
Under review as a conference paper at ICLR 2018

DNN MODEL COMPRESSION UNDER ACCURACY
CONSTRAINTS

Anonymous authors
Paper under double-blind review

ABSTRACT

The growing interest to implement Deep Neural Networks (DNNs) on resource-
bound hardware has motivated the innovation of compression algorithms. Using
these algorithms, DNN model sizes can be substantially reduced, with little-to-no
accuracy degradation. This is achieved by either eliminating components from
the model, or penalizing complexity during training. While both approaches
demonstrate considerable compressions, the former often ignores the loss function
during compression while the latter produces unpredictable compressions. In this
paper, we propose a technique that directly minimizes both the model complexity
and the changes in the loss function. In this technique, we formulate compression
as a constrained optimization problem, and then present a solution for it. We will
show that using this technique, we can achieve competitive results.

1 INTRODUCTION

Deep Neural Networks have been rapidly improving in many classification tasks, even surpassing
human accuracy for some problems (Russakovsky et al., 2015). This high accuracy, however, is
obtained by employing wider Zagoruyko & Komodakis (2016) or deeper He et al. (2016) networks.
Some prominent networks today even surpass 100 layers, store hundreds of millions of parameters,
and require billions of operations per input sample He et al. (2016); Srivastava et al. (2015). Such
large networks are not well-suited for resource-bound, embedded and mobile platforms which are
dominating the consumer market. This mismatch between computational requirements and available
resources has motivated efforts to compress DNN models.

Compression techniques exploit the redundancy inherent to neural networks that emerges due to the
considerable number of parameters in them. These many parameters help learn highly informative
features during training. However, they simultaneously learn multitudes of unnecessary, ineffectual
ones. Han et al. (2015) reduces these redundancies by pruning the network and quantizing the
remaining parameters. Using these techniques, they were able to reduce the model size by more
than an order of magnitude. Their success inspired other methodical approaches such as the soft
weight-sharing (Ullrich et al., 2017). This method encodes model parameters using Bayesian prior
and then penalizes this prior during training. As a result, it performs both pruning and quantization
simultaneously and achieves superior compressions with negligible loss in accuracy.

In this work, we take a similar, integrated approach with the twist that we directly minimize the
complexity. Unlike soft weight-sharing, however, we encode the parameters using the k-means
objective which imposes less computations. We further apply a hard constraint on the training loss
to maintain sufficient accuracy. Such a constraint takes advantage of the fact that we have already
obtained some information about the loss function during training. We then present a straightforward
solution for this constrained optimization problem. Our solution iteratively minimizes the k-means
objective, while satisfying the loss constraint. Consequently, it can compress the model progressively
where the compression rate can be adjusted. Finally, we test the proposed technique on three popular
datasets and show that this method can achieve state-of-the-art compression with minimal loss of
accuracy.

1

Under review as a conference paper at ICLR 2018

2 RELATED WORK

Robustness of DNNs to noisy parameters is a byproduct of their redundancy and has been utilized
frequently to facilitate and accelerate their implementations. Limited precision representations which
introduce quantization noise, for example, have been widely used to simplify computations (Gupta
et al., 2015) and design neural network hardware (Jouppi et al., 2017). Other works, take a different
approach and eliminate most parameters (pruning) (Molchanov et al., 2016), aiming to reduce the total
number of computations instead. Finally, weight-sharing techniques (Han et al., 2015) encode the
remaining parameters of the networks in a small dictionary, reducing the storage requirement of the
network. In this paper, we will be focusing on the last two techniques (pruning and weight-sharing),
which were proposed first by Han et al. (2015). Our goal is to present a simple, unified method for
compressing a trained DNN model.

Han et al. (2015) first proposed Deep Compression which introduced pruning and weight-sharing as
techniques to compress DNN models. Pruning eliminates unnecessary network connections identified
by their magnitude. Weight-sharing then encodes parameters into a small dictionary, using the k-
means algorithm. This technique also employs an intermediate tuning step which offsets the effect of
pruning on accuracy. However, the changes in the training loss function are, for the most part, ignored
in this technique. Later studies demonstrated that taking this effect into account, either in pruning or
quantization, can improve the compression. Guo et al. (2016), for example, formulated pruning as an
optimization problem. Their method essentially performs pruning and tuning simultaneously, but
does not perform weight-sharing. Likewise, Choi et al. (2016) incorporate this effect by augmenting
the k-means objective by the training loss Hessian. However, they only consider the Hessian at one
point, and their method requires prediction of the compression ratio beforehand.

Soft weight-sharing, proposed by Ullrich et al. (2017), minimized both training loss and model size
simultaneously. Unlike the previous attempts, they encoded the network parameters using a Bayesian
prior. This prior is then penalized when optimizing the training loss function and the mixing ratio
controls the trade-off between accuracy and model size. This is then optimized using a SGD method.
The limitation of this technique is the complexity of the Bayesian prior. Due to this limitation, in
this paper, we will focus on k-means encoding of the weights, even though our method can be easily
extended to Bayesian encoding as well. p

3 METHOD

The proposed algorithm compresses a trained neural network model by minimizing its complexity
while constraining its loss function. Here, we first review the optimization process for the loss
function during the training process. Then, we discuss the k-means encoding, which we use to
measure the model complexity. Finally, we will present our compression algorithm.

3.1 TRAINING NEURAL NETWORKS

Training neural networks involves minimizing a loss function that quantifies the dissimilarity between
the model output distribution and the ideal distribution. This optimization problem is formally written
as:

Ŵ = arg min
W

L(W,X , y) (1)

Here, X and y define a set of samples and ideal output distributions we use for training. W is the
learnt model and is the concatenation of all model parameters, (W = [w1 w2 . . . wN]T ∈ RN

where N is the number of parameters). Ŵ is the final, trained model. Also, L(W,X , y) represents
the average loss over the dataset ({X , y}) corresponding to the model W . This function is typically
chosen as Cross entropy or hinge square loss. In the rest of this paper, we represent L(W,X , y) as
L(W) for simplicity. The local optimum for W in this problem is usually found iteratively, using a
SGD method.

2

Under review as a conference paper at ICLR 2018

3.2 K-MEANS ENCODING

The weight-sharing techniques proposed by Han et al. (2015) and Guo et al. (2016) use the k-means
algorithm to encode the network parameters. Each parameter is then replaced by the nearest of the k
centroids. This procedure can also be defined as the following optimization problem:

Ĉ = arg min
C

N∑
i=1

‖wi −mi‖2 (2)

∀i : mi = arg min
m∈C

‖wi −m‖ (3)

where M = [m1 m2 . . . mN]T ∈ RN is the concatenated array of all centroids mi corresponding
to the parameters wi. The set C = {c1, c2, . . . , ck} ⊂ R also defines the set of cluster centroids.
The commonly used heuristic solution to this problem is to iteratively find M and update centroids
accordingly. In each iteration t this update is performed by:

ct+1
j =

1

|J |
∑
i∈J

wi (4)

J = {i|mi = ctj} (5)

3.3 PROPOSED COMPRESSION METHOD

Similar to weight-sharing in Deep Compression (Han et al., 2015), we minimize the k-means objective
function to reduce the model complexity. Further, similar to soft weigh-sharing (Ullrich et al., 2017),
we minimize the changes in the loss function. However, we control these changes through a hard
constraint to take advantage of the information already learnt through the training phase. In the rest of
this section, we will formulate the problem of minimizing the complexity of the model and propose a
solution for it.

As previously discussed, we use the k-means objective to represent the complexity of the model.
The goal is to learn the network parameters as well as the centroids that minimize this objective.
Specifically, we would like to learn a small set of centroids and encourage the network parameters to
populate a small region about these centroids only.

min
W,M

Ψ(W,M) (6)

Ψ(W,M) =

N∑
i=1

‖wi −mi‖2 (7)

We note that the centroids mi are correlated to wi by equation 2 with the difference that the number
of centroids k is also obtained through the compression process.

In the absence of any additional constraints, this optimization problem reverts back to one solved by
Han et al. (2015) for Deep Compression. The solution to this problem is simply wi = mi. However,
this might result in significant changes in the accuracy. We address this issue by introducing a
constraint on the loss function.

L(W) ≤ ` (8)

Here, ` is the hard constraint derived based on the optimal value of the loss function. We will discuss
how we determine this hyper-parameter later in this section. While solving our optimization problem,
we will make sure that this condition is always satisfied.

Next, we present our method for solving the problem of minimizing the complexity of a trained
model. This method iteratively solves the equation 6 for W and then calculates M based on equation
2, as presented in algorithm 1.

3

Under review as a conference paper at ICLR 2018

Algorithm 1 Compression
t← 0
Initialize `
Randomly initialize k centroids
while Convergence is not achieved do

Calculate Mt using equation 3.
Solve equation 6 for Wt.
Update C using equation 2.
Eliminate unnecessary centroids.
t← t+ 1

end while

This algorithm first initializes k random centroids. The value of k is provided to the algorithm as
a hyper-parameter and can be large. During the compression this algorithm eliminates or merges
unnecessary centroids and reduces k. At the end of each iteration, if a centroid has not been assigned
to any network parameter or is close to another centroids, it is eliminated.

Each iteration t of the compression, finds the nearest centroid to each network parameter and solves
the constrained optimization problem by finding a displacement for the model parameters like ∆Wt

which solves:

min
∆W

Ψ(Wt + ∆W,Mt) (9)

L(Wt + ∆W)− ` ≤ 0 (10)

This way, the model update for the next iteration would be: Wt+1 = Wt + ∆Wt.

The solution of this constrained optimization problem should satisfy the KKT condition.

∇∆WΨ(Wt + ∆W ∗,Mt) + µ∇∆WL(Wt + ∆W ∗) = 0 (11)

L(Wt + ∆W ∗)− ` ≤ 0 (12)
µ ≥ 0 (13)

This system has two solutions. When µ = 0, the solution is ∀i : w∗i = mi. If ∆W ∗ satisfies the
constraint in equation 8, this solution is valid. Otherwise:

∇∆WΨ(Wt + ∆W ∗,Mt) + µ∇∆WL(Wt + ∆W ∗) = 0 (14)
⇒ 2(Wt −Mt) + µ∇∆WL((Wt + ∆W ∗)) = 0 (15)

L(Wt + ∆W ∗)− ` = 0 (16)
µ > 0 (17)

The difficulty of solving this system is the unknown value and gradient of the loss function at the
solution which we want to obtain. We get around this issue by locally estimating the loss function
using its linear Taylor expansion and replacing that in the system.

L̃(W + ∆W) = L(W) +∇WL(W)T∆W (18)

We then approximately calculate the displacement of the weights (∆W) with regards to W0, repre-
senting the trained parameters, as below:

2(W0 + ∆W −M) + µ∇W L̃(∆W) = 0

L̃(∆W) = L(W0) +∇WL(W0)T∆W

L̃(W0 + ∆W)− ` = 0

µ > 0

(19)

This system has a closed form solution:

∆W = −µ
2
∇WL(W0) +M −W (20)

µ = 2
L(W0) +∇WLT (M −W0)− `

‖∇WL(W0)‖2
(21)

4

Under review as a conference paper at ICLR 2018

This solution is of course valid only in a neighborhood around W0 where ˜∆W is an accurate
estimation of L(W0 + ∆W). We denote this region by the radius ρ. That is, when ‖∆W‖ ≤ ρ. This
technique is similar to local modeling of objective functions as done in Trust Region optimization
methods. We also adopt a similar method as trust region techniques to initialize and update the value
of ρ in each iteration of the algorithm. Thus, we summarize the algorithm to solve this problem in
algorithm 2.

Algorithm 2 Calculate the displacement of W for iteration t
n← 0
Initialize ρ0

t
while True do

Solve the constrained optimization problem using equation 20 and find ∆Wn

λ← min(1,
ρnt

‖∆Wn‖
if ` < L(Wt + λ ∗∆Wn) then

ρn+1
t ← 1

2ρ
n
t

else
Wt+1 ←Wt + λ ∗∆Wn

ρ0
t+1 ← 2 ∗ ρnt

break
end if

end while

In this algorithm, each iteration receives a trust region radius as input and finds the displacement
for Wt based on equation 20. Then, if this displacement is larger than the trust region radius, the
algorithm scales it. Finally, it checks if the loss function corresponding to this displacement satisfies
the loss constraint. If not, it will shrink the trust region radius and retries the condition. Otherwise, it
will update the parameters and expands the trust region radius. This new radius will be provided to
the next iteration of Algorithm 1.

Lastly, we discuss how we obtain the value of `. We initialize this value to the loss value corresponding
to the original model ` = L(W0). After the compression is done, we can test the accuracy of the
compressed model. If this accuracy is sufficient, we can increase it. In our technique, each time we
achieved a sufficient accuracy for the compressed model, we increase ` by 20%.

4 MODELS

We test our compression technique on three datasets: MNIST (LeCun et al., 1998b), CIFAR-10
(Krizhevsky & Hinton, 2009), and SVHN (Netzer et al., 2011). MNIST is a collection of 6000
28× 28 black-and-white images of handwritten digits. CIFAR-10 is a set of 60000 images of object
from 10 different classes. Finally, SVHN contains 60000 images of digits captured by google street
view. We train a LeNet-5 on the MNIST dataset and a smaller version of the VGG network (Hubara
et al., 2016) for both CIFAR-10 and SVHN. The model size and accuracy of these baseline networks
are presented in table 1.

Table 1: Baseline models

Dataset Model Model Size Error Rate

MNIST LeNet-5 (LeCun et al., 1998a) 12Mb 0.65%

CIFAR-10 (Hubara et al., 2016) 612Mb 13.07%

SVHN (Hubara et al., 2016) 110Mb 2.73%

5

Under review as a conference paper at ICLR 2018

5 EXPERIMENTS

In this section, we experimentally study the convergence of the proposed algorithm and show that it
achieves state-of-the-art compression rates. We confirm that the parameters of the compressed model
cluster about the learnt centroids and evaluate the effect of this clustering on the accuracy. We then
present a more in-depth study of the trade-off between accuracy and the compressed model size on
our benchmarks. Finally, we compare the optimal model obtained through the trade-off analysis with
the previous techniques.

The proposed compression algorithm encourages parameters to gravitate towards a set of centroids,
which it learns simultaneously. We verify this on MNIST by initializing 256 random centroids. These
centroids are eliminated or optimized according to Algorithm 6. Figure 1a illustrates the optimization
of the centroids. In each iteration t, this figure shows the accuracy gap between the current model,
Wt, and its compression using the current centroids, Ct. We observe that this gap decreases as the
centroids are adjusted. In addition, we observe little uncompressed model accuracy degradation,
despite the parameter updates. We confirm these updates cause meaningful changes to the parameters
in Figure 1b. This figure depicts the distribution of the parameters before and after the compression.
We can see that the parameters approach 4 centroids, with 86% of them gathered around 0. Overall,
the compression results in 112× reduction in the model size with only 0.53% drop in accuracy. We
note that the number of pruned parameters in this result are lower compared to previous works such
as Deep Compression. However, the model size reduction is higher due to the smaller dictionary.

(a) Effect of reducing the complexity and learning
the centroids on the uncompressed and compressed
model accuracies.

(b) Final distribution of network parameters.

Figure 1: Compression of LeNet-5 using the proposed method

The loss bound (section 2) controls the final model size, introducing a trade-off between accuracy
and compression. We study this trade-off by incrementing the loss bound and optimizing the model
size using Algorithm 1. In the analysis for each of the benchmark datasets we initialize 256 random
centroids and depict the results in Figure 2. We can see that for small reductions in size, the accuracy
remains generally the same. During this stage, most clusters are quickly eliminated due to being
empty. As the model size becomes small however, the error starts to increase quickly. We also
observe clusters being eliminated less often. These eliminations are a result of merging clusters.
Using these analyses, we can find the optimal trade-off between the accuracy and model size.

Table 2 summarizes the optimal trade-offs obtained from the previous analysis and compares them
with previous works. With little drop in accuracy, the proposed method achieves state-of-the art
accuracy for the MNIST dataset. It also achieves similar reductions in model size for the SVHN and
CIFAR-10 datasets using the much larger network model.

6

Under review as a conference paper at ICLR 2018

(a) MNIST (b) CIFAR-10 (c) SVHN

Figure 2: The trade-off between accuracy and model compression for MNIST, SVHN, and CIFAR-10,
using the constrained compression method.

Table 2: Baseline models

Dataset Compression Technique Compression Ratio Accuracy Loss

MNIST

Constrained Compression 112 0.53

Deep Compression 39 -0.06

Iterative ECSQ 49 -0.02

Soft Weight-Sharing 64 -0.05

CIFAR-10 Constrained Compression 42 0.78

SVHN Constrained Compression 128 2.37

6 CONCLUSION

In this paper, we presented a method for compressing trained neural network models that directly
minimizes its complexity while maintaining its accuracy. For simplicity of calculations, we chose to
represent the complexity using the k-means objective which is frequently used in previous works.
In doing so, we maintain the accuracy by introducing a hard constraint on the loss function. This
constraint incorporates the information learnt during the training process into the optimization. We
then present an algorithm that iteratively finds the optimal complexity. We test this solution on several
datasets and show that it can provide state-of-the-art compression, with little accuracy loss.

REFERENCES

Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Towards the limit of network quantization. arXiv
preprint arXiv:1612.01543, 2016.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. In Advances
In Neural Information Processing Systems, pp. 1379–1387, 2016.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. In Proceedings of the 32nd International Conference on Machine
Learning (ICML-15), pp. 1737–1746, 2015.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

7

Under review as a conference paper at ICLR 2018

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In Advances in Neural Information Processing Systems, pp. 4107–4115, 2016.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis of
a tensor processing unit. arXiv preprint arXiv:1704.04760, 2017.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998a.

Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of handwritten digits,
1998b.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. 2016.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning
and unsupervised feature learning, volume 2011, pp. 5, 2011.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep networks. In
Advances in neural information processing systems, pp. 2377–2385, 2015.

Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network compression.
arXiv preprint arXiv:1702.04008, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

8

	Introduction
	Related Work
	Method
	Training Neural Networks
	K-means Encoding
	Proposed Compression Method

	Models
	Experiments
	Conclusion

