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ABSTRACT

Recent AI research has emphasised the importance of learning disentangled rep-
resentations of the explanatory factors behind data. Despite the growing interest
in models which can learn such representations, visual inspection remains the
standard evaluation metric. While various desiderata have been implied in recent
definitions, it is currently unclear what exactly makes one disentangled representa-
tion better than another. In this work we propose a framework for the quantitative
evaluation of disentangled representations when the ground-truth latent structure
is available. Three criteria are explicitly defined and quantified to elucidate the
quality of learnt representations and thus compare models on an equal basis. To
illustrate the appropriateness of the framework, we employ it to compare quanti-
tatively the representations learned by recent state-of-the-art models.

1 INTRODUCTION

To gain a conceptual understanding of our world, models must first learn to understand the factorial
structure of low-level sensory input without supervision (Bengio et al., 2013; Lake et al., 2016;
Higgins et al., 2017). As argued in several notable works (Desjardins et al., 2012; Bengio et al.,
2013; Chen et al., 2016; Higgins et al., 2017), this understanding can only be gained if the model
learns to disentangle the underlying explanatory factors hidden in unlabelled input.

A disentangled representation is generally described as one which separates the factors of variation,
explicitly representing the important attributes of the data (Desjardins et al., 2012; Bengio et al.,
2013; Cohen & Welling, 2014b; Kulkarni et al., 2015; Chen et al., 2016; Higgins et al., 2017).
For example, given an image dataset of human faces, a disentangled representation may consist of
separate dimensions (or features) for the face size, hairstyle, eye colour, facial expression, etc. Ul-
timately, we would like to learn representations that are invariant to irrelevant changes in the data.
However, the relevant downstream tasks are generally unknown at training time and hence it is diffi-
cult to deduce a priori which features will be useful. Thus, the most robust method is to disentangle
as many factors of variation as possible, discarding as little information as possible (Desjardins et al.,
2012; Bengio et al., 2013).

Despite the expanding literature on models which seek to learn disentangled representations (Des-
jardins et al., 2012; Reed et al., 2014; Zhu et al., 2014; Cheung et al., 2014; Larsen et al., 2015;
Makhzani et al., 2015; Yang et al., 2015; Kulkarni et al., 2015; Whitney et al., 2016; Chen et al.,
2016; Higgins et al., 2017; Denton & Birodkar, 2017), visual inspection remains the standard eval-
uation metric. While the work of Higgins et al. (2017) partially addresses this issue (as discussed
in section 3) and various definitions have implied additional desiderata like interpretability (Bengio
et al., 2013; Kulkarni et al., 2015; Chen et al., 2016), invariance (Goodfellow et al., 2009; Cohen
& Welling, 2014a;b; Lenc & Vedaldi, 2015) and equivariance (Kivinen & Williams, 2011; Lenc &
Vedaldi, 2015; Jayaraman & Grauman, 2015), current research generally lacks a clear metric for
quantitatively evaluating and comparing disentangled representations.

In this work we propose a framework for the quantitative evaluation of disentangled representations
when the ground-truth latent structure is available. To elucidate the quality of learnt representations
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and thus compare models on an equal basis, desiderata of disentangled representations are explic-
itly defined and quantified. These unified desiderata help define the disentangled representations
which we seek and remove the need for a subjective visual evaluation by a human arbiter. To illus-
trate the appropriateness of this framework, we employ it to compare quantitatively the representa-
tions learned by principal components analysis (PCA), the variational autoencoder (VAE, Kingma
& Welling 2013), β-VAE (Higgins et al., 2017) and information maximising generative adversarial
networks (InfoGAN, Chen et al. 2016).

In the remainder of this paper, we begin by detailing the theoretical framework and how it facilitates
the quantitative evaluation of disentangled representations. Next we review related desiderata and
metrics for evaluating disentangled representations. Finally, we describe the dataset and model
specifics before presenting the experimental results.

2 THEORETICAL FRAMEWORK

Models for disentangled factor learning seek a compact data representation or code c of dimension
D, which consists of disentangled and interpretable latent variables. For synthetic data, the K-
dimensional generative factors z are designed to be an ideal such representation. Thus ifD = K the
ideal disentangled code c∗ should be some (scaled) permutation of z, i.e. they should be related by
a generalised permutation matrix (or monomial matrix1). IfD > K, one would expect to obtain this
monomial structure along with a number of ‘dead’ or irrelevant units in c which are not predictive
of / informative about z. Thus, we can quantitatively evaluate the codes learned by a given model
M using the following steps:

1. Train M on a synthetic dataset with generative factors z

2. Retrieve c for each sample x in the dataset (c =M(x))

3. Train regressor f to predict z given c (ẑ = f(c))

4. Quantify f ’s deviation from the ideal mapping and the prediction error

We now detail the proposed evaluation metrics, i.e., steps 3 and 4. We train K regressors to predict
the value of K generative factors. The regressor fj predicts zj given c, that is, it learns a mapping
fj(c) : RD → R1. We use regressors that can provide a matrix of relative importancesR, whereRij
denotes the relative importance of ci in predicting zj (see section 4.3). This allows us to explicitly
define and quantify three criteria of disentangled representations or codes which are implicit in
recent definitions (Desjardins et al., 2012; Bengio et al., 2013; Kulkarni et al., 2015; Chen et al.,
2016; Higgins et al., 2017), namely disentanglement, completeness and informativeness.

Disentanglement. The degree to which a representation factorises or disentangles the underly-
ing factors of variation, with each variable (or dimension) capturing at most one generative factor.
The disentanglement score Di of code variable ci is quantified by Di = (1 − HK(Pi.)), where
HK(Pi.) = −∑K−1

k=0 Pik logK Pik denotes the entropy and Pij = Rij/
∑K−1
k=0 Rik denotes the

‘probability’ of ci being important for predicting zj . If ci is important for predicting a single gen-
erative factor, the score will be 1. If ci is equally important for predicting all generative factors, the
score will be 0. Di can be visualised by examining row i of the Hinton diagrams as in Figure 3.

In order to account for dead or irrelevant units in c, relative code variable importance ρi =∑
j Rij/

∑
ij Rij is used to construct a weighted average

∑
i ρiDi expressing overall disentan-

glement. If a code variable ci is irrelevant for predicting z, then its ρi (and thus contribution to the
overall disentanglement) will be near zero.

Completeness. The degree to which each underlying factor is captured by a single code variable.
The completeness score Cj in capturing generative factor zj is quantified by Cj = (1−HD(P̃.j)),
whereHD(P̃.j) = −

∑D−1
d=0 P̃dj logD P̃ij denotes the entropy of the P̃.j distribution. If a single code

variable contributes to zj’s prediction, the score will be 1 (complete). If all code variables equally

1A matrix is monomial if there is exactly one non-zero element in each row and column. If the non-zero
elements have value 1 the matrix is a permutation matrix.
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Figure 1: Visualising disentanglement and completeness.

contribute to zj’s prediction, the score will be 0 (maximally overcomplete). Cj can be visualised by
examining column j of the Hinton diagrams as in Figure 3.

Informativeness. The amount of information that a representation captures about the underlying
factors of variation. To be useful for natural tasks which require knowledge of the important at-
tributes of the data (e.g. object recognition), representations must ultimately capture information
about the underlying factors of variation (Bengio et al., 2013; Chen et al., 2016). The informative-
ness of code c about generative factor zj is quantified by the prediction error E(zj , ẑj) (averaged
over the dataset), where E is an appropriate error function and ẑj = fj(c). It is important to note
that the prediction error E(zj , ẑj), and thus this informativeness metric, is dependent on the capac-
ity of f , with linear regressors only capable of extracting information about z in c that is explicitly
represented. Hence this informativeness metric is also dependent on a model’s ability to explicitly
represent information about z in c, which in turn is dependent on the model’s ability to disentangle
the underlying factors of variation (z). Thus the informativeness metric has some overlap with the
disentanglement metric, with the size of the overlap determined by the capacity of f (no overlap
with infinite capacity).

While the disentanglement score quantifies the number of generative factors captured by a given
code variable, the completeness score quantifies the number of code variables which capture a given
generative factor. Together, these scores quantify the deviation from the ideal one-to-one mapping
between z and K of the dimensions in c. Figure 1 illustrates this idea.

Despite the overlap between the disentanglement and informativeness metrics with low-capacity
linear regressors, these are ultimately distinct criteria. While disentanglement requires each code
variable in c to be only perturbed by changes in a single z, informativeness requires these pertur-
bations to be systematic and thus informative. This motivates the use of non-linear regressors in
section 4.3.

While the ideal code would be able to explicitly represent each generative factor with a single vari-
able, models with generic priors cannot be expected to learn such complete and explicit codes. For
example, generative factors which are drawn from a distribution on a circle cannot be accurately
captured by single code variables on which unwrapped prior distributions are imposed. Thus, with
generic priors like the standard normal, information about such topologically distinct generative fac-
tors may be non-linearly encoded across multiple code variables. Empirical results in Appendix C
and (Higgins et al., 2017, fig. 7) support this idea, with several code variables resembling non-linear
functions (like the sine and cosine) of the object azimuth. This further motivates the use of non-linear
regressors in section 4.3.

Our criteria assume that it is possible to recover the latent factors z from the data. If the data x
depends on a linear combination of (some of) the underlying z’s with a spherically symmetric dis-
tribution, then it will only be possible to recover these components up to a rotation matrix. This is
the well-known issue of the rotation of factors in the linear factor analysis model (see e.g., Mardia,
Kent, and Bibby 1979, sec. 9.6), and also leads to the condition in independent components analysis
(ICA) that at most one of the z’s can be Gaussian (Hyvärinen et al., 2001). In this case, the infor-
mativeness metric remains valid but the disentanglement and completeness metrics do not as they
are dependent on the arbitrary rotation which determines c’s alignment with z. Although z may
be used to compute the rotation matrix which best aligns c and z, we ultimately wish to evaluate
models which will not have access to z at test time.
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3 RELATED WORK

The question of how well a learned representation c matches the true generative factors z has been
considered in the ‘square’ case of independent components analysis (ICA), where D = K. In the
ICA case, the data is generated as x = Az and the learned representation is obtained as c = Wx,
where A is the mixing matrix and W is the learned ‘un-mixing’ matrix. Ideally P = WA will be
equal to a permutation matrix. Yang & Amari (1997, sec. 6.1) propose an error metric to assess how
close P is to a permutation matrix2. This metric takes the form

E =
∑
i

∑
j

|pij |
maxk |pik|

− 1

+
∑
j

∑
i

|pij |
maxk |pkj |

− 1

 , (1)

summing two terms which have similar goals to our disentanglement and completeness scores re-
spectively, although expressed by comparing with the maximum value in the row or column, rather
than via an entropic measure. Note that, due to the linear structure of ICA, there is no explicit map-
ping between c and z. We report separate scores as they capture distinct criteria and go beyond this
metric by handling the non-square case when D > K.

Predicting z from c has also been considered previously. Higgins et al. (2017, sec. A.5) use a linear
classifier to predict discrete settings of z and thus quantify the amount of explicit information about
z in c, albeit with a discretisation step which we find unnecessary. Higgins et al. (2017, sec. 3)
also propose a disentanglement metric. With this method, one of the generative factors say zk is
held fixed, and pairs of x’s are drawn, generated with different random z’s except for the fixed
zk. Pairwise absolute differences of the resulting codes |c1 − c2| are then computed and averaged
over repetitions before being used to train a linear classifier to predict which generative factor was
held fixed. In our view this is unnecessarily cumbersome—by setting up a regression problem to
predict z from c as we have done, the structure of the Rij matrix can be interrogated to quantify
the degree of disentanglement. In addition, this facilitates the quantification of additional criteria,
namely completeness and informativeness, without needing to generate any additional datasets.

Glorot et al. (2011, fig. 3) predict z from c using a lasso regressor but only to qualitatively assess
disentanglement, visually assessing the overlap of important features for the separate tasks of do-
main recognition and sentiment classification. Karaletsos et al. (2015) do so with an unspecified
regressor, thus quantifying informativeness. In addition, they devise a quantitative metric to deter-
mine a model’s ability to disentangle the underlying factors of variation in images. In particular,
they predict the order of query-specific oracle triplets of images, where the order indicates image
similarity with respect to a query (e.g., ‘Where is the light condition most similar in terms of az-
imuth?’). However, the proposed metric is specifically designed to evaluate their ‘oracle-prioritized
belief network’ and thus overly cumbersome to be used as a generic disentanglement metric.

Properties such as invariance and equivariance have been proposed as desiderata for representations
or codes (Goodfellow et al., 2009; Kivinen & Williams, 2011; Cohen & Welling, 2014b; Lenc &
Vedaldi, 2015; Jayaraman & Grauman, 2015). In our view these qualities arise naturally from a
properly disentangled and informative code. Consider, for example, the code of an object which
consists of separate variables for its class (e.g., cup, bottle, banana etc.), position, pose, texture etc.
If the object is translated, its position code variable(s) will transform accordingly (equivariance), but
other code variables will remain invariant.

4 EXPERIMENTS

We employ the framework to compare quantitatively the codes learned by PCA, the VAE, β-VAE
and InfoGAN. The results can be reproduced with our open source implementation3.

4.1 DATA

We use the graphics renderer described in (Moreno et al., 2016) to generate 200,000 64× 64 colour
images of an object (teapot) with varying pose and colour (see Figure 2). For simplicity, the camera

2We thank Andriy Mnih for pointing out to us the work of Yang and Amari.
3Code and dataset available at https://www.github.com/cianeastwood/qedr.
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Figure 2: Data samples.

is centred on the object, the scene background is removed and additional generative factors (shape
and lighting) are held constant. Each generative factor is independently sampled from its respec-
tive uniform distribution: azimuth(z0) ∼ U [0, 2π], elevation(z1) ∼ U [0, π/2], red(z2) ∼ U [0, 1],
green(z3) ∼ U [0, 1], blue(z4) ∼ U [0, 1]. We divide the images into training (160,000), validation
(20,000) and test (20,000) sets before removing images which contain particular generative fac-
tor combinations to faciliate the evaluation of zeroshot performance (see Appendix B.2). This left
142,927, 17,854 and 17,854 images in the training, validation and test sets respectively.

4.2 MODELS

Generative modelling has become one of the leading approaches to unsupervised representation
learning, with several recent works imposing additional learning constraints to encourage the model
to learn disentangled representations (Desjardins et al., 2012; Reed et al., 2014; Zhu et al., 2014;
Cohen & Welling, 2014a; Cheung et al., 2014; Larsen et al., 2015; Makhzani et al., 2015; Chen
et al., 2016; Higgins et al., 2017). Of these models, it can be argued that β-VAE (Higgins et al.,
2017) and InfoGAN (Chen et al., 2016) are the most promising due to their scalability and lack of
assumptions about the underling factors of variation. Thus, we evaluate the codes learned by these
models and compare them to the VAE(β = 1) and PCA.

For fair comparison, we train all models with 10 code variables and use the same network archi-
tectures for the VAE, β-VAE and InfoGAN. More specifically, we use the same residual networks
(ResNets, He et al. 2016) for the encoders/discriminator and the decoders/generator (see Table 2),
and train InfoGAN with 10 continous ‘latent codes’(Chen et al., 2016) and 0 noise variables. We
found that these ResNets produced the sharpest images and best visual disentanglement for all gen-
erative models, outperforming popular architectures for (β-)VAE (Larsen et al., 2015; Higgins et al.,
2017) and InfoGAN (Kulkarni et al., 2015). We fit β = 6 and λ = 6 for β-VAE and InfoGAN
respectively by balancing reconstruction/generation quality and visual disentanglement (see Ap-
pendix D), where λ is the mutual information coefficient. See Appendix A for further details.

4.3 REGRESSORS

Lasso. We begin with linear regressors and encourage a sparse mapping between c and z with an
`1 regularisation penalty (lasso regressors). With the inputs and targets normalised to have zero mean
and unit variance, the magnitude of the resulting regression weights rank the learnt code variables
c0, . . . , cD−1 in order of relative importance to the prediction. That is, they reveal which code
variables capture information about a given generative factor. Thus, we define the matrix of relative
importances R as Rij = |Wij | for linear regression, where Rij denotes the relative importance of ci
in predicting zj and |Wij | denotes the magnitude of the weight used to scale ci in predicting zj . We
fit the `1 penalty coefficient α on the validation set to achieve the lowest prediction error.

Random forest. We use random forest regressors due to their inbuilt ability to determine the rela-
tive importance of each feature to a given prediction, thus allowing us to directly specify the matrix
of relative importances R. Random forests average the predictions and feature importances from
each decision tree in the ensemble. The number of times a tree chooses to split on a particular
input variable determines its importance to the prediction. Thus, the relative importance of each
input variable ci is given by the number of cases split on ci over the total number of splits (Breiman
et al., 1984). As performance generally improves with the number of trees n in the ensemble, we fix
n = 10. The remaining parameter, tree depth, is determined on the validation set (lowest prediction
error).
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(a) Lasso

Code Disent. Compl. Inform.

PCA 0.29 0.32 0.44
VAE (β = 1) 0.67 0.62 0.37
β-VAE (β = 6) 0.66 0.59 0.35

InfoGAN 0.75 0.72 0.23

(b) Random forest

Code Disent. Compl. Inform.

PCA 0.50 0.52 0.27
VAE (β = 1) 0.86 0.75 0.09
β-VAE (β = 6) 0.90 0.76 0.10

InfoGAN 0.91 0.87 0.13

Table 1: Average model scores. ‘Inform.’ indicates (average) normalised root-mean-square error
(NRMSE) in predicting z.

4.4 RESULTS

Overview. Table 1 presents the average disentanglement, completeness and informativeness scores
for PCA, the VAE, β-VAE and InfoGAN for the (a) lasso and (b) random forest regressors. With
both regressors, PCA achieves the worst disentanglement, completeness and informativeness scores
(highest error in predicting z) while the VAE (β = 1) and β-VAE (β = 6) achieve very similar
disentanglement, completeness and informativeness scores to each other. While InfoGAN achieves
the best disentanglement, completeness and informativeness scores with the lasso regressor, the VAE
and β-VAE achieve similar disentanglement and informativeness scores to it with (the increased
capacity of) the random forest regressor.

Disentanglement. InfoGAN achieves the highest average disentanglement with both regressors
(although β-VAE closely follows with the random forest regressor). That is, each variable in Info-
GAN’s code (c−InfoGAN) is closest (on average) to capturing a single generative factor, making
c−InfoGAN the most disentangled code (see Appendix B.1 for the full / per-variable results). Fig-
ure 3 helps to identify the generative factors captured by a given code variable and thus visualise
the disentanglement. For example, comparing c0 across all models in Figure 3 (the first rows), it
is clear that c0−VAE, c0−βVAE and c0−InfoGAN (almost) solely capture information about z0
while c0−PCA captures information about almost all generative factors.

Completeness. InfoGAN also achieves the highest average completeness with both regressors.
That is, c−InfoGAN is closest (on average) to capturing each generative factor with a single code
variable, making c−InfoGAN the most complete code. In contrast, the low completeness score
(overcompleteness) of c−PCA reveals that it uses several code variables to capture each generative
factor (again, see Appendix B.1 for the full / per-variable results). Figure 3 helps to identify the
code variables which capture a given generative factor and thus visualise the completeness. For
example, Figure 3 shows that several ‘dead’ or redundant code variables (c5, c6, c7) enable a high
degree of completeness in c−InfoGAN. In addition, comparing z0 (azimuth) across all models in
Figure 3b (the first columns), it is clear that InfoGAN uses three code variables (c0, c1, c8) to capture
z0 while PCA, VAE, and β-VAE use significantly more. In particular, Figure 3 shows that c−PCA
is severely overcomplete in capturing z0, with each of its constituent variables capturing distinct
information about z0. With an ideal code, Figure 3 would show a single large square in K rows and
each column, indicating a one-to-one mapping between z and K of the dimensions in c.

Informativeness. With the lasso regressor, c−InfoGAN is most predictive of / informative about
z. That is, c−InfoGAN contains the most easily-extractable / explicit information about z. This
is supported by Figure 5, which plots each z against the corresponding ‘most important’ code
variable(s) (as indicated by the R matrix) and reveals (primarily) linear relationships between z
and c−InfoGAN. Despite being significantly deeper with many more parameters, c−VAE and
c−βVAE are only slightly more predictive of z than c−PCA with this linear regressor, indicating
that the information about z in c−VAE and c−βVAE is not easily-extractable / explicit (again, this
is supported by the relationships depicted in Figure 5).

All model codes better predict z with the random forest regressor, particularly c−VAE and
c−βVAE. In fact, c−VAE and c−βVAE are the most predictive of / informative about z with
this non-linear regressor, with the increased capacity allowing significantly more information about
z to be extracted from these codes. As discussed in section 2, the prediction error with this (non-
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Figure 3: VisualisingR. Square size indicates magnitude, i.e. relative importance. Row i illustrates
the importance of ci to each prediction and thus the disentanglement. Column j illustrates the
importance of each code variable for predicting zj and thus the completeness.

linear) regressor is likely a better quantification of informativeness as it is less dependent on the
ability of the model to explicitly represent information about z in c.

5 CONCLUSION

In this work we have presented a framework for the quantitative evaluation of disentangled repre-
sentations when the ground-truth latent structure is available. The quality of learnt representations is
elucidated through the explicit definition and quantification of three criteria: disentanglement, com-
pleteness and informativeness. To illustrate the appropriateness of our framework, we employed it
to compare quantitatively the codes learned by PCA, the VAE, β-VAE and InfoGAN.

While our framework is limited to synthetic datasets where it is possible to recover z, reliable dis-
entanglement is far from solved even in this restricted setting. Hence, we believe our framework
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and its constituent metrics take a substantial and important step forward in understanding learned
representations. We have made the code and dataset publicly available in the hope that this facil-
itates further model comparisons and eventually the establishment of quantitative benchmarks for
disentangled factor learning. While we have focused on image data in this work, future work may
explore the applicability of our framework to other types of synthetic data.
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A EXPERIMENTAL SETUP

For all generative models, we use the ResNet architectures shown in Table 2 for the encoder /
discriminatior (D) / auxilary network (Q) and the decoder / generator (G). We optimize using
Adam (Kingma & Ba, 2014) with a learning rate of 1e-4 and a batch size of 64. For the stable
training of InfoGAN, we fix the latent codes’ standard deviations to 1 and use the objective of the
improved Wasserstein GAN (IWGAN) (Gulrajani et al., 2017), simply appending InfoGAN’s ap-
proximate mutual information penalty. As in Gulrajani et al. (2017), we use layer normalization (Ba
et al., 2016) instead of batch normalization (Ioffe & Szegedy, 2015) in D. As in Chen et al. (2016),
Q shares all convolutional layers with the discriminator (or ‘critic’ with WGAN objective) D, each
adding their own final output layer. As Q parametrises the approximate posterior over continous
latent codes Q(c|x), we simply take the mean returned by Q(x) as the code or representation for a
given image. Further details on the experimental setup are provided in our open-source implemen-
tation.

Encoder / D / Q Decoder / G
3×3 64 conv. FC 4·4·8·64
BN, ReLU, 3×3 64 conv BN, ReLU, 3×3 512 conv ↑
BN, ReLU, 3×3 128 conv, ↓ BN, ReLU, 3×3 512 conv
BN, ReLU, 3×3 128 conv BN, ReLU, 3×3 256 conv ↑
BN, ReLU, 3×3 256 conv, ↓ BN, ReLU, 3×3 256 conv
BN, ReLU, 3×3 256 conv BN, ReLU, 3×3 128 conv ↑
BN, ReLU, 3×3 512 conv, ↓ BN, ReLU, 3×3 128 conv
BN, ReLU, 3×3 512 conv BN, ReLU, 3×3 64 conv ↑
BN, ReLU, 3×3 512 conv, ↓ BN, ReLU, 3×3 64 conv
FC Output BN, ReLU, 3×3 3 conv, tanh

Table 2: (β-)VAE / InfoGAN architecture. Each network has 4 residual blocks (all but the first
and last rows). The input to each residual block is added to its output (with appropriate downsam-
pling/upsampling to ensure that the dimensions match). Downsampling (↓) is performed with mean
pooling. ↑ indicates nearest-neighbour upsampling. When batch normalization (BN) is applied to
convolutional layers, per-channel normalization is used.

B EXTENDED RESULTS

B.1 FULL TABLE / PER-FACTOR RESULTS

Tables 3 and 4 give the full regression results, i.e. the per-factor disentanglement, completeness and
informativeness. As each target is normalised to have a standard deviation of 1, the root-mean-square
error (RMSE) in predicting each target is naturally normalised relative to the constant regressor
which guesses the expected value of the targets. Hence, we report the NRMSE.

B.2 ZEROSHOT

Disentangled representations should enable a model to perform zero-shot inference, that is, gener-
alise its knowledge beyond the training distribution by recombining previously-learnt factors (Ben-
gio et al., 2013; Higgins et al., 2017). Thus, we can further evaluate the disentangled representa-
tions learned by a given model by quantifying its ability to perform zero-shot inference. We use
the ground-truth values of the generative factors to create two different data distributions. More
specifically, we isolate all images whose generative factor values lie in a particular range to create
a ‘gap’ in the original dataset. This gap then serves as our zero-shot data containing unseen factor
combinations. Informally, the images in this gap can be described as ‘red’ teapots from ‘above’.
Formally, the generative factors of these images satisfy the following condition: z2 > (z3 + 0.15)
and z2 > (z4 + 0.15) and z1 > π

4 . This dataset contained 21,238 images, with (extreme) sam-
ples given in Figure 4. Note that zero-shot inference is facilitated by disentangled and informative
representations, thus is not a core component of our evaluation, but rather a ‘bonus’.
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(a) Disentanglement

Code c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 W. Avg.

PCA 0.16 0.50 0.31 0.09 0.45 0.60 0.11 1.00 0.17 0.51 0.29
VAE 1.00 0.85 0.95 0.68 0.63 1.00 0.30 0.37 0.66 0.95 0.67
β-VAE 1.00 0.64 1.00 0.76 0.39 0.89 0.49 0.81 0.45 0.80 0.66

InfoGAN 0.83 0.85 0.76 0.66 0.78 0.43 1.00 1.00 0.64 0.74 0.75

(b) Completeness

Code z0 z1 z2 z3 z4 Avg.

PCA 0.38 0.39 0.34 0.24 0.25 0.32
VAE 0.54 0.37 0.75 0.73 0.73 0.62
β-VAE 0.14 0.39 0.70 0.85 0.88 0.59

InfoGAN 0.42 0.72 0.75 0.86 0.84 0.72

(c) Informativeness

Code z0 z1 z2 z3 z4 Avg.

PCA 0.83 0.42 0.32 0.32 0.33 0.44
VAE 0.61 0.60 0.23 0.21 0.21 0.37
β-VAE 0.80 0.41 0.19 0.19 0.18 0.35

InfoGAN 0.48 0.13 0.23 0.16 0.15 0.23

Table 3: Lasso regression results. (a) Disentanglement scores for each code variable. ‘W. Avg.’ ab-
breviates weighted average. (b) Completeness scores for each generative factor. z0, . . . , z4 represent
azimuth, elevation, red, green and blue generative factors respectively. c) Test set NRMSE.

(a) Disentanglement

Code c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 W. Avg.

PCA 0.25 0.54 0.63 0.10 0.88 0.97 0.16 0.90 0.41 0.72 0.50
VAE 0.98 0.99 0.91 0.94 0.75 0.99 0.56 0.56 0.92 0.86 0.86
β-VAE 0.96 0.96 0.95 0.99 0.63 0.96 0.69 0.94 0.64 0.98 0.90

InfoGAN 0.85 0.97 0.91 0.84 0.94 0.68 0.86 0.70 0.71 0.92 0.91

(b) Completeness

Code z0 z1 z2 z3 z4 Avg.

PCA 0.31 0.51 0.67 0.56 0.56 0.52
VAE 0.44 0.61 0.90 0.91 0.91 0.75
β-VAE 0.28 0.67 0.90 0.96 0.97 0.76

InfoGAN 0.59 0.94 0.91 0.96 0.95 0.87

(c) Informativeness

Code z0 z1 z2 z3 z4 Avg.

PCA 0.36 0.23 0.20 0.28 0.28 0.27
VAE 0.14 0.09 0.09 0.06 0.06 0.09
β-VAE 0.18 0.07 0.08 0.09 0.08 0.10

InfoGAN 0.25 0.07 0.14 0.09 0.10 0.13

Table 4: Random forest regression results. Caption of Table 3 applies.

Table 5 presents the zeroshot results. With the random forest regressor, c−VAE and c−βVAE per-
form the best with very little increase in prediction error compared to Table 4c, while c−InfoGAN
predicts the value of unseen factor combinations reasonably well.
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Figure 4: Zeroshot samples

(a) Lasso

Code z0 z1 z2 z3 z4 Avg.

PCA 0.88 0.80 0.75 0.52 0.54 0.70
VAE 0.56 1.11 0.52 0.30 0.32 0.56
β-VAE 0.81 0.79 0.32 0.27 0.25 0.49

InfoGAN 0.49 0.34 0.93 0.36 0.33 0.49

(b) Random Forest

Code z0 z1 z2 z3 z4 Avg.

PCA 0.44 0.49 0.65 0.56 0.63 0.55
VAE 0.13 0.13 0.34 0.08 0.07 0.15
β-VAE 0.18 0.18 0.21 0.12 0.14 0.16

InfoGAN 0.27 0.18 0.63 0.21 0.25 0.31

Table 5: Zeroshot performance. NRMSE in predicting unseen factor combinations.

C Z VS. C

Figure 5 plots each generative factor against the corresponding ‘most important’ code variable(s)
(as indicated by R) of each model for 5000 randomly-selected samples. As discussed in section 2,
models with generic priors cannot be expected to learn the most complete and explicit representation
of topologically distinct factors of variation. Thus, for the wrapped azimuth (z0), we plot its value
against the 3 most important code variables for each model. Inspecting the relationships depicted
in Figure 5, it is clear that the simplest / lowest-order relationship exists between InfoGAN’s code
variables and the corresponding generative factors. For example, each unwrapped generative fac-
tor (z1, z2, z3, z4) is linearly-related to InfoGAN’s corresponding code variables, while c0 and c8
resemble scaled sine and cosine functions of the azimuth (z0) and c1 resembles a step function.
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Figure 5: Generative factors vs. important code variables.
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D VISUALLY ASSESSING DISENTANGLEMENT

For each model, we traverse the space of each code variable indepedently to show the effect on
generated images and thus visually assess disentanglement. The code variable traversals depicted in
Figure 6 for (a) VAE [−3, 3], (b) β-VAE [−3, 3] and (c) InfoGAN [−1, 1] are ordered according to
the generative factor (z) which that code best captures in an attempt to align the generated images
of all models. There appears to be a high degree of disentanglement in all generative models as each
ci traversal results in a single type of semantic variation.

(a) VAE

-3 0 3

z0(c2)

z0(c5)

z0(c9)

z1(c6)

z2(c1)

z3(c8)

z4(c3)
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(b) β-VAE
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(c) InfoGAN
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z0(c0)
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Figure 6: Code variable traversals.
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