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ABSTRACT

Developing large audio language models (LMs) capable of understanding diverse
spoken interactions is essential for accommodating the multimodal nature of human
communication and can increase the accessibility of language technologies across
different user populations. Recent work on audio LMs has primarily evaluated their
performance on short audio segments, typically under 30 seconds, with limited
exploration of long-form conversational speech segments that more closely reflect
natural user interactions with these models. To address this gap, we introduce
Brutally Long Audio Bench (BLAB), a challenging long-form audio reasoning
benchmark that evaluates audio LMs on localization, duration estimation, emotion
and counting tasks using audio segments averaging 51 minutes in length. BLAB
consists of 833+ hours of diverse, full-length audio clips, each paired with human-
annotated, text-based natural language questions and answers. Our audio data
were collected from permissively licensed sources and underwent a human-assisted
filtering process to ensure task compliance. We evaluate six open-source and
proprietary audio LMs on BLAB, and find that all of them, including advanced
models such as Gemini 2.0 Pro and GPT-4o, struggle with the tasks in BLAB.
Our comprehensive analysis reveals key insights into the trade-offs between task
difficulty and audio duration. In general, we find that audio LMs struggle with
long-form speech, with performance declining as duration increases. They perform
poorly on localization, temporal reasoning, speaker counting, and struggle to
understand non-phonemic information, relying more on prompts than audio content.
BLAB serves as a challenging evaluation framework to develop audio LMs with
robust long-form audio understanding and reasoning capabilities.

1 INTRODUCTION

Comprehensive audio perception and reasoning are central to building intelligent agents capable
of real-world interaction. Text and visual inputs alone cannot fully capture the richness of human
communication, which is multimodal and requires reasoning over a wide range of auditory cues,
including tone, pitch, and rhythm. Recent audio language models (LMs; Chu et al., 2024; Gemini
Team et al., 2024; OpenAl et al., 2024; Ghosh et al., 2025; Microsoft et al., 2025) have demonstrated
strong audio comprehension skills on short audio clips up to 30 seconds (Huang et al., 2024; Sakshi
et al., 2024) or at most 5 minutes (Ghosh et al., 2025). This leaves a critical gap: real-world audio,
such as meetings, music, podcasts, and other media content, routinely spans tens of minutes to
hours. Segmenting long recordings into short chunks may appear practical, but it limits the ability to
benchmark reasoning over broader contexts, produces fragmented or inconsistent predictions, and
introduces substantial computational and post-processing overhead. While long-context modeling
has been extensively studied for text (Dong et al., 2024) and visual inputs (Chen et al., 2025), in the
audio domain, long-form analyses are limited to conversational speech recognition (Cornell et al.,
2025b), underscoring the need for systematic evaluation of long-form audio reasoning.

To address this gap, we introduce Brutally Long Audio Bench (BLAB), the first benchmark dedicated
to reasoning over long-form audio (15 minutes—2 hours). BLAB contains over 833 hours of conversa-
tional speech across eight tasks and evaluates four fundamental reasoning skills: temporal localization,
speaker counting, emotion interpretation, and duration estimation (see Figure 1 for an overview). Our
task selection was guided by practical real world scenarios in which audio LMs could be expected
to perform end-to-end reasoning over long-form content. We focused on tasks that require not just
recognition of words or sounds, but understanding temporal structure, contextual relationships, and
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Figure 1: Overview of BLAB, designed to test true long-context multimodal understanding abilities
of audio LMs. It contains eight distinct audio tasks across four categories, namely localization,

counting, emotion, and duration estimation. t

acoustic cues across extended audio spans. These tasks have high impact applications. For instance,
media platforms like YouTube create timestamped chapters and highlights to help users find relevant
content quickly, and robust temporal localization abilities could make this process even more effective
for long-form audio. Compared to existing benchmarks, BLAB is substantially more challenging
due to the extensive length of the audio samples, which contain richer contextual information. Our
data is entirely sourced from Creative Commons-licensed videos on YouTube, using a rigorous
human-assisted filtering procedure to ensure diverse and high-quality content (more details in §2).

Using BLAB, we conduct a comprehensive evaluation (§4) and in-depth analysis (§5) of several
frontier audio LMs. Our analysis reveals that even proprietary models achieve an average F score
up to 3.02 on localization tasks (Gemini 2.0 Flash) and average exact match accuracy up to 22.25
on the remaining tasks (Gemini 2.0 Pro), underscoring the complexity of our benchmark and the
limitations of current modeling approaches. We thoroughly analyze model responses across all tasks
and document key patterns, common errors, and areas where models struggle the most. We find that
audio duration plays a large role in model performance in BLAB, as well as task complexity. Even
though all models struggle to perform tasks in BLAB, we still observe considerable performance
gaps between open-sourced and proprietary models, especially Gemini. These findings motivate
new research on long-form audio. However, limited transparency in most models’ training data
and checkpoints makes it hard to probe their results. This underscores the need for open-source
long-context multimodal LMs with fully documented data, checkpoints, and training methods.

2 BLAB: BRUTALLY LONG AUDIO BENCH

The primary focus of BLAB is to evaluate perception and reasoning abilities of audio LMs on
long-form audio derived from various real-world sources. Audio-grounded reasoning requires a
model to identify and execute skills relevant for solving an audio task implicitly or explicitly. This
motivates us to design eight tasks that demand extended reasoning over long-form audio. One may ask
why these tasks cannot be addressed with short audio clips; however, long audio contain contextual
dependencies and relationships that are difficult to capture through simple chunking or mere speech
recognition. Existing long-form datasets such as CHiME (Barker et al., 2018; Watanabe et al., 2020),
AMI (Carletta et al., 2005), and TED (Hernandez et al., 2018) focus on speech recognition. In
contrast, BLAB shifts the focus to audio-grounded reasoning. To capture challenging scenarios that
require reasoning, we collect audio with diverse properties, including multiple speakers with distinct
profiles spread across the recording, overlapping sound events, occasional background music, etc.
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Each task includes 200 Creative Commons-licensed audio files sourced from YouTube, alongside
corresponding human-annotated questions and answers. Each audio was carefully and thoughtfully
selected, prioritizing complexity, quality, diversity, and task relevance. The question-answer pairs
were either manually generated by the authors of this paper or model-generated and verified by the
authors to ensure quality. We provide a detailed description of each category and its tasks below.

2.1 LOCALIZATION TASKS

The localization tasks require identifying the start and end timestamps of specific events within audio
samples. They enable real-world applications such as audio indexing, retrieval, targeted advertising,
and creating timestamped highlights for videos. allowing users to quickly locate moments in lectures
or podcasts without relying on transcripts. In this category, we create three tasks, namely word
localization, advertisement localization, and named entity (NE) localization. These tasks have
received limited attention in long-form audio and are often restricted to very short audio clips (e.g.,
30 seconds) (Huang et al., 2024; Fiscus et al., 1970). We describe our annotation procedure below.

Word Localization We used 200 audio files obtained from YouTube (total duration of 191 hours,
samples are 57 minutes on average) and applied existing forced alignment (FA) tools to obtain word-
and sentence-level alignments between audio samples and their corresponding transcripts. For word
localization, we used WhisperX to generate word-level timestamps for each word spoken in each
audio sample (Bain et al., 2023). Next, an annotator (one of the authors) manually reviewed a subset
of our entire dataset to ensure that the forced alignments were error-free (only ~1% of timestamps
needed to be corrected). Each audio sample contains 10,500 word-timestamp pairs on average.

Named Entity Localization We defined nine entity categories to be localized: Event, Location,
NORP (nationalities or religious or political groups), Organization, Person, Product, TV shows,
Temporal, and Work of Art, as well as “All entities”, which includes all of the above. For each category,
we also define fine-grained subcategories, allowing us to evaluate whether a model understands the
nuances of entity types within the same category. For instance, the example in Table 3 focuses on
movie entities, which are a subcategory of Work of Art. Next, we crawled 200 audio files from
YouTube and transcribed using WhisperX. Each transcript was fed into a text-only LM to extract
plausible NE spans for all entity categories. We tested this part of the annotation process with
GPT-4 (OpenAl et al., 2024) and Claude-3.5 Sonnet (Cla) and obtained a higher recall with Claude
so we settled on Claude. After extracting the NE spans from text, we mapped these spans back to
their timestamps (their location in the audio), also derived from WhisperX. We paired 49 audio files
from our pool to the “All entities” category. For the single entity categories, we excluded audio files
with fewer than 15 predicted entity spans or a duration of less than 20 minutes, leaving 69 audio files
from the remaining 151 in our pool. These 69 audios were then paired to multiple “single entity”
categories, resulting in 151 extra items for the NE localization task. This yields audio data with a
total duration of 110 hours, each sample being 56 minutes on average. Compared to existing work by
Huang et al. (2024), which reports an average of 2 entities per sample, our dataset contains an average
of 46 entities per sample. The number of entities to be localized and their temporal position in the
audio adds to the complexity of this task, as models often struggle to capture long-term dependencies.

Advertisement Localization We used 200 podcasts from YouTube. Similar to the NE localization
annotation procedure, we transcribed each podcast using WhisperX. We fed the transcripts into
GPT-4 to extract plausible advertisement segments. Since we obtained very long transcripts, we fed
them to the model in chunks of 20 sentences at a time, instructing the model to extract segments that
contained an advertisement of a product or promotion from the podcast host. We observed that GPT-4
sometimes incorrectly identified segments of the transcript as advertisements, while in other cases
it missed spans that should have been detected. To remedy this, an annotator (one of the authors)
reviewed all predicted advertisement segments for every audio sample, removed false positives and
added segments that were missing. The percentage of advertisement segments that were kept was
84%. Subsequently, we aligned human-verified advertisement segments with their temporal location
in the audio file using the sentence-level timestamps from WhisperX. Our final set of audio data
consists of 232 hours of audio across 200 podcasts, with an average of three advertisement segments
per podcast and 180 words per advertisement segment.
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2.2 COUNTING TASK

Speaker Number Estimation The task of this category is to count the total number of distinct
voices in an audio sample. Existing work cover clips with fewer than 10 speakers (Huang et al.,
2024; Sakshi et al., 2024; Yang et al., 2024; Cornell et al., 2025a), but BLAB includes samples with
4-80 speakers, averaging 53 minutes in length. Long audio introduce challenges such as overlapping
speech and new speakers appearing later, testing a model’s ability to track multiple speakers over
extended periods. This task is crucial for applications like speaker diarization, meeting summarization.
We included 200 YouTube audio samples (total duration of 177 hours with an average audio sample
length of 53 minutes) in this task. Two annotators (also authors) listened to the entire audio samples
and counted the number of distinct speakers. Due to the task complexity, some samples received
different counts from the annotators. For these cases, a third annotator reviewed both annotations and
selected a final count. In majority cases, annotators argued that multiple counts could be valid, so we
retained a range of count labels and adjusted our evaluation metric (see Section B.2) to consider any
number within the range as correct. Overall, audio samples with a range of values as their ground
truth count labels account for 60% of our dataset, and the range does not exceed two speakers.

2.3 EMOTION TASKS

The emotion tasks involve ranking emotions expressed in speech and non-verbal sounds, and reasoning
over emotional expressions. They evaluate a model’s ability to integrate semantic content with
acoustic features that are strong indicators of emotions, and absent in text alone. They are critical for
real-world applications such as analyzing customer service calls, monitoring sentiment in meetings,
enhancing voice assistants’ empathetic responses, and detecting emotional cues in podcasts or media.

Valence & Arousal Ranking Existing benchmarks typically structure emotion tasks around discrete
emotion classification, using labels such as happy, sad, or angry (Huang et al., 2024; Sakshi et al.,
2024; Yang et al., 2024). However, this design does not account for variations in emotional intensity,
which is particularly relevant in speech-based emotional expressions (Martinez et al., 2014; Sethu
et al., 2019). This motivates us to evaluate audio LMs’ ability to rank ordinal emotional expressions
in audio segments rather than to classify them. Yannakakis et al. (2017; 2021) presented strong
evidence supporting the ordinal nature of emotions, demonstrating that ordinal labels enhance the
validity, reliability, and overall performance of emotion recognition models in affective computing.
Ordinal emotion labels from classical emotion theory (Russell, 1980; Lotfian & Busso, 2019) are
based on ranking emotions by intensity, and are often analyzed along three dimensions: valence
(the degree of negativity or positivity in the emotion), arousal (level of activation or intensity), and
dominance (control or power over the emotion) with respect to another speaker in a conversation.

To curate our dataset, we used 28 audio samples obtained from YouTube (total duration is 18 hours,
and samples are 39 minutes on average) and performed annotation through human-AlI collaboration.
To increase the complexity of the task, we focused on ranking speech segments in an audio file that
are difficult to distinguish in terms of emotional content based off as transcript. This challenges
cascaded systems and encourages end-to-end audio LMs to jointly consider the prosodic and semantic
content in the audio. Each audio sample in our dataset is diarized into speaker-specific segments
using Pyannote (Plaquet & Bredin, 2023; Bredin, 2023), obtaining 600 segments on average per audio
sample. To create instances for which labels cannot be inferred from text alone, we input each audio
segment into an emotion recognition model trained to predict valence and arousal scores (Wagner
et al., 2023). Next, we feed corresponding transcripts to GPT-4 to obtain text-based valence and
arousal scores. We filter segments where difference between the audio and text-based valence and
arousal scores for the same segment was greater than a threshold (0.3 in our experiments). Two
annotators reviewed each segment, verifying its alignment with the expressed emotion. For each
sample, we randomly sample up to four segments for evaluating both valence and arousal. We crafted
questions for each segment, prompting the model to rank the expressed emotion. This resulted in 156
high-quality segments with verified valence and arousal scores across 18 audio samples.

Emotional Reasoning Our motivation for this task is to evaluate an audio LM’s ability to understand
emotions beyond surface-level sentiments in long audio, focusing on deeper emotional states and
pragmatic meanings of speech over extended periods. We manually identified 22 audio samples on
YouTube that were suitable candidates for this task, such as those obtained from controversial debate
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podcasts, comedy shows, movie review podcasts, and emotionally charged interviews. One annotator
listened to each audio sample and identified emotional patterns and shifts, such as transitions from
calmness to agitation, or from happiness to frustration, and crafted reasoning questions based on
verbal and non-phonemic cues, like changes in speech tempo, pauses, or arousal. We design this task
as a multiple-choice question answering problem, where confounders are generated by extracting
plausible, contextually relevant answers from the audio, increasing the task’s difficulty. Overall we
have 44 questions paired with 22 audio samples and plan to scale further in future work.

2.4 DURATION TASKS

Event Duration This task involves predicting the duration of specific acoustic events (e.g., laughter
in a comedy special, question-and-answer segments in a panel session, or a particular speaker’s total
speaking time in a meeting) within an audio sample, or the total duration of the sample itself in
seconds. This task evaluates basic temporal reasoning abilities of audio LMs, including their capacity
to identify, localize, and track both verbal and non-verbal acoustic events and activities. We used
87 YouTube audio samples (total duration of 77 hours with an average duration of 53 minutes). An
annotator (one of the authors) reviewed each audio sample, detecting and labeling acoustic events
and activities. The diverse range of genres in YouTube allowed us to identify multiple events within a
single audio sample. After selecting these events, the annotator formulated questions and answers
and added their specific durations, pairing 200 questions to all 87 audio files. Each audio sample was
paired with at least one question and up to a maximum of four questions.

Entire Duration This task asks an audio LM to predict the total duration of an audio file in seconds.
The dataset includes 200 YouTube samples ranging from 8 seconds to 92 minutes (92 hours total, 27
minutes on average), making it the only task with short audio. The total duration of audio samples is
92 hours, and samples are 27 minutes on average. While estimating total duration may seem like a
stress test, it is key to temporal reasoning. Accurate event duration estimation relies on understanding
the overall temporal structure to correctly associate acoustic events with their time frames.

3 EXPERIMENTAL SETUP

3.1 MODELS

Almost all open-weight audio LMs (Chu et al., 2024; Ghosh et al., 2024b) can only process audio
samples with a duration of 30 seconds or less. This limitation comes from their underlying training
setup (Radford et al., 2022), which truncates audio samples longer than 30 seconds. Audio Flamingo
(Ghosh et al., 2025) is an exception, as it supports audio samples with a duration of up to 5 minutes. In
contrast, Gemini models (Gemini Team et al., 2024) support up to 9.5 hours of audio, while GPT-40
(OpenAl et al., 2024) handles up to 8 minutes of audio. Based on these model characteristics and the
design of BLAB, our evaluations focus on four Gemini models: Gemini 2.0 Flash, Gemini 2.0 Pro.
To enable broader comparisons and analyze the impact of audio duration on model performance, we
also evaluate other models (Chu et al., 2024; OpenAl et al., 2024; Ghosh et al., 2025; Microsoft et al.,
2025) on a curated short audio (< 30 seconds) subset of our benchmark named BL AB-MINI.

3.2 EVALUATION STRATEGY

Setup Localization, counting, and entire duration tasks include 200 audio samples each, paired
with 20 handcrafted, paraphrased questions. Each question is randomly paired with 10 audio samples
to ensure diversity. For event duration and emotion tasks, each question is unique to an audio sample
as they contain the event information present in the audio, resulting in 200 unique questions.

In our experiments, the audio LMs take a text prompt (instruction) and an audio file as input and
produce text as output. In order to ensure that models truly understand the audio samples and avoid
biases by providing options, we restrict our benchmark to free-form generation, except for emotion
tasks. Also, prior work suggested that multiple-choice question answering is not always reliable, as
distractor options are often either too plausible or models exploit shortcuts to arrive at the correct
answer (Balepur et al., 2025). For emotion, confounders are generated by extracting plausible,
contextually relevant answers from the audio.
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Task Metric (1) Gemini 2.0 Flash  Gemini 2.0 Pro

Word Localization word F 1.12 0.19
Advertisement localization Frame-level F} 493 0.15
NE Localization Frame-level F 2.97 2.14
Speaker Number Estimation EMA 8.00 8.50
Valence and Arousal Ranking EMA 26.28 32.00
Emotion Reasoning EMA 54.54 64.29

Entire Duration EMA (without / with 42 seconds offset) 0.50/3.50 0.00/2.50

Event Duration EMA (with / without 42 seconds offset) 1.49/4.95 1.49/3.96

Table 1: Performance comparison of Gemini audio LMs across all BLAB long audio tasks. Both
models exhibit similar performance, generally achieving low performance across tasks.

Prompt Formatting To ensure consistent outputs across different inputs and models, we append
task-specific suffixes to the original questions. For localization tasks, we instruct the model to return
JSON-formatted strings with start and end timestamps. For duration and counting tasks, models
are instructed to output a number only, without additional explanation. In emotion tasks, which
follow a multiple-choice format, the model is prompted to select the most appropriate option from the
provided choices. We provide more details about our prompt formatting in Table 5 in the Appendix.

Metrics We use task-specific metrics to evaluate model performance on BLAB. Model outputs
are post-processed to match the expected ground truth format. For localization tasks, we compute
Frame-level F (Named Entity & Advertisement), and Word-level (Word ) F; scores. Counting,
duration and emotion tasks are evaluated using exact match accuracy (EMA). For duration tasks,
we also report EMA scores with an offset of +2 seconds to account for minor timing discrepancies.
More details about our evaluation metrics are given in Appendix B.2.

4 RESULTS AND DISCUSSION

In Table 1, we present the performance of Gemini 2.0 Flash and Gemini 2.0 Pro on BLAB.

4.1 LOCALIZATION TASKS

Word localization appears the most challenging task in BLAB with both models performing extremely
poorly. Both Gemini models achieved F} scores below 2%. These scores are particularly noteworthy,
as state-of-the-art word timing models typically achieve scores close to 99% on these last two
metrics, as noted by Sainath et al. (2020). We note that each audio sample for this task contains an
average of ~10200 words. Gemini, due to its limited output context length of 8096 tokens, is able to
generate only ~261 word timestamps per sample, accounting for only about 2% of the ground truth.
Gemini 2.0 flash achieves a precision of 24.37%, indicating that the model predictions are correct
approximately 24.58% of the time. However, precision for Gemini pro is very low at 3.42%.

Models also perform poorly on NE and advertisement localization, with frame-£} scores below
5%. For NE localization, they detect 27% of ground truth entities, but fail to correctly locate them
accurately. For advertisement localization, performance is better when ads are at the beginning of the
audio files, and the Gemini models are more accurate at predicting start times than end times. This
leads us to hypothesize that the models estimate rather than detect segments with advertisements.

4.2 COUNTING TASK

The EMA on speaker number estimation for both models is below 9%. They typically underestimate
the number of unique speakers (see Figure 2a) and struggle with overlapping voice. In some cases, we
observe overestimation, likely due to the models considering the same speaker at different positions
in the audio as distinct. These errors suggest that audio LMs lack the ability to track speakers
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Figure 2: Predicted versus groundtruth for speaker number estimation and entire duration

consistently across turns, in conversations with overlapping speech, audio with music, commentary,
other forms of extraneous content, or audio with varying prosodic features generally.

4.3 DURATION TASKS

Entire Duration We find that Gemini struggles to predict the entire duration on full audio samples
(EMA up to 3.50%). Compared to our observations in the speaker number estimation task, our
analysis indicates that the models often overestimate duration, as shown in Figure 2b. However, in
most cases where the predictions are correct, the actual duration is less than 60 seconds.

Event Duration The performance scores are low as well for this task (EMA up to 4.95%). From our
observations, there are no clear trends regarding which acoustic events are predicted more accurately
than others. Performance generally varies across different event types, and we observe that the model
tends to underestimate event durations more frequently than it overestimates them.

4.4 EMOTION TASKS

The highest scores in BLAB are on emotion, with Gemini 2 Pro outperforming Gemini 2 Flash. It
achieves 32.00% EMA on emotion ranking and 63.63% on emotion reasoning. For emotion ranking,
we find that even Gemini 2 Pro struggles to correctly rank scenarios with extremely calm emotions,
often misclassifying them as neutral or highly aroused. However, it accurately predicts higher arousal
in 80% of cases. Valence rankings show no clear trends, with accuracy near chance.

5 ANALYSIS

What role does the duration of audio play? In this
section, we analyze the impact of audio duration on task

performance by conducting experiments on shorter audio. = 30 seconds =>= 30 minutes

This lets us evaluate a broader set of LMs, in particular g 60
open-weights models that process audio inputs with a £ 40
maximum of 30 seconds (Qwen 2, Chu et al., 2024, and g 20
Phi-4-Multimodal Instruct, Microsoft et al., 2025) and 5 I

minutes (Audio Flamingo, Ghosh et al., 2025, and GPT- o 0

2.0 Flash 2.0 Pro
40, OpenAl et al., 2024). We conduct analyses on word Model

and entity localization, speaker number estimation and

duration tasks. We derive the data from samples in BLAB

by extracting audio segments up to 30 seconds. We reuse  Figure 3: Comparison of long audio and
pre-existing annotations for the localization task and re- short audio results on Gemini.

annotate the segments for speaker number estimation and

duration tasks using the same procedure described in §2. We refer to this as BLAB-MINI. It contains
813 questions and 346 minutes of audio in total. More details are provided in Appendix Table 6.
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Task Metric T G2 Flash G2 Pro Q2 AF2 Phi-4 GPT-40
Word Localization Word Fy 30.22 8.61 243 - 2.73 =

NE localization Frame-level F} 45.49 49.58 12.07 - 7.63 -
Speaker Number Estimation EMA 17.50 31.00 7.0 6.00 15.50 14.50
Entire Duration EMA 5.00/31.00 3.50/34.50  6.5/27.5 2.5/20.50  3.50/22.00 17.00/27.00
Event Duration EMA 9.45/36.22 4.72/29.13  3.15/18.90 1.57/16.54 3.9/2421 1.57/18.11

Table 2: Performance comparison of audio LMs on BLAB-MINT audio tasks (< 30 seconds). G2
= Gemini 2.0, Q2 = Qwen 2.0, AF2 = Audio Flamingo 2. Gemini outperforms all others. Audio
Flamingo 2 and GPT-40 refuse to perform any localization task, so we leave them blank. For event
duration, we report scores without and with £2 seconds offset.

The results are summarized in Table 2 in the main paper and Figure 6 in the appendix. We display
comparisons for speaker number estimation in (Figure 3). Gemini models consistently improve across
all tasks as the duration is limited to 30 seconds, with the most visible gains observed in word and
NE localization. Meanwhile, Table 2 presents a comparison of model performance on BLAB-MINI
across multiple models, demonstrating that Gemini outperforms all others on every task.

Are audio LMs long-form zero-shot reasoners?  So far, we query the model to directly generate
the answer. Inspired by test-time compute research (Kojima et al., 2022; Wei et al., 2022), we explore
zero-shot chain-of-thought approaches. We append an auxiliary reasoning prompt to the original
prompt to guide the model in generating reasoning chains that could lead to better predictions. We
test the following prompts that have been effective in text-only LMs: “Let’s think step by step” and
“Explain your reasoning before making a prediction”. We conduct this analysis on speaker number
estimation and event duration with Gemini 2.0 Flash and use all long audio examples in BLAB.

For event duration, we observed accuracies of 6.93 and 6.44 with the reasoning prompts Let’s think
step by step” and Explain your reasoning before making a prediction”, respectively—an average
improvement of 3% over the original accuracy of 3.96% without any reasoning prompts (cf. Table 1).
For speaker number estimation, the accuracies with both reasoning prompts are 9.55% and 11%
respectively, a slight performance boost compared to the original 8% accuracy.

We analyzed individual reasoning steps generated for both prompts, and observed that the model
excels at planning but struggles with correctly executing each sub-task in its plan due to limited
auditory understanding. For instance, in Table 4 in the Appendix, we can see that both reasoning
prompts contain task decomposition, but sub-task results are often incorrect due to weak audio
perception. While reasoning traces are coherent, limited auditory grounding leads to errors in the
final output. Audio LMs are therefore not truly zero-shot reasoners, and more advanced test-time
strategies may be needed to better align reasoning with accurate auditory perception.

Robustness of audio LMs on long-form audio Recent
work has suggested that certain audio LMs rely only on
text prompts, rather than jointly attending to text and audio
input. Sakshi et al. (2024) report that GAMA (Ghosh et al., 40
2024a), Qwen2-Instruct (Chu et al., 2024) and Gemini Pro
(Gemini Team et al., 2024) are more robust to noisy audio
and are usually more attentive to audio content compared

= Silence = Gaussian Noise

Exact match acc.
N
o

to other models like SALMONN (Tang et al., 2024) . How- 0 oy Gomini 20 Audio oni
ever, these experiments were done on short audio samples Po Flash  Flamingo
(up to 30 seconds). Model

We follow Sakshi et al. (2024) and start by comparing the
original model’s prediction for speaker number estimation
with its prediction when the audio input is replaced with
random Gaussian noise. In a different setting, we also
replaced the original audio input with silence. All exper-
iments are performed on Gemini, Phi-4-Mini and Audio

Figure 4: Performance comparison when
the original audio input is replaced with
silence or Gaussian noise. As the entire
input is noisy, the ground truth label is 0
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Flamingo, since they support longer durations than other models. We generate 5 minute noisy audio
samples for Audio Flamingo and Phi-4-Mini, while we generate one hour long noisy audios samples
for Gemini. In contrast to previous work on short audio (Sakshi et al., 2024), which finds that audio
(LMs) are robust to noisy short audio samples, our findings reveal a different trend for long noisy
inputs. Specifically, our analysis shows in Figure 4 that the models are not robust to noisy inputs, and
they are particularly less robust to silence than to Gaussian noise.

Next, we investigated how the positioning of noise affects the robustness of an audio LM. Unlike
our previous analysis, where the entire input was replaced with Gaussian noise or silence, we now
introduce 30-second audio clips from BLAB-MINI into 60-minute noisy recordings for Gemini and
5-minute noisy recordings for Phi and Audio Flamingo, placing the clips at various positions. Our
goal is to measure the model’s ability to disregard background noise and focus on meaningful content.
We conducted this experiment for speaker number estimation, varying the placement of the clean
audio clip based on the model’s maximum input duration.

N
o
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o

B original audio Audio insertion position B original audio Audio insertion position

B beginning B beginning

mm middle mm middle
end end
gemini phi audio flamingo gemini phi audio flamingo
Model Model

w
o
w
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Exact match accuracy
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o

(a) Silence (b) Gaussian

Figure 5: Placing a 30-second clean audio clip at different points within a long, noisy audio input
impacts speaker number estimation performance. Proprietary models like Gemini perform better
when the clean clip is positioned at the beginning or end of the noisy audio.

In Figure 5, we compare the performance of Gemini, Phi, and Audio Flamingo. Gemini’s performance
degrades when the 30-second audio clip is placed in the middle, suggesting that the model struggles to
effectively use middle information in long input contexts. This is consistent with previous findings on
text LMs, where performance peaks if relevant information is at the beginning or end and significantly
drops when it is in the middle, even for models designed to handle long contexts (Liu et al., 2024).
Degradation is worse with Gaussian noise than silence. For 5-minute inputs, Phi performs better
when the 30-second clip is placed in the middle of noise, while Audio Flamingo shows consistent
degradation, likely due to difficulty distinguishing noise from actual signal as seen in Figure 4.

6 CONCLUSION

In this paper, we introduce Brutally Long Audio Bench (BLAB), a challenging benchmark for
evaluating long-form audio understanding and reasoning in audio language models across localization,
duration estimation, emotion, and counting tasks. BLAB is the first benchmark to assess audio LMs
on long-form audio, with durations ranging from over 15 minutes to up to 2 hours, with tasks that are
both practical and readily applicable to real-world use cases. Our evaluation of six open-weight and
proprietary audio LMs reveals that these models struggle substantially with long-form speech, with
performance deteriorating as audio duration increases. Additionally, we find that audio LMs perform
poorly on both temporal and counting tasks and struggle to process non-phonemic information in
audio. Contrary to existing findings on short-form audio, our analysis suggests that audio LMs
are not particularly robust when handling long-form speech. These models tend to rely more on
prompts than on actual audio content, making them susceptible to distractions from noisy audio,
such as Gaussian noise and silence. We provide a detailed report of our data curation and evaluation
framework. Overall our findings underscore the need for more approaches to developing long-context
multimodal language models with strong long-form audio understanding capabilities.
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A APPENDIX

LIMITATIONS

Audio data for BLAB is sourced from various real-world recordings, including interviews, podcasts,
and political speeches. Our annotation framework leverages human-AlI collaboration. However, we
observe that overlapping speech is common, which can impact the accuracy of automatic annotation
tools like WhisperX and Pyannote (Bain et al., 2023; Bredin, 2023), as they may not be robust in
handling such cases. To address this, our framework includes human verification steps to improve
annotation quality.

ETHICS STATEMENT

BLAB is entirely sourced from Creative Commons-licensed videos on YouTube, using a rigorous
human-assisted filtering process to ensure diverse and high-quality content. Human speech is a
particularly sensitive modality, as it is deeply personal and can convey not only language but also
emotions and mental states. Each audio file in BLAB is carefully selected, with deeply sensitive
material excluded to protect privacy. We have also ensured that no child sexual abuse material
is present in our dataset.! We recognize that speech recordings can be used to track or identify
individuals without their knowledge or consent. To address this, we have built our dataset using
publicly available YouTube data that complies with ethical guidelines regarding privacy and data
usage. However, we also acknowledge the potential risks of data misuse, such as the unintended
identification of individuals or the reinforcement of biases in downstream audio language models
due to potential contamination. Therefore, we encourage responsible use of our dataset and highlight
the importance of considering privacy and ethical concerns when applying it to evaluate real-world
applications. To promote transparency and reproducibility, we will make our benchmark publicly
available, along with associated evaluation metrics and data curation framework, allowing the research
community to contribute and build upon our work.

B RELATED WORK

Audio Benchmarking Audio benchmarks can be broadly classified into two main categories based
on their scope and purpose: Task-Specific Benchmarks focus on evaluating models’ performance on
particular audio tasks. Examples include text-audio retrieval (Koepke et al., 2021), compositional
audio reasoning (Ghosh et al., 2023), automatic speech recognition (Panayotov et al., 2015; Shi et al.,
2024), audio captioning (Drossos et al., 2019; Kim et al., 2019), and emotion recognition (Livingstone
& Russo, 2018). Several benchmarks combine such tasks into a collection such as SUPERB (Yang
et al., 2021), HEAR (Turian et al., 2022), among others. Our work falls under the umbrella of
instruction following benchmarks which assess model capabilities to understand audio signals and
follow instructions in a conversation format. Dynamic-SUPERB was one of the first benchmarks
of this kind (Huang et al., 2023), followed by AIR-Bench (Yang et al., 2024) and MMAU (Sakshi
et al., 2024). However, almost all of these benchmarks contain samples with a maximum duration of
30 seconds. Most closely related to our work is Ghosh et al. (2025), who release LongAudioBench
containing tasks with samples with a maximum duration of 5 minutes. There are existing long-form
speech benchmarks such as CHiME Barker et al. (2018); Watanabe et al. (2020), AMI Carletta et al.
(2005), and TEDHernandez et al. (2018), which often span more than one hour and primarily focus
on speech recognition. Our work focuses on much longer long audio samples which can be up to 2
hours long with a large focus on audio reasoning.

Long Context Benchmarks As the context length for text-based LMs has increased, new bench-
marks have emerged to test how well the models handle long-form text. These include tasks like
information retrieval (Needle-in-a-Haystack; Nelson et al., 2024) and synthetic long-range reasoning
(Long Range Arena; Tay et al., 2020). Newer benchmarks such as LongBench (Bai et al., 2023)
evaluate models on tasks over inputs with up to 128K tokens. While these efforts have advanced

"https://www.missingkids.org/cybertiplinedata
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long-context evaluation in text, similar benchmarks are largely missing for audio. Our work fills this
gap by introducing a benchmark for evaluating models on extremely long-form audio understanding.

Task TD (hrs.) AD (mins.) Question Example

Word Localization 191 57  Align the provided audio file with each word in its transcript. For each word
spoken, predict the start and end timestamps in seconds and milliseconds.

NE Localization 110 56  Your task is to analyze an audio file and detect all Movie named entities present
within it. Movie entity refers to the name of feature films or animated movies.
For each detected Movie entity, provide the start and end timestamps (in
seconds and milliseconds) that indicate the location and duration of the entity in
the audio.

Advertisement Local- 232 70  Given the audio file, your task is to detect the presence of promotions and

ization advertisements within the audio. You are required to predict the start and end
timestamps (in seconds and milliseconds) for the entire span for all promotion
and advertisement segments you have identified.

Speaker Number Esti- 176 53 What’s the number of unique voices detected in this sound file?

mation

Valence & Arousal 18 39 How would you assess the valence of the speaker in the fourth apology clip

Ranking within this audio file?

Emotion Reasoning 16 44 Throughout the course of this debate, which speaker demonstrates the most
consistent emotional intensity, particularly in their tone and delivery?

Entire Duration 92 27  What is the total duration of this audio file in seconds only?

Event Duration 174 51 A harmonica is being played fifteen seconds towards the end of this audio. How

long in seconds was this instrument played for ?

Table 3: Statistics and examples of questions for each task in BLAB. TD and AD represent total and
average duration, respectively. Each task consists of 200 question-audio-answers.

Question Ground Let’s think step by step Explain your reasoning
Truth
What is the total time 1160 Here’s how we can calculate the total Here’s how we can estimate

in seconds that the
first panelist spoke for
throughout the entire
podcast?

speaking time for the first panelist:1.
*xIdentify the first panelist:xx The first
panelist is Dan Mogulof.2. xxLocate the
start and end times of Dan’s first speaking
segment:+x Dan starts speaking at [00:02:00]
and ends at [00:14:50].3. *xCalculate

the duration of Dan’s first speaking
segment:*x 14 minutes and 50 seconds - 2
minutes and 0 seconds = 12 minutes and 50
seconds.4. xxLocate the start and end times
of Dan’s second speaking segment:xx Dan
starts speaking at [00:48:30] and ends at
[00:56:30].5. «+xCalculate the duration of
Dan’s second speaking segment:*x 56 minutes
and 30 seconds - 48 minutes and 30 seconds

= 8 minutes and 0 seconds.6. *xConvert the
durations to seconds:** % 12 minutes and 50
seconds = (12 = 60) + 50 = 720 + 50 = 770
seconds * 8 minutes and 0 seconds = (8

60) + 0 = 480 seconds7. *+*Add the durations
together:+x 770 seconds + 480 seconds = 1250
seconds.Therefore, the first panelist, Dan
Mogulof, spoke for a total of 1250 seconds
throughout the entire podcast.

the speaking time of

the first panelist:1.
+*xIdentify the Speaker:x*
The first panelist is Dan
Mogulof.2. =xxLocate the
Start Time:x* The first
panelist begins speaking
at 00:01:55.3. «xLocate
the End Time:*x The first
panelist stops speaking at
00:18:00.4. =*xCalculate
the Duration:*x

00:18:00 - 00:01:55 =
00:16:05.5. «**Convert

to Seconds:*x (16 minutes
* 60 seconds/minute)

+ 5 seconds = 965
seconds.**Prediction: x
The first panelist spoke
for approximately 965
seconds.

Table 4: Comparison of reasoning prompts and model responses for estimating the duration of a
person speaking in a panel discussion. While the model effectively decomposes the task and generates
relevant reasoning, it often lacks the auditory understanding needed to execute sub-tasks accurately.

B.1

PROMPT FORMATTING
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Task Prompt Format
Word Localization Align the provided audio file with
each word in its transcript. For each

word spoken, predict the start and end
timestamps in seconds and milliseconds.

Format the response as:

{{’word’: ’<word>', ’'start’: <start
timestamp of the word>, ’end’: <end
timestamp of the word>}}}

NE Localization Your task is to analyze an audio file and
detect all movie named entities present
within it. Movie entity refers to the
name of feature films or animated movies.
For each detected movie entity, provide
the start and end timestamps (in seconds
and milliseconds) that indicate the
location and duration of the entity in
the audio.

x*xExpected Output Formatxx

Your response should be formatted as a
list of dictionaries:

{{ [ "entity’: '<movie name>’, ’category’:
"movie’, ’start’: <start timestamp>,
"end’ : <end timestamp>, ’‘entity’:

’<movie name>’, 'category’: "movie’,
"start’: <start timestamp>, ’‘end’: <end
timestamp> ] }}}

Advertisement Localization Given the audio file, your task is to
detect the presence of promotions and
advertisements within the audio. You
are required to predict the start and end
timestamps (in seconds and milliseconds)
for the entire span for all promotion
and advertisement segments you have
identified.

Format the response as:

{{ "advertisement": <advertisement
text>, "start": <start timestamp of the
advertisement>, "end": <end timestamp of

the advertisement>}}}

Speaker Number Estimation What’s the number of unique voices
detected in this sound file?

Provide only the numeric value without any
explanation.

Continued on next page
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Table 5 — continued from previous page

Task

Prompt Format

Valence & Arousal Ranking

How would you assess the valence of the
speaker in the fourth apology clip within
this audio file?

Listen to the audio and select one option
from the provided choices that best
matches the answer. Return only that
option.

Options:

(A) Very Pleasant
(B) Pleasant

(C) Neutral

(D) Very Unpleasant
(D) Unpleasant

Emotion Reasoning

Throughout the course of this debate,
which speaker demonstrates the most
consistent emotional intensity,
particularly in their tone and delivery?

Listen to the audio and select one option
from the provided choices that best
matches the answer. Return only that
option. Options:

(A) The Tory Party leader

(B) The Labour Party leader

(C) Both speakers exhibit similar levels
(D) It is difficult to determine

Entire Duration

What is the total duration of this audio
file in seconds only?

Provide only the numeric value without any
explanation.

Event Duration

A harmonica is being played fifteen
seconds towards the end of this audio.

How long in seconds was this instrument
played for ? Provide only the numeric value
as an integer without any explanation. Do
not use the MM:SS format.

Table 5: Exact prompt formats used for evaluating each task in BLAB.
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B.2 METRICS

Given a model output, we post-process it to match the expected ground-truth format. For localization
tasks, we use the Json_repair library.? For the remaining tasks with numeric outputs, we use
regular expressions to extract relevant numerical values. The regular expression are designed to
identify and format various numeric formats, including integers and numbers expressed with units
(e.g., 35 seconds” or 00:23:00).

Localization Tasks For these tasks, the models are expected to generate JSON outputs. Word
localization is typically evaluated using metrics that compare start and end timestamp differences for
matching words in the audio transcript, detecting delays in word onset or offset Sainath et al. (2020).
For ease of evaluation, we report F scores on the number of correctly aligned words.

For NE and advertisement localization, which are span-localization tasks, we use Frame-level F}
as mentioned in Shon et al. (2023). This metric is derived from question-answering evaluation
frameworks (Chuang et al., 2020), and measures the overlap between the predicted and the ground
truth answer spans.

Counting and Duration and Emotion tasks These tasks require numeric answers and are evaluated
using exact match accuracy (EMA).

B.3 DATASET STATISTICS OF BLAB-MINI

BLAB-MINI is a subset of BLABthat contains audio samples less than or equal to 30 seconds of
audio on average.

Task TD (mins.) AD (seconds.) Number of questions
Word Localization 89.00 30.00 178
NE localization 36.00 30.00 107
Speaker Number Estimation 99.17 30.00 200
Entire Duration 58.78 17.64 200
Event Duration 63.55 29.79 128
Total 346.5 813

Table 6: Statistics and examples of questions for each task in BLAB-MINI. TD and AD represent
total and average duration, respectively.

“https://pypi.org/project/json-repair/

23



Under review as a conference paper at ICLR 2026

= 30 seconds =>= 30 minutes = 30 seconds =>= 30 minutes
60 ¢ 60
©
40 § 40
5 ©
S20 E 20
= S 0
x
2.0 Flash 2.0 Pro w 2.0 Flash 2.0 Pro
Model Model
(a) Word Localization (b) Event Duration
=30 seconds =>= 30 minutes =30 seconds =>= 30 minutes
60 g 60
©
I 40 £ 40
[} ©
520 g 20
) g o
2.0 Flash 2.0 Pro w 2.0 Flash 2.0 Pro
Model Model
(c) Entity Localization (d) Speaker Number Estimation

Figure 6: Comparison of long audio and short audio results across Gemini Models
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