Under review as a conference paper at ICLR 2025

CONNECTING SOLUTIONS AND BOUNDARY CONDI-
TIONS/PARAMETERS DIRECTLY: SOLVING PDES IN
REAL TIME WITH PINNS

Anonymous authors
Paper under double-blind review

ABSTRACT

Physics-Informed Neural Networks (PINNs) have proven to be important tools
for solving both forward and inverse problems of partial differential equations
(PDEs). However, PINNs face the retraining challenge in which neural networks
need to be retrained once the parameters, or boundary/initial conditions change.
To address this challenge, meta-learning PINNs train a meta-model across a range
of PDE configurations, and the PINN models for new PDE configurations are then
generated directly or fine-tuned from the meta-model. Meta-learning PINNs are
confronted with either the issue of generalizing to significantly new PDE configu-
rations or the time-consuming process of fine-tuning. By analyzing the mathemat-
ical structure of various PDEgs, in this paper we establish the direct and mathemat-
ically sound connections between PDE solutions and boundary/initial conditions,
sources and parameters. The learnable functions in these connections are trained
offline in less than 1 hour in most cases. With these connections, the solutions
for new PDE configurations can be obtained directly and vice versa, without re-
training and fine-tuning at all. Our experimental results indicate that our methods
are comparable to vanilla PINNs in terms of accuracy in forward problems, yet
at least 400 times faster than them (even over 800 times faster for variable ini-
tial/source problems). In inverse problems, our methods are much more accurate
than vanilla PINNs while being 80 times faster. Compared with meta-learning
PINNSs, our methods are much more accurate and about 20 times faster than fine-
tuning. Our inference time is less than half a second in forward problems, and
at most 3 seconds in inverse problems (less than half a second for variable ini-
tial/source problems of linear PDEs). Our code will be made publicly available
upon acceptance.

1 INTRODUCTION

PDE:s are crucial mathematical tools used to describe various phenomena in fields such as physics,
chemistry, and biology. They provide precise descriptions of complex systems’ dynamic behaviors
and offer a theoretical foundation for system analysis, prediction, and control. In practice, PDEs are
often required to be solved repetitively in forward problems under different configurations of param-
eters, boundary/initial conditions or sources, and it is also often necessary to repetitively find the op-
timal values of them in inverse problems given different constraints on solutions. Such many query
type of applications includes optimal design/control, data assimilation and uncertainty quantifica-
tion. Obtaining the results rapidly in each query is important for these applications. For example, it
is crucial in interactive design to immediately see the PDEs solutions or optimal configurations once
users change their design options.

Traditional numerical methods to solve PDEs, including finite difference and finite element methods,
face inefficiencies when dealing with high-dimensional, large-scale and inverse problems. Physics-
Informed Neural Networks (Raissi et al.| (2019)), which utilize deep learning to solve PDEs, have
gained significant attention in recent years. PINNs approximate the solutions with the predictions of
neural networks, which are trained by embedding the PDE equations and boundary/initial conditions
into the loss function. However, this leads to one of the fundamental limitations of PINNs: they need
to be retrained when the parameters or boundary/initial conditions change, which is time-consuming

Under review as a conference paper at ICLR 2025

and limits their applications in many query scenarios. Current approaches to solve this retraining
problem of PINNs are based on meta-learning (see section , in which a meta-model is trained
across a range of PDE configurations and the PINNs for new PDE configurations are generated
directly or fine-tuned from this meta-model. The accuracy of meta-learning PINNSs is not satisfactory
yet, and the fine-tuning still consumes some time and does not meet the real-time requirement.

In this paper, through in-depth investigating the mathematical structure of various PDEs, we pro-
pose mathematically sound methods to the many query problem of PINNs by establishing the direct
analytic connections between PDE solutions and boundary/initial conditions, sources and param-
eters. The unknown parameters in these connections are learned through offline training. With
these connections, the solutions for new PDE configurations can be obtained directly and vice versa,
without retraining and fine-tuning at all, making the real-time inference in both forward and inverse
problems practical. In contrast, vanilla and meta-learning PINNs are general but agnostic to the
mathematical structure of PDEs and thus did not fully leverage the potential of PINNs. They either
need time-consuming retraining or fine-tuning, or face the issue of generalizing to significantly dif-
ferent configurations. Also, inverse problems are largely neglected by current meta-learning PINNs
researches.

We first consider linear PDEs with variable boundary/initial conditions or sources. For linear PDEs,
a solution can be expressed as a linear combination of basis solutions. We train multiple PINNs
offline to solve PDEs under various sine and cosine bases, thereby obtaining basis solutions. The
solution corresponding to an arbitrary boundary/initial/source g(x) is then obtained by the linear
combination of such basis solutions using discrete Fourier transformation (DFT) of g(x). This basis
solution method is accurate and fast since no fine-tuning is required.

For PDEs with variable parameters, we directly model the solutions as polynomials of PDE pa-
rameters with learnable coefficient functions. We derive the differential equations for coefficient
functions and train them offline with theoretical guarantees. With this polynomial model, the solu-
tions to PDEs with new parameters can be obtained immediately and no fine-tuning is needed. We
also use this polynomial model to establish the connections between solutions and variable initial
conditions for nonlinear PDEs. Finally, a simpler scaling method is proposed for some PDEs which
directly scales the solution of a canonical PINN to obtain the solutions for new parameter values.

2 RELATED WORK

Physics-Informed Neural Networks. PINNs have been successfully applied to a wide range of
scientific problems, such as fluid dynamics (Rao et al.| (2020); Zhu et al.| (2021))), medical imaging
(Sahli Costabal et al.|(2020); van Herten et al.|(2022)) and climate modeling (Liitjens et al.| (2021)).
Many works have been devoted to the training of PINNs, such as loss reweighting (Wang et al.
(2021a; [2022); |Yao et al.[(2023); Hao et al.| (2023)), resampling (Nabian et al.| (2021)); Zapf et al.
(2022); |[Hanna et al.|(2022)); Zeng et al.| (2022); |Peng et al.| (2022)); Tang et al.[(2023); |Gao & Wang
(2023); ILu et al| (2021); |[Daw et al.| (2022)); Lau et al.| (2024))), and ill-conditioning of differential
operators (Krishnapriyan et al| (2021); De Ryck et al.| (2023)); Rohrhofer et al.| (2022); |Liu et al.
(2024); Rathore et al.| (2024)).

Wang & Wang|(2021) propose architectures that use Fourier features (Tancik et al.|(2020); Ng et al.
(2024)) to effectively mitigate the spectral bias of PINNs, which is not our focus in this paper.

Many Query Problem and Meta-Learning PINNs. The reduced basis method (RBM) (Haasdonk
(2016)) is a popular numerical method for efficiently simulating parametric PDEs. It includes an
offline training stage and an online stage. The offline stage selects a number of representative pa-
rameter values via a greedy algorithm and then in the online stage a rapid reduced solution is sought
for each unseen parameter value. In inverse problems, numerical methods (Hasanoglu & Romanov
(2021)); {Isakov| (2017))) usually search the unknown parameters of PDEs in an iterative manner and
require to solve forward problems in each iteration, leading to high computational cost.

The conditioned PINNs method (Moseley & Markham)|(2020)) takes PDE parameters or boundary
conditions as additional network input and trains over many different PDE configurations, allowing
it to generalize without needing to be retrained. Recently, there has been increasing interest in us-
ing meta-learning to solve parametric PDEs. Representative methods include HyperPINN (de Avila
Belbute-Peres et al.[(2021)), MAD-PINN (Huang et al.[(2022)), NRPINN (Liu et al.|(2022)), Meta-

Under review as a conference paper at ICLR 2025

MgNet (Chen et al.| (2022))) and Hyper-LR-PINNs (Cho et al.[(2023))). The implementation strate-
gies of these methods can be divided into two main types: the first type (Chen et al.| (2022); |de Avila
Belbute-Peres et al.| (2021)) involves training a meta-network to map from PDE configurations to
the parameters of the main PINN network, which generally does not require fine-tuning but of-
ten necessitates multiple networks. The second type (Huang et al.| (2022); |Liu et al.| (2022))) in-
volves learning an effective initialization of network parameters using multiple tasks and requires
fine-tuning when the PDE configuration changes, leading to higher time cost. Additionally, since
meta-learning involves multi-task training, the difficulty of different tasks can affect training results.
Consequently, [Toloubidokhti et al.| (2024) proposes the difficulty-aware task sampler (DATS), and
GPT-PINN (Chen & Koohy| (2024)) employs the reduced basis method for task selection. P? INNs
(Cho et al.|(2024)) resolve the retraining issue by modeling the solutions of parameterized PDEs via
explicitly encoding a latent representation of PDE parameters.

The main differences between our methods and the above ones lie in that our methods neither require
a large number of training tasks nor fine-tuning, and can solve inverse problems efficiently due to
the explicitly established analytic connections between solutions and conditions/parameters.

Operator Learning. Operator learning is another approach to solve parametric PDEs. Representa-
tive methods include DeepONet (Lu et al.| (2019)) and FNO (Li et al.| (2020)), which rely on supervi-
sion from explicit solutions of different configurations to train neural networks. In comparison, our
methods are unsupervised and incorporate prior knowledge of physics laws. The physics-informed
DeepONet (PI-DeepONet) method (Wang et al.| (2021b))) integrates physical laws into the operator
learning framework to reduce the data collection burden.

3 PRELIMINARIES

Physics-Informed Neural Networks. The general form of a PDE is as follows:

Flu(z,t),p) = f, @ €9, t€[0,T]

B(u(z,t)) =h, z€0Q,te]|0,T]; I(u(z,0)) =g, =€ M

where F' is a differential operator, B is an operator associated with the boundary condition and
operator [is for initial condition. € is the spatial domain and 052 is its boundary, [0, 7] is the
time domain. The functions f, g, and h represent source, initial and boundary values, respectively.
u denotes the parameter of PDE. The goal of forward problems is to obtain the solution u(z,t)
of equation [I] while the goal of inverse problems is to find the values of yx, f, g, and h given
the observed data u(z;,t;) at some points {z;,¢;}. In practice, PDEs are often required to be
solved repetitively under different configurations of p, f, g, or h, and the optimal values of them are
required to be found repetitively with different observed data u(x;, ¢;).

PINNSs approximate the solution u(z, ¢) of PDEs with the prediction u(x, t; 8) of neural networks.
By sampling N,. collocation points from the interior domain C, := Q x (0,7"), N, points on the
boundary C, := 99 x [0,T] and N, points at the beginning C; := €2, PINNs are trained with the
following loss function to enforce the PDE constraint and boundary and initial conditions,

Le(0) = ALy (8) + Ao Lo (6) + A La(6), @)
where L.(0) = - Xpee IF(u(@,t),p) - flI> is the residual loss for PDEs,
Ly(0) = N% Pzpyec, 1Bu(z,t)) — h||§ is the loss for boundary conditions, and

Li(0) = § X(anec: H(u(z,0) — g|l3 is the loss for initial conditions. A, A, and \; are
non-negative weights assigned to different losses. When the parameters or boundary/initial/sources
change, PINNs require retraining, limiting their applications in real-time scenarios.

4 METHODOLOGY

In this section, we will establish the direct connections between PDE solutions and boundary/initial
conditions, sources or parameters. We will take the Convection, Heat, two-dimensional Poisson and
Reaction equations as examples. These equations and associated boundary/initial conditions and
parameter ranges are given in Table [5]in Appendix [A]

Under review as a conference paper at ICLR 2025

4.1 LINEAR PDES WITH VARIABLE BOUNDARY/INITIAL CONDITIONS OR SOURCES

For a linear PDE, if u;(,) is a solution, then u(x,t) = >, a;u;(x, t) is also its solution. Thus, we
can generate u;(x,t) using PINNs under some known basis boundary/initial/sources, and then lin-
early combine them to obtain the solution u(z, t) corresponding to a general boundary/initial/source
g, where the coefficient a; comes from the spectral decomposition of g.

4.1.1 THE BASIS SOLUTION METHOD FOR VARYING INITIAL/BOUNDARY CONDITIONS

As an example, consider the Convection equation u; + Su, = 0 with variable initial value g(z)
and fixed boundary condition «(0,t) = wu(2m,t) (or other conditions, not necessarily periodic).
We choose the Fourier transformation to perform spectral decomposition. The following lemma
indicates that discretized {g(x) }ivz_ol can be decomposed using a total of only N + 2 sine and cosine
bases.

Lemmal. A discretized arbitrary initial condition g(x) (x = 0,1,2--- | N—1) can be decomposed

as g(xz) = ZZ h alcos(%”) + b;sin(252) using discrete Fourier transformation (DFT), where

real coefficients {a;, b; }i:O are determined by the DFT coefficients.

N
We can solve the linear PDEs to obtain N + 2 independent solutions {u§°*(z,t), u5""(z, t)}z 2 o

N
respectively, using initial conditions {uf**(x,0) = cos(35%), ui* (x,0) = sin(*3=)} 2 and

. , N
boundary conditions {u§°*(0,t) = u§®*(2m,t),u;"(0,¢) = uf"(2m,t)} * ;. Then, the solution
under a general initial condition g(z) is given as follows

N/2
Zaz €% (x,t) + biui " (2, t). 3)

The following lemma shows that such «(z, t) is the desired solution.

Lemma 2. u(z,t) in equation [3] is the solution of linear PDEs with variable initial condition
u(x,0) = g(x) and the specified boundary condition.

N
The proof of Lemma |1| and the value of {a;,b; },%, are given in Appendix |[E| and the proof of
Lemma[2]is given in Appendix [F

Implementation. Based on Lemmas and 2] we train N + 2 independent PINNs

N
{ages (z,t), a5 (x, t)} , offline to approximate the basis solutions {uges (2, 1), ui™ (x,t) }, re-
spectlvely, with the correspondmg initial conditions and boundary conditions. The final solution
of linear PDEs under a new initial condition g(z) is given by u(x,t) = ZfV/OQ a; 1% (z,t) +
b; 0" (x, t), which can be obtained rapidly using fast Fourier transformation (FFT). A few low fre-
quency basis solutions are enough to recover 4(x, t) accurately, thereby the offline training burden
can be greatly reduced.

Inverse Problems. Given observed data {u(x;,¢;)}, the task in inverse problems is to find the
N
optimal coefficients {a;, b; },2, as follows,

N/2
{ak, bk} = argmingq, b, Z(Z arty (s, t;) + bety " (T4, t5) — ﬁ(xi,tj))Z. “)

i,j k=0

This is a quadratic objective and can be solved accurately and rapidly using the least square method.

4.1.2 THE BASIS SOLUTION METHOD FOR VARYING SOURCES

We use basis solution method to solve the two-dimensional Poisson equation Au(x,y) = f(z,y)
with variable source f(z,y). We train basis solutions offline associated with Fourier basis sources,
and then linearly combine basis solutions to obtain the solution corresponding to an arbitrary new
source. The detail is given in Appendix [B]

Under review as a conference paper at ICLR 2025

4.1.3 GENERALITY OF THE BASIS SOLUTION METHOD

Despite we take the Convection and Poisson equations with simple rectangular 2D domains and
possible periodic boundary conditions as concrete examples to describe our method, our basis so-
lution method works for general domain geometry, other types of boundary condition and high-
dimensional problems. We explain this in the following.

For the boundary of a domain (possibly high-dimensional) with arbitrary geometry, the bound-
ary values at every boundary point can be concatenated into a array s(i) = g¢g(x;), X; €
R? and x; 6 0, i =0,1,2,--- N — 1, and then decomposed with one-dimensional FFT as

s(i) = Zk 0 akco,s(zm) + bk,erL(Z“}”) (see Lemma 1). The one-dimensional bases cos(2ZE!)

and sin(2ZEL) can be inverse mapped into boundary points using g£°*(x;) = cos(ZZE)
gy (x;) == sin(#&E), i = 0,1,2,--- , N — 1, respectively, and serve as boundary conditions
for the high-dimensional and general domains. Basis solutions u§°%(x, t) and u{™"(x,t) are then
obtained by training PINNs with boundary conditions ¢{°*(x) and ¢;""(x), respectlvely, for several
low frequencies k. Given an arbitrary boundary condition g(x), the corresponding solution is then

and

obtained by the linear combination of basis solutions as u(x,t) = va/g a;u§%% (x,t) +bus ™ (x, t).

Such u(x, t) satisfies the linear equations under consideration, and by u(x,t) = ZfV/OQ a;gs%% (x) +

bigf?®(x) = g(x), x € 0L, it also satisfies the Dirichlet type of boundary condition.

For the Neumann type of boundary COIldlthIlS = g(x), x € 09, we first convert g(x;), x; € O

into an array as above, and then train basis solutlons ug”® (x t) and u{™"(x,t) with Neumann type

dgﬁ: (xi,t) = cos(*ZE) and ()“k (xi,t) = sin(EE), x; € 09, respec-

tively. By 9% (x;,t) = vaz/(? a; 3?}; (x4,1) +bia—h(xi,t) = g(xi), x; € 052, the Neumann type
of boundary condition is satisfied.

of boundary conditions:

4.2 PDES WITH VARIABLE PARAMETERS
4.2.1 THE POLYNOMIAL MODEL

In this section, we use polynomials to model the relationship between solutions and parameters.
This polynomial model is inspired by the finite difference computation of solutions. We take the
Convection equation as an example. The derivation for the Heat equation will be given in Appendix
In addition to solve PDEs with variable parameters, the polynomial model is also used for the
nonlinear Reaction equation with variable initial condition, as described in Appendix[J}

The Model. We take the Convection equation u; + Bu, = 0 as an example to describe the
derivation of our polynomial model. By finite difference discretization, using u; to denote the
approximated solution at point (z;,£;), we have u}"' = (1 — AB)ul + ABuj_,, where A = T,
7 and h are time step size and spatial step size, respectively. Using this expression recursively
and denoting v = A8, we then have u;” = i(l -2y +9?) + u; (27 — 292) + ué 572
= ub +y(—2uf +2u}_) +v*(uf — 2u}_; +uf_,), which is a polynomial of . By this argument,
one can infer that the solution u(x t) at any point (x,t) is a polynomial of v, with the coefficients
being specific to (z,t) and determined by the initial value u(x,0). For a given initial condition,
we can write the polynomial expression of u(x,t) as u(x,t) = Z;V:po w;(z,t)y!, where the jth
coefficient w;(z,t) is a function of space and time, INV,, is maximal power of . In finite difference
method, v < 1 is required to ensure stability, therefore for 8 € (0, P), we can write the polynomial
as

= S w05/ PY. ®

=0

The remaining task is how to learn coefficient functions w;(z, t). They should make the Convection
equation u; + [u, = 0 satisfied. Therefore,

> Owwi(@,)(8/P) + B Oww;(x,1)(B/PY =0, ©)

Under review as a conference paper at ICLR 2025

which leads to

Np Np+1
_Zatwj (z,t)(B/P) + P Z dswj—1(z,t)(B/P) =0,)
Z[azw]- (z,t) + POzw;_1(x,t)](8/P)’ + Owwo(w,t)(8/P)° + Pozwn, (z,1)(B/P)"** =0, (8)

Since [can have arbitrary value, we have

Owwj(z,t) + POywj—1(x,t) =0, j=1,2,---,Np)
atUJo(l’,t) = 07
Orwn, (z,t) = 0. (10)

We now consider the initial condition and boundary condition. The initial condition u(z, 0)) = g(z)
yields Z;-V:"O w;(z,0)(B/P)! = g(x). Again by the fact that /3 can be arbitrary, we have
{wj(x,o) =0, j=12,---,N,
wo(z,0) = g(z).

For the periodic boundary condition u(0,t) = wu(L,t), we have Zji”o w;(0,8)(B/P) =
SNy w; (L, t)(8/P)7, hence

w;(0,t) = w;(L,t), j=0,1,---, Np. (12)
Alternatively, if boundary condition u(z,t) = h(z), x € 0 (assume g(z) = h(z), x € 0)
is used, by ZJ[-V:"O w;(z,t)(8/P) = h(z), = € 09, we will have wj(z,t) = 0, j =
1,2,---,Ny,and wo(z,t) = h(z), z € 0.

(11)

Theoretical Analysis. Do equations and [12] have exact solutions? How accurate is the
polynomial model in equation [5? We have the following theorem to answer these theoretical ques-
tions and establish the upper bound of loss for our polynomial model, whose proof is given in
Appendix [H]
Theorem 1. For the Convection equation u; + fu, = 0, z € [0,L],t € [0,1] with ini-
tial condition u(x,0) = g(x) and periodic boundary condition u(0,t) = wu(L,t) (or gener-
ally, u(z,t) = h(z), x € 09), suppose g(x) is differentiable up to the (N, + 1)-th order
and satisfies the periodic conditions g(0) = g¢(L) and g;f 0) = g:f (L), n = 1,2,--- N,
(or generally, h(x) = g(x) and gjf(r) =0, n=12--- N, o € 00). If we solve
wj(z,t) (j = 0,1,2,---,N,) using equations @ and neglecting equation then
wj(z,t) (j = 1,2,---, Np) can be solved exactly, and the total loss Ly = A\p Ly + A\yLy + A;L; is
NPT g(x)\o PNPT B\N, 112
OxNp 1) (A (p) P) .

at most A, (max,

Implementation. We use neural networks to approximate the coefficient functions w;(z,t) (j =
0,1,---,N,). They are offline trained using losses corresponding to equations :|,|1 1]and |12} like in
PINNs. From the loss bound given in Theorem I} we can see that in order to control the loss, since

N. . .
% < 1 and the term 1]>V + decreases with N, when N,, > P, we can increase N, to decrease the
!
total loss. Solutions close to true counterparts will be resulted form this low loss.
In our implementation, when varying the parameter 5 with fixed initial condition g(x) = sinz
Np+1 . . . Np+1
(hence (max,co 27 3821\771)%(190))2 = 1) and A\, = 1, setting N,, = 29 is enough to achieve PN;!

1 and consequently low error for 8 € (0, 10]. For analytic initial conditions, we can directly use the
theoretical solutions of w;(z,t) (j = 0,1,---, N,) (given in equations and [33]in Appendix
[H). If such theoretical analysis on the loss bound and the number of polynomials is unavailable for
other equations, one can rely on experiments to set IV,,.

Inverse Problems. Given observed data {@(z;,¢;)}, the goal of inverse problems in the polyno-
mial model is to search the optimal parameter (3 based on equation 5]

B = argming y (Y wi(wi,t;)(B/P)" — (i, 1)) (13)

i,j k=0
In our implementation, we use gradient descent optimization in PyTorch to search *.

Under review as a conference paper at ICLR 2025

Generality of the Polynomial Model. Our polynomial model u(x,t) Z w;(x,t)(8/ P)?

works for complex domains, high-dimensional problems and other types of boundary condition
(Dirichlet, Neumann). The optimization of w;(x,t) is similar to that of u(x, ¢) in vanilla PINN,
using residual loss and boundary/initial cond1t10n loss for w;(x, t). Therefore, like vanilla PINNS,
the polynomial model works for complex domains and high-dimensionality by sampling collocation
points. Our polynomial model also works for both Dirichlet and Neumann boundary conditions by
optimizing w;(x, t) with one of them.

Nonlinear Equations. Our polynomial model can be extended to nonlinear equations. Take the
Burgers’ equatlon Up Uy — Vlgy = O as an example Inspired by its finite difference discretization
n+1

; _ 2Tv\ _ T n - . ..
u’ uf (1+57) — pujul + pujuy —gzv(uj —ul_;), we use the polynomial expression

u(z,t) = E?LO wl(l‘,f/)l// i(@.1) to model the varying parameter problem. We train w;(z,t) and
¢i(x,t) in this model in a multi-task manner using multiple values of v with corresponding residual
loss and initial/boundary condition loss for u(z,t).

We can use polynomial expression u(z,t) = ZZN:"O w;(z,t) [(u?)d)i"(x’t) to model the varying
initial condition problem. The training of it and the Navier-Stokes equation are leaved to our future
work.

4.2.2 THE SCALING METHOD

For the Convection, Heat and Reaction equations, we can see that the derivative u; is proportional
to the parameter. The scaling method is designed to deal with such equations, which is simpler
and easier to implement than the polynomial model. The details of the scaling method are given in

Appendix

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Settings in Our Methods. In this section, we experimentally verify the performance of our
methods. The PDEs used in our experiments and their configurations of parameters and bound-
ary/initial/sources are given in Table [5] in Appendix [A] In our basis solution method, we set
M, N = 512. The Convection and Heat equations are trained offline using 10 low frequency sine
and cosine bases corresponding to ¢ = 0,1,...,9 in equation[3] and the Poisson equation is trained
offline with 100 low frequency bases corresponding to i,j = 0,1,...,9 in equation [I3] In our
polynomial model, the maximal power N, is set to 29 for the Convection and Heat equations and
6 for the Reaction equation, based on our theoretical analysis in TheoremEl and Theorem Ny is
empirically set to 40 for the Burgers’ equation.

Methods Compared. We compare our methods with DATS (including DATS+HyperPINN
and DATS+MAD-PINN) (Toloubidokhti et al| (2024)), GPT-PINN (Chen & Koohy| (2024))
and vanilla PINNs using Lo relative error, training and inference times as evaluation metrics.
DATS+HyperPINN and GPT-PINN are only applicable to PDEs with variable parameters, and
DATS+MAD-PINN is applicable to PDEs with both variable parameters and variable boundary
conditions. The settings of DATS and GPT-PINN are consistent with the original papers. We also
compare with PI-DeepONet (Wang et al.|(2021b))) and P?INNs (2024)).

Our basis solution method uses bases cos(2%£) and sin(25£), i = 0,1, -+ ,9 as initial conditions

to train the model, therefore we use the same 20 initial conditions to train PI-DeepONet. However,
PI-DeepONet requires a large number of training samples to generalize (at least 1,000 training sam-
ples of initial conditions in (Wang et al. 2021)). During testing, we use testing initial conditions
(see table 6 and table 7 in Appendix D.1) that are apparently different from those used in training.
Therefore, PI-DeepONet obtained a higher relative error.

Training and Testing Tasks. For DATS+HyperPINN and DATS+MAD-PINN, we manually spec-
ify 5 parameters in (0,10] as training tasks for the Convection and Heat equations, and 4 parameters

Under review as a conference paper at ICLR 2025

in (0,5] for the Reaction equation. For GPT-PINN, we only specify the same parameter ranges, and
parameters used for training are selected adaptively by algorithm. For PDEs with variable bound-
ary/initial conditions, we select a set of specific boundary/initial conditions for each equation (6
configurations for the Convection, Heat and Poisson equations, and 4 configurations for the Reac-
tion equation). See Tables [6H12]in Appendix [D] for the specific configurations selected. More on
training and testing tasks, and network and optimization details are given in Appendix [C]

5.2 RESULTS

Variable Boundary/Initial/Source Problems. We report the Lo errors of compared methods in
Table [T] and offline training and online inference costs in Table 2} The reported mean errors and
standard deviations are computed from the error for each instance configuration given in Tables
[BIO] respectively, for each equation. For DATS+MAD-PINN, we report the training errors as in
(Toloubidokhti et al.| (2024))). In contrast, our methods directly generalize to arbitrary new boundary
conditions without fine-tuning. It can be seen from Table [T] that the errors of our methods are close
to 1% for most equations and comparable to those of vanilla PINNs in forward problems, while
DATS+MAD-PINN has large errors for the considered equations due to the difficulty of simulta-
neous training of multiple distinct tasks. Table [2] shows that our inference time is less than half a
second, on average over 800 times faster than vanilla PINNs which require retraining. Our basis
solution method significantly outperforms PI-DeepOnet when training with the same set of sine and
cosine initial conditions. This is due to the fact that our basis solution method accurately reconstructs
arbitrary boundary/initial conditions using only a limited number of low frequency Fourier bases,
while PI-DeepOnet requires large number of diverse training samples of boundary/initial conditions
to generalize. Our method is also faster than PI-DeepONet in both training and inference.

Tables [T] and 2] also report the performance of our methods and vanilla PINNs on inverse problems.
Our method is better than vanilla PINNs in terms of Lo error. Vanilla PINN has a large error for
the Poisson equation. This is due to the fact that the unknown sources at all internal collocation
points need to be recovered in vanilla PINNs. In contrast, our basis solution method only needs to
optimize a few coefficients associated with low frequency bases. In terms of inference time, our
basis solution method usually can solve the inverse problems within half a second, on average over
1100 times faster than vanilla PINNs.

Figures [T] and 2] (and figure [f] in Appendix [D.3)) visualize the results of compared methods, which
clearly demonstrate that our method produces satisfactory solutions and is more accurate than other
methods. For the testing initial condition u(z,0) = sin(3z + %) (z € [0, 2]) that has a phase shift
compared with training initial conditions, the slices at t=0 and t=1 in figures [T] and [] demonstrate
that our method achieves accurate solutions (almost overlapping with the exact solutions), while the
unsuccessful generalization of other methods is exhibited by the obvious shift of their solutions with
respect to the exact ones.

Variable Parameter Problems. The mean L5 errors for variable parameter problems are reported
in Table 3] and offline training and online inference costs are reported in Table @ The errors for
all instance parameters are given in Tables in Appendix [D] respectively, for each equation.
It can be seen from Table [3] that our polynomial and scaling methods achieve low errors that are
comparable to or less than those of vanilla PINNs. The errors of DATS and GPT-PINN are much
higher than ours, especially when the parameters are large as shown in Tables[T0]and[T2} In contrast,
our polynomial and scaling methods perform consistently well for different values of parameters,
showing the generalization superiority of our methods. For inverse problems, the errors of our meth-
ods are much lower than those of vanilla PINNs, due to the fact that only hundreds of sampled data
points are used. The visualization in Figs[3]and] again shows that our methods produce much more
accurate solutions than meta-learning PINNs. We then further test the extrapolation performance of
the polynomial method for parameter values up to 20. We set P = 20 and IN,, = 60 which is big
PpNp+1
N,

enough to make T < 1, and compute the solutions using equation5|for § = 1,2,3,--- , 19 and
obtain the relative errors. The results for the Convection and Heat equations are given in table[} It is
shown that our polynomial method achieves much lower errors than vanilla PINNs which encounter
optimization difficulties for large parameter values (Krishnapriyan et al|(2021)). We also compare
with P2INNs (2024))), and find that our method achieves lower errors, attributing to the
explicit analytic connection between solutions and parameters in our model.

Under review as a conference paper at ICLR 2025

Exact DATS+11AD

Figure 1: Prediction results of different methods for variable initial condition problem of Heat equa-
tion when u(z,0) = sin(3z + %).

Exact DATS+MAD Basis (Ours) x=0

—— Exact
. \--- DATS+MAD

Figure 2: Prediction results of different methods for variable source problem of Poisson equation
when f(z,y) = —10sin(z + %) cos(3z + %).

TableEl shows that the inference time of our methods is less than half a second, on average about 20
times faster than the fine-tuning in GPT-PINN, and over 400 times faster than vanilla PINNs. For
inverse problems, our methods are over 80 times faster than vanilla PINNs which need retraining.

For the Burgers’ equation with varying parameter, the results in table 3] and table] show that our
polynomial model has achieved lower error in inverse problems and is much faster than vanilla
PINN in inference (170 times faster in forward and 55 times faster in inverse), with a slightly higher
error than it in foreword problems. Figure[J]visualizes the high quality prediction of our polynomial
model for the Burgers’ equation.

More visualizations on predictions, learned basis solutions, learned coefficient functions, canonical
ans scaled solutions are provided in Appendices [D.3] to [D-6] respectively. Ablation studies are
included in Appendix [D-2]to explore the effect of the number of reserved Fourier bases and using a
single network to train all basis solutions.

Table 1: The relative Lo error of each method when changing the boundary/initial/source conditions.

Forward Inverse
Basis (Ours) DATS+MAD PI-DeepONet vanilla PINN | Basis (Ours) vanilla PINN
Convection | 0.014+0.006 0.098+0.052 0.534+0.053 0.015+0.006 | 0.014+0.006 0.01540.008
Heat 0.0124+0.006 0.0984+0.023 0.434+0.022 0.003+0.003 | 0.014-£0.003 0.025+0.016
Poisson 0.025+£0.004 0.599+0.233 - 0.003+0.002 | 0.018+0.003 0.313+0.034
Reaction | 0.009+0.001 0.588+0.394 - 0.02440.014 | 0.001+9e-04 0.002+0.001

PDEs

Table 2: Time cost of each method when changing the boundary/initial/source conditions.

Forward Inverse
PDEs Offline Training Time (h) Inference Time (s) Inference Time (s)
Basis (Ours) DATS+MAD PI-DeepONet | Basis (Ours) PI-DeepONet vanilla PINN (retraining time) | Basis (Ours) vanilla PINN
Convection 0.45 0.66 0.56 0.14 0.98 115 0.18 118
Heat 0.65 0.83 0.71 0.10 0.95 160 0.05 166
Poisson 5.5 5.78 - 0.40 - 215 0.41 193
Reaction 0.16 0.45 - 0.32 - 190 2.97 170

6 CONCLUSION AND FUTURE WORK

By establishing the analytic connections between PDE solutions and boundary/initial conditions,
sources or parameters, we propose methods in this work to solve the retraining problem of PINNs in

Under review as a conference paper at ICLR 2025

which neural networks need to be retrained once the PDE configurations change. The basis solution
method applies to linear PDEs with variable boundary/initial conditions or sources, the polynomial
model mainly applies to linear or nonlinear PDEs with variable parameters. Our methods are very
fast as well as accurate, making the applications of PINNs to interactive engineering design possible.

A limitation of our methods is that we have considered general but fixed boundary shapes, and
solving PDEs with varying geometry in real-time is one of our future work. We also want to explore
the problem of varying boundary/initial conditions and parameters simultaneously. Finally, we will
investigate more nonlinear PDEs in our future work.

DATS +HyperPINN Scaling (Ours)

Figure 3: Prediction results of different methods for variable parameter problem of Convection
equation when 8 = 9.

DATS +MAD GPT-PINN Polynomial (Ours)

DATS +HyperPINN DATS +MAD GPT-PINN Scaling (Ours)

SEg==

Figure 4: Prediction results of different methods for variable parameter problem of Reaction equa-
tion when p = 4.8.

Exact

vanilla PINN Polynomial(Ours)

Figure 5: Prediction results of different methods for the Burgers’ equation (v = 0.01).

Table 3: The relative Lo error of each method when changing the parameters.

PDE Forward Inverse
Ours DATS+Hyper DATS+MAD GPT-PINN vanillaPINN P*INN Ours vanilla PINN
Convection (Polynomial) 0.014+4e-04
. K 0.108+0.071 0.181+0.193 0.128+0.214 0.013+5e-04 0.007+0.005 0.489+0.470
Convection (Scaling) 0.014+7e-06
Heat (Polynomial) 2e-04+4e-04 0.041£0.088
K 0.0184+0.004 0.020+0.003 0.190+0.186 0.014+0.014 0.112+0.139
Heat (Scaling) 0.002+4e-04 2e-04+3e-04
Reaction 0.005+0.006 0.011+0.009 0.095+0.102 0.056+0.089 0.028+0.038 0.002+0.001 0.013+0.008
Burgers 0.027+0.024 0.011-£0.005 0.031+ 0.047 0.042+0.077
Convection (Polynomial), 5 € (0,20) | 0.021+0.028 0.1978 0.0464
Heat (Polynomial), o € (0, 20) 0.067+£0.179 1.2825 0.3745

Table 4: Time cost of each method when changing the parameters.

Forward Inverse
PDEs Offline Training Time (h) Inference Time (s) Inference Time (s)
Ours DATS+Hyper DATS+MAD GPT-PINN | Ours GPT-PINN vanilla PINN (retraining time) [Ours vanilla PINN

Convection (Polynomial) | 0.21(s) 0.42 2.99

. . 0.78 0.50 0.27 72 156 165
Convection (Scaling) 0.13 0.39 3.12
Heat (Polynomial) 0.17(s) 0.41 3.01

. 0.74 0.67 0.42 6 164 178
Heat (Scaling) 0.04 0.43 3.10

Reaction (Scaling) 0.05 0.86 0.41 0.12 0.40 8.61 170 1.30 175

Burgers 7.30 1.41 242 3.00 165

10

Under review as a conference paper at ICLR 2025

REFERENCES

Yanlai Chen and Shawn Koohy. Gpt-pinn: Generative pre-trained physics-informed neural networks
toward non-intrusive meta-learning of parametric pdes. Finite Elements in Analysis and Design,
228:104047, 2024.

Yuyan Chen, Bin Dong, and Jinchao Xu. Meta-mgnet: Meta multigrid networks for solving param-
eterized partial differential equations. Journal of computational physics, 455:110996, 2022.

Woojin Cho, Kookjin Lee, Donsub Rim, and Noseong Park. Hypernetwork-based meta-learning
for low-rank physics-informed neural networks. In Advances in Neural Information Processing
Systems, 2023.

Woojin Cho, Minju Jo, Haksoo Lim, Kookjin Lee, Dongeun Lee, Sanghyun Hong, and Noseong
Park. Parameterized physics-informed neural networks for parameterized pdes. In International
Conference on Machine Learning, 2024.

Arka Daw, Jie Bu, Sifan Wang, Paris Perdikaris, and Anuj Karpatne. Mitigating propagation failures
in physics-informed neural networks using retain-resample-release (r3) sampling. arXiv preprint
arXiv:2207.02338, 2022.

Filipe de Avila Belbute-Peres, Yi-fan Chen, and Fei Sha. Hyperpinn: Learning parameterized dif-
ferential equations with physics-informed hypernetworks. The symbiosis of deep learning and
differential equations, 690, 2021.

Tim De Ryck, Florent Bonnet, Siddhartha Mishra, and Emmanuel de Bézenac. An operator
preconditioning perspective on training in physics-informed machine learning. arXiv preprint
arXiv:2310.05801, 2023.

Wenhan Gao and Chunmei Wang. Active learning based sampling for high-dimensional nonlinear
partial differential equations. Journal of Computational Physics, 475:111848, 2023.

B. Haasdonk. Reduced Basis Methods for Parametrized PDEs - A Tutorial Introduction for Station-
ary and Instationary Problems. 2016.

John M Hanna, Jose V Aguado, Sebastien Comas-Cardona, Ramzi Askri, and Domenico Borzac-
chiello. Residual-based adaptivity for two-phase flow simulation in porous media using physics-
informed neural networks. Computer Methods in Applied Mechanics and Engineering, 396:
115100, 2022.

Zhongkai Hao, Jiachen Yao, Chang Su, Hang Su, Ziao Wang, Fanzhi Lu, Zeyu Xia, Yichi Zhang,
Songming Liu, Lu Lu, et al. Pinnacle: A comprehensive benchmark of physics-informed neural
networks for solving pdes. arXiv preprint arXiv:2306.08827, 2023.

Alemdar Hasanov Hasanoglu and Vladimir G. Romanov. Introduction to Inverse Problems for
Differential Equations. Springer, 2021.

Xiang Huang, Zhanhong Ye, Hongsheng Liu, Shi Ji, Zidong Wang, Kang Yang, Yang Li, Min
Wang, Haotian Chu, Fan Yu, et al. Meta-auto-decoder for solving parametric partial differential
equations. Advances in Neural Information Processing Systems, 35:23426-23438, 2022.

Victor Isakov. Inverse Problems for Partial Differential Equations. Springer, 2017.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Advances in Neural In-
formation Processing Systems, 34:26548-26560, 2021.

Gregory Kang Ruey Lau, Apivich Hemachandra, See-Kiong Ng, and Bryan Kian Hsiang Low. Pin-
nacle: Pinn adaptive collocation and experimental points selection. In International Conference
on Learning Representations, 2024.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

11

Under review as a conference paper at ICLR 2025

Songming Liu, Chang Su, Jiachen Yao, Zhongkai Hao, Hang Su, Youjia Wu, and Jun Zhu. Precon-
ditioning for physics-informed neural networks. arXiv preprint arXiv:2402.00531, 2024.

Xu Liu, Xiaoya Zhang, Wei Peng, Weien Zhou, and Wen Yao. A novel meta-learning initializa-
tion method for physics-informed neural networks. Neural Computing and Applications, 34(17):
14511-14534, 2022.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library
for solving differential equations. SIAM review, 63(1):208-228, 2021.

Bjorn Liitjens, Catherine H Crawford, Mark Veillette, and Dava Newman. Pce-pinns: Physics-
informed neural networks for uncertainty propagation in ocean modeling. arXiv preprint
arXiv:2105.02939, 2021.

B. Moseley and A. Markham. Solving the wave equation with physics-informed deep learning.
arXiv preprint arXiv:2006.11894, 2020.

Mohammad Amin Nabian, Rini Jasmine Gladstone, and Hadi Meidani. Efficient training of physics-
informed neural networks via importance sampling. Computer-Aided Civil and Infrastructure
Engineering, 36(8):962-977, 2021.

Jakin Ng, Yongji Wang, and Ching-Yao Lai. Spectrum-informed multistage neural network: Mul-
tiscale function approximator of machine precision. In International Conference on Machine
Learning, 2024.

Wei Peng, Weien Zhou, Xiaoya Zhang, Wen Yao, and Zheliang Liu. Rang: A residual-based adaptive
node generation method for physics-informed neural networks. arXiv preprint arXiv:2205.01051,
2022.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686-707, 2019.

Chengping Rao, Hao Sun, and Yang Liu. Physics-informed deep learning for incompressible laminar
flows. Theoretical and Applied Mechanics Letters, 10(3):207-212, 2020.

Pratik Rathore, Weimu Lei, Zachary Frangella, Lu Lu, and Madeleine Udell. Challenges in training
pinns: A loss landscape perspective. In Forty-first International Conference on Machine Learning,
2024.

Franz M Rohrhofer, Stefan Posch, Clemens Go6Bnitzer, and Bernhard C Geiger. On the role of
fixed points of dynamical systems in training physics-informed neural networks. arXiv preprint
arXiv:2203.13648, 2022.

Francisco Sahli Costabal, Yibo Yang, Paris Perdikaris, Daniel E Hurtado, and Ellen Kuhl. Physics-
informed neural networks for cardiac activation mapping. Frontiers in Physics, 8:42, 2020.

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let net-
works learn high frequency functions in low dimensional domains. In 34th Conference on Neural
Information Processing Systems, 2020.

Kejun Tang, Xiaoliang Wan, and Chao Yang. Das-pinns: A deep adaptive sampling method for
solving high-dimensional partial differential equations. Journal of Computational Physics, 476:
111868, 2023.

Maryam Toloubidokhti, Yubo Ye, Ryan Missel, Xiajun Jiang, Nilesh Kumar, Ruby Shrestha, and
Linwei Wang. Dats: Difficulty-aware task sampler for meta-learning physics-informed neural
networks. In The Twelfth International Conference on Learning Representations, 2024.

12

Under review as a conference paper at ICLR 2025

Rudolf LM van Herten, Amedeo Chiribiri, Marcel Breeuwer, Mitko Veta, and Cian M Scannell.
Physics-informed neural networks for myocardial perfusion mri quantification. Medical Image
Analysis, 78:102399, 2022.

Sifan Wang and Hanwen Wang. On the eigenvector bias of fourier feature networks: From regression
to solving multi-scale pdes with physics-informed neural networks. Computer Methods in Applied
Mechanics and Engineering, 384:113938, 2021.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow patholo-
gies in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055—
A3081, 2021a.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric par-
tial differential equations with physics-informed deeponets. Science advances, 7(40):eabi8605,
2021b.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022.

Jiachen Yao, Chang Su, Zhongkai Hao, Songming Liu, Hang Su, and Jun Zhu. Multiadam:
Parameter-wise scale-invariant optimizer for multiscale training of physics-informed neural net-
works. In International Conference on Machine Learning, pp. 39702-39721. PMLR, 2023.

Bastian Zapf, Johannes Haubner, Miroslav Kuchta, Geir Ringstad, Per Kristian Eide, and Kent-
Andre Mardal. Investigating molecular transport in the human brain from mri with physics-
informed neural networks. Scientific Reports, 12(1):15475, 2022.

Shaojie Zeng, Zong Zhang, and Qingsong Zou. Adaptive deep neural networks methods for high-
dimensional partial differential equations. Journal of Computational Physics, 463:111232, 2022.

Qiming Zhu, Zeliang Liu, and Jinhui Yan. Machine learning for metal additive manufacturing:
predicting temperature and melt pool fluid dynamics using physics-informed neural networks.
Computational Mechanics, 67:619—635, 2021.

13

Under review as a conference paper at ICLR 2025

Appendices

[Ak Exemplar PDEs and Their Configurations

The Basis Solution Method for Varying Sources: the Details

[C: More on Experimental Settings

[D: More Experimental Results

[E} Proof of Lemma (1]

Proof of Lemmal[2]

Proof of Lemma[3]

[Ht The Proof of Theorem

The Polynomial Model for the Heat equation with Variable Parameter
[J: The Polynomial Model for the Reaction Equation with Variable Initial Condition
The Details of the Scaling Method

14

Under review as a conference paper at ICLR 2025

A EXEMPLAR PDES AND THEIR CONFIGURATIONS

Table 5: The configurations considered for each PDE benchmark.

PDEs Formulations Boundary/Initial/Source Configurations
Convection Yoy pon = u(z,0) = sin(az + b) a € (0,3],be[0,7]
xe fo om] f € [0 1] u(0,1) = u(2m,) 3 e (0,20]
Heat gu — ag?; u(z,0) = sin(ax +b) a € (0,3],b € [0,7]
x € [0,27],t € [0,1] u(0,t) = u(0,0) u(2m,t) = u(27,0) a € (0,20]
or u(0,t) = u(2m,t)
Poisson Au(,Y) = f() fz,y) = ay, b1 € (0,3]
x,y € [, —(a? + b?)sin(a1z + az)cos(bry + ba) az, by € [0, 7
w(x,y)| 5o = sin(arx + az)cos(bry + b2)|yq
Reaction 7 - pu(l - U) 0 U(I, O) = W%)S*h(z) pE (0, 5]
z € [0,27],t € [0,1] or u(z,0) = h() a € (0,3]

h(z) = exp(— z(ﬂ/4)2)
u(0,t) = u(2m,t)
Burgers Ju 4 g 0u _ 0%) u(z,0) = —sin(nx) v €[0.01,0.2]

ot) ox2

ze[-11],t€0,1] u(=1,1) = u(1,t) = 0

B THE BASIS SOLUTION METHOD FOR VARYING SOURCES: THE DETAILS

Given an arbitrary discretized source f(z,y) (¢ = 0,1,--- ,M — 1;y = 0,1,--- ;N — 1) and
supposing M and N are even, we have the following decomposition of f(x,y).

Lemma 3. f(x,y) can be decomposed as

M/2 N/2 w vy
Z Z u, v)cos2m(M)cos%r(N) + B(u, v)sm27r(M)sm27r(N 04
u=0 v=0
ux vy
+ C(u,v)cos2m(M)sm27r(N) + D(u, ’U)SZTZQT((M)COSQTF(N),

where the four matrices A, B, C and D come from the two-dimensional DFT of f(x,y).

The proof of Lemmais presented in Appendix@ We train 4(% +1) (4 +1) PINNS offline to obtain
solutions {a¢¢ (,y), 6 (x,y), 455 (x,), 455 (x,y) } respectively, for the Poisson equation with
sources cos27r(M)00527T(N) szn27r(M)szn2ﬂ'(N), cos2m (57)5m2ﬂ'(), sin2m (57)005271'(4

and corresponding boundary conditions (can be defined on bounddrles Wlth drbltrary geometry)
The solution for a new source f(x,y) is then obtained by

M/2 N/2
az,y) =YY Al §)ass (z,y) + B, 5)is (x,y) + C(i, §)as (z,y) + D(i, j)ass (z,y). (15

i=0 j=0

The terms in equation|[I3]corresponding to high frequencies can be discarded without much accuracy
degradation for @(z, y).

C MORE ON EXPERIMENTAL SETTINGS

Training and Testing Tasks. DATS+HyperPINN and DATS+MAD-PINN need training tasks.
Since there is no fine-tuning in DATS+HyperPINN and there is no open source code for the fine-
tuning in DATS+MAD-PINN, we use all selected configurations as their training tasks and no
fine-tuning is used. Therefore, we only report training errors for these methods. In addition, we
empirically found that when the parameters are big, gradient vanishing sometimes happens in GPT-
PINN during fine-tuning. The errors before fine-tuning are thus reported for GPT-PINN. We use
the same set of initial conditions as for our basis solution method, i.e., cos(2%£) and sin(2%%),

1 =0,1,---,9, to train PI-DeepONet.

15

Under review as a conference paper at ICLR 2025

In our methods, for variable boundary/initial condition problems, we fix the parameters to § = 1
for the Convection equation, o = 0.2 for the Heat equation and p = 0.1 for the Reaction equation.
For variable parameter problems, the initial conditions are fixed to g(z) = sin(x) for Convec-

r—m)2 . .
tion and Heat equations, and to h(x) = exp(—%) for the Reaction equation. In our poly-
nomial model for the Convection and Heat equations, we directly use our theoretical solutions of

wj(z,t) (j = 0,1,---,N,) (given in equations and [33|in Appendix F and equation [43]in
Appendix [} respectively). The selected specific configurations in Tables [6{I2]are almost all new to
our methods (except 8 = 1 for the Convection equation and o = 1 for the Heat equation, which are,
respectively, used in the offline training of canonical equations in the scaling method). Thus, the
errors reported for our methods are testing errors. For the Burgers’ equation, the parameter values
of v used in training are 0.03, 0.05,0.07,0.09,0.1,0.12,0.14, 0.16, respectively, and those used for
testing (given table[I3]in Appendix[D.I)) are 0.01,0.08,0.15,0.18, 0.20, respectively.

Network and Optimization. The network architecture in DATS and GPT-PINN are all kept the
same as original papers. Both our methods and vanilla PINNs are trained using fully connected
neural networks of size [2, 100, 100, 100, 100, 1]. A learning rate of le-3 is used with the ADAM
optimizer, and all methods are trained for 20,000 epochs except for GPT-PINN, whose training
epochs is kept as default. A Nvidia 3090 GPU is used for the training and inference of all compared
methods.

In variable boundary/initial condition problems, for the Convection, Heat and Poisson equations,
our basis solution method and vanilla PINNs both sample 10,000 internal points and 100 points on
each boundary. For the Reaction equation, we use 3600 internal points, 256 initial points, and 50
points on each boundary to learn w;(z, t). In our scaling method, we use 30,000 internal points for
the canonical Convection equation, and 10,000 internal points for the canonical Heat and Reaction
equations.

In inverse problems, 100 true values are randomly sampled for the Convection and Heat equations.
Due to the large number of bases for the two-dimensional Poisson equation, 1000 points are ran-
domly sampled. 512 points are sampled for the inverse problem of Reaction equation, and 250
points are sampled for the inverse problem of Burgers’ equation. DATS and GPT-PINN did not deal
with inverse problems. For vanilla PINNs, the same number of sampled data points as ours is used
in inverse problems, and the number of collocation points in inverse problems is identical to that in
forward problems. In contrast, our methods do not need collocation points at all in inverse problems.

Ly Error Metric for Inverse Problems. For variable parameter problems, we directly compute
the relative Lo errors between optimal parameters found and their ground truth. For variable bound-
ary/initial/source problems, the relative Ly errors reported in our experiments are computed between
the recovered boundary/initial/sources and their ground truth.

D MORE EXPERIMENTAL RESULTS

D.1 L, ERRORS FOR EACH PDE UNDER DIFFERENT INITIAL CONDITIONS, SOURCES OR
PARAMETERS

Table 6: Relative Lo error for the Convection equation with variable initial condition.

Convection Forward Inverse
Initial Condition | Basis (Ours) DATS+MAD PI-DeepONet vanilla PINN | Basis (Ours) vanilla PINN
sin(x + %) 0.007 0.042 0.523 0.008 0.007 0.008
sin(x + %") 0.006 0.045 0.501 0.007 0.006 0.007
sin(2z + %) 0.015 0.066 0.495 0.015 0.015 0.013
sin(2x + 27”) 0.013 0.144 0.649 0.015 0.013 0.015
sin(3x + %) 0.023 0.148 0.507 0.022 0.023 0.023
sin(3z + %’r) 0.021 0.146 0.532 0.022 0.021 0.026

16

Under review as a conference paper at ICLR 2025

Table 7: Relative L, error for the Heat equations with variable initial condition.

Forward

Inverse

DATS+MAD PI-DeepONet

vanilla PINN

Basis (Ours) vanilla PINN

Heat
Initial Condition | Basis (Ours)

sin(x + %) 0.007
sin(z + ZF) 0.005
sin(2z + %) 0.013
sin(2z + ZF) 0.012
sin(3z + %) 0.020
sin(3z + %) 0.019

0.093
0.086
0.097
0.067
0.109
0.135

0.405
0.453
0.463
0.447
0.427
0.410

0.0005
0.0005
0.0016
0.0016
0.0026
0.0094

0.008
0.007
0.015
0.013
0.021
0.020

0.006
0.005
0.024
0.035
0.041
0.039

Table 8: Relative Lo error for the Poisson equation with variable source.

Poisson Forward Inverse
Source Basis (Ours) DATS+MAD vanilla PINN | Basis (Ours) vanilla PINN
—10sin(x + §)cos(3x +) 0.025 0.476 0.002 0.020 0.341
—10sin(z + 2F)cos(3z + 2F) 0.026 0.353 0.002 0.022 0.351
—8sin(2z 4 §)cos(2z + %) 0.020 0.654 0.003 0.014 0.269
—8sin(2x + 2?’T)cos(m + %") 0.020 0.977 0.003 0.014 0.273
—10sin(3z + §)cos(x + %) 0.031 0.726 0.002 0.021 0.323
—10sin(3z + %”)cos(z + 277’) 0.030 0.413 0.007 0.020 0.323

Table 9: Relative L error for the Reaction equation with variable initial condition.

Reaction Forward Inverse
Initial Condition Polynomial (Ours) DATS+MAD vanilla PINN | Polynomial (Ours) vanilla PINN
TRy hl) = el‘p(f%) 0.008 0.006 0.045 0.002 0.002
TE s () = eap(— %) 0.009 0.696 0.012 Te-4 0.004
BT h(@) = exp(—%) 0.009 0.789 0.020 Se-4 8e-4
T e (@) = exp(— %) 0.011 0.862 0.021 de-4 6e-4

Table 10: Relative Ly error for the Convection equation with variable parameter.

. Forward Inverse
Convection Polynomial ~Scaling DATS+Hyper DATS+MAD GPT-PINN vanilla PINN | Polynomial Scaling vanilla PINN
Bg=1 0.013 0.013 0.031 0.049 0.033 0.013 0.015 0.01 0.004
B8=3 0.014 0.014 0.065 0.022 0.021 0.014 0.006 0.006 0.003
B=5 0.014 0.014 0.077 0.067 0.003 0.014 0.003 0.003 0.58
B=T 0.014 0.014 0.179 0.309 0.078 0.013 8e-04 0.002 1.02
B=9 0.014 0.015 0.189 0.460 0.508 0.013 0.010 0.001 0.84
Table 11: Relative Lo error for the Heat equation with variable parameter.
Forward Inverse
Heat Polynomial Scaling DATS+Hyper DATS+MAD GPT-PINN vanilla PINN | Polynomial Scaling vanilla PINN
a=1 le-08 0.001 0.014 0.019 0.419 0.002 4e-04 8e-04 0.002
a=3 le-07 0.002 0.018 0.025 0.031 0.004 0.002 9e-05 0.007
a=5 le-06 0.002 0.019 0.016 0.013 0.004 0.004 le-04 0.050
a="T le-06 0.002 0.024 0.020 0.136 0.027 8e-04 3e-05 0.170
a=9 0.001 0.002 0.015 0.020 0.353 0.032 0.199 9e-05 0.330

17

Under review as a conference paper at ICLR 2025

Table 12: Relative Lo error for the Reaction equation with variable parameter.

. Forward Inverse
Reaction Scaling (Ours) DATS+Hyper DATS+MAD GPT-PINN vanilla PINN | Scaling (Ours) vanilla PINN
p=05 0.001 0.007 0.034 0.008 0.003 0.004 0.014
p=038 0.001 0.004 0.015 0.004 0.010 0.003 0.004
p=32 0.005 0.008 0.092 0.024 0.017 0.001 0.009
p=428 0.014 0.025 0.240 0.189 0.085 0.002 0.023

Table 13: Relative Lo error for the Burgers’ equation with variable parameter.

Forward Inverse
Burgers - - - -
Polynomial vanilla PINN | Polynomial vanilla PINN

v =0.01 0.0731 0.0114 0.1248 0.1953
v =0.08 0.0292 0.0148 0.0054 0.0051
v=0.15 0.0118 0.0056 0.0140 0.0035
v =0.18 0.0097 0.0187 0.0023 0.0041
v=20.2 0.0090 0.0069 0.0092 0.0032

D.2 ABLATION STUDY

D.2.1 THE EFFECT OF NUMBER OF BASES

For our basis solution method, the number of Fourier bases is set to 10 for the Convection and
Heat equations to use only lower frequency bases, since as is well-known in signal processing, the
boundary/initial values primarily consist of low frequency components. We tried with more Fourier
bases, including 15 and 20 bases, and the results are given in table[T4] which shows that the testing
errors are almost the same for different number of bases. Therefore, ten bases suffice to achieve
accurate solutions.

Table 14: Relative Lo testing error for the Convection equation and Heat equation with different
number of bases.

Number of Bases Convection Heat
10 15 20 10 15 20

sin(r + §) 0.0072 0.0072 0.0072 | 0.0068 0.0068 0.0068
sin(x + %’r) 0.0059 0.0059 0.0059 | 0.0053 0.0053 0.0053
sin(2z + %) 0.0149 0.0149 0.0149 | 0.0138 0.0138 0.0136
sin(2z + 2%) 0.0137 0.0138 0.0138 | 0.0125 0.0125 0.0125
sin(3z + %) 0.0222 0.0222 0.0222 | 0.0206 0.0203 0.0201
sin(3z + 2?”) 0.0212 0.0214 0.0214 | 0.0186 0.0186 0.0185

D.2.2 USING A SINGLE NETWORK TO TRAIN ALL BASIS SOLUTIONS

We also train a single network to produce all basis solutions and compare with the results of training
an independent network for each basis solution. The results are given in table[T3] Comparing it with
table[6] table [7]and table 2] one can see that training a single network yields slightly higher relative
errors with smaller parameter count and faster training.

18

Under review as a conference paper at ICLR 2025

Table 15: Relative Lo testing error and time cost of using a single network to train all basis solutions.

PDEs Convection | Heat

sin(z + %) 0.008 0.008

sin(x + %T) 0.008 0.006

] sin(2r + %) 0.016 0.017
Relative Lo Error 5

sin(2r + %) 0.015 0.014

sin(3r + %) 0.023 0.023

sin(3z + ZF) 0.022 0.022

) training time (h) 0.21 0.37

Time Cost) .
inference time (s) 0.15 0.05

D.3 VISUALIZATION OF PREDICTION RESULTS OF DIFFERENT METHODS

Figure 6: Prediction results of different methods for variable initial condition problem of Convection
equation when u(z,0) = sin(3z + §).

Exact DATS+MAD Polynomial (Ours) t=1
6

6 6

08 43 — Exact
--- DATS+MAD
0.6 0.6 ~-- Polynomial (Ours)

4 4 4

x x

04 704

2 2 02 2

02 02

o 0.0
00 02 04 06 08 10 0o 1 2 3 4 5 6

0 o
00 02 04 06 08 10 00 02 04 06 08 10

Figure 7: Prediction results of different methods for variable initial condition problem of Reaction

—Tr 2
equation when u(x,0) = WY&%@), where h(z) = exp(— éfw/4))2).

Exact DATS +HyperPINN DATS+MAD GPT-PINN Polynomial (Ours) " Scaling (Ours)

211

Figure 8: Prediction results of different methods for variable parameter problem of Heat equation
when a=1.

19

Under review as a conference paper at ICLR 2025

D.4 VISUALIZATION OF LEARNED BASIS SOLUTIONS FOR THE BASIS SOLUTION METHOD

°

Figure 9: Visualization of basis solutions
solution method: the Convection equation.

°

agin(z,t) and a5°°

?

°

(x,t) (i = 1,2,3,4) in our

i=1 i=3 i=4
6 I 6
075
° 0.50 s
3 025 4
3 000 3
-0.25
2 2
—0.50
o —075 1
.0 0.2 0.4 0.6 X X 00.0 0.2 0.4 0.6 0.8 10 00.0 02 0.4 0.6 0.8 10
6 10 6
® I 0.5 s
4 4
3 00 3
2 2
-0.5
1 1
0 0.2 0.4 0.6 000 0.2 04 0.6 0.8 10 000 0.2 0.4 0.6 0.8 10
Figure 10: Visualization of basis solutions @' (z,t) and 4{°®(x,t) (i = 1,2,3,4) in our

solution method: the Heat equation.

&

w

~

°

w

°

L

L
©

Figure 11: Visualization of basis solutions @5 (z, y), 457 (z,y), 4 (z,y) and @5 (2, y) (i = 1; j

-2

coscos

°

~

°

|
N

~

°

|
N

-3

sinsin

ij

|
N

sincos

o kN W

N W

°

sl hot

1,2) in our basis solution method: the Poisson equation.

20

basis

basis

Under review as a conference paper at ICLR 2025

D.5 VISUALIZATION OF LEARNED COEFFICIENT FUNCTIONS FOR THE POLYNOMIAL

,)
Wis Wao Wag
o
q] q 0010
2000 600 30
1 400 |
20 0.005
1000
J 200 4 10
x [4 [i o 4 0.000
—200 -10
10007 T 1 —0.005
—400 -20 -
2000 600 30
0010
T T —40 T
00 05 10 00 0s 10 00 05 10

in the polynomial model of Convection equation.

wo w wio w15 Wag Wag

0
E ! E 0.010

7.5 2000 600 o

1 1 200 7 1
50 20 0.005
1000

25 1 200 - 10
x 0o | o o | o 0.000

-25 ~200 -10
1000 4 0005

-s.0 _a00 -20

s ~2000 600 -30
~0.010

T T T —40 T
10 0.0 s 10 00 os 10 0.0 s 10 00 os 10

Figure 13: Visualization of learned w;(x,t) in the polynomial model of Heat equation.

wy way ws Wy wWs We
[— o
08
05

x
04
02
; _d 00
00 05 10 00 05 10 00 05 10 00 05 10 00 05 10 00 05 10 00 05 10
t t t t t t t

Figure 14: Visualization of learned w;(z,) in the polynomial model of Reaction equation.

D.6 VISUALIZATION OF CANONICAL SOLUTION AND SCALED SOLUTIONS
p=0.8 p=3.2

p=1
6 1.0
/ / 08
4 0.6
x
04
2
02
0 0.0
0 1 2 3 4 50 10
t t

1
t

Figure 15: Visualization of canonical solution and scaled solutions for the Reaction equation.

E PROOF OF LEMMA[I]

Proof. Given an arbitrary initial condition { g(xi)}ili_ol (suppose N is even), its discrete Fourier
transformation (DFT) and inverse discrete Fourier transformation (IDFT) are as follows, respec-
tively,

N-1 N-1
2muz 1 2muz
G(u) = z)e I , r)=— Gu)e v, z,u=0,1,2--- N—1, 16
(u) ;g() 9(x) Nuz:;) (u) (16)

Under review as a conference paper at ICLR 2025

where j = v/—1. Let G(u) = R(u) + jI(u), we have
N—

,_.

i)+ jI(w))(cos 2mux L+ isin 27ru;v)
~ 70 J & T
v a7
1 = 2mux 2mux
=~ (R(u)cos N I(u)sin ~),

I
=)

u
where the imaginary part in the right hand side of equationis discard since g(x) is real.

We now use the conjugate symmetry of DFT to reduce the number of terms in the summation, which
will lead to a saving of the number of PINNs trained offline. The conjugate symmetry G(u) =

G*(N — u) yields R(u) = R(N — u),I(u) = —I(N — u). Using coszw(l\g\;u)x = cos(2£42) and

sin 2T — i (212) e have
o) = _ [R(u)eos() — I(wysin(T2)
+R(N - u)cos(w) (V- u)sm(%(NN_ Wy,
(B0 () — 1(0)sin(Z2)) 4 LD yeos 2T - 1N ysin(2
- _ [R(u)eos(200 ~ Iu)sin(T2"] + L [RO)cos(*07) ~ 1(0)sin(T)]
+;[[R(N)cos(2”;v2‘vx) J(N)sm(%];%vx)], =012 N—1 "

Grouping the coefficients associated with different bases in equation [I8]into a vector a and a vector
b&

a:= (;R(O), {;R(u)}:__l ,;]R(N/2)> ;
. (19

{mpiei i)

equation [T8]can then be written as

N/2 .
2
g a;cos(—— ersm(7;\;33), r=0,1,2--- ,N — 1. (20)

=0

Therefore, an arbitrary initial condition { g(mi)}i]\gol can be decomposed by DFT using IV + 2 bases

N
{cos(27;\7}”), sin(27;\7;‘"’3)};:0.

O

F PROOF OF LEMMA

Proof. It is easy to see that u(z,t) satisfies the linear PDEs since u$°®(z,t) and u""(z,t)
satisfy them. For the initial condition, u(x,0) = Zi\gg a;u§?®(z,0) + bjui™(x,0) =
ZfV/OQ a;jcos(FEE) + bisin(3L) = g(z). Furthermore, by u(0,t) = ZfV/OQ a;u$°%(0,t) +
busn(0,t) = ZZN=/02 a;u§°s (2w, t) + biuf™(2m,t) = u(2m,t), the periodic boundary condition
is satisfied as well. Other boundary conditions can be proved similarly. Therefore, equation [3]is the
desired solution of linear PDEs under the variable initial condition.

22

Under review as a conference paper at ICLR 2025

G PROOF OF LEMMA[3]

Proof. Given an arbitrary source { f(m,n) |m=0,1,--- M —1;n=0,1,--- ,N — 1} (suppose
M and N are even), its two-dimensional DFT and IDFT are as follows, respectively,

M—-1N-1 |
v) = Z Z f(m,n)e_ﬁﬂ(%-i-%)’

m=0 n=0

3by Q1)
f(m,n) = Z S F(u, v)e 27+,
u=0 v=0
Let F'(u,v) = R(u,v) + jI(u,v), we have
EDp o wn
f(m,n) = M-N ;) UZ:O[R(u,v) +jI(u,v)][cos27r(ﬁ + N) +jsm27r(ﬁ n W)]

(22)

Using the conjugate symmetry F'(u,v) = F*(M —u, N —v), F(0,v) = F*(0, N —v), F(u,0) =
F*(M — u,0), we have R(u,v) = R(M —u, N —v),I(u,v) = —I(M — u, N — v) and so on.
Neglecting the imaginary part in reconstructed f(m,n), we have

M—1N-1
um vn um on
on(W L Uy nom(LR O
flm,n) = NUZ;MZO (u,v)cos 7r(M—|—N) (u,v)sin W(M—l—N)]
1
= ﬂ[R(O, 0)cos2m0 — 1(0,0)sin2m0]
N
2] un wn
+ MOV 2 [R(O,’U)COSQTI’(W) - I(O,v)sin27r(ﬁ)}
1 N In N, . Sn
+ o7 N[R(O, E)COSZTFW — I(0, 5)szn27rw]
M_q
+ 23 [R(u 0)00827rum I(u,0)sin2 um] (23)
) -) T—=r
M- N = M
1 M M M 5
TN wn
N 2 ; (u,v 005277(7 L N) I(u,v)sian(i i N)}
2 i M Ym won Em wn
- 27 (-2 —) —I(—= 2m(-2 —
+M'N;[R(2’U)COS 7T(M +N) (—=,v)sin 71'(M +N)]
1 M N Mm Sn M N Mm Hn
= 2)cos2m(2 20y (=, =)sin2m (2 2.
For the term ZN_? [R(u,v)cos2m (Y} + %+)] in equation , we have
= um n
[R(u, v)cos27r(ﬁ + W)]
v=1
= um un um un
= Z R(u, v)[cos27r(ﬁ)cos27r(ﬁ) - sin27r(ﬁ)sin27r(ﬁ)]
v=1 (24)
|
=2 R(u, v)[cosQw(%)cosQw(%)]
v=1
N um In um Nn
ad 2 21 (2=) = sin2n(——)sin2m(2=)].
+ R(u, 5)[cos2m(— 7 Yeos2m(N) — sin2m(7)sin2n(N)]

23

Under review as a conference paper at ICLR 2025

Similarly,
= um n
I 27 (— + —
UZl[(u, v)sin2m(—r + +7)]
e um un um un
= Z I(u, v)[sin?w(ﬁ)coﬂw(ﬁ) + cos27r(ﬁ)sin27r(ﬁ)]
v=1 (25)
|
um wn
=2 1 in2m(—- 2m(—
2. (u, v)[sin2m(i)cos W(N)}
N N N
+ I(u, 5)[51'71277(1;\?)005277(ifn) + 008271'(1;\;71)827127'('(3\7)]
Other terms in equatlon gan be expanded similarly using cos2m (57 %) =
cos2m (% ar 7)cos2m () — sin2m(YF) sin2m (%) and sin2m (57 + 57) = sin2n (57)cos2m () +

cos2m (47)sin2m (57). Therefore, we can use

ux vy) UL . vy
00527T(M)00527r(N), 3m27r(M)szn27r(N),
uzT, vy _ ux vy
COSQTF(M)SZTLZW(F), sanﬂ'(M)coﬂﬂ'(ﬁ), (26)
0,1 M 0,1 N
u = ... — U = .. —
))) 2)) b) 2

as two-dimensional DFT bases. Similar to the case of Convection equation, we group the coeffi-
cients in equation @ associated with these bases into four matrices A, B, C and D, and then write
equation 23] as

R uz vy uz v
Z Z (u,v cos27r(M)cos27T(N) + B(u, v)sm27r(M)sin27T(Ny) o7
u=0 v=0
ux ux vy
+ C(u, v)cos27r(M)sm27r(N) + D(u, v)sm?w(M)cos%r(N)]-
O
H THE PROOF OF THEOREMI]
Proof. For the Convection equation, the total loss is
Ly =ML+ XLy + N, L;
1 2
=Ar ﬁ Z [|we(z,t) + ﬁuw(x7t)|l2
(=, t)ec
28
o 3 u(0,6) — (L, 1) .
b teCy
1
i D llul,0) = g(@)]3.
v zec;

24

Under review as a conference paper at ICLR 2025

Using the polynomial expression in 5] we have

N,

Lo=hese S0 (00w, 0) + Poaawy (e, 0)(B/PY + Dol)(8/P)°

" (zt)ec, =1
+ Pdywn, (. t)(B/P)Nr |3

. N, N . (29)
o 2 1D wi(0.0(8/PY = 3wy (L. t)(B/PY 1
biec, =0 J=0
1 all
Fhine 21D wi(@, 0)(8/PY - g(a)]3-
vzec; j=0
By [9[T1]and [T2] we have
P2
Li=Ae S0 [[Guwn, (e, 0)(8/PYV (30)
" (z,t)eC,

As for the solutions w; (z,t) (j = 0,1,2,- -, Np), from[9]and [T 1] we have
wo(z,t) = g(x). (31)
By dyw; (2, t) = —POywo(x,t) and[T1} we have

wi(2.1) = — 3%(;%, (32)

Applying dyw;(z,t) = —POyw;_1(z,t) and[[1]recursively and neglecting equation [I0} we have
(=P)Ne ONvg() o

Np! AxNv '
The periodic boundary conditions are satisfied by such w;(x,t) (j = 0,1,---, Np) due to g(0) =
g(L) and %(0) = gz;?(L)7 n =1,2,---, N,. Therefore, w;(x,t) (j = 0,1,---,Np) can be

solved exactly if we neglect equation However, since usually % # 0,10 may not be
satisfied, thus 0] [I0]TT] and [I2] together may have no solutions.

The total loss becomes

P2
Lt == A’,- F Z

" (z,t)eC,

wn, (x,t) = (33)

2

PNP 8Np+1g(a:) Np(é)Np—o—l
N, QzNetl P

2
52 (max 0N tlg(z) o PN

<
< Ar z QxNetl Np!

(5)5r1y? G4)
" (z,t)eC,

= A, (max O g(a) o P

g Np+142
x . QaNetl N,! By

This gives the upper bound of loss.

I THE POLYNOMIAL MODEL FOR THE HEAT EQUATION WITH VARIABLE
PARAMETER

For the Heat equation u; = ., with variable parameter « € (0, P), we can write the polynomial
model as

Np
u(z,t) = ij(x,t)(oz/P)j. (35)

Jj=0

25

Under review as a conference paper at ICLR 2025

Substituting equation [33]into u; = vy, we have

N, N,
> Owwj(x,t)(a/P) — ay " Opawj(x,t)(e/ P) =0, (36)
j=0 j=0
which leads to
Np+1
Z@tw] z,t)(a/P) — P Z Orzwj_1(z,t) () P) =0, 37
7=0 j=1

Np
[atwj(xvt) - Paxlw]—l(x7t)](a/P) + atw()(x t) Pawa:wNp (xvt)(a/P)Np+1 = 07 (33)
=1

Since « can be variable, then

Oww;j(x,t) — POygwj_1(z,t) =0, j=1,2,--- N, (39)
Oywo(x,t) =0

Ozawn,, (z,1) = 0. (40)

The initial condition u(z,0) = g(z) yields ZJ Zow;i(x,0)(a/P)? = g(x), thus

’LU](J?,O):O, .]:1a2aaNp 41
{ wo(,0) = g() @
For the periodic boundary condition u(0,¢) = u(L,), we have

w;(0,t) =w;(L,t), j=0,1,---,Np. (42)

We have the following theorem to establish the bound of loss of our polynomial model for the Heat
equation.

Theorem 2. For the Heat equation u; = Qug,, x € [0, L], t € [0, 1] with initial condition u(z,0) =
g(x) and periodic boundary condition u(0,t) = u(L,t), suppose g(x) is diﬁ‘erentiable up to the
(2N, + 2)-th order and satisfies the periodic conditions g(O) g(L) and 2),
2,4, - 2N Ifwe solve wj(z,t) (j = 0,1,2,---, N,) using equatzonsandil nd neglect
equatton then w;(z,t) (j = 0,1,2,---,Np) can be solved exactly, and the total loss L, =

§2Np+2 Np+1
ALy +)\bLb + A\ L; is at most \,.(max, 61’;%3(;))2(PN:! (%)Np+1)2_

Proof. Applying equation[39]and equation 1] recursively and neglecting equation #0] we have
wo(z,t) = g(z),

9*g(x)
wy(z,t) = P 52 toe-, 43)
PNP 82N”g($) N
wny (@ 8) = Jr N,

The periodic boundary conditions are satisfied by w;(z,t) (j = 0,1,--- , N,) due to g(0) = g(L)
and ng (0) = g:f (L), n =2,4,---,2N,. Therefore, w;(x,t) (j =0,1,---, Np) can be solved
exactly if we neglect equation The total loss is

L=\ 52 PNP 62Np+2g(x) Np(g)Np‘H
te N,! Ox2Np+2 P
r (z,t)EC, p 2 (44)
PNet2g(x) o PP a +1)2
< helmax = e) O ()T

2

This completes the proof.

26

Under review as a conference paper at ICLR 2025

1.1 IMPLEMENTATION

When varying the parameter v with fixed initial condition g(x) = sinz and A, = 1, we set N,, = 29
in our experiments and achieve very low error for a € (0, 10].

J THE POLYNOMIAL MODEL FOR THE REACTION EQUATION WITH
VARIABLE INITIAL CONDITION

The Reaction equation u; — pu(1 — u) = 0 is a nonlinear ordinary differential equation. We assume
the parameter p is fixed and only consider to vary the initial condition. From the finite difference
discretization u{*! = u} + 7 puj (1 —ul) = ul(1+7p) — (u})?7p, we can infer that the solution
isa polyn0m1a1 of 1n1t1a1 value u , thus we model the relatlonshlp between the solution u(z, t) and
initial condition g(x) as follows,

u(z,t) = Zw]—(m,@gﬂ’(x). (45)

Substituting equationinto Uy — pu(l —u) = 0, we have

NT)
Z@tw] (z,t)g ij (z,t)g’ (z)(1 — Zwk(;v,t)gk(x)) =0, (46)
k=0
which leads to
Z@twjg —prJg +p Z wijwig’ T = 0. 47)

7,k=0
Since g(x) can be arbltrary, we have

{atwi = PWi + P Y g k0,1, N ki) WiWE =0, 1 =0,1,2,--- N, 48)
2 k=12, Nyljth=i) Wik = 0, 4= Np + 1, Np +2,--- , 2N,
The initial condition u(z,0) = g(z) leads to
’U)j(CU,O):O, j:O72>37"'7Np
{ wi (z,0) = 1. (49)
The periodic boundary condition u(0, t) = u(L, t) leads to
wj(O,t):wj(L,t), j:(),l, ,Np. (50)
We then train neural networks to approximate the coefficient functions w;(z,t) (= 0,1,--- , N,)

using losses associated with equations [48]49| and [50}

For inverse problems, based on equation we use gradient descent search to find the initial values
g(x;) at discretized points {x; }.

In our implementation, the analytic solution to the Reaction equation is given by u(z,t)

ah(a:)gpizfl)ip(;ﬁh(w)’ where h(z) = exp(—%). Therefore, the initial condition is u(z,0) =
ah(x)

SR @) We vary the value of « to change the initial condition. Note that 0 < 1—0.5h(z) <

1 since 0 < h(z) < 1, we have g(z) = u(z,0) < 1if o > 0. Thus, the term ¢/ (z) in equation
decreases exponentially with j, and we found in our experiments that N, = 6 is enough to achieve
low approximation error.

K THE DETAILS OF THE SCALING METHOD

K.1 CANONICAL SOLUTION AND SCALED SOLUTIONS

Take the Convection equation as an example to describe our scaling method, which is simpler and
easier to implement than the polynomial model. Suppose the boundary/initial conditions are fixed.

27

Under review as a conference paper at ICLR 2025

We call the Convection equation u;+u, = 0 (with § = 1) as the canonical Convection equation, and
train a PINN to approximate its solution u(x, t). Given a Convection equation u;+fSu, = 0 (8 # 1)
with unknown solution ug(x,t), we want to scale u(x, t) to obtain ug(z,t). We have the following
lemma to achieve this goal, whose proof in provided in Appendix [K:2}

Lemma 4. The function ug(x,t) := u(x, Bt) is the solution of the equation 8uﬁ(r by Bauﬁ(r At

0 (8 # 1) with initial condition ug(z,0) = g(x) and periodic boundary condztzon u;;{% t)
ug(L,t) (or other conditions, not necessarily periodic), where u(zx,t) is the solution of canomcal
Convection equation with initial condition u(x,0) = g(x) and boundary condition u(0,t) = u(L,t)
(or other non-periodic boundary conditions).

Implementation. When training PINNs to approximate the canonical solution u(z,t), for 8 €
(0, P, the scaled time domain [0, PT is used, which will require more collocation points if P >> 1.
We then scale the PINNs’ canonical solutions #(x, t) to obtain ug(x,t) = 4(z, 5t).

K.2 PROOF OF LEMMA [

Proof. By canonical equation, we have
ou(z’,t") n Ou(x’,t)
ot’ ox!

=0. (D

Letz = x, t = [t, we then have

ou(zx, Bt) Ot . ou(x,Bt) dx Ou(x,Bt) Ou(zx,St)

ot of or or ~ por T ow 0 (52)

Therefore,

Oug(x,t) Oug(z,t)
! L2 = (. 53
ot +h Oox)
By

ug(x,0) = u(z, f0) = g(x), up(0,t) = u(0,ft) = u(L, ft) = us(L, 1), (54)
the initial condition ug(x,0) = g(x) and boundary condition ug(0,t) = ug(L,t) are also satisfied
by ug(x,t). Consequently, ug(z,t) := u(x, 5t) is the desired solution. O

K.3 INVERSE PROBLEMS

Given observed data {@(z;,t;)}, the goal of inverse problems in the scaling method is to obtain the
optimal parameter (3. This is achieved by the following optimization problem,

B* —argmmﬁz (w4, Bt;) — alwi, t5))? (55)
i

In our implementation, we use gradient descent optimization in PyTorch to search $*, in which the
gradient of 4(x;, 5t;) with respect to 3 is fulfilled by the auto-differentiation since 4(x;, 5t;) is the
output of a neural network.

28

	Introduction
	Related Work
	Preliminaries
	Methodology
	Linear PDEs with Variable Boundary/Initial Conditions or Sources
	The Basis Solution Method for Varying Initial/Boundary Conditions
	The Basis Solution Method for Varying Sources
	Generality of the Basis Solution Method

	PDEs with Variable Parameters
	The Polynomial Model
	The Scaling Method

	Experiments
	Experimental Setup
	Results

	Conclusion and Future Work
	Exemplar PDEs and Their Configurations
	The Basis Solution Method for Varying Sources: the Details
	More on Experimental Settings
	More Experimental Results
	L2 errors for Each PDE under Different Initial Conditions, Sources or Parameters
	Ablation Study
	The Effect of Number of Bases
	Using a Single Network to Train All Basis Solutions

	Visualization of Prediction Results of Different Methods
	Visualization of Learned Basis Solutions for the Basis Solution Method
	Visualization of Learned Coefficient Functions for the Polynomial Model
	Visualization of Canonical Solution and Scaled Solutions

	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	The Proof of Theorem 1
	The Polynomial Model for the Heat equation with Variable Parameter
	Implementation

	The Polynomial Model for the Reaction Equation with Variable Initial Condition
	The Details of the Scaling Method
	Canonical Solution and Scaled Solutions
	Proof of Lemma 4
	Inverse Problems

