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ABSTRACT

Representing entities and relations in an embedding space is a well-studied ap-
proach for machine learning on relational data. Existing approaches however
primarily focus on simple link structure between a finite set of entities, ignoring the
variety of data types that are often used in relational databases, such as text, images,
and numerical values. In our approach, we propose a multimodal embedding
using different neural encoders for this variety of data, and combine with existing
models to learn embeddings of the entities. We extend existing datasets to create
two novel benchmarks, YAGO-10-plus and MovieLens-100k-plus, that contain
additional relations such as textual descriptions and images of the original enti-
ties. We demonstrate that our model utilizes the additional information effectively
to provide further gains in accuracy. Moreover, we test our learned multimodal
embeddings by using them to predict missing multimodal attributes.

1 INTRODUCTION

Knowledge bases (KB) are an essential part of many computational systems with applications
in variety of domains, such as search, structured data management, recommendations, question
answering, and information retrieval. However, KBs often suffer from incompleteness, noise in
their entries, and inefficient inference. Due to these deficiencies, learning the relational knowledge
representation has been a focus of active research (Bordes et al., 2011; 2013; Yang et al., 2015; Gupta
and Singh, 2015; Nickel et al., 2016; Trouillon et al., 2016; Dettmers et al., 2017). These approaches
represent relational triples, consisting of a subject entity, relation, and an object entity, by estimating
fixed, low-dimensional representations for each entity and relation from observations, thus encode
the uncertainty and infer missing facts accurately and efficiently. The subject and the object entities
come from a fixed, enumerable set of entities that appear in the knowledge base.

Knowledge bases in the real world, however, are rich with a variety of different data types. Apart
from a fixed set of entities, the relations often not only include numerical attributes (such as ages,
dates, financial, and geoinformation), but also textual attributes (such as names, descriptions, and
titles/designations) and images (profile photos, flags, posters, etc.). Although these different types
of relations cannot directly be represented as links in a graph over a fixed set of nodes, they can be
crucial pieces of evidences for knowledge base completion. For example the textual descriptions
and images might provide evidence for a person’s age, profession, and designation. Further, this
additional information still contains similar limitations as the conventional link data; they are often
missing, may be noisy when observed, and for some applications, may need to be predicted in order
to address a query. There is thus a crucial need for relational modeling that goes beyond just the
link-based, graph view of knowledge-base completion, is able to utilize all the observed information,
and represent the uncertainty of multimodal relational evidence.

In this paper, we introduce a multimodal embedding approach for modeling knowledge bases that
contains a variety of data types, such as textual, images, numerical, and categorical values. Although
we propose a general framework that can be used to extend many of the existing relational modeling
approaches, here we primary apply our method to the DistMult approach (Yang et al., 2015). We
extend this approach that learns a vector for each entity and relation by augmenting it with additional
neural encoders for different evidence data types. For example, when the object of a triple is an
image, we encode it into a fixed-length vector using a CNN, while the textual attributes are encoded
using sequential embedding approaches like LSTMs. The scoring module remains identical; given
the vector representations of the subject, relation, and object of a triple, this module produces a
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score indicating the probability that the triple is correct. This unified model allows for flow of the
information across the different relation types, enabling more accurate modeling of relational data.

We provide an evaluation of our proposed approach on two relational databases. Since we are
introducing a novel formulation in the relational setting, we introduce two benchmarks, created by
extending the existing YAGO-10 and MovieLens-100k datasets to include additional relations such
as textual descriptions, numerical attributes, and images of the original entities. In our evaluation,
we demonstrate that our model utilizes the additional information effectively to provide gains in
link-prediction accuracy, and present a breakdown of how much each relation benefits from each
type of the additional information. We also present results that indicate the learned multimodal
embeddings are capable of predicting the object entities for different types of data which is based on
the similarity between those entities.

2 MULTIMODAL EMBEDDINGS

Knowledge bases (KB) often contain different types of information about entities including links,
textual descriptions, categorical attributes, numerical values, and images. In this section, we briefly
introduce the existing approaches to the embedded relational modeling that focus on modeling of the
linked data using dense vectors. We then describe our model that extends these approaches to the
multimodal setting, i.e., modeling the KB using all the different information.

2.1 PROBLEM SETUP

The goal of the relational modeling is to train a machine learning model that can score the truth value
of any factual statement, represented here as a triplet of subject, relation and object, (s, r, o), where
s, o ∈ ξ, a set of entities, and r ∈ R, a set of relations. Accordingly, the link prediction problem
can be defined as learning a scoring function ψ : ξ ×R× ξ → R (or sometimes, [0, 1]). In order
to learn the parameters of such a model, training data consists of the observed facts for the KB, i.e.,
a set of triples, which may be incomplete and noisy. In the last few years, the methods that have
achieved impressive success on this task consist of models that learn fixed-length vectors, matrices,
or tensors for each entity in ξ and relation in R, with the scoring function consisting of varying
operators applied to these learned representations (described later in Section 3).

2.2 DISTMULT FOR LINK PREDICTION

Although our proposed framework can be used with many of the existing relational models, here we
focus on the DistMult approach (Yang et al., 2015) because of its simplicity, popularity, and high
accuracy. In DistMult, each entity i is mapped to a d-dimensional dense vector (ei ∈ Rd×1) and
each relation r to a diagonal matrix Rr ∈ Rd×d, and consequently, the score for any triple (s, r, o) is
computed as: ψ(s, r, o) = eTs Rreo. Since we cannot guarantee that the unobserved triples are true
negatives, we use a pairwise ranking loss that tries to score existing (positive) triples higher than
non-existing triples (negatively sampled), as:

min
Θ

∑
i∈D+

∑
j∈D−

max(0, γ + φj − φi) (1)

where D+, D− denote the set of existing and non-existing (sampled) triples, γ is the width of margin,
φi is the score of the ith triple and Θ is the set of all embeddings. Following Bordes et al. (2013),
we generate negative samples of training triplets by replacing either subject or object entity with a
random entity. DistMult thus learns entity and relation representations that encode the knowledge
base, and can be used for completion, queries, or cleaning.

2.3 MULTIMODAL VALUE EMBEDDINGS

Existing approaches to this problem assume that the subjects and the objects are from a fixed set of
entities ξ, and thus are treated as indices into that set. However, in the most of the real-world KBs,
the objects of triples (s, r, o) are not restricted to be in some indexed set, and instead, can be of any
data type such as numerical, categorical, images, and text. In order to incorporate such objects into
the existing relational models like DistMult, we propose to learn embeddings for any of these types of
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Figure 1: Multimodal Embeddings: Architecture of the proposed work that, given any movie and
any of its attributes, like the title, poster, genre, or release year, uses domain-specific encoders to
embed each attribute value. The embeddings of the subject entity, the relation, and the object value
are then used to score the truth value of the triple by the Scorer, using the DistMult operation.

data. We utilize recent advances in deep learning to construct encoders for these objects to represent
them, essentially providing an embedding eo for any object value.

The overall goal remains the same: the model needs to utilize all the observed subjects, objects,
and relations, across different data types, in order to estimate whether any fact (s, r, o) holds. We
present an example of an instantiation of our model for a knowledge base containing movie details
in Figure 1. For any triple (s, r, o), we embed the subject (movie) and the relation (such as title,
release year, or poster) using a direct lookup. For the object, depending on the domain (indexed,
string, numerical, or image, respectively), we use an appropriate encoder to compute its embedding
eo. We use appropriate encoders for each data type, such as CNNs for images and LSTMs for text.
As in DistMult, these embeddings are used to compute the score of the triple. Training such a model
remains identical to DistMult, except that for negative sampling, here we replace the object entity
with a random entity from the same domain as the object (either image, text, numerical or etc.).

2.4 ENCODING MULTIMODAL DATA

Here we describe the encoders we use for multimodal objects.

Structured knowledge Consider a triplet of information in the form of (s, r, o). To represent the
subject entity s and the relation r as independent embedding vectors (as in previous work), we pass
their one-hot encoding through a dense layer. Furthermore, for the case that the object entity is
categorical, we embed it through a dense layer with a recently introduced selu activation (Klambauer
et al., 2017), with the same number of nodes as the embedding space dimension.

Numerical Objects in the form of real numbers can provide a useful source of information and
are often quite readily available. We use a feed forward layer, after applying basic normalization,
in order to embed the numbers into the embedding space. Note that we are projecting them to
a higher-dimensional space, from R → Rd. It is worth contrasting this approach to the existing
methods that often treat numbers as distinct entities, i.e., learning independent vectors for numbers
39 and 40, relying only on data to learn that these values are similar to each other.

Text Since text can be used to store a wide variety of different types of information, for example
names versus paragraph-long descriptions, we create different encoders depending on the lengths of
the strings involved. For attributes that are fairly short, such as names and titles, we use character-
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based stacked, bidirectional LSTM to encode these strings, similar to Verga et al. (2016), using the
final output of the top layer as the representation of the string. For strings that are much longer, such
as detailed descriptions of entities consisting of multiple sentences, we treat them as a sequence of
words, and use a CNN over the word embeddings, similar to Francis-Landau et al. (2016), in order
to embed such values. These two encoders provide a fixed length encoding that has been shown for
multiple tasks to be an accurate semantic representation of the strings (Dos Santos and Gatti, 2014).

Images Images can also provide useful evidence for modeling entities. For example, we can extract
person’s details such as gender, age, job, etc., from image of the person (Levi and Hassner, 2015),
or location information such as its approximate coordinates, neighboring locations, and size from
map images (Weyand et al., 2016). A variety of models have been used to compactly represent
the semantic information in the images, and have been successfully applied to tasks such as image
classification, captioning (Karpathy and Fei-Fei, 2015), and question-answering (Yang et al., 2016).
To embed images such that the encoding represents such semantic information, we use the last
hidden layer of VGG pretrained network on Imagenet (Simonyan and Zisserman, 2015), followed by
compact bilinear pooling (Gao et al., 2016), to obtain the embedding of the images.

Other Data Types Although in this paper we only consider the above data types, there are many
others that can be utilized for learning KB representations. Our framework is amenable to such
data types as long as an appropriate encoder can be designed. For example, speech/audio data can
be accurately encoded using CNNs (Abdel-Hamid et al., 2014), time series data using LSTM and
other recurrent neural networks (Connor et al., 1994), and geospatial coordinates using feedforward
networks (Lee et al., 2003). We leave the modeling of these types of objects for the future work.

3 RELATED WORK

There is a rich literature on modeling knowledge bases using low-dimensional representations, differ-
ing in the operator used to score the triples. In particular, they use matrix and tensor multiplication
(Nickel et al., 2011; Yang et al., 2015; Socher et al., 2013), euclidean distance (Bordes et al., 2013;
Wang et al., 2014; Lin et al., 2015), circular correlation (Nickel et al., 2016), or the Hermitian dot
product (Trouillon et al., 2016) as scoring function. However, the objects for all of these approaches
are a fixed set of entities, i.e., they only embed the structured links between the entities. Here, we use
different types of information such as text, numerical values and images in the encoding component,
by treating them as relational triples of information.

A number of methods utilize a single extra type of information as the observed features for entities, by
either merging, concatenating, or averaging the entity and its features to compute its embeddings, such
as numerical values (Garcia-Duran and Niepert, 2017), images (Xie et al., 2016), and text (Toutanova
et al., 2015; 2016; Tu et al., 2017). Along the same line, Verga et al. (2016) address multilingual
relation extraction task to attain a universal schema by considering raw text with no annotation as extra
feature and using matrix factorization to jointly embed KB and textual relations (Riedel et al., 2013).
In addition to treating the extra information as features, graph embedding approaches (Dettmers et al.,
2017; Schlichtkrull et al., 2017; Kipf and Welling, 2016) consider fixed number of attributes as a part
of encoding component to achieve more accurate embedding.

The difference between our model and these mentioned approaches is three-fold: (1) we are the
first to use different types of information in a unified model, (2) we treat these different type
of information (numerical, text, image) as relational triples of structured knowledge instead of
predetermined features, i.e., first-class citizens of the data, and not auxiliary features, and (3) our
model represents uncertainty in them, supporting the missing values and facilitating the recovery of
the lost information, which is not possible with previous approaches.

4 EVALUATION BENCHMARKS

To evaluate the performance of our mutimodal relational embeddings approach, we provide two new
benchmarks by extending existing datasets. The first one is built by adding posters to movie recom-
mendation dataset, MovieLens 100k, and the second one by adding image and textual information for
YAGO-10 dataset from DBpedia and numerical information from YAGO-3 database. We will release
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Table 1: MovieLens-100k-Plus Dataset

#Relations 13
#Users 943
#Movies 1682
#Posters 16511

#Ratings (train) 80,000
#Ratings (test) 20,000

Table 2: Yago-10-Plus Dataset

#Relations 45
#Total Entities 123,182
#Subjects 112,981
#Link Triples 1,079,040
#Numerical Attributes 111,4061

#Descriptions 107,3261

#Image Attributes 61,2461

the datasets publicly for future research on multimodal relation modeling. Tables 1 and 2 provide the
statistics of these datasets1.

MovieLens-100k-Plus We start with the MovieLens-100k dataset 2 (Harper and Konstan, 2016), a
popular benchmark for recommendation system for predicting user ratings with contextual features,
containing 100, 000 ratings from around 1000 users on 1700 movies. MovieLens already contains
rich relational data about occupation, gender, zip code, and age for users and genre, release date, and
the titles for movies. We consider the genre attribute for each movie as a binary vector with length 19
(number of different genres provided by MovieLens). We use this representation because each movie
genre is a combination of multiple, related categories. Moreover, we collect the movie posters for
each movie from TMDB3. We treat the 5-point ratings as five different relations in KB triple format,
i.e., (user, r = 5,movie), and evaluate the rating predictions as data for other relations is introduced
into to the model. We use 10% of rating samples as the validation data.

YAGO-10-Plus Even though MovieLens has a variety of data types, it is still quite small, and is
over a specialized domain. We also consider a second dataset that is much more appropriate for
knowledge graph completion and is popular for link prediction, the YAGO3-10 knowledge graph
(Suchanek et al., 2007; Nickel et al., 2012). This graph consists of around 120,000 entities, such as
people, locations, and organizations, and 37 relations, such as kinship, employment, and residency,
and thus much closer to the traditional information extraction goals. We extend this dataset with the
textual description (as an additional relation) and the images associated with each entity (we have
collected images for half of the entities), provided by DBpedia4 (Lehmann et al., 2015). We also
identify few more additional relations such as wasBornOnDate, happenedOnDate, etc, that have
dates as values.

5 EXPERIMENT RESULTS

In this section, we first evaluate the ability of our model to utilize the multimodal information by
comparing to the DistMult method through a variety of link prediction tasks. Then, by considering the
recovery of missing multimodal values (text, images, and categorical) as the motivation, we examine
the capability of our model in genre prediction on MovieLens and date prediction on YAGO. Further,
we provide a qialitative analysis on title, poster and genre prediction for MovieLens data.

5.1 EXPERIMENT SETUP

To facilitate a fair comparison we implement all methods using the identical loss and optimization
for training, i.e., AdaGrad and the ranking loss. We tune all the hyperparameters on the validation
data and use grid search to find the best hyperparameters, such as regularization parameter λ =
[10−6, 3 × 10−6], dimensionality of embedding d = [128, 200, 250, 360] and number of training
iterations T = 12k. For evaluation we use three metrics: mean reciprocal rank (MRR), Hits@K, and
RMSE, which are commonly used by existing approaches.

1our contributions to the datasets
2https://grouplens.org/datasets/MovieLens/100k/
3https://www.themoviedb.org/
4http://wiki.dbpedia.org/
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Table 3: Predicting the Ratings in MovieLens100k-Plus. The model using Rating information is
labeled R, movie-attribute as M, user-attribute as U, movies’ title as T, and poster encoding as P.

Models MRR Hits@1 Hits@2 RMSE

Ratings Only, R (DistMult) 0.62 0.40 0.69 1.48
Adding Movie Attributes, R+M 0.63 0.421 0.70 1.63
Adding User Attributes, R+U 0.64 0.41 0.706 1.73
Adding Both Attributes, R+M+U 0.646 0.423 0.708 1.37
Attributes and Titles, R+M+U+T 0.650 0.424 0.73 1.23
Attributes and Posters, R+M+U+P 0.652 0.413 0.712 1.27
All available values, R+M+U+T+P 0.644 0.42 0.72 1.3

Table 4: Predicting the Relation Arguments in YAGO-10-Plus. The model using structured
information is labeled S, textual description of the entities as D, dates as numerical information as N,
and images of the entities as I.

Models MRR Hits@1 Hits@3 Hits@10

DistMult, from Dettmers et al. (2017) 0.337 0.237 0.379 0.54
Links only, S (our DistMult implementation) 0.326 0.221 0.375 0.538
Adding description, S+D 0.36 0.262 0.395 0.834
Adding numbers, S+N 0.325 0.213 0.382 0.517
Adding images, S+I 0.342 0.235 0.352 0.618
All but images, S+D+N 0.359 0.243 0.401 0.772
All but numbers, S+D+I 0.351 0.239 0.371 0.653
All but description, S+N+I 0.362 0.259 0.402 0.683
All available values, S+D+N+I 0.372 0.268 0.418 0.792

ConvE (Dettmers et al., 2017) 0.523 0.448 0.564 0.658

5.2 LINK PREDICTION

In this section, we evaluate the capability of our model in the link prediction task. The goal is to
calculate MRR and Hits@ metric (ranking evaluations) of recovering the missing entities from triples
in the test dataset, performed by ranking all the entities and computing the rank of the correct entity.
Similar to previous works, we here focus on providing the results in a filtered setting, that is we only
rank triples in the test data against the ones that never appear in either train or test datasets.

MovieLens-100k-plus We train the model for MovieLens using Rating as the relation between
users and movies. For encoding other relations, we use a character-level LSTM for the movie titles,
a feed-forward network for age, zip code, and release date, and finally, we use a VGG network on
the posters (for every other relation we use dense layer embeddings). Table 3 shows the link (rating)
prediction evaluation on MovieLens dataset when test data is consisting only of rating triples. We
calculate our metrics by ranking the five relations representing the ratings instead of object entities.
The reason behind presenting these metrics is the fact that they are compatible with classification
accuracy evaluation on recommendation system algorithms. We label models using rating information
as R, movie-attribute as M, user-attribute as U, movies’ title as T, and poster encoding as P.

As it is shown, the model R+M+U+T outperforms other methods with a considering gap, which
shows the importance of incorporating the extra information. Furthermore, Hits@1 for our baseline
model is 40%, which matches existing recommendation systems (Guimerà et al., 2012). Based on
results it seems that adding titles information has a higher impact compared to the poster information.

YAGO-10-plus The result of link prediction on our YAGO dataset is provided in Table 4. We label
models using structured information as S, entity-description as D, numerical information as N, and
entity-image as I. We see that the model that encodes all type of information consistently performs
better than other models, indicating that the model is effective in utilizing the extra information.
On the other hand, the model that uses only text performs the second best, suggesting the entity
descriptions contain more information than others. It is notable that model S is outperformed by all
other models, demonstrating the importance of using different data types for attaining higher accuracy.

6



Under review as a conference paper at ICLR 2018

Table 5: Per-Relation Breakdown demonstrating the relation contribution on each model.

Relation Links Only +Numbers +Description +Images

MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1

isAffiliatedTo 0.364 0.259 0.370 0.271 0.392 0.301 0.368 0.254
playsFor 0.371 0.261 0.391 0.291 0.389 0.296 0.381 0.275
isLocatedIn 0.341 0.223 0.352 0.249 0.401 0.317 0.369 0.265
hasGender 0.7894 0.602 0.771 0.582 0.796 0.627 0.806 0.613
wasBornIn 0.361 0.241 0.372 0.261 0.408 0.326 0.381 0.304

Table 6: Predicting Genres in MovieLens

Models MRR Hits@1 Hist@10

R+M 0.074 0.014 0.175
R+M+U 0.071 0.023 0.145
R+M+U+T 0.075 0.020 0.163
R+M+U+P 0.103 0.038 0.223
R+M+U+T+P 0.102 0.047 0.232

Table 7: Predicting the Dates in YAGO

Models RMSE (years)

S+N 70.07
S+N+D 65.28
S+N+I 63.65
S+N+D+I 61.54

We also include the performance of a recently introduced approach, ConvE (Dettmers et al., 2017)
that is the state-of-art on this dataset. Although it achieves higher results than our models (which are
based on DistMult), it primarily differs from DistMult in how it scores the triples, and thus we can
also incorporate our approach into ConvE in future.

Relation Breakdown We perform additional analysis on the YAGO dataset to gain a deeper under-
standing of the performance of our model. Table 5 compares our models on the top five most frequent
relations. As shown, the model that includes textual description significantly benefits isAffiliatedTo,
isLocatedIn and wasBornIn relations, as this information often appears in text. Moreover, images
are useful to detect genders (hasGender), while for the relation playsFor, numerical (dates) are more
effective than images.

5.3 PREDICTING MULTIMODAL ATTRIBUTES

Here we present an evaluation on multimodal attributes prediction (text, image and numerical) on our
benchmarks. Note that approaches that use this information as features cannot be used to recovering
missing information, i.e., they cannot predict any relation that is not to existing entities.

Attribute Prediction Table 6 shows the link prediction evaluation on MovieLens when test data
is consisting only of movies’ genre. The test dataset is obtained by keeping only 80% of movies’
genre information in the training dataset and treat the rest as the test data. The evaluation metrics
is calculated by ranking the test triplets in comparison to all 216 different possible combination of
genres (binary vectors with length 19) provided by MovieLens. As shown, model utilizing all the
information outperforms other methods by a considerable gap, indicating that our model is able to
incorporate information from posters and titles to predict the genre of movies (with posters providing
more information than titles).

Along the same line, Table 7 shows the link prediction evaluation on YAGO-10-plus when test data is
consisting only of numerical triples. The test dataset is obtained by holding out 10% of numerical
information in the training dataset. Furthermore, we only consider the the numerical values (dates)
that are larger than 1000 to obtain a denser distribution. To make a prediction on the year, we divide
the numerical interval [1000, 2017] to 1000 bins, and for each triple in the test data find the mid-point
of the bin that the model scored the highest; we use this value to compute the RMSE. As we can see,
S+N+D+I outperform other methods with a considering gap, demonstrating our model utilizes other
multimodal values for more fruitful modeling of the numerical information.

Querying Multimodal Attributes Although we only encode multimodal data, and cannot decode
in this setting directly, we provide examples in which we query for a multimodal attribute (like the
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Table 8: Querying Multimodal Values: We find the highest scoring values, according to our trained
model, for each attribute of a movie, and compare it to the true value.

True Value Top-3 Predicted Values

“The Godfather” “101 Dalmatians”, “Love and Death on Long Island”, “First Knight”

“Action, Crime, Drama” “Drama, Romance, War, Western”, “Drama, Romance, War”, “Drama, War”

“Die Hard” “The Band Wagon”, “Underground”, “Roseanna’s Grave”

“Action, Thriller” “Drama, War”, “Action, Drama, War”, “Comedy, Drama, War”

poster), and rank all existing values (other posters) to observe which ones get ranked the highest.
In other words, we are asking the model, if the actual poster is not available, which of the existing
posters would the model recommend as a replacement (and same for title and genre). In Table 8
we show top-3 predicted values. We can see that the selected posters have visual similarity to the
original poster in regarding the background, and appearance of a face and the movie title in the poster.
Along the same line, genres, though not exact, are quite similar as well (at least one of original
genres appear in the predicted ones). And finally, the selected titles are also somewhat similar in
meaning, and in structure. For example, two of the predicted titles for “Die Hard” have something to
do with dying and being buried. Furthermore, both “The Godfather” and its first predicted title “101
dalmatians” consist of a three-character word followed by a longer word. We leave extensions that
directly perform such decoding to future work.

6 CONCLUSIONS AND FUTURE WORK

Motivated by the need to utilize multiple source of information to achieve more accurate link pre-
diction we presented a novel neural approach to multimodal relational learning. In this paper we
introduced a universal link prediction model that uses different types of information to model knowl-
edge bases. We proposed a compositional encoding component to learn unified entity embedding
that encode the variety of information available for each entity. In our analysis we show that our
model in comparison to a common link predictor, DistMult, can achieve higher accuracy, showing
the importance of employing the available variety of information for each entity. Since all the
existing datasets are designed for previous methods, they lack mentioned kind of extra information.
In result, we introduced two new benchmarks YAGO-10-plus and MovieLens-100k-plus, that are
extend version of existing datasets. Further, in our evaluation, we showed that our model effectively
utilizes the extra information in order to benefit existing relations. We will release the datasets and
the open-source implementation of our models publicly.

There are number of avenues for future work. We will investigate the performance of our model
in completing link prediction task using different scoring function and more elaborate encoding
component and objective function. We are also interested in modeling decoding of multimodal values
in the model itself, to be able to query these values directly. Further, we plan to explore efficient
query algorithms for embedded knowledge bases, to compete with practical database systems.
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