes the process by which you
came to explore this research topic and research question. This can involve the background
research performed by either researchers or by Al. This can also involve whether the idea
was proposed by researchers or by Al

Answer: [D]

Explanation: Human researchers initially defined the research scope by providing key
domain-specific keywords. Al tools then played a central role in generating multiple feasible
hypotheses related to these keywords, leveraging prior literature and model knowledge.
Researchers reviewed the Al-generated hypotheses, offering feedback and selecting the most
promising direction. Once the direction was chosen, Al further elaborated the hypothesis
details, including mechanisms, assumptions, and evaluation strategies, with iterative human
feedback. This process was primarily Al-driven, with researchers curating and refining
outputs to ensure relevance and novelty.

. Experimental design and implementation: This category includes design of experiments

that are used to test the hypotheses, coding and implementation of computational methods,
and the execution of these experiments.

Answer: [D]

Explanation: After receiving the Al-generated research plan, the design of experiments and
implementation of code were primarily performed by Al agents. These agents proposed
experimental setups and generated executable code aligned with the selected hypothesis.
Human researchers provided prompts, executed the experiments based on Al outputs, moni-
tored runtime behavior, offered iterative feedback, and performed final cleanup—removing
unused files. Throughout the process, researchers supervised execution quality and ensured
scientific validity, while Al handled the generation and automation of core methodological
components.

. Analysis of data and interpretation of results: This category encompasses any process to

organize and process data for the experiments in the paper. It also includes interpretations of
the results of the study.

Answer: [D]

Explanation: Result processing and analysis were entirely conducted by Al agents. Human
researchers provided prompts and high-level guidance to shape the evaluation scope, but did
not intervene in the data handling or interpretation. Researchers reviewed outputs only at a
strategic level to ensure alignment with research goals.

. Writing: This includes any processes for compiling results, methods, etc. into the final

paper form. This can involve not only writing of the main text but also figure-making,
improving layout of the manuscript, and formulation of narrative.

Answer: [D]

Explanation: The main content of the paper—including text, figures, and narrative struc-
ture—was primarily generated by Al agents. Researchers provided prompts and high-level
guidance to shape the overall direction and ensure consistency with experimental execu-
tion. Feedback from researchers focused on specific implementation details and formatting
corrections to align the manuscript with actual procedures and submission requirements.

. Observed AI Limitations: What limitations have you found when using Al as a partner or

lead author?

Description: Al performs well in generating ideas, drafting content, and executing workflows
under human guidance. However, in our experience, different models tend to vary in
output quality across tasks. GPT-5 appeared to perform better in planning and contextual
understanding, while Gemini 2.5 Pro seemed more reliable for code generation. Based
on these observed tendencies, we assigned GPT-5 as the lead author and used Gemini 2.5
Pro as a supporting agent for code correction and content refinement. Additionally, Al-
generated outputs often require manual correction to ensure data and content consistency and
adherence to formatting standards. Prompt design and high-level guidance from researchers
remain essential to uphold scientific rigor.
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Agents4Science Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions,
emphasizing energy-guided code generation and the integration of energy as a first-class
optimization signal. These ideas are supported in Section 1 (Introduction) and detailed in
Section 3 (Methodology).

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses limitations related to hardware variability, benchmark
scope, and the generalizability of energy measurements. These points are addressed in
Section 7 (Conclusions and Future Work).

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not present formal theoretical results requiring assumptions or
proofs. Instead, it focuses on empirical evaluation of energy-guided code generation using
benchmark tasks and direct measurements.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed descriptions of candidate generation, correctness
filtering, energy measurement, and evaluation protocols (see Sections 3 and 4), ensuring
reproducibility of the main results.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Anonymized code and data are available at the link provided in Section 4.3,
along with sufficient instructions to reproduce the main experimental results.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper does not involve model training, but it specifies all relevant inference
and evaluation details. Section 3 describes the candidate sampling strategy (temperature and
nucleus sampling), correctness filtering, and the reranking procedure. Section 4 outlines
the benchmark tasks and measurement setup, ensuring transparency of the experimental
configuration.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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10.

Answer: [Yes]

Justification: The paper reports statistical significance testing using the Wilcoxon signed-
rank test to compare energy and runtime distributions across baseline methods. These tests
support the claim that energy-guided reranking yields meaningful improvements and are
described in the Results section.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 4 specifies the compute environment as a Mac Studio with Apple
M2 Ultra and 128 GB unified memory, with all programs executed on CPU only. It also
describes a reproducible measurement protocol using batched execution and structured
logging of energy and runtime data.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
Agents4Science Code of Ethics (see conference website)?

Answer: [Yes]

Justification: The research adheres to the Agents4Science Code of Ethics. It transparently
discloses Al involvement, avoids sensitive data or human subjects, and promotes repro-
ducibility and responsible use of computational resources. No ethical concerns arise from
the methodology or deployment.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses potential positive societal impacts, such as promoting
sustainable software practices through energy-aware code generation. It also acknowl-
edges possible negative consequences, including over-optimization at the expense of code
readability or generality. These points are addressed in the Discussion section.
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