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ABSTRACT

To optimize clinical outcomes, many fertility clinics select embryos strategically,
based on how quickly they reach certain developmental milestones. This requires
manually annotating time-lapse EmbryoScope videos with their corresponding
morphokinetics, a time-consuming process that requires experienced embryolo-
gists. We propose late-fusion ConvNets with a dynamic programming-based de-
coder for automatically labeling these videos. Experiments address data extracted
from EmbryoScope incubators at the Cleveland Clinic Foundation Fertility Cen-
ter. We focus on 6 stages, demonstrating 87% per-frame accuracy.

1 INTRODUCTION

To select embryos for in vitro fertilization (IVF) (Cetinkaya and Kahraman, 2016), doctors typ-
ically rank them based on a morphological evaluation. Due to advancements in incubators with
built-in time lapse monitoring (EmbryoScope), morphokinetics can be determined non-invasively
(Chamayou et al., 2013). These incubators use a high powered microscope to capture images of
a developing embryo every 15 minutes. Embryologists perform the analysis manually, viewing a
sequence of photographs and annotating the time stamps at which each embryo achieves certain
milestones. These scores are combined according to a heuristic formula to rank the embryos by
believed viability for transfer into a prepared endometrium.

We investigate deep learning techniques for automating the labeling of these transition times. Specif-
ically, we consider different methods of incorporating the temporal context of the video into the
model architecture by fusing frame information earlier vs later on. We also consider the use of a
post-processing decoder to enforce monotonicity constraints on our predictions.

Our dataset consists of 1309 EmbryoScope time lapse videos extracted from incubators at the Cleve-
land Clinic Foundation Fertility Center. Each frame is a grayscale 500× 500 resolution image with
a well number in the lower left corner and an hour time marker in the lower right corner, as seen
in Figure 1a. The videos in our dataset span 113 different patients, each with up to 12 wells and
corresponding videos. Videos begin around 18 hours after fertilization, and end around 140 hours
after fertilization. For each video, we obtained manually labeled times at which the depicted embryo
was first observed at each developmental stage. In reality, these stages are monotonically increasing;
once an embryo reaches a later stage, it cannot regress to an earlier one.

We focus on 6 stages of development for each embryo, cutting off each video at hour 70. The
stages include the initial stage (tStart), the appearance and breakdown of the male and female
pronucleus (tPNf), and the appearance of 2 through 4+ cells (t2, t3, t4, t4+). The class
distribution of frames are 10.3%, 5.3%, 19.4%, 4.5%, 19.8%, and 40.7% in each stage, respectively
(Figure 1b gives a fuller summary of stage distribution). We create training/validation/test splits by
randomly selecting 93/10/10 patients and their respective wells. This gives us a total of 191449 /
21798 / 23348 frames in the respective splits.
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Figure 1: Left (a) sample frame from an EmbryoScope (public image), and right (b) summary
statistics on the number of frames assigned to each stage of development in human annotations.

Figure 2: Model architectures: single (left), early-fusion (center), late-fusion (right)

2 METHODS

We cast predicting embryo morphokinetics as a multiclass classification problem, where the input is
an EmbryoScope video, and the output is a label indicating which stage the embryo is currently in at
each frame of the video. Because the frames arrive in sequence, and we have prior knowledge that
human embryologists rely on contextual frames (several before, several after) to make their annota-
tions, we investigate several methods of incorporating the context frames and temporal information.
Among other techniques, we (i) consider the use of time as a feature and (ii) experiment with various
architectures for incorporating context from temporally local frames.

We first consider a baseline of a single frame ResNet (He et al., 2016) architecture to understand how
predictive static images are of morphokinetics. We then consider two methods of temporal fusion:
early fusion and late fusion (Karpathy et al., 2014) (Figure 2). In early fusion, data is combined
temporally at a pixel level. This is accomplished by stacking surrounding frames prior to applying
any convolutions and modifying the number of channels in the input of our single frame model. In
late fusion, all frames in the context window are encoded via identical ConvNets. We concatenate
the resulting representations and pass them through the fully-connected layers to generate outputs.

Structured Decoding with Dynamic Programming (DP) The ground truth stages must be mono-
tonically non-decreasing. A vanilla CNN does not have this constraint. We impose this inductive
bias through a dynamic programming postprocessing that enforces monotonicity of predictions. For
any video, our model outputs probabilistic predictions p̂t at every frame t ∈ 1, ..., T , where T is the
last frame and p̂ti is the estimated probability that frame t is in stage si. We define E(ŷ, P̂) as an
expected cost for final predictions ŷ given the model outputs P̂ (over all frames t). Both losses are
sums of expected per-frame losses

∑T
t=1 e(ŷ

t, p̂t), which we must optimize subject to a monotonic-
ity constraint: ŷt+1 ≥ ŷt, ∀t. We investigate two per-frame losses, negative label likelihood (LL)
and earthmover (EM) distance, defined by eLL(ŷ, p̂) = − log(p̂ŷ) and eEM(ŷ, p̂) =

∑
i p̂i|ŷ − i|,

respectively. Because there are only T frames, and 6 possible choices of the label, our DP has 6T
subproblems. DP is required because once we choose to advance the prediction ŷt to stage i we
impact the loss at all subsequent steps owing to monotonicity.
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Table 1: Quantitative results for various architectures and output decoding schemes

DP: label likelihood
s.t. monotonicity

DP: earthmover’s distance
s.t. monotonicity

Model Frames Raw Acc. Accuracy MAE RMSE Accuracy MAE RMSE

ResNet50 1 0.8200 0.8460 11.225 29.650 0.8368 11.115 28.899
Early Fusion 3 0.8237 0.8448 10.555 27.370 0.8397 10.687 27.962
Early Fusion 9 0.8252 0.8423 10.927 29.400 0.8362 10.808 28.375
Early Fusion 15 0.8182 0.8456 10.935 27.719 0.8364 11.242 27.756
Early Fusion+time 9 0.8343 0.8430 11.152 26.321 0.8388 11.068 25.979
Early Fusion+time 15 0.8420 0.8446 10.761 26.849 0.8411 10.904 26.701
Late Fusion 15 0.8479 0.8676 8.963 24.756 0.8708 8.594 24.334

Figure 3: DP decoders smooth predictions. On left, smoothing significantly reduces the error caused
by the model’s uncertainty in later stages.

3 EXPERIMENTS

We now present our basic experimental setup. We report the per-frame accuracy of our raw predic-
tions, as well as the per-frame accuracy of the DP predictions (for both objectives). We also report
the mean absolute error (MAE) and root mean squared error (RMSE) (measured in frames) of the
predicted transition times after post-processing.

Our models are variants of a ResNet50 pretrained on ImageNet(He et al., 2016). For vanilla and
early-fusion models, we modify the number of input channels to take in varying amounts of tempo-
ral context. Our late fusion model concatenates the fully-connected layers together after applying
parallel convolutional encoders separately. In some experiments, we append the timestamp as an
input to the fully-connected layer. We train all models using stochastic gradient descent with weight
decay and use standard data augmentation techniques, including random rotations and flips and
choose all hyper-parameters based on validation set performance. Results (Table 1) demonstrate
that our best model, by all metrics, is a late-fusion ResNet with outputs decoded to minimize the
expected earth mover’s distance.

4 RELATED WORK

The problem of predicting embryo annotations from time lapse videos has been addressed in the
literature by Khan et al.. In that work they use an 8-layer convolutional network to count the number
of embryos in an image. To incorporate temporal information they use conditional random fields
and similarly use dynamic programming to enforce monotonicity constraints. To our knowledge, our
work is the first to use deep learning to predict embryo morphokinetics and to model it using late
fusion models and dynamic decoders. The idea of extending models to include temporal information
has been explored extensively in recent years. Simonyan and Zisserman (2014) used a two-stream
architecture applied to a single frame as well as multi-frame optical flow in order to combine spatial
and temporal information. Karpathy et al. (2014) introduced the architecture of early, late, and slow
fusion models in order to incorporate temporal information at different points in the model.
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